JP5030440B2 - Seed crystal fixing device and seed crystal fixing method - Google Patents

Seed crystal fixing device and seed crystal fixing method Download PDF

Info

Publication number
JP5030440B2
JP5030440B2 JP2006062974A JP2006062974A JP5030440B2 JP 5030440 B2 JP5030440 B2 JP 5030440B2 JP 2006062974 A JP2006062974 A JP 2006062974A JP 2006062974 A JP2006062974 A JP 2006062974A JP 5030440 B2 JP5030440 B2 JP 5030440B2
Authority
JP
Japan
Prior art keywords
seed crystal
fixing
adhesive
chamber
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006062974A
Other languages
Japanese (ja)
Other versions
JP2006347867A (en
Inventor
大輔 近藤
拓也 門原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006062974A priority Critical patent/JP5030440B2/en
Priority to US11/435,762 priority patent/US7553373B2/en
Publication of JP2006347867A publication Critical patent/JP2006347867A/en
Priority to US11/683,745 priority patent/US7497906B2/en
Application granted granted Critical
Publication of JP5030440B2 publication Critical patent/JP5030440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、反応容器の種結晶配置部に接着剤を介して種結晶を固定するための種結晶固定装置及び種結晶の固定方法に関する。   The present invention relates to a seed crystal fixing device and a seed crystal fixing method for fixing a seed crystal to a seed crystal arrangement part of a reaction vessel via an adhesive.

炭化ケイ素は、ケイ素に比し、バンドギャップが大きく、絶縁破壊特性、耐熱性、耐放射線性等に優れることから、小型で高出力の半導体等の電子デバイス材料として注目されている。また、光学的特性に優れることから光学デバイス材料としても注目されてきている。かかる炭化ケイ素の結晶の中でも、炭化ケイ素単結晶は、炭化ケイ素多結晶に比し、ウェハ等のデバイスに応用した際にウェハ内特性の均一性等に特に優れるという利点がある。   Silicon carbide is attracting attention as a small and high-power electronic device material such as a semiconductor because it has a larger band gap and is superior in dielectric breakdown characteristics, heat resistance, radiation resistance, and the like. In addition, it has attracted attention as an optical device material because of its excellent optical characteristics. Among such silicon carbide crystals, a silicon carbide single crystal has an advantage that it is particularly excellent in uniformity of characteristics within a wafer when applied to a device such as a wafer, compared to a silicon carbide polycrystal.

この炭化ケイ素単結晶の製造方法の1つとして、反応容器(坩堝)内の第一端部に昇華用原料を収容し、上記反応容器内の昇華用原料に略対向する第二端部(種結晶配置部)に炭化ケイ素単結晶の種結晶を配置し、昇華させた昇華用原料を上記種結晶上に再結晶させて炭化ケイ素単結晶を成長させる改良レイリー法がある。   As one method for producing this silicon carbide single crystal, a sublimation raw material is accommodated in a first end portion in a reaction vessel (crucible), and a second end portion (seed) that substantially faces the sublimation raw material in the reaction vessel. There is an improved Rayleigh method in which a silicon carbide single crystal seed crystal is arranged in the crystal arrangement portion), and the sublimated raw material for sublimation is recrystallized on the seed crystal to grow a silicon carbide single crystal.

改良レイリー法において、種結晶配置部に種結晶が完全に接着していない状態で種結晶を成長させると、完全に接着していない部分の種結晶配置部側から種結晶を貫通して成長結晶内にまでマクロ欠陥(空洞欠陥)が発生しウェハの品質を損ねる傾向があった。また接着剤が高温下ではガス化してこれが気泡として接着剤層内に残留することも品質の低下の発生原因として考えられていた。   In the modified Rayleigh method, when a seed crystal is grown in a state where the seed crystal is not completely adhered to the seed crystal arrangement portion, the crystal grown through the seed crystal from the seed crystal arrangement portion side of the portion not completely adhered There was a tendency for the macro defect (cavity defect) to occur inside and to deteriorate the quality of the wafer. Further, it has been considered that the adhesive is gasified at a high temperature and remains as bubbles in the adhesive layer as a cause of the deterioration of quality.

上記課題を解決する手段としていくつかの技術が提案されている(例えば、特許文献1、2参照。)。例えば特許文献1には、所定の圧力をかけて固定する固定方法が開示されている。また特許文献2には重石を種結晶の上に載せて圧着する固定方法が開示されている。   Several techniques have been proposed as means for solving the above problems (see, for example, Patent Documents 1 and 2). For example, Patent Literature 1 discloses a fixing method in which a predetermined pressure is applied for fixing. Patent Document 2 discloses a fixing method in which a weight is placed on a seed crystal and pressure-bonded.

しかし、機械的圧着法では種結晶表面に微細な凸凹が生じるため、種結晶の全表面を均等に圧着することが困難であった。また、重りによる圧着も同様に均等に圧着させることが困難であった。
特開2001−139394号公報 特開2003−119098号公報
However, in the mechanical pressure bonding method, fine irregularities are generated on the surface of the seed crystal, so that it is difficult to press the entire surface of the seed crystal uniformly. In addition, it is difficult to uniformly press the weight using the weight.
JP 2001-139394 A Japanese Patent Laid-Open No. 2003-119098

種結晶配置部に対して種結晶表面を均等に圧着する種結晶固定方法及び種結晶固定装置が求められていた。   There has been a demand for a seed crystal fixing method and a seed crystal fixing device that uniformly press-bond the seed crystal surface to the seed crystal arrangement portion.

即ち、本発明は、以下の記載事項に関する。
(1)反応容器の種結晶配置部に接着剤を介して種結晶を固定するための種結晶固定装置であって、上記種結晶配置部を内部に配置可能なチャンバーと、上記チャンバー内部に配置され、気体の給排気により膨張収縮し、膨張した際に上記種結晶の表面に接して種結晶の全面に均一に圧力をかける可撓性袋体と、を備えることを特徴とする種結晶固定装置。
(2)上記チャンバーは、減圧雰囲気を形成可能である上記(1)記載の種結晶固定装置。
(3)上記チャンバーは、上記種結晶配置部を固定すると共に上記種結晶を固定するガイドを有する上記(1)又は(2)記載の種結晶固定装置。
(4)上記ガイドは、上記種結晶の側面と少なくとも3点で接する上記(3)記載の種結晶固定装置。
(5)上記可撓性袋体は、ゴムもしくは樹脂からなる上記(1)〜(4)のいずれかに記載の種結晶固定装置。
(6)上記接着剤を加熱硬化させる加熱体を有する上記(1)〜(5)のいずれかに記載の種結晶固定装置。
(7)接着剤を介して種結晶が設けられた種結晶配置部を配置する種結晶固定方法であって、気体の給排気により膨張収縮する可撓性袋体を膨張させて、上記種結晶の種結晶配置面の他面側に可撓性袋体を接触させて上記種結晶の全面に均一に圧力をかける工程と、上記接着剤を硬化させる工程と、
を含む種結晶固定方法。
(8)上記加熱硬化は減圧下において行われる上記(6)に記載の種結晶固定方法。
That is, the present invention relates to the following description items.
(1) A seed crystal fixing device for fixing a seed crystal to a seed crystal arrangement part of a reaction vessel via an adhesive, the chamber in which the seed crystal arrangement part can be arranged, and the inside of the chamber And a flexible bag body that expands and contracts by gas supply / exhaust and contacts the surface of the seed crystal when it expands and applies uniform pressure to the entire surface of the seed crystal. apparatus.
(2) The seed crystal fixing device according to (1), wherein the chamber can form a reduced-pressure atmosphere.
(3) The seed crystal fixing device according to (1) or (2), wherein the chamber has a guide for fixing the seed crystal arrangement portion and fixing the seed crystal.
(4) The seed crystal fixing device according to (3), wherein the guide contacts the side surface of the seed crystal at least at three points.
(5) The seed crystal fixing device according to any one of (1) to (4), wherein the flexible bag is made of rubber or resin.
(6) The seed crystal fixing device according to any one of (1) to (5), further including a heating body that heats and cures the adhesive.
(7) A seed crystal fixing method for disposing a seed crystal disposition portion provided with a seed crystal via an adhesive, wherein the seed crystal is expanded by inflating a flexible bag body that expands and contracts by gas supply and exhaust. A step of bringing a flexible bag into contact with the other side of the seed crystal arrangement surface to uniformly apply pressure to the entire surface of the seed crystal, and a step of curing the adhesive,
A seed crystal fixing method comprising:
(8) The seed crystal fixing method according to (6), wherein the heat curing is performed under reduced pressure.

種結晶配置部に対して種結晶表面を均等に圧着でき、再現性のある種結晶固定方法及び種結晶固定装置を提供する。   Provided is a reproducible seed crystal fixing method and seed crystal fixing apparatus that can uniformly press-bond a seed crystal surface to a seed crystal arrangement part.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。尚、図中同一の機能用途を有するものについては同一または同様の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments. In addition, about the thing which has the same function use in a figure, the same or similar code | symbol is attached | subjected and description is abbreviate | omitted.

(種結晶固定装置)
図1(a)は、接着剤5を介して種結晶9が配置された種結晶配置部3を収納した種結晶固定装置1の概略断面図を示し、図1(b)は下チャンバーの上面図を示す。図1(a)に示すように、実施形態にかかる種結晶固定装置1は、反応容器の種結晶配置部3に接着剤5を介して種結晶9を固定するための種結晶固定装置であって、種結晶配置部3を内部に配置可能とし密閉雰囲気を形成するチャンバー10と、チャンバー10内部に配置され、気体の給排気により膨張収縮し、膨張した際に種結晶の表面に接して種結晶の全面に均一に圧力をかける可撓性袋体16と、を備える。種結晶固定装置1は、さらに接着剤を加熱硬化させる加熱体20を有する。
(Seed crystal fixing device)
FIG. 1A shows a schematic cross-sectional view of a seed crystal fixing device 1 in which a seed crystal placement unit 3 in which a seed crystal 9 is placed via an adhesive 5 is housed, and FIG. 1B shows an upper surface of a lower chamber. The figure is shown. As shown in FIG. 1 (a), a seed crystal fixing device 1 according to the embodiment is a seed crystal fixing device for fixing a seed crystal 9 to a seed crystal placement portion 3 of a reaction vessel via an adhesive 5. The seed crystal placement portion 3 can be placed inside the chamber 10 to form a sealed atmosphere, and the seed crystal placement portion 3 is placed inside the chamber 10, expands and contracts by gas supply and exhaust, and contacts the surface of the seed crystal when expanded. And a flexible bag body 16 that applies pressure uniformly over the entire surface of the crystal. The seed crystal fixing device 1 further includes a heating body 20 that heats and cures the adhesive.

チャンバー10は、着脱自在に形成された上チャンバー11と下チャンバー13とからなり、使用の際に上チャンバー11を下チャンバー13の外周に配置されたOリング15を挟んで下チャンバー13に装着することにより密閉雰囲気が形成されるように構成されている。チャンバー10には吸引排気口12が設けられており、密閉雰囲気が形成されたチャンバー10内から空気を吸引することで減圧雰囲気が形成される。また下チャンバー13は、図1(a)(b)に示すように、種結晶配置部3を固定すると共に種結晶9を固定するガイド17を有する。種結晶配置部3を下チャンバー13に収納した後に、ガイド17が下チャンバー13に着脱自在に固定され、そして種結晶9が種結晶配置部3上に配置される。   The chamber 10 includes an upper chamber 11 and a lower chamber 13 that are detachably formed. When the chamber 10 is used, the upper chamber 11 is attached to the lower chamber 13 with an O-ring 15 disposed on the outer periphery of the lower chamber 13 interposed therebetween. Thus, a sealed atmosphere is formed. A suction exhaust port 12 is provided in the chamber 10, and a reduced pressure atmosphere is formed by sucking air from the chamber 10 in which a sealed atmosphere is formed. Moreover, the lower chamber 13 has a guide 17 for fixing the seed crystal 9 and fixing the seed crystal 9 as shown in FIGS. After the seed crystal placement unit 3 is stored in the lower chamber 13, the guide 17 is detachably fixed to the lower chamber 13, and the seed crystal 9 is placed on the seed crystal placement unit 3.

ガイド17は、種結晶9の側面に3点以上の点で接していることが好ましい。種結晶9からはみ出した接着剤5がガイド17に付着固化し、ガイド17から種結晶9が剥がれなくなることを防止するためである。具体的には図5(b)に示すように、ガイド171につめ171a〜171dを設けかかる4点で種結晶9を保持することができる。つめ171a〜171dの形状は図5(b)の上面図に示されるような半円形に限定されない。したがって種結晶9との当接点に向かって先が細くなるような略正三角形状であっても構わない。可撓性袋体16により押圧しやすくなる傾向がある観点からはつめ171a〜171dの形状は略正三角形状とすることが好ましい。またガイド17の表面にはフッ素樹脂(テフロン(登録商標))コーティングされているのが好ましい。このテフロン(登録商標)コーティングはガイド17のつめ171a〜171dの表面にのみに施されていればよいが、ガイド17の全面に施されていても構わない。   The guide 17 is preferably in contact with the side surface of the seed crystal 9 at three or more points. This is to prevent the adhesive 5 protruding from the seed crystal 9 from adhering and solidifying to the guide 17 and preventing the seed crystal 9 from peeling off from the guide 17. Specifically, as shown in FIG. 5 (b), the guide 171 is provided with claws 171a to 171d, and the seed crystal 9 can be held at these four points. The shape of the pawls 171a to 171d is not limited to a semicircular shape as shown in the top view of FIG. Therefore, it may be a substantially equilateral triangle shape that tapers toward the contact point with the seed crystal 9. From the viewpoint of being easily pressed by the flexible bag body 16, the pawls 171a to 171d are preferably substantially equilateral triangles. The surface of the guide 17 is preferably coated with a fluororesin (Teflon (registered trademark)). The Teflon (registered trademark) coating may be applied only to the surfaces of the claws 171 a to 171 d of the guide 17, but may be applied to the entire surface of the guide 17.

可撓性袋体16は、ゴムもしくは樹脂から構成されている。尚、種結晶配置部3を固定する方法としては上記に限定されず、チャンバーに掘り込み式に固定しても構わない。   The flexible bag body 16 is made of rubber or resin. The method for fixing the seed crystal arrangement part 3 is not limited to the above, and it may be fixed in a digging manner in the chamber.

種結晶固定装置1に収容される種結晶配置部3としては、例えば後に説明する図3に示す炭化ケイ素単結晶製造装置30の種結晶配置部3を用いることができる。種結晶9としては、使用目的により適宜定まるが、6Hのレーリー結晶、6Hのアチソン結晶等を用いることができる。接着剤5としては、樹脂、炭水化物、耐熱性微粒子が挙げられる。樹脂としては、熱硬化性樹脂、例えばフェノール樹脂、ノボラック樹脂、フルフリルアルコール樹脂等を用いることができる。フェノール樹脂にカーボン粉末を混入したものを用いることもできる。炭水化物としては、糖類、例えばグルコースのような単糖類及びセルロースのような多糖類並びにそれらの誘導体を使用することができる。耐熱性微粒子としては、黒鉛(炭素)の他、炭化ケイ素(SiC)、窒化ホウ素(BN)等の耐熱物や、タングステン、タンタル等の高融点金属及びそれらの化合物例えば炭化物や窒化物を使用することができる。   As seed crystal arrangement part 3 accommodated in seed crystal fixing device 1, for example, seed crystal arrangement part 3 of silicon carbide single crystal manufacturing apparatus 30 shown in FIG. 3 described later can be used. The seed crystal 9 is appropriately determined depending on the purpose of use, but 6H Rayleigh crystal, 6H Atchison crystal, or the like can be used. Examples of the adhesive 5 include resins, carbohydrates, and heat-resistant fine particles. As the resin, a thermosetting resin such as a phenol resin, a novolac resin, a furfuryl alcohol resin, or the like can be used. It is also possible to use a phenol resin mixed with carbon powder. As the carbohydrate, saccharides such as monosaccharides such as glucose and polysaccharides such as cellulose and derivatives thereof can be used. As heat-resistant fine particles, in addition to graphite (carbon), heat-resistant materials such as silicon carbide (SiC) and boron nitride (BN), refractory metals such as tungsten and tantalum, and compounds thereof such as carbides and nitrides are used. be able to.

(種結晶固定方法)
図1の種結晶固定装置を用いた実施形態にかかる種結晶固定方法について、図2(a)〜(g)を用いて説明する。
(Seed crystal fixation method)
A seed crystal fixing method according to the embodiment using the seed crystal fixing device of FIG. 1 will be described with reference to FIGS.

(イ)まず、図2(a)に示すように下チャンバー13を用意する。
(ロ)次に、図2(b)に示すように下チャンバー13内に反応容器の種結晶配置部3を配置する。
(ハ)そして、図2(c)に示すように種結晶配置部3をガイド17で固定する。
(A) First, the lower chamber 13 is prepared as shown in FIG.
(B) Next, as shown in FIG. 2 (b), the seed crystal arrangement part 3 of the reaction vessel is arranged in the lower chamber 13.
(C) Then, as shown in FIG. 2 (c), the seed crystal arrangement part 3 is fixed by the guide 17.

(ニ)図2(d)に示すように接着剤5を種結晶配置部3上に塗布する。塗布量は1μl/cm〜25μl/cmが好ましい。
(ホ)次に、図2(e)に示すように種結晶9を接着剤5を介して種結晶配置部3上に配置する。接着性を向上させる観点からは、種結晶9の種結晶配置部3への接触面を研磨しておくことが好ましい。具体的には種結晶9の接触面の表面粗さ(Ra)は0.1μm以下が好ましい。また種結晶配置部3の種結晶9配置面の表面粗さ(Ra)を1.4μm以下とすると接着性が向上する点で好ましい。
(D) As shown in FIG. 2 (d), the adhesive 5 is applied onto the seed crystal arrangement part 3. The coating amount is preferably from 1μl / cm 2 ~25μl / cm 2 .
(E) Next, as shown in FIG. 2 (e), the seed crystal 9 is arranged on the seed crystal arrangement part 3 through the adhesive 5. From the viewpoint of improving adhesiveness, it is preferable to polish the contact surface of the seed crystal 9 with the seed crystal arrangement portion 3 in advance. Specifically, the surface roughness (Ra) of the contact surface of the seed crystal 9 is preferably 0.1 μm or less. Further, it is preferable that the surface roughness (Ra) of the seed crystal 9 arrangement surface of the seed crystal arrangement part 3 is 1.4 μm or less from the viewpoint of improving the adhesiveness.

(ヘ)図2(f)に示すように下チャンバー13に上チャンバー11を装着して密閉雰囲気を形成する。
(ト)図2(g)に示すように可撓性袋体16に気体を給気して可撓性袋体16を膨張させる。そして、種結晶9の種結晶配置面の他面側に可撓性袋体16を接触させて種結晶9の全面に均一に圧力をかける。0.01〜1MPa程度の圧力で荷重をかけることが好ましい。
(チ)加熱体20により加熱して接着剤5を硬化させる。加熱条件は接着剤(熱硬化性樹脂)の性質等に依るが、100℃〜1000℃、好ましくは100℃〜300℃で、5分〜10分程度である。
(F) As shown in FIG. 2F, the upper chamber 11 is attached to the lower chamber 13 to form a sealed atmosphere.
(G) As shown in FIG. 2G, gas is supplied to the flexible bag body 16 to inflate the flexible bag body 16. Then, the flexible bag 16 is brought into contact with the other side of the seed crystal placement surface of the seed crystal 9 to apply pressure uniformly to the entire surface of the seed crystal 9. It is preferable to apply a load at a pressure of about 0.01 to 1 MPa.
(H) The adhesive 5 is cured by heating with the heating body 20. The heating conditions depend on the properties of the adhesive (thermosetting resin) and the like, but are 100 ° C. to 1000 ° C., preferably 100 ° C. to 300 ° C., for about 5 minutes to 10 minutes.

ここで、接着剤5を硬化させる際に生じるガスが種結晶9と種結晶配置部3の間に気泡として残るとそれが原因となって接着ムラが生じるおそれがある。そのため、吸引排気口12に接続された吸引機(図示せず)を用いてチャンバー10内から大気や接着ムラの原因と考えられるガスを吸引して減圧雰囲気を形成しながら加熱硬化することが好ましい。この減圧雰囲気を形成する場合には、上記(ト)の工程に先立って減圧雰囲気を形成し、その後(ト)工程、(チ)工程を行うことで種結晶9に荷重される圧力の均一性の向上の効果も得られる。即ち、常に同一の条件で接着することにより接着性の再現性が向上する。この減圧雰囲気は300Torr以下であることが好ましい。以上により種結晶9が種結晶配置部3上に固定される。   Here, if the gas generated when the adhesive 5 is cured remains as bubbles between the seed crystal 9 and the seed crystal disposition portion 3, it may cause adhesion unevenness. Therefore, it is preferable to heat and cure while forming a reduced-pressure atmosphere by sucking air or gas considered to cause uneven adhesion from the chamber 10 using a suction device (not shown) connected to the suction exhaust port 12. . In the case of forming this reduced pressure atmosphere, the reduced pressure atmosphere is formed prior to the above step (G), and then the uniformity of the pressure applied to the seed crystal 9 by performing the steps (G) and (H). The improvement effect can also be obtained. That is, the reproducibility of adhesiveness is improved by always bonding under the same conditions. The reduced pressure atmosphere is preferably 300 Torr or less. The seed crystal 9 is fixed on the seed crystal arrangement part 3 by the above.

(炭化ケイ素単結晶の製造方法)
以上種結晶固定方法等について説明してきたが、本発明の別形態として炭化ケイ素単結晶の製造方法が提供される。即ち、昇華用原料を収容する反応容器に昇華用原料を収容し、昇華用原料に略対向して種結晶を配置し、昇華させた昇華用原料を種結晶上に再結晶させて炭化ケイ素単結晶を成長させる炭化ケイ素単結晶の製造方法であって、上記実施形態にかかる種結晶固定方法により種結晶配置部に固定された種結晶上に単結晶を成長させる炭化ケイ素単結晶の製造方法が提供される。
(Method for producing silicon carbide single crystal)
Although the seed crystal fixing method and the like have been described above, a method for producing a silicon carbide single crystal is provided as another embodiment of the present invention. That is, the sublimation raw material is contained in a reaction vessel containing the sublimation raw material, a seed crystal is disposed substantially opposite to the sublimation raw material, and the sublimated sublimation raw material is recrystallized on the seed crystal to obtain a silicon carbide single substance. A method for manufacturing a silicon carbide single crystal for growing a crystal, the method for manufacturing a silicon carbide single crystal for growing a single crystal on a seed crystal fixed to a seed crystal arrangement portion by the seed crystal fixing method according to the above embodiment. Provided.

反応容器としては、図3に示すように、昇華用原料35を収容可能とする反応容器本体31と、反応容器本体31に着脱自在に取り付けられると共に種結晶9を配置可能とする種結晶配置部3と、を有する炭化ケイ素単結晶製造装置30が用いられる。反応容器の外周には炭化ケイ素の昇華雰囲気を形成するための第一誘導加熱コイル33a、第二誘導加熱コイル33bが設けられている。反応容器本体31としては、反応容器本体31内部に炭化ケイ素の昇華雰囲気を形成できるものであれば特に制限はない。反応容器本体31としては例えば坩堝を用いることができるが、その材質は黒鉛であることが好ましく、熱膨張係数が種結晶と略同一であるものがさらに好ましい。昇華用原料35を収納しやすくする観点から、反応容器本体31と、種結晶配置部3は着脱自在に一体に形成されていることが好ましい。接合手段としては、反応容器本体31内部の密閉性が保たれるのであればいずれの接合手段を用いても構わない。接合手段としては、螺合手段が挙げられる。   As shown in FIG. 3, the reaction vessel includes a reaction vessel main body 31 that can accommodate the sublimation raw material 35, and a seed crystal placement unit that is detachably attached to the reaction vessel main body 31 and can place the seed crystal 9. 3 is used. A first induction heating coil 33a and a second induction heating coil 33b for forming a silicon carbide sublimation atmosphere are provided on the outer periphery of the reaction vessel. The reaction vessel body 31 is not particularly limited as long as it can form a silicon carbide sublimation atmosphere inside the reaction vessel body 31. For example, a crucible can be used as the reaction vessel main body 31, and the material thereof is preferably graphite, and further preferably has a thermal expansion coefficient substantially the same as that of the seed crystal. From the viewpoint of easy storage of the sublimation raw material 35, it is preferable that the reaction vessel main body 31 and the seed crystal arrangement portion 3 are integrally formed detachably. As the joining means, any joining means may be used as long as the airtightness inside the reaction vessel main body 31 is maintained. Examples of the joining means include screwing means.

昇華用原料35としては従来公知の材料を用いることができる。昇華用原料35としては、例えば高純度のテトラエトキシシラン重合体をケイ素源とし、レゾール型フェノール樹脂を炭素源とし、これらを均一に混合して得た混合物をアルゴン雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることができる。また炭化ケイ素単結晶の種結晶としては、従来公知の単結晶を用いることができる。   A conventionally known material can be used as the sublimation raw material 35. As the sublimation raw material 35, for example, a high purity tetraethoxysilane polymer is used as a silicon source, a resol type phenol resin is used as a carbon source, and a mixture obtained by uniformly mixing these is heated and fired in an argon atmosphere. The silicon carbide powder obtained can be used. A conventionally known single crystal can be used as the seed crystal of the silicon carbide single crystal.

昇華用原料35の加熱温度等の加熱条件は、特に制限されることなく周知の技術に基づいて当業者により適宜設定されうる。   The heating conditions such as the heating temperature of the sublimation raw material 35 are not particularly limited, and can be appropriately set by those skilled in the art based on known techniques.

(炭化ケイ素単結晶)
炭化ケイ素単結晶は、前述の炭化ケイ素単結晶の製造方法により製造される。炭化ケイ素単結晶は、溶融アルカリによりエッチングして評価した結晶欠陥(パイプ欠陥)は、50個/cm2以下が好ましく、10個/cm2以下がより好ましい。炭化ケイ素単結晶における金属不純物元素の総含有量としては10ppm以下が好ましい。本発明により得られる炭化ケイ素単結晶は、多結晶や多型の混入やマイクロパイプ等の結晶欠陥がなく、極めて高品質であるので、絶縁破壊特性、耐熱性、耐放射線性等に優れ、半導体ウエハ等の電子デバイス、発光ダイオード等の光学デバイスなどに特に好適に用いられる。
以上、本発明の炭化ケイ素単結晶製造方法によると、高品質な炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に製造することができる。
(Silicon carbide single crystal)
The silicon carbide single crystal is manufactured by the above-described method for manufacturing a silicon carbide single crystal. The silicon carbide single crystal has a crystal defect (pipe defect) evaluated by etching with molten alkali of preferably 50 pieces / cm 2 or less, and more preferably 10 pieces / cm 2 or less. The total content of metal impurity elements in the silicon carbide single crystal is preferably 10 ppm or less. The silicon carbide single crystal obtained by the present invention is free from crystal defects such as polycrystals, polymorphs, and micropipes, and is extremely high quality. Therefore, the silicon carbide single crystal is excellent in dielectric breakdown characteristics, heat resistance, radiation resistance, etc. It is particularly suitably used for electronic devices such as wafers and optical devices such as light emitting diodes.
As described above, according to the method for producing a silicon carbide single crystal of the present invention, a high-quality silicon carbide single crystal can be produced efficiently and easily without breakage such as cracks.

(実施例)
図1の種結晶固定装置を用いて、実施形態にかかる種結晶固定方法に準じて、種結晶9を種結晶配置部3に固定した。その際、接着剤5としてフェノール樹脂を7.5μl/cmで塗布した。種結晶9として種結晶厚0.4mm、直径50mmの6Hのレーリー結晶を用いた。そして減圧下(30Torr)において、15分かけて90℃まで加熱しさらに90℃で2分間予備加熱を行った後、25分かけて160℃まで加熱した後160℃で10分間加熱することにより加熱硬化を行った。
その結果、図4(b)の種結晶の表面観察写真に示すように、実施例の種結晶9が接着ムラなく接着されたことが確認された。
(Example)
The seed crystal 9 was fixed to the seed crystal arrangement part 3 in accordance with the seed crystal fixing method according to the embodiment using the seed crystal fixing device of FIG. At that time, phenol resin was applied as an adhesive 5 at 7.5 μl / cm 2 . As the seed crystal 9, a 6H Rayleigh crystal having a seed crystal thickness of 0.4 mm and a diameter of 50 mm was used. Then, under reduced pressure (30 Torr), after heating to 90 ° C. over 15 minutes and further preheating at 90 ° C. for 2 minutes, heating to 160 ° C. over 25 minutes and then heating at 160 ° C. for 10 minutes. Curing was performed.
As a result, as shown in the surface observation photograph of the seed crystal of FIG. 4B, it was confirmed that the seed crystal 9 of the example was adhered without adhesion unevenness.

さらに、種結晶9が固定された種結晶配置部3を図3の炭化ケイ素単結晶製造装置30に装着して炭化ケイ素単結晶を成長させた。昇華用原料35は、高純度のテトラエトキシシラン重合体をケイ素源とし、レゾール型フェノール樹脂を炭素源とし、これらを均一に混合して得た混合物をアルゴン雰囲気下で加熱焼成して得られた炭化ケイ素粉末(6H(一部3Cを含む)、平均粒径が200μm)を用いた。炭化ケイ素単結晶製造装置30において、第一誘導加熱コイル33aに電流を通電させこれを加熱しその熱で昇華用原料35を加熱した。その際反応容器本体31の底部を2350℃にまで加熱した後、アルゴンガス雰囲気で圧力を50Torr(6645Pa)に維持した。昇華用原料35は、所定の温度(2540℃)にまで加熱されて昇華した。一方、種結晶配置部3側は、第二誘導加熱コイル33bにより加熱した。第二誘導加熱コイル33bによる種結晶配置部3の設定温度は2300℃であった。
得られた炭化ケイ素単結晶のウェハ断面を観察したところ(図4(b))、種結晶直上の全面のマクロ欠陥の数は10個以下であり、種結晶から10mm上のウェハ全面のマクロ欠陥の数は0個であった。また、欠陥の大きさは従来法により得られるものよりも小さかった。
Furthermore, the seed crystal arrangement part 3 to which the seed crystal 9 was fixed was mounted on the silicon carbide single crystal manufacturing apparatus 30 of FIG. 3 to grow a silicon carbide single crystal. The sublimation raw material 35 was obtained by heating and firing a mixture obtained by uniformly mixing a high-purity tetraethoxysilane polymer as a silicon source and a resol type phenol resin as a carbon source in an argon atmosphere. Silicon carbide powder (6H (including part of 3C), average particle diameter of 200 μm) was used. In the silicon carbide single crystal manufacturing apparatus 30, a current was passed through the first induction heating coil 33a to heat it, and the sublimation raw material 35 was heated with the heat. At that time, after the bottom of the reaction vessel main body 31 was heated to 2350 ° C., the pressure was maintained at 50 Torr (6665 Pa) in an argon gas atmosphere. The sublimation raw material 35 was heated to a predetermined temperature (2540 ° C.) and sublimated. On the other hand, the seed crystal arrangement part 3 side was heated by the second induction heating coil 33b. The set temperature of the seed crystal arrangement part 3 by the second induction heating coil 33b was 2300 ° C.
When the wafer cross section of the obtained silicon carbide single crystal was observed (FIG. 4B), the number of macro defects on the entire surface immediately above the seed crystal was 10 or less, and the macro defects on the entire surface of the wafer 10 mm above the seed crystal. The number of was zero. Further, the size of the defect was smaller than that obtained by the conventional method.

(比較例)
図6に示すように、載置台101に種結晶配置部103を配置し、その上に接着剤(フェノール樹脂)105を介して種結晶109を配置した。そして、重石107を種結晶109の上に配置して、重石107により種結晶109に荷重を加えながら、大気圧下300℃で0.5時間フェノール樹脂の加熱硬化を行った。その結果、図4(a)の種結晶の表面観察写真に示すように、比較例の種結晶109の表面に接着ムラが確認された。
得られた種結晶109を用いて実施例と同様にして炭化ケイ素単結晶を成長させた。
得られた炭化ケイ素単結晶の側面断面図を観察したところ(図4(a))、種結晶直上の全面のマクロ欠陥の数は100個以下であり、種結晶から10mm上のウェハ全面のマクロ欠陥の数は10〜20個であった。マクロ欠陥の大きさは実施例よりも大きかった。
(Comparative example)
As shown in FIG. 6, a seed crystal placement unit 103 was placed on the mounting table 101, and a seed crystal 109 was placed thereon via an adhesive (phenolic resin) 105. Then, the weight stone 107 was placed on the seed crystal 109, and the phenol resin was heat-cured at 300 ° C. for 0.5 hours under atmospheric pressure while applying a load to the seed crystal 109 with the weight stone 107. As a result, as shown in the surface observation photograph of the seed crystal in FIG. 4A, adhesion unevenness was confirmed on the surface of the seed crystal 109 of the comparative example.
Using the obtained seed crystal 109, a silicon carbide single crystal was grown in the same manner as in the example.
When the side sectional view of the obtained silicon carbide single crystal was observed (FIG. 4A), the number of macro defects on the entire surface immediately above the seed crystal was 100 or less, and the macro on the entire wafer surface 10 mm above the seed crystal. The number of defects was 10-20. The size of the macro defect was larger than that of the example.

図1(a)は、接着剤を介して種結晶が配置された種結晶配置部を収納した種結晶固定装置の概略断面図を示し、図1(b)は下チャンバーの上面図を示す。FIG. 1 (a) shows a schematic cross-sectional view of a seed crystal fixing device containing a seed crystal placement portion in which a seed crystal is placed via an adhesive, and FIG. 1 (b) shows a top view of a lower chamber. 図2(a)〜(g)は種結晶固定方法の工程図を示す。2A to 2G are process diagrams of the seed crystal fixing method. 図3は炭化ケイ素単結晶の製造装置(坩堝)の断面概略図を示す。FIG. 3 is a schematic cross-sectional view of a silicon carbide single crystal production apparatus (crucible). 図4(a)は比較例により得られた炭化ケイ素単結晶ウェハの表面拡大写真を示し、図4(b)は実施例により得られた炭化ケイ素単結晶ウェハの表面拡大写真を示す。FIG. 4A shows an enlarged surface photograph of the silicon carbide single crystal wafer obtained by the comparative example, and FIG. 4B shows an enlarged surface photograph of the silicon carbide single crystal wafer obtained by the example. 図5(a)は、接着剤を介して種結晶が配置された種結晶配置部を収納した種結晶固定装置の変形例の概略断面図を示し、図5(b)は下チャンバーの上面図を示す。FIG. 5A shows a schematic cross-sectional view of a modified example of the seed crystal fixing device that accommodates a seed crystal placement portion in which a seed crystal is placed via an adhesive, and FIG. 5B is a top view of the lower chamber. Indicates. 図6は従来の種結晶固定方法の概略図を示す。FIG. 6 shows a schematic view of a conventional seed crystal fixing method.

符号の説明Explanation of symbols

1、101…種結晶固定装置
3、103…種結晶配置部
5、105…接着剤
9、109…種結晶
10…チャンバー
11…上チャンバー
13…下チャンバー
12…吸引排気口
15…Oリング
16…可撓性袋体
17…ガイド
20…ヒータ(加熱体)
30…炭化ケイ素単結晶製造装置
31…容器
33a…第一誘導加熱コイル
33b…第二誘導加熱コイル
35…昇華用原料
107…重石
DESCRIPTION OF SYMBOLS 1,101 ... Seed crystal fixing device 3, 103 ... Seed crystal arrangement part 5, 105 ... Adhesive 9, 109 ... Seed crystal 10 ... Chamber 11 ... Upper chamber 13 ... Lower chamber 12 ... Suction exhaust port 15 ... O-ring 16 ... Flexible bag 17 ... guide 20 ... heater (heating body)
30 ... Silicon carbide single crystal manufacturing apparatus 31 ... Container 33a ... First induction heating coil 33b ... Second induction heating coil 35 ... Sublimation raw material 107 ... Clay stone

Claims (10)

反応容器の種結晶配置部に接着剤を介して種結晶を固定するための種結晶固定装置であって、
前記種結晶配置部を内部に配置可能なチャンバーと、
前記チャンバー内部に配置され、気体の給排気により膨張収縮し、膨張した際に前記種結晶の表面に接して種結晶の全面に均一に圧力をかける可撓性袋体と、
を備え
前記チャンバーは、前記種結晶配置部を固定すると共に前記種結晶を固定するガイドを有し、
前記ガイドには、種結晶との当接点に向かって先が細くなるつめが設けられていることを特徴とする種結晶固定装置。
A seed crystal fixing device for fixing a seed crystal to the seed crystal arrangement part of the reaction vessel via an adhesive,
A chamber in which the seed crystal arrangement part can be arranged;
A flexible bag body that is disposed inside the chamber, expands and contracts by gas supply and exhaust, and contacts the surface of the seed crystal when inflated to uniformly apply pressure to the entire surface of the seed crystal;
Equipped with a,
The chamber has a guide for fixing the seed crystal and fixing the seed crystal,
Wherein the guide, pawl earlier becomes narrower toward the contact point seed crystal fixing device characterized that you have provided the seed crystal.
前記チャンバーは、減圧雰囲気を形成可能であることを特徴とする請求項1記載の種結晶固定装置。   The seed crystal fixing device according to claim 1, wherein the chamber is capable of forming a reduced-pressure atmosphere. 前記ガイドは、前記種結晶の側面と少なくとも3点で接することを特徴とする請求項記載の種結晶固定装置。 The guide is seed crystal fixing device according to claim 1, wherein the contact with the side surface with at least three points of the seed crystal. 前記可撓性袋体は、ゴムもしくは樹脂からなることを特徴とする請求項1〜のいずれかに記載の種結晶固定装置。 It said flexible bag body, the seed crystal fixing device according to any one of claims 1 to 3, characterized in that it consists of rubber or resin. 前記接着剤を加熱硬化させる加熱体を有することを特徴とする請求項1〜のいずれかに記載の種結晶固定装置。 Seed crystal fixing device according to any one of claims 1 to 4, characterized in that a heating member for heating and curing the adhesive. 接着剤を介して種結晶が設けられた種結晶配置部をチャンバーの内部に配置する種結晶固定方法であって、
前記チャンバー内から気体を吸引して減圧雰囲気を形成する工程と、
前記減圧雰囲気下を形成してから、前記減圧雰囲気下において、気体の給排気により膨張収縮する可撓性袋体を膨張させて、前記種結晶の種結晶配置面の他面側に可撓性袋体を接触させて前記種結晶の全面に均一に圧力をかける工程と、
前記種結晶の全面に均一に圧力をかけてから、前記減圧雰囲気下において、前記接着剤を硬化させる工程と、
を含むことを特徴とする種結晶固定方法。
A seed crystal fixing method in which a seed crystal placement portion provided with a seed crystal via an adhesive is placed inside a chamber ,
A step of sucking a gas from the chamber to form a reduced pressure atmosphere;
After forming the reduced pressure atmosphere, in the reduced pressure atmosphere, the flexible bag body that expands and contracts by gas supply / exhaust is inflated to be flexible on the other surface side of the seed crystal arrangement surface of the seed crystal. Applying a pressure uniformly to the entire surface of the seed crystal by contacting the bag,
A step of uniformly applying pressure to the entire surface of the seed crystal and then curing the adhesive in the reduced-pressure atmosphere ; and
A seed crystal fixing method comprising the steps of:
前記種結晶配置部を固定すると共に前記種結晶を固定するガイドを用いて前記種結晶を固定する工程を含み、  Fixing the seed crystal using a guide for fixing the seed crystal arrangement portion and fixing the seed crystal;
前記ガイドには、種結晶との当接点に向かって先が細くなるつめが設けられていることを特徴とする請求項6に記載の種結晶固定方法。  The seed crystal fixing method according to claim 6, wherein the guide is provided with a claw that tapers toward a contact point with the seed crystal.
接着剤を介して種結晶が設けられた種結晶配置部を配置する種結晶固定方法であって、  A seed crystal fixing method for arranging a seed crystal arrangement portion provided with a seed crystal via an adhesive,
前記種結晶配置部を固定すると共に前記種結晶を固定するガイドを用いて前記種結晶を固定する工程と、  Fixing the seed crystal using a guide for fixing the seed crystal placement section and fixing the seed crystal;
気体の給排気により膨張収縮する可撓性袋体を膨張させて、前記種結晶の種結晶配置面の他面側に可撓性袋体を接触させて前記種結晶の全面に均一に圧力をかける工程と、  The flexible bag body that expands and contracts by gas supply and exhaust is inflated, and the flexible bag body is brought into contact with the other side of the seed crystal placement surface of the seed crystal so that pressure is uniformly applied to the entire surface of the seed crystal. The process of applying,
前記接着剤を硬化させる工程と、  Curing the adhesive;
を含み、Including
前記ガイドには、種結晶との当接点に向かって先が細くなるつめが設けられていることを特徴とする種結晶固定方法。  A seed crystal fixing method, wherein the guide is provided with a claw that tapers toward a contact point with the seed crystal.
前記種結晶配置部が配置されるチャンバー内から気体を吸引して減圧雰囲気を形成する工程を含み、  Including a step of sucking a gas from a chamber in which the seed crystal arrangement portion is arranged to form a reduced pressure atmosphere,
前記減圧雰囲気を形成してから、前記減圧雰囲気下において、前記種結晶の全面に均一に圧力をかける工程を行い、  After forming the reduced-pressure atmosphere, performing a step of uniformly applying pressure to the entire surface of the seed crystal under the reduced-pressure atmosphere,
前記種結晶の全面に均一に圧力をかけてから、前記減圧雰囲気下において、前記接着剤を硬化させる工程を行うことを特徴とする請求項8に記載の種結晶固定方法。  The seed crystal fixing method according to claim 8, wherein the step of curing the adhesive is performed in the reduced pressure atmosphere after uniformly applying pressure to the entire surface of the seed crystal.
前記接着剤を加熱によって硬化させることを特徴とする請求項6〜9に記載の種結晶固定方法。 The seed crystal fixing method according to claim 6 , wherein the adhesive is cured by heating.
JP2006062974A 2001-06-15 2006-03-08 Seed crystal fixing device and seed crystal fixing method Expired - Fee Related JP5030440B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006062974A JP5030440B2 (en) 2005-05-18 2006-03-08 Seed crystal fixing device and seed crystal fixing method
US11/435,762 US7553373B2 (en) 2001-06-15 2006-05-18 Silicon carbide single crystal and production thereof
US11/683,745 US7497906B2 (en) 2006-03-08 2007-03-08 Seed crystal fixing apparatus and a method for fixing the seed crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005145790 2005-05-18
JP2005145790 2005-05-18
JP2006062974A JP5030440B2 (en) 2005-05-18 2006-03-08 Seed crystal fixing device and seed crystal fixing method

Publications (2)

Publication Number Publication Date
JP2006347867A JP2006347867A (en) 2006-12-28
JP5030440B2 true JP5030440B2 (en) 2012-09-19

Family

ID=37644085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062974A Expired - Fee Related JP5030440B2 (en) 2001-06-15 2006-03-08 Seed crystal fixing device and seed crystal fixing method

Country Status (1)

Country Link
JP (1) JP5030440B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998491B2 (en) * 2009-02-20 2012-08-15 トヨタ自動車株式会社 Method for bonding SiC single crystal and solution growing method for SiC single crystal
US8612399B2 (en) * 2010-06-01 2013-12-17 Kabushiki Kaisha Toshiba Alteration detecting apparatus and alteration detecting method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142584A (en) * 1984-08-03 1986-03-01 Bridgestone Corp Preparation of laminated article
JPH01146276A (en) * 1987-12-02 1989-06-08 Komatsu Ltd Confirmation of signal transmission cable connection
JPH04235769A (en) * 1991-01-11 1992-08-24 Toshiba Corp Bonding apparatus
JPH07263345A (en) * 1994-03-25 1995-10-13 Sumitomo Electric Ind Ltd Method and device for growing bulk single crystal of compound semiconductor
EP0969521A1 (en) * 1998-07-03 2000-01-05 ISOVOLTAÖsterreichische IsolierstoffwerkeAktiengesellschaft Photovoltaic module and method of fabrication
JP2001266418A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Method and device for sticking optical disk substrates to each other
JP4224755B2 (en) * 2001-10-16 2009-02-18 株式会社デンソー Seed crystal fixation method

Also Published As

Publication number Publication date
JP2006347867A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
CN110168147B (en) Method for culturing large-diameter silicon carbide single crystal ingot
CN111074338B (en) Seed crystal with protective film, method of manufacturing the same, method of attaching the same, and method of manufacturing ingot using the same
WO2000039372A1 (en) Method for growing single crystal of silicon carbide
KR101809642B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
US7497906B2 (en) Seed crystal fixing apparatus and a method for fixing the seed crystal
JP4556634B2 (en) Seed crystal fixing part and seed crystal fixing method
CN108468089B (en) Process for high-efficiency high-temperature curing of silicon carbide seed crystal
JP2002308697A (en) Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal
JP2001048667A (en) Joining method for ceramic parts
JP5030440B2 (en) Seed crystal fixing device and seed crystal fixing method
JP2006347868A (en) Apparatus and method of fixing seed crystal
JP5081423B2 (en) Seed crystal fixing device
JP4967925B2 (en) Silicon carbide single crystal manufacturing equipment
KR102549445B1 (en) SiC SEED CRYSTAL SUPPORT MEMBER AND MANUFACTURING METHOD THEREOF
CN112391674A (en) Seed crystal attachment method
KR102058870B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
JP4461858B2 (en) Method for bonding SiC single crystal
KR102214314B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
JP2007012933A (en) Semiconductor manufacturing device and component therefor
JP2021091565A (en) Composite and method for producing the same
KR102177759B1 (en) Seed attachment method
CN115467016B (en) Growth assembly, apparatus and method for releasing growth stress of silicon carbide single crystal
KR102058873B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
JP7385459B2 (en) A mold for forming a non-oxide vapor grown ceramic material, a non-oxide vapor grown ceramic material, and a method for manufacturing a mold for forming a non-oxide vapor grown ceramic material
KR101536744B1 (en) Method for attaching silicon-carbide seed on holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees