JP5007621B2 - Regenerative control device for hybrid vehicle - Google Patents

Regenerative control device for hybrid vehicle Download PDF

Info

Publication number
JP5007621B2
JP5007621B2 JP2007202156A JP2007202156A JP5007621B2 JP 5007621 B2 JP5007621 B2 JP 5007621B2 JP 2007202156 A JP2007202156 A JP 2007202156A JP 2007202156 A JP2007202156 A JP 2007202156A JP 5007621 B2 JP5007621 B2 JP 5007621B2
Authority
JP
Japan
Prior art keywords
compression ratio
effective compression
regeneration
hybrid vehicle
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007202156A
Other languages
Japanese (ja)
Other versions
JP2009035175A (en
Inventor
宏 石井
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007202156A priority Critical patent/JP5007621B2/en
Publication of JP2009035175A publication Critical patent/JP2009035175A/en
Application granted granted Critical
Publication of JP5007621B2 publication Critical patent/JP5007621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、有効圧縮比を変更する機構を有した内燃機関と電動機とを連結した原動機を備えたハイブリッド車両において、減速時の発電機として機能する電動機による回生効率を高めつつ再加速時の応答性を確保する制御技術に関する。   The present invention relates to a hybrid vehicle including a prime mover in which an internal combustion engine having a mechanism for changing an effective compression ratio and an electric motor are connected, and a response at the time of reacceleration while increasing the regeneration efficiency by the electric motor functioning as a generator during deceleration. The present invention relates to a control technology that ensures safety.

特許文献1には、上記ハイブリッド車両において、減速時に、電動機を発電機として機能させることにより、制動力を電力に変換して回生する技術が開示されている。
特開平10−023603号公報
Patent Document 1 discloses a technique for regenerating by converting a braking force into electric power by causing an electric motor to function as a generator during deceleration in the hybrid vehicle.
JP 10-023603 A

上記特許文献1のように、減速時に回生を行うハイブリッド車両において、減速回生時に内燃機関と電動機とを切り離せないシステム構成の場合、内燃機関の連れ回しでの振動や、機関のフリクション損失による回生量の減少が生じる。   In a hybrid vehicle that regenerates at the time of deceleration as in Patent Document 1, in the case of a system configuration in which the internal combustion engine and the electric motor cannot be separated at the time of deceleration regeneration, the amount of regeneration due to vibration caused by the rotation of the internal combustion engine or the friction loss of the engine Decrease.

このため、有効圧縮比を低減する機構を備えた内燃機関では、減速時に回生を行う際に、有効圧縮比を低減して振動を抑制し、回生量を増大する方法が考えられる。   For this reason, in an internal combustion engine equipped with a mechanism for reducing the effective compression ratio, a method of reducing the effective compression ratio to suppress vibration and increasing the regeneration amount when performing regeneration during deceleration.

しかし、この方法では、有効圧縮比低減中に全開加速等の高出力要求が生じると、有効圧縮比低減機構の解除応答遅れによって、出力要求に十分に応えられず良好な加速感が得られない。   However, in this method, if a high output request such as full-open acceleration occurs during the reduction of the effective compression ratio, the output request cannot be sufficiently satisfied due to the release response delay of the effective compression ratio reduction mechanism, and a good acceleration feeling cannot be obtained. .

本発明は、このような従来の課題に着目してなされたもので、減速時に圧縮比を低減しつつ回生している状態から再加速する際に、機関のトルク応答を良くして良好な加速感を得られるようにすることを目的とする。   The present invention has been made paying attention to such a conventional problem, and when reaccelerating from a regenerative state while reducing the compression ratio at the time of deceleration, the engine torque response is improved and good acceleration is achieved. The purpose is to get a feeling.

このため、本発明は、
有効圧縮比を変更する機構を有した内燃機関と、電動機とが連結された原動機を搭載したハイブリッド車両の減速時に、前記電動機を発電機として発電させて回生を行うハイブリッド車両の回生制御装置において、以下の構成とした。
For this reason, the present invention
In a regenerative control device for a hybrid vehicle that regenerates the motor by generating power as a generator during deceleration of a hybrid vehicle equipped with an internal combustion engine having a mechanism for changing an effective compression ratio and a motor connected to the motor, The following configuration was adopted.

前記回生時に、ブレーキ操作をしているときは有効圧縮比を低減しつつ、該有効圧縮比の低減に応じて前記発電の回生量を増大補正する。   During the regeneration, when the brake is being operated, the effective compression ratio is reduced, and the regeneration amount of the power generation is corrected to be increased according to the reduction of the effective compression ratio.

ブレーキ操作を開放したときに前記有効圧縮比の低減を解除する。   When the brake operation is released, the reduction of the effective compression ratio is released.

ブレーキ操作中に有効圧縮比を低減し機関の回転抵抗が減少する分を、回生量の増大補正量に充てて燃費を改善することができるとともに、機関の回転抵抗の減少によって振動を低減できる。   The fuel consumption can be improved by reducing the effective compression ratio and reducing the rotational resistance of the engine during the braking operation to increase the regeneration amount, and the vibration can be reduced by reducing the rotational resistance of the engine.

また、有効圧縮比を低減して回生している状態から再加速する際に、ブレーキ操作を開放したエンジンブレーキ状態で、有効圧縮比の低減解除が開始されるため、アクセルを踏み込んで加速するときには、既に、有効圧縮比を高められた状態で機関出力が増大されて加速されるため、良好な加速感が得られる。   Also, when reaccelerating from a state where the effective compression ratio is reduced and regenerating, the reduction of the effective compression ratio starts in the engine brake state where the brake operation is released, so when depressing the accelerator and accelerating Since the engine output is already increased and accelerated while the effective compression ratio is increased, a good feeling of acceleration can be obtained.

図1は、本発明の一実施形態に係るハイブリッド車両の駆動系の概略を示している。   FIG. 1 schematically shows a drive system of a hybrid vehicle according to an embodiment of the present invention.

エンジン(内燃機関)1の出力軸と、モータ(電動機)2の出力軸の一端部が連結され、該モータ2の他端部には、入/出力プーリ径比を変更することで変速比を無段に可変制御する無段変速機3が接続され、該無段変速機2の出力軸(出力プーリ軸)が、クラッチ4を介してギア軸5の一端に接続されている。なお、変速機は、上記無段変速機に限定されず、有段変速機であっても構わない。   The output shaft of the engine (internal combustion engine) 1 and one end portion of the output shaft of the motor (electric motor) 2 are connected, and the other end portion of the motor 2 has a gear ratio by changing the input / output pulley diameter ratio. A continuously variable transmission 3 that is variably controlled continuously is connected, and an output shaft (output pulley shaft) of the continuously variable transmission 2 is connected to one end of a gear shaft 5 via a clutch 4. The transmission is not limited to the continuously variable transmission and may be a stepped transmission.

前記ギア軸5に固定されたギア5aは、両端に車輪6が連結された車軸(駆動軸)7に固定されたギア7aと噛み合い、エンジン1およびモータ2の駆動力が、前記無段変速機3、クラッチ4、ギア5a、ギア7a、車軸7を介して車輪6に伝達される。   The gear 5a fixed to the gear shaft 5 meshes with a gear 7a fixed to an axle (drive shaft) 7 having wheels 6 connected to both ends, and the driving force of the engine 1 and the motor 2 is used for the continuously variable transmission. 3, and transmitted to the wheel 6 through the clutch 4, the gear 5 a, the gear 7 a, and the axle 7.

また、モータ2には、インバータ8を介してバッテリ(蓄電装置)9が接続され、モータ2が電動機として機能するときはバッテリ9から電力が供給され、モータ2が発電機として機能するときは、発電された電力がバッテリ9に充電される。   In addition, a battery (power storage device) 9 is connected to the motor 2 via an inverter 8. When the motor 2 functions as an electric motor, electric power is supplied from the battery 9, and when the motor 2 functions as a generator, The generated power is charged in the battery 9.

図2は、エンジン1の一例を示す。   FIG. 2 shows an example of the engine 1.

エンジン1は、ディーゼルエンジンであり、吸入空気は、エアクリーナ22から吸気通路23、コレクタ24、吸気マニホールド25、吸気カム26により開閉駆動される吸気弁27を介してシリンダ28内に吸入される。   The engine 1 is a diesel engine, and intake air is drawn into the cylinder 28 from an air cleaner 22 through an intake passage 23, a collector 24, an intake manifold 25, and an intake valve 26 that is driven to open and close by an intake cam 26.

シリンダ28内には、ピストン29が嵌挿され、燃料噴射弁30によって燃料が噴射供給される。燃焼排気は、排気カム31によって開閉駆動される排気弁32を介して排気通路33へ排出される。   A piston 29 is fitted into the cylinder 28 and fuel is injected and supplied by a fuel injection valve 30. The combustion exhaust is discharged to the exhaust passage 33 through an exhaust valve 32 that is opened and closed by an exhaust cam 31.

排気の一部は、EGRガスとしてEGR通路34に導入され、EGR弁35によってEGR量を制御されつつ吸気マニホールド25に還流される。   A part of the exhaust is introduced into the EGR passage 34 as EGR gas, and is returned to the intake manifold 25 while the EGR amount is controlled by the EGR valve 35.

そして、エンジン1の有効圧縮比を変更する機構として、吸気弁27のバルブタイミング(作動角中心からの進角量として、以下、VTC角度θvで表す)を変更する可変バルブタイミング機構36を備える。   As a mechanism for changing the effective compression ratio of the engine 1, a variable valve timing mechanism 36 for changing the valve timing of the intake valve 27 (hereinafter referred to as a VTC angle θv as an advance amount from the operating angle center) is provided.

ここで、上記可変バルブタイミング機構36により、VTC角度θvを遅角するほど吸気弁27の閉時期IVCが、下死点から遠ざかって有効圧縮比が減少し、VTC角度θvを進角するほど有効圧縮比が減少する。なお、吸気弁が吸気下死点前で閉じる場合は、吸気弁の閉時期IVCを進角させることにより、有効圧縮比が減少する。   Here, by the variable valve timing mechanism 36, the closing timing IVC of the intake valve 27 is further away from the bottom dead center as the VTC angle θv is retarded, and the effective compression ratio is decreased as the VTC angle θv is advanced. The compression ratio decreases. When the intake valve closes before intake bottom dead center, the effective compression ratio decreases by advancing the intake valve closing timing IVC.

有効圧縮比を変更することは、実質的に圧縮上死点での圧縮圧力を変更すること、つまり、吸気の充填効率を変更することと同等であるから、有効圧縮比を変更する機構としては、上記可変バルブタイミング機構の他、吸気弁の作動角やリフト量を変更する可変バルブリフト機構、吸気スロットル弁等による吸気絞り機構等であってもよい。   Changing the effective compression ratio is substantially equivalent to changing the compression pressure at the compression top dead center, that is, changing the charging efficiency of the intake air. In addition to the variable valve timing mechanism, a variable valve lift mechanism that changes the operating angle or lift amount of the intake valve, an intake throttle mechanism using an intake throttle valve, or the like may be used.

また、エンジン1としては、ガソリンエンジンであってもよいことは勿論である。   Of course, the engine 1 may be a gasoline engine.

図1に戻って、ECU(電子制御ユニット)10には、アクセルペダル踏量APSを検出するアクセルセンサ51、ブレーキペダル踏量BPSを検出するブレーキセンサ52、エンジン回転速度Ne(=モータ回転速度)を検出する回転速度センサ53、バッテリ9の充電状態(SOC)を検出するためのバッテリ電圧Vb、その他運転状態を検出する各種センサ類からの検出信号が入力される。   Returning to FIG. 1, the ECU (electronic control unit) 10 includes an accelerator sensor 51 that detects an accelerator pedal depression amount APS, a brake sensor 52 that detects a brake pedal depression amount BPS, and an engine rotation speed Ne (= motor rotation speed). , A battery voltage Vb for detecting the state of charge (SOC) of the battery 9, and other detection signals from various sensors for detecting the operating state.

ECU10は、上記検出信号により得られる運転者の操作情報、運転状態情報、バッテリ9の充電状態(SOC)情報などに基づいてエンジン1、モータ2の要求出力を演算し、要求出力に応じた指令値を出力して、エンジン1、モータ2、インバータ8等を制御する。また、モータ2を発電機として作動させる回生の要求の有無を判定し、回生要求がある場合は要求に応じた指令値を出力して回生制御を行う。   The ECU 10 calculates the required output of the engine 1 and the motor 2 based on the operation information of the driver obtained from the detection signal, the driving state information, the state of charge (SOC) information of the battery 9, and the like, and commands according to the required output The value is output to control the engine 1, the motor 2, the inverter 8, and the like. Moreover, the presence or absence of the request | requirement of regeneration which operates the motor 2 as a generator is determined, and when there exists a regeneration request | requirement, the command value according to a request | requirement is output and regeneration control is performed.

ここで、減速時に回生を行うときは、上記可変バルブタイミング機構36によってブレーキ操作中に有効圧縮比を低減し、エンジン1の回転抵抗を減少させ、その分、モータ1の発電トルクを大きくし、回生量を増大補正する。   Here, when performing regeneration during deceleration, the variable valve timing mechanism 36 reduces the effective compression ratio during brake operation, decreases the rotational resistance of the engine 1, and increases the power generation torque of the motor 1 by that amount, Increase the regeneration amount.

以下、上記回生量の補正制御を、図3のフローチャートにしたがって、説明する。   Hereinafter, the regeneration amount correction control will be described with reference to the flowchart of FIG.

ステップS1では、前記アクセルセンサ51からの信号に基づいて、アクセルペダルを踏んでいる(アクセル踏量>0)かを判定し、アクセルペダルを踏んでいないと判定されたときは、ステップS2で、ブレーキペダルを踏んでいる(ブレーキ踏量>0)かを判定する。   In step S1, it is determined whether the accelerator pedal is depressed (accelerator pedal stroke> 0) based on the signal from the accelerator sensor 51. If it is determined that the accelerator pedal is not depressed, in step S2, It is determined whether the brake pedal is depressed (brake pedal stroke> 0).

ステップS2でブレーキペダルを踏んでいると判定されたときは、ステップS3へ進み、バッテリ9の充電量SOCが過充電防止用のしきい値SOCh以下であるかを判定し、しきい値SOCh以下と判定されたときに、ステップS4以降へ進んで、回生量の増大補正を実行する。   If it is determined in step S2 that the brake pedal is being depressed, the process proceeds to step S3, where it is determined whether the charge amount SOC of the battery 9 is equal to or less than the overcharge prevention threshold value SOCh, and is equal to or less than the threshold value SOCh. When it is determined, the process proceeds to step S4 and subsequent steps, and the regeneration amount increase correction is executed.

ステップS4では、可変バルブタイミング機構36によるVTC角度θvの指令値を算出する。   In step S4, a command value for the VTC angle θv by the variable valve timing mechanism 36 is calculated.

具体的には、図4に示す特性により、ブレーキ踏量BPSの増大に応じてVTC角度θvを遅角させ、エンジン1の有効圧縮比を減少させる。   Specifically, according to the characteristics shown in FIG. 4, the VTC angle θv is retarded in accordance with the increase in the brake pedal stroke BPS, and the effective compression ratio of the engine 1 is decreased.

ステップS5では、上記のように算出したVTC角度θvの指令値を、可変バルブタイミング機構36に出力し、ブレーキ操作中の吸気弁27のバルブタイミングを制御する。   In step S5, the command value of the VTC angle θv calculated as described above is output to the variable valve timing mechanism 36, and the valve timing of the intake valve 27 during brake operation is controlled.

ステップS6以降では、ブレーキ操作中の回生量を、上記VTC角度θvによる有効圧縮比の低減量に応じて補正する。   In step S6 and subsequent steps, the regeneration amount during the brake operation is corrected according to the reduction amount of the effective compression ratio due to the VTC angle θv.

ステップS6では、回生量の増大補正量として、モータ1の発電トルクの増大補正量を演算する。具体的には、図5に示す特性により、有効圧縮比が減少するほど、増大補正量dTgを大きい値に算出する。   In step S6, an increase correction amount of the power generation torque of the motor 1 is calculated as an increase correction amount of the regeneration amount. Specifically, according to the characteristics shown in FIG. 5, the increase correction amount dTg is calculated as a larger value as the effective compression ratio decreases.

ステップS7では、上記のように算出した増大補正量dTgを出力し、モータ1の発電トルクを補正する。具体的には、増大補正量dTgが大きいほど、モータ1の界磁電流を大きくして発電トルクを増大させる。   In step S7, the increase correction amount dTg calculated as described above is output, and the power generation torque of the motor 1 is corrected. Specifically, as the increase correction amount dTg is larger, the field current of the motor 1 is increased to increase the power generation torque.

これにより、図6に示すように、ブレーキ踏量BPSが増大するほどVTC角度θvが遅角して有効圧縮比が減少し、増大補正量dTgが増大して回生量がより増大する。   As a result, as shown in FIG. 6, as the brake depression amount BPS increases, the VTC angle θv is retarded, the effective compression ratio decreases, the increase correction amount dTg increases, and the regeneration amount further increases.

また、有効圧縮比の減少によるエンジン1の回転抵抗の減少に見合うように、発電トルクの増大補正量dTgを大きくしているので、制動力は変化せず、制動性能も満たされる。   Moreover, since the increase correction amount dTg of the power generation torque is increased to match the decrease in the rotational resistance of the engine 1 due to the decrease in the effective compression ratio, the braking force does not change and the braking performance is also satisfied.

このようにして、ブレーキ操作中に回生量の増大補正を行っている状態から、ブレーキペダルを離し、エンジンブレーキによるコースト減速に移行すると、ステップS2の判定がNOとなって、ステップS8へ進み、可変バルブタイミング機構36によるVTC角度θvの遅角補正が解除される。   In this way, when the brake pedal is released from the state where the regeneration amount increase correction is being performed during the brake operation and the engine shifts to the coast deceleration by the engine brake, the determination in step S2 becomes NO, and the process proceeds to step S8. The retardation correction of the VTC angle θv by the variable valve timing mechanism 36 is cancelled.

これにより、エンジン1の有効圧縮比の低減が解除され、その後、アクセルペダルを踏んで再加速するときまでに有効圧縮比を高めておけるので、再加速時にエンジントルクを応答良く増大させて良好な加速感を得ることができる。   As a result, the reduction in the effective compression ratio of the engine 1 is released, and thereafter, the effective compression ratio can be increased by the time when the accelerator pedal is depressed to re-accelerate. A feeling of acceleration can be obtained.

図7は、上記実施形態における制御時のタイミングチャートを示す。   FIG. 7 shows a timing chart at the time of control in the embodiment.

時刻t0では、コースト減速回生の状態であり、VTC角度θvは最進角側で有効圧縮比の低減は行われていない。   At time t0, coast deceleration regeneration is in effect, and the VTC angle θv is the most advanced angle side and the effective compression ratio is not reduced.

t1からt2の間、運転者の操作により徐々にブレーキ踏量が増加すると、ブレーキ踏量に応じてVTC角度θvが遅角される。また、発電トルクの増大補正量dTgが0から増加する。   When the amount of brake pedal gradually increases by the driver's operation between t1 and t2, the VTC angle θv is retarded according to the amount of brake pedal depression. Further, the power generation torque increase correction amount dTg increases from zero.

t3で運転者によりブレーキペダルが離されると、発電トルクの増大補正量dTgが減少し、コースト回生状態となって、VTC角度θvはt4で進角側に復帰する。   When the brake pedal is released by the driver at t3, the power generation torque increase correction amount dTg decreases, and the coast regeneration state is reached, and the VTC angle θv returns to the advance side at t4.

t5でアクセルペダルが大きく踏まれるが、エンジン1の有効圧縮比の低減は解除されているため、充分なトルク応答で動作することができる。   Although the accelerator pedal is greatly depressed at t5, since the reduction in the effective compression ratio of the engine 1 is released, the engine can be operated with a sufficient torque response.

以上実施形態で示したように、ブレーキ操作時にエンジン1の有効圧縮比を低減しながら、該有効圧縮比の低減に応じた回生量の増大補正を行うことで、燃費を改善することができるとともに、有効圧縮比低減により機関の振動を低減できる。   As described in the above embodiment, while reducing the effective compression ratio of the engine 1 during the brake operation, the fuel consumption can be improved by performing the increase correction of the regeneration amount according to the reduction of the effective compression ratio. The engine vibration can be reduced by reducing the effective compression ratio.

また、有効圧縮比を低減して回生している状態から再加速する際に、ブレーキ操作を開放したエンジンブレーキ状態で、有効圧縮比の低減解除が開始されるため、アクセルを踏み込んで加速するときには、既に、有効圧縮比を高められた状態で機関出力が増大されて加速されるため、良好な加速感が得られる。   Also, when reaccelerating from a state where the effective compression ratio is reduced and regenerating, the reduction of the effective compression ratio starts in the engine brake state where the brake operation is released, so when depressing the accelerator and accelerating Since the engine output is already increased and accelerated while the effective compression ratio is increased, a good feeling of acceleration can be obtained.

また、本実施形態では、可変バルブタイミング機構36によって、全気筒略同時に有効圧縮比が変更され、有効圧縮比の低減、低減解除を応答よく行える。   In the present embodiment, the effective compression ratio is changed almost simultaneously by all the cylinders by the variable valve timing mechanism 36, and the effective compression ratio can be reduced and cancelled with good response.

また、可変バルブタイミング機構36によりを連続的に変更できることを利用し、ブレーキ操作量が大きいほど有効圧縮比の低減量を大きくするようにしたので、加速要求の発生時期に対し圧縮比復帰完了時期の遅れを抑制しつつ、より有効圧縮比を低減して回生量の増大、振動低減効果を高めることができる。また、ブレーキ踏量に対する制動力の設定が一定に維持されて、ブレーキフィーリングも良好に保つことができる。   In addition, since the variable valve timing mechanism 36 can be continuously changed, the reduction amount of the effective compression ratio is increased as the brake operation amount is increased. Therefore, the compression ratio return completion timing is compared with the generation timing of the acceleration request. While suppressing this delay, the effective compression ratio can be further reduced to increase the regeneration amount and increase the vibration reduction effect. In addition, the setting of the braking force with respect to the brake depression amount is kept constant, and the brake feeling can be kept good.

また、バッテリ9の充電量SOCが過充電防止用のしきい値SOChを超えたときは、有効圧縮比の低減および該低減に伴う回生量の増大補正を禁止するようにしたので、バッテリ9の過充電を抑制できる。   Further, when the charge amount SOC of the battery 9 exceeds the overcharge prevention threshold value SOCh, the reduction of the effective compression ratio and the increase correction of the regenerative amount accompanying the reduction are prohibited. Overcharge can be suppressed.

本発明の一実施形態に係るハイブリッド車両の駆動系の概略を示す図。The figure which shows the outline of the drive system of the hybrid vehicle which concerns on one Embodiment of this invention. 同上実施形態のエンジンの一例を示す図。The figure which shows an example of the engine of embodiment same as the above. 同上実施形態の回生量の補正制御を示すフローチャート。The flowchart which shows correction | amendment control of the regeneration amount of embodiment same as the above. 同上実施形態において、ブレーキ踏量に対する有効圧縮比の特性を示す図。The figure which shows the characteristic of the effective compression ratio with respect to the brake depression amount in embodiment same as the above. 同上実施形態において、有効圧縮比に対する発電トルクの増大補正量の特性を示す図。The figure which shows the characteristic of the increase correction amount of the electric power generation torque with respect to an effective compression ratio in embodiment same as the above. 同上実施形態において、ブレーキ踏量に対する目標発電トルクの特性を示す図。The figure which shows the characteristic of the target electric power generation torque with respect to the brake depression amount in embodiment same as the above. 本発明に係る回生時の制御を行った場合の、各種状態量の変化の様子を示す図。The figure which shows the mode of the change of various state quantities at the time of performing control at the time of the regeneration which concerns on this invention.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 モータ(電動機)
9 バッテリ
10 電子制御ユニット
51 アクセルセンサ
52 ブレーキセンサ
1 engine (internal combustion engine)
2 Motor (electric motor)
9 Battery 10 Electronic control unit 51 Acceleration sensor 52 Brake sensor

Claims (6)

有効圧縮比を変更する機構を有した内燃機関と、電動機とが連結された原動機を搭載したハイブリッド車両の減速時に、前記電動機を発電機として発電させて回生を行うハイブリッド車両の回生制御装置において、
前記回生時に、ブレーキ操作をしているときは有効圧縮比を低減しつつ、該有効圧縮比の低減に応じて前記発電の回生量を増大補正し、ブレーキ操作を開放したときに前記有効圧縮比の低減を解除することを特徴とするハイブリッド車両の回生制御装置。
In a regenerative control device for a hybrid vehicle that regenerates the motor by generating power as a generator during deceleration of a hybrid vehicle equipped with an internal combustion engine having a mechanism for changing an effective compression ratio and a motor connected to the motor,
During the regeneration, when the brake is being operated, while reducing the effective compression ratio, the regeneration amount of the power generation is corrected to be increased according to the reduction in the effective compression ratio, and when the brake operation is released, the effective compression ratio is reduced. The regenerative control device for a hybrid vehicle is characterized by canceling the reduction of the vehicle.
前記有効圧縮比を変更する機構は気筒毎に設けられ、回生時に、ブレーキ操作しているときは全気筒の有効圧縮比を低減し、ブレーキ操作を解除したときに全気筒の有効圧縮比の低減を解除することを特徴とする請求項1に記載のハイブリッド車両の回生制御装置。   A mechanism for changing the effective compression ratio is provided for each cylinder. During regeneration, the effective compression ratio of all cylinders is reduced when the brake is operated, and the effective compression ratio of all cylinders is reduced when the brake operation is released. The regenerative control device for a hybrid vehicle according to claim 1, wherein: 回生時のブレーキ操作量が大きいときほど、有効圧縮比の低減量を大きくすると共に回生量の増大補正量を大きくすることを特徴とする請求項1または請求項2に記載のハイブリッド車両の回生制御装置。   The regenerative control of a hybrid vehicle according to claim 1 or 2, wherein as the brake operation amount during regeneration is larger, the reduction amount of the effective compression ratio is increased and the increase correction amount of the regeneration amount is increased. apparatus. 前記電動機に電力を供給する蓄電装置の充電量が過充電防止用のしきい値を超えるときは、前記回生時に有効圧縮比を低減する制御を禁止することを特徴とする請求項1〜請求項3のいずれか1つに記載のハイブリッド車両の回生制御装置。   The control for reducing the effective compression ratio during the regeneration is prohibited when the charge amount of the power storage device that supplies electric power to the electric motor exceeds a threshold for preventing overcharge. The regeneration control device for a hybrid vehicle according to any one of 3. 前記有効圧縮比を変更する機構は、有効圧縮比を連続的に変更可能であることを特徴とする請求項1〜請求項4のいずれか1つに記載のハイブリッド車両の回生制御装置。   The regenerative control device for a hybrid vehicle according to any one of claims 1 to 4, wherein the mechanism for changing the effective compression ratio is capable of continuously changing the effective compression ratio. 前記有効圧縮比を変更する機構は、内燃機関の吸気弁のバルブ特性を可変とする機構であることを特徴とする請求項1〜請求項5のいずれか1つに記載のハイブリッド回生制御装置。   The hybrid regeneration control apparatus according to any one of claims 1 to 5, wherein the mechanism that changes the effective compression ratio is a mechanism that varies a valve characteristic of an intake valve of an internal combustion engine.
JP2007202156A 2007-08-02 2007-08-02 Regenerative control device for hybrid vehicle Expired - Fee Related JP5007621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202156A JP5007621B2 (en) 2007-08-02 2007-08-02 Regenerative control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202156A JP5007621B2 (en) 2007-08-02 2007-08-02 Regenerative control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2009035175A JP2009035175A (en) 2009-02-19
JP5007621B2 true JP5007621B2 (en) 2012-08-22

Family

ID=40437478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202156A Expired - Fee Related JP5007621B2 (en) 2007-08-02 2007-08-02 Regenerative control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5007621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213494B2 (en) 2015-02-18 2017-10-18 トヨタ自動車株式会社 Hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296162B2 (en) * 1995-11-06 2002-06-24 日産自動車株式会社 Control device for hybrid vehicle
JPH102239A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Engine control device for hybrid type vehicle
JP2004225564A (en) * 2003-01-20 2004-08-12 Hitachi Unisia Automotive Ltd Control system of hybrid vehicle
JP4127157B2 (en) * 2003-02-18 2008-07-30 トヨタ自動車株式会社 Control method of variable compression ratio engine

Also Published As

Publication number Publication date
JP2009035175A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP6852802B2 (en) Hybrid vehicle control method and control device
JP5406270B2 (en) Method and apparatus for driving hybrid vehicle with electric supercharger
US11207968B2 (en) Hybrid vehicle cruise control device
JP4100443B2 (en) Control device for hybrid vehicle
WO2018155624A1 (en) Power control method and power control device for hybrid vehicle
WO2018155625A1 (en) Drive control method and drive control device for hybrid vehicle
US20190276003A1 (en) Control device for hybrid vehicle
JP3541875B2 (en) Hybrid car engine starter
JP2013187959A (en) Vehicle
WO2018155623A1 (en) Hybrid vehicle power control method and power control device
JP3646632B2 (en) Vehicle travel control device
JP2009126303A (en) Vehicle control unit
JP2006220045A (en) Deceleration control method for vehicle
JP2012086662A (en) Engine start control device for vehicle
JP2002339774A (en) Control device for hybrid vehicle
JP3812639B2 (en) Control device for hybrid vehicle
JP5007621B2 (en) Regenerative control device for hybrid vehicle
US20150166053A1 (en) Controller for hybrid vehicle
JP3574120B2 (en) Hybrid vehicle
WO2017086420A1 (en) Hybrid vehicle and control method for same
JP3841249B2 (en) Vehicle travel control device for hybrid vehicle
JP6489509B2 (en) Power control method and power control apparatus for hybrid vehicle
JP6569592B2 (en) Vehicle control apparatus and vehicle control method
US20200231137A1 (en) Driving force control method and device for hybrid vehicle
JP5163000B2 (en) Regenerative control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

R150 Certificate of patent or registration of utility model

Ref document number: 5007621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees