JP5037988B2 - Method for manufacturing SiC semiconductor device - Google Patents

Method for manufacturing SiC semiconductor device Download PDF

Info

Publication number
JP5037988B2
JP5037988B2 JP2007087249A JP2007087249A JP5037988B2 JP 5037988 B2 JP5037988 B2 JP 5037988B2 JP 2007087249 A JP2007087249 A JP 2007087249A JP 2007087249 A JP2007087249 A JP 2007087249A JP 5037988 B2 JP5037988 B2 JP 5037988B2
Authority
JP
Japan
Prior art keywords
sic substrate
susceptor
sic
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007087249A
Other languages
Japanese (ja)
Other versions
JP2008251576A (en
Inventor
弘明 岩黒
恒一 西川
雄介 前山
祐介 福田
正章 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2007087249A priority Critical patent/JP5037988B2/en
Publication of JP2008251576A publication Critical patent/JP2008251576A/en
Application granted granted Critical
Publication of JP5037988B2 publication Critical patent/JP5037988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、SiC半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a SiC semiconductor device.

SiC(炭化珪素、Silicon Carbide)は、Si(Silicon)と比較してバンドギャップが大きいことから耐電圧・耐熱性に優れており、特に、高電圧に対応可能な装置に用いられている。
一般に、SiC基板に所定の導電型の拡散領域を形成する場合には、Si基板の場合と同様に、SiC基板に対して不純物としてのイオンを注入する工程と、この不純物を活性化する活性化アニール工程とを行う。そして、活性化アニール工程の後には、炉内でガス流によりSiC基板を冷却する工程を行う(例えば、特許文献1)。
特開2002−261101号公報
SiC (Silicon Carbide) is superior in withstand voltage and heat resistance because it has a larger band gap than Si (Silicon), and is particularly used in devices capable of handling high voltages.
In general, when a diffusion region of a predetermined conductivity type is formed on a SiC substrate, as in the case of the Si substrate, a step of implanting ions as impurities into the SiC substrate and an activation for activating the impurities An annealing process is performed. Then, after the activation annealing step, a step of cooling the SiC substrate by a gas flow in a furnace is performed (for example, Patent Document 1).
JP 2002-261101 A

SiC基板における活性化アニール工程は、加熱温度が少なくとも1500℃を超えるため、活性化アニール工程後、作業者が触れてもやけどを負わない常温まで冷却するためには少なくとも2時間以上かかるのが通常である(例えば、図2の200を参照)。
従って、活性化アニール工程後の冷却時間の短縮は、SiC半導体装置(デバイス)を製造する上で解決すべき課題となっていた。
そこで、本発明は、上記課題を鑑み、SiC半導体装置の製造方法を提供しようとするものである。
The activation annealing process for the SiC substrate usually takes at least 2 hours or more after the activation annealing process to cool to room temperature that does not cause burns even if touched by the operator after the activation annealing process. (See, for example, 200 in FIG. 2).
Therefore, shortening the cooling time after the activation annealing step has been a problem to be solved in manufacturing the SiC semiconductor device (device).
In view of the above problems, the present invention intends to provide a method for manufacturing a SiC semiconductor device.

本発明の一態様に係るSiC半導体装置の製造方法は、SiC基板を準備する第1の工程と、前記SiC基板に対してイオンを注入する第2の工程と、前記SiC基板をアニール装置の加熱炉において、約1500℃乃至約2000℃で加熱する第3の工程と、前記SiC基板を約500℃/分乃至約2000℃/分の割合で、常温まで冷却する第4の工程とを備える。
本発明の別の一態様に係るSiC半導体装置の製造方法は、SiC基板を準備する第1の工程と、SiC基板に対してイオンを注入する第2の工程と、SiC基板をアニール装置の加熱炉において、約1500℃乃至約2000℃で加熱する第3の工程と、SiC基板を炉内で冷却して温度が約300℃乃至約1000℃になった後に、SiC基板を約500℃/分乃至約2000℃/分の割合で、常温まで冷却する第4の工程とを備える。
A method for manufacturing a SiC semiconductor device according to an aspect of the present invention includes a first step of preparing a SiC substrate, a second step of implanting ions into the SiC substrate, and heating the SiC substrate with an annealing apparatus. The furnace includes a third step of heating at about 1500 ° C. to about 2000 ° C., and a fourth step of cooling the SiC substrate to room temperature at a rate of about 500 ° C./min to about 2000 ° C./min.
A method for manufacturing a SiC semiconductor device according to another aspect of the present invention includes a first step of preparing a SiC substrate, a second step of implanting ions into the SiC substrate, and heating the SiC substrate with an annealing device. A third step of heating at about 1500 ° C. to about 2000 ° C. in the furnace; and after cooling the SiC substrate in the furnace to a temperature of about 300 ° C. to about 1000 ° C., the SiC substrate is about 500 ° C./min Or a fourth step of cooling to room temperature at a rate of about 2000 ° C./min.

本発明のSiC半導体装置の製造方法は、活性化アニール工程後にSiC基板を純水等で急速に冷却するので、活性化アニール工程後の冷却時間を短縮することが可能になる。
また、アニール装置内部で冷却を行うことが可能になるので、高温のSiC基板に作業者が触れることが全くなく、作業者の安全を確保することができる、という優れた効果を奏し得る。
In the method for manufacturing a SiC semiconductor device of the present invention, the SiC substrate is rapidly cooled with pure water or the like after the activation annealing step, so that the cooling time after the activation annealing step can be shortened.
Moreover, since it becomes possible to perform cooling inside the annealing apparatus, it is possible to obtain an excellent effect that the worker does not touch the high-temperature SiC substrate at all and the safety of the worker can be ensured.

以下、図面を参照しながら、本発明を実施するための一形態を説明する。
図1は、本発明を実施するSiC半導体装置を製造する方法の一形態である。
図1は、本発明の一実施例に係る半導体素子製造装置100である。半導体製造装置100は、熱処理室(アニール装置の加熱炉)101とロードロック室102とを備える。熱処理室101は、SiC基板を加熱処理するために用いられる。ロードロック室102は、大気を遮断するために用いられる。断熱材やサセプタ105の炭素が大気により酸化され燃えてしまうのを避けるためである。
半導体素子製造装置100は、更に、熱処理室101とロードロック室102との間に、ゲートバルブ103を設ける。ゲートバルブ103を開閉することにより、熱処理室101とロードロック室102との間を仕切ることができる。
半導体素子製造装置100は、更に、試料搬送棒104のような搬送手段を備える。試料搬送棒104は、SiC基板 を載せたサセプタ105を備え、サセプタ105を熱処理室101とロードロック室102の液体槽(タンク)106との間で移動させることができる。
Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a method for manufacturing a SiC semiconductor device embodying the present invention.
FIG. 1 shows a semiconductor device manufacturing apparatus 100 according to an embodiment of the present invention. The semiconductor manufacturing apparatus 100 includes a heat treatment chamber (heating furnace for annealing apparatus) 101 and a load lock chamber 102. Heat treatment chamber 101 is used to heat-treat the SiC substrate. The load lock chamber 102 is used to block the atmosphere. This is to prevent the heat insulating material and carbon of the susceptor 105 from being oxidized and burned by the atmosphere.
The semiconductor element manufacturing apparatus 100 further includes a gate valve 103 between the heat treatment chamber 101 and the load lock chamber 102. By opening and closing the gate valve 103, the heat treatment chamber 101 and the load lock chamber 102 can be partitioned.
The semiconductor element manufacturing apparatus 100 further includes a transport unit such as a sample transport bar 104. The sample transport rod 104 includes a susceptor 105 on which an SiC substrate is placed, and the susceptor 105 can be moved between the heat treatment chamber 101 and the liquid tank (tank) 106 of the load lock chamber 102.

ロードロック室102は液体槽106を備える。また、図示していないが、純水を液体槽106から加熱炉に導入する導入水路と、純水を加熱炉から導出する導出水路とを有している。液体槽106には化学的に安定な液体、例えば、純水を入れる。この場合、純水は、ある程度の純度を有する。また、液体槽106には、純水の代わりに液体アルゴン(Ar)を入れてもよい。
ロードロック室102は、更に、試料交換口107を備え、サセプタ105上の試料を交換することができる。ロードロック室102は、更に、ガス導入口108と排気口109とを備える。ガスはガス導入口108から導入され、排気口109へ排出される。
熱処理室101は、RF(Radio Frequency)コイル110と、ガス導入口111と、排気口112とを備える。RFコイル110は、SiC基板を加熱するために用いられ、これ以外の加熱手段も適用可能である。
なお、ガス(主に不活性ガス)は、ガス導入口から導入され、排気口へ排出される。SiC基板が酸素に触れて、酸化することを避けるためである。
The load lock chamber 102 includes a liquid tank 106. Moreover, although not shown in figure, it has the introductory water channel which introduce | transduces a pure water into the heating furnace from the liquid tank 106, and the outlet water channel which guide | induces a pure water from a heating furnace. The liquid tank 106 is filled with a chemically stable liquid such as pure water. In this case, pure water has a certain degree of purity. The liquid tank 106 may contain liquid argon (Ar) instead of pure water.
The load lock chamber 102 further includes a sample exchange port 107 so that the sample on the susceptor 105 can be exchanged. The load lock chamber 102 further includes a gas introduction port 108 and an exhaust port 109. The gas is introduced from the gas inlet 108 and discharged to the exhaust outlet 109.
The heat treatment chamber 101 includes an RF (Radio Frequency) coil 110, a gas introduction port 111, and an exhaust port 112. The RF coil 110 is used to heat the SiC substrate, and other heating means can be applied.
Gas (mainly inert gas) is introduced from the gas introduction port and discharged to the exhaust port. This is to prevent the SiC substrate from being exposed to oxygen and being oxidized.

図2は、図1に示した半導体製造装置を実施するための温度プロファイルの一例である。
はじめに、図2の201に示すような温度プロファイルを実施するSiC半導体装置の製造方法について説明する。
イオン注入済みのSiC基板をサセプタ105に取り付け、熱処理室101へ移動させる。熱処理室101およびロードロック室102を真空引きして大気を除去し、続いてアルゴンガスを両チャンバ(熱処理室101およびロードロック室102)内に大気圧まで導入する。ゲートバルブ103を閉じ、活性化アニール工程を行う。本実施例では、SiC基板を熱処理室(アニール装置の加熱炉)101で、所定の温度に加熱する。好適には、約1500℃〜約2000℃に加熱する。これにより、SiCの基板内の不純物を活性化することができる。
FIG. 2 is an example of a temperature profile for implementing the semiconductor manufacturing apparatus shown in FIG.
First, a method of manufacturing an SiC semiconductor device that implements a temperature profile as indicated by 201 in FIG. 2 will be described.
The ion-implanted SiC substrate is attached to the susceptor 105 and moved to the heat treatment chamber 101. The heat treatment chamber 101 and the load lock chamber 102 are evacuated to remove the atmosphere, and then argon gas is introduced into both chambers (the heat treatment chamber 101 and the load lock chamber 102) to atmospheric pressure. The gate valve 103 is closed and an activation annealing process is performed. In this embodiment, the SiC substrate is heated to a predetermined temperature in a heat treatment chamber (heating furnace of an annealing apparatus) 101. Preferably, it is heated to about 1500 ° C to about 2000 ° C. Thereby, impurities in the SiC substrate can be activated.

次に、SiC基板を所定の割合で常温まで冷却する工程を行う。好適には、約500℃/分〜約2000℃/分の割合で、常温まで冷却する。本実施例では、ゲートバルブ103を開け、試料搬送棒104によりサセプタ105を下方向に移動させて、SiC基板を載せたサセプタ105ごと液体槽106の純水中に浸ける。これにより、サセプタ105の温度は、図2の201に示すように、約100℃まで急速に下がる。純水の沸点は100℃なので、沸点以上に水温が上昇することはない。また、本実施例において、ある程度の純度を有する純水を用いる理由のひとつは、水に不純物が含まれる場合に、その不純物がSiC基板に対して寄与することを排除するためである。
なお、本実施例では、約500℃/分〜約2000℃/分の割合で、常温まで冷却する例について示したが、上記よりも緩やかな割合で常温まで冷却するような態様も本発明が適用可能である。
Next, a step of cooling the SiC substrate to room temperature at a predetermined rate is performed. Preferably, it is cooled to room temperature at a rate of about 500 ° C./min to about 2000 ° C./min. In this embodiment, the gate valve 103 is opened, the susceptor 105 is moved downward by the sample transport rod 104, and the susceptor 105 on which the SiC substrate is placed is immersed in pure water in the liquid tank 106. As a result, the temperature of the susceptor 105 rapidly decreases to about 100 ° C. as indicated by 201 in FIG. Since the boiling point of pure water is 100 ° C., the water temperature does not rise above the boiling point. In the present embodiment, one of the reasons for using pure water having a certain degree of purity is to exclude the contribution of impurities to the SiC substrate when the impurities are contained in water.
In the present embodiment, an example of cooling to room temperature at a rate of about 500 ° C./min to about 2000 ° C./min is shown, but an embodiment in which cooling to room temperature at a slower rate than the above is also applicable to the present invention. Applicable.

また、別の態様として、液体槽106に液体アルゴンが入っている場合に、SiC基板を載せたサセプタ105ごと液体槽106の液体アルゴンの中に浸けると、サセプタ106の温度は、−183℃まで下がる。その後、液体アルゴンが入っている液体槽106からサセプタ105を取り出すことにより、サセプタの温度は、ロードロック室内の室温まで上昇する。
また、サセプタ105を液体槽106の液体アルゴンの中に浸けている工程において、サセプタ105の温度が下がっている最中に、例えば、サセプタの温度が所定の温度(例えば、0℃近辺やロードロック室の室温近辺)まで下がったことを検知して、液体槽106からサセプタ105を取り出すような構成を用いてもよい。
本実施例のSiC半導体装置の製造方法では、アニール工程後にSiC基板を純水で急速に冷却するので、活性化アニール工程後の冷却時間を短縮することが可能になる。
As another aspect, when liquid argon is contained in the liquid tank 106, when the susceptor 105 on which the SiC substrate is placed is immersed in the liquid argon in the liquid tank 106, the temperature of the susceptor 106 is reduced to -183 ° C. Go down. Thereafter, by removing the susceptor 105 from the liquid tank 106 containing liquid argon, the temperature of the susceptor rises to room temperature in the load lock chamber.
Further, in the process of immersing the susceptor 105 in the liquid argon in the liquid tank 106, while the temperature of the susceptor 105 is decreasing, for example, the temperature of the susceptor is a predetermined temperature (for example, around 0 ° C. or load lock). It is also possible to use a configuration in which the susceptor 105 is taken out from the liquid tank 106 by detecting that the temperature has dropped to around the room temperature of the chamber.
In the manufacturing method of the SiC semiconductor device of the present embodiment, the SiC substrate is rapidly cooled with pure water after the annealing step, so that the cooling time after the activation annealing step can be shortened.

本発明の別の実施例として、図1の半導体製造装置を用いて、図2の202に示すような温度プロファイルを実施するSiC半導体装置の製造方法について説明する。
SiCをサセプタ105に取り付け、SiC基板を熱処理室(アニール装置の加熱炉)101で、所定の温度に加熱する、好適には約1500℃〜約2000℃に加熱する。ここまでは、前述の実施例と同様である。
本実施例では、加熱後、炉内のガス流で冷却をおこない、SiC基板の温度が所定の温度まで下がるのを待つ。好適には、SiC基板の温度が約300℃乃至約1000℃にまで下がるのを待つ。本実施例では、図2の202に示すように、ガス流によりSiC基板の温度を約1000℃まで冷却した場合を示している。この温度は、要求される冷却時間との関係で決められるものであり、約1000℃より低い(または高い)温度にまで下がるのを待つような温度プロファイルを用いてもよい。その後、SiC基板を冷却槽106に浸け、SiC基板を所定の割合で、好適には約500℃/分〜約2000℃/分の割合で、常温まで冷却する。
本実施例では、SiC基板の加熱後すぐに急冷するのではなく、SiC基板をガス流等により緩やかに冷却して所定の温度まで下げた後に、急冷することにより、SiCを製造する。急速な冷却工程によるSiC基板その他に及ぶ影響を考慮する場合に、本実施例が適用できる。
そして、この後の工程は、前述の実施例と同様である。
As another embodiment of the present invention, a method of manufacturing a SiC semiconductor device that implements a temperature profile as shown at 202 in FIG. 2 using the semiconductor manufacturing device of FIG. 1 will be described.
SiC is attached to the susceptor 105, and the SiC substrate is heated to a predetermined temperature in a heat treatment chamber (annealing device heating furnace) 101, preferably about 1500 ° C. to about 2000 ° C. Up to this point, the process is the same as in the previous embodiment.
In the present embodiment, after heating, cooling is performed with a gas flow in the furnace, and waiting for the temperature of the SiC substrate to drop to a predetermined temperature. Preferably, waiting for the temperature of the SiC substrate to drop to about 300 ° C to about 1000 ° C. In this embodiment, as shown at 202 in FIG. 2, the case where the temperature of the SiC substrate is cooled to about 1000 ° C. by the gas flow is shown. This temperature is determined in relation to the required cooling time, and a temperature profile that waits to drop to a temperature lower (or higher) than about 1000 ° C. may be used. Thereafter, the SiC substrate is immersed in the cooling bath 106, and the SiC substrate is cooled to room temperature at a predetermined rate, preferably at a rate of about 500 ° C./min to about 2000 ° C./min.
In the present embodiment, the SiC substrate is not rapidly cooled immediately after being heated, but the SiC substrate is slowly cooled to a predetermined temperature by a gas flow or the like, and then cooled rapidly to produce SiC. The present embodiment can be applied to the case where the influence of the rapid cooling process on the SiC substrate and the like is taken into consideration.
The subsequent steps are the same as those in the previous embodiment.

上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者にとって明らかである。   While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

図1は、本発明の一実施例に係る半導体製造装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention. 図2は、本発明の一実施例に係る半導体製造装置の冷却過程において、冷却時間と基板温度との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between the cooling time and the substrate temperature in the cooling process of the semiconductor manufacturing apparatus according to the embodiment of the present invention.

符号の説明Explanation of symbols

100 半導体素子製造装置
101 熱処理室
102 ロードロック室
103 ゲートバルブ
104 試料搬送棒
105 サセプタ
106 液体槽
107 試料交換口
108、111 ガス導入口
109、112 排気口
110 RFコイル
DESCRIPTION OF SYMBOLS 100 Semiconductor device manufacturing apparatus 101 Heat processing chamber 102 Load lock chamber 103 Gate valve 104 Sample conveyance rod 105 Susceptor 106 Liquid tank 107 Sample exchange port 108, 111 Gas introduction port 109, 112 Exhaust port 110 RF coil

Claims (4)

SiC基板を準備する第1の工程と、
前記SiC基板に対してイオンを注入する第2の工程と、
イオン注入済みのSiC基板をサセプタに取り付けて、アニール装置の加熱炉において、1500℃乃至2000℃で、前記サセプタごと前記SiC基板を加熱する第3の工程と、
500℃/分乃至2000℃/分の割合で、常温まで、前記サセプタごと前記SiC基板を冷却する第4の工程と、
を含み、
前記第4の工程は、前記サセプタごと前記SiC基板を前記アニール装置に設けたタンクに貯留されている純水中に浸し、冷却することを特徴とするSiC半導体装置の製造方法。
A first step of preparing a SiC substrate;
A second step of implanting ions into the SiC substrate;
The ion implantation previously SiC substrate mounted on a susceptor, in a heating furnace of the annealing apparatus, at 1500 ° C. to 2000 ° C., and a third step of heating each of the susceptor the SiC substrate,
A fourth step of cooling the SiC substrate together with the susceptor to a normal temperature at a rate of 500 ° C./min to 2000 ° C./min;
Only including,
The fourth step is a method of manufacturing an SiC semiconductor device, wherein the SiC substrate together with the susceptor is immersed in pure water stored in a tank provided in the annealing device and cooled .
SiC基板を準備する第1の工程と、
前記SiC基板に対してイオンを注入する第2の工程と、
イオン注入済みのSiC基板をサセプタに取り付けて、アニール装置の加熱炉において、1500℃乃至2000℃で、前記サセプタごと前記SiC基板を加熱する第3の工程と、
前記SiC基板を炉内で冷却して温度が300℃乃至1000℃になった後に、前記SiC基板を500℃/分乃至2000℃/分の割合で、常温まで、前記サセプタごと前記SiC基板を冷却する第4の工程と、
を含み、
前記第4の工程は、前記サセプタごと前記SiC基板を前記アニール装置に設けたタンクに貯留されている純水中に浸し、冷却することを特徴とするSiC半導体装置の製造方法。
A first step of preparing a SiC substrate;
A second step of implanting ions into the SiC substrate;
The ion implantation previously SiC substrate mounted on a susceptor, in a heating furnace of the annealing apparatus, at 1500 ° C. to 2000 ° C., and a third step of heating each of the susceptor the SiC substrate,
After the SiC substrate is cooled in a furnace to a temperature of 300 ° C. to 1000 ° C., the SiC substrate is cooled together with the susceptor to a normal temperature at a rate of 500 ° C./min to 2000 ° C./min. A fourth step of
Only including,
The fourth step is a method of manufacturing an SiC semiconductor device, wherein the SiC substrate together with the susceptor is immersed in pure water stored in a tank provided in the annealing device and cooled .
前記アニール装置が前記SiC基板を前記加熱炉から搬出して前記タンクに搬入する搬送手段を有していることを特徴とする請求項1または2に記載のSiC半導体装置の製造方法。 3. The method of manufacturing an SiC semiconductor device according to claim 1, wherein the annealing apparatus includes a transport unit that unloads the SiC substrate from the heating furnace and loads the SiC substrate into the tank. 前記アニール装置が前記純水を前記タンクから前記加熱炉に導入する導入水路を有していることを特徴とする請求項1または2に記載のSiC半導体装置の製造方法。 3. The method of manufacturing an SiC semiconductor device according to claim 1, wherein the annealing apparatus has an introduction water channel for introducing the pure water from the tank into the heating furnace.
JP2007087249A 2007-03-29 2007-03-29 Method for manufacturing SiC semiconductor device Expired - Fee Related JP5037988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087249A JP5037988B2 (en) 2007-03-29 2007-03-29 Method for manufacturing SiC semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087249A JP5037988B2 (en) 2007-03-29 2007-03-29 Method for manufacturing SiC semiconductor device

Publications (2)

Publication Number Publication Date
JP2008251576A JP2008251576A (en) 2008-10-16
JP5037988B2 true JP5037988B2 (en) 2012-10-03

Family

ID=39976233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087249A Expired - Fee Related JP5037988B2 (en) 2007-03-29 2007-03-29 Method for manufacturing SiC semiconductor device

Country Status (1)

Country Link
JP (1) JP5037988B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680985B2 (en) * 2011-02-16 2015-03-04 株式会社アルバック Plasma processing method and plasma processing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8908509D0 (en) * 1989-04-14 1989-06-01 Secr Defence Substitutional carbon in silicon
EP1019953A1 (en) * 1997-09-30 2000-07-19 Infineon Technologies AG Method for thermal curing of implantation-doped silicon carbide semiconductors
JP3711199B2 (en) * 1998-07-07 2005-10-26 信越半導体株式会社 Heat treatment method for silicon substrate
JP2004006867A (en) * 2000-04-21 2004-01-08 Matsushita Electric Ind Co Ltd Method of forming semiconductor layer
JP4414605B2 (en) * 2001-03-02 2010-02-10 株式会社リコー Manufacturing method of semiconductor device
JP4894111B2 (en) * 2001-08-31 2012-03-14 株式会社デンソー Heat treatment equipment
JP4054243B2 (en) * 2002-10-10 2008-02-27 新日本製鐵株式会社 Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer
JP2005197464A (en) * 2004-01-07 2005-07-21 Rohm Co Ltd Method for manufacturing semiconductor device
JP2006339396A (en) * 2005-06-02 2006-12-14 Kwansei Gakuin Ion implantation annealing method, method of manufacturing semiconductor element, and semiconductor element
JP2008117921A (en) * 2006-11-02 2008-05-22 Mitsubishi Chemicals Corp Method of manufacturing semiconductor device, and semiconductor processing equipment

Also Published As

Publication number Publication date
JP2008251576A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
KR102028779B1 (en) Methods and apparatus for selective oxidation of a substrate
US7915179B2 (en) Insulating film forming method and substrate processing method
KR100814594B1 (en) System and method for heat treating semiconductor
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JPH07283160A (en) Heat treatment device
JP5398168B2 (en) Method and apparatus for manufacturing silicon carbide semiconductor element
JP5037988B2 (en) Method for manufacturing SiC semiconductor device
JP5478041B2 (en) Annealing equipment, heat treatment method
JP2015002339A (en) Substrate processing device, method for manufacturing substrate, and method for manufacturing semiconductor device
JP3207402B2 (en) Semiconductor heat treatment apparatus and semiconductor substrate heat treatment method
JP2003031571A (en) Method for forming oxidized film of silicon carbide semiconductor
JPH11186257A (en) Manufacture of semiconductor device
JP2011066187A (en) Film formation method and processing system
JP2005123284A (en) Semiconductor manufacturing device
JP2008283143A (en) Treatment equipment, and transistor manufacturing method
US20140349491A1 (en) Methods and apparatus for selective oxidation of a substrate
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JP2004281674A (en) Heat treatment equipment and process for producing substrate
JP5145792B2 (en) Single wafer heat treatment apparatus and heat treatment method
JP2008010688A (en) Substrate treating device
JPS5856341A (en) Heat treatment and heat treatment device
JP2008263064A (en) Method of manufacturing semiconductor device
CN112928021A (en) Pretreatment method of heat treatment furnace, heat treatment furnace and preparation method of wafer
JP2003017434A (en) Method and device for heat treatment
KR20010006883A (en) Heat treatment method of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees