JP5002608B2 - Hard particle concentration detection method - Google Patents

Hard particle concentration detection method Download PDF

Info

Publication number
JP5002608B2
JP5002608B2 JP2009059469A JP2009059469A JP5002608B2 JP 5002608 B2 JP5002608 B2 JP 5002608B2 JP 2009059469 A JP2009059469 A JP 2009059469A JP 2009059469 A JP2009059469 A JP 2009059469A JP 5002608 B2 JP5002608 B2 JP 5002608B2
Authority
JP
Japan
Prior art keywords
magnetic
concentration
particles
oil
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059469A
Other languages
Japanese (ja)
Other versions
JP2010210566A (en
Inventor
英實 鵜飼
幹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Diesel United Ltd
Original Assignee
IHI Corp
Diesel United Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009059469A priority Critical patent/JP5002608B2/en
Application filed by IHI Corp, Diesel United Ltd filed Critical IHI Corp
Priority to US13/256,119 priority patent/US8659287B2/en
Priority to CN201080020783XA priority patent/CN102422142B/en
Priority to KR1020117020984A priority patent/KR101196251B1/en
Priority to PCT/JP2010/001697 priority patent/WO2010103824A1/en
Priority to EP10750581.0A priority patent/EP2407768A4/en
Publication of JP2010210566A publication Critical patent/JP2010210566A/en
Application granted granted Critical
Publication of JP5002608B2 publication Critical patent/JP5002608B2/en
Priority to HK12109642.9A priority patent/HK1168900A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液中に含まれる硬質粒子の濃度検出方法に関するものである。   The present invention relates to a method for detecting the concentration of hard particles contained in a liquid.

一般に、舶用ディーゼルエンジンの主な燃料であるC重油等の液中には、石油精製時の流動接触分解(FCC)の残渣分としてアルミナ、シリカ、カーボン等の硬質粒子が混入している。   Generally, liquids such as C heavy oil, which is the main fuel of marine diesel engines, are mixed with hard particles such as alumina, silica, and carbon as a residue of fluid catalytic cracking (FCC) during petroleum refining.

これらの硬質粒子がエンジンのピストンリング・シリンダライナ等の駆動機関に過剰に流入した場合には、摺動状況の悪化、焼き付き、機械的摩耗等の悪影響を生じる可能性があるため、船舶管理会社では、補油毎に燃料をサンプリングして化学分析し、燃料中の硬質粒子を定量的に把握し、規定値以上の硬質粒子を含む燃料が船舶に補油された場合には、船舶に対して硬質粒子が規定値以上である旨を連絡し、注意を促していた。   If these hard particles excessively flow into the drive engines such as engine piston rings and cylinder liners, the ship management company may cause adverse effects such as deterioration of the sliding condition, seizure, and mechanical wear. Then, for each bunkering, fuel is sampled and chemically analyzed, and the hard particles in the fuel are quantitatively grasped. When fuel containing hard particles exceeding the specified value is bunkered to the ship, We were informed that hard particles were above the specified value and cautioned.

また従来、硬質粒子を検出する際には、液中からサンプリングした燃料をフィルタ等で濾過し、残渣の顕微鏡による観察や定量分析等により硬質粒子を検出している。   Conventionally, when detecting hard particles, the fuel sampled from the liquid is filtered through a filter or the like, and the hard particles are detected by observation of the residue with a microscope or quantitative analysis.

尚、硬質粒子の濃度検出方法の一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level of a hard particle concentration detection method.

特開平11−153541号公報JP 11-153541 A

しかしながら、従来の硬質粒子の濃度検出方法では、その結果を船舶に報告するまでにある程度の日数を要するため、分析結果が明らかになる前に燃料を使用する必要がある場合には、駆動機関への悪影響を未然に防止することができないという問題があった。また硬質粒子を含む夾雑物が貯留中に沈殿して硬質粒子の濃度が上昇する場合や、燃料タンクから機関入口までの燃料の処理系統で遠心分離清浄機やフィルタ等の不具合が発生した場合には、多量の硬質粒子が駆動機関に突発的に供給される可能性があり、燃料中の硬質粒子を定量的に且つ迅速に把握することが求められていた。   However, since the conventional method for detecting the concentration of hard particles requires a certain number of days to report the result to the ship, if it is necessary to use fuel before the analysis result becomes clear, it should be sent to the driving engine. There was a problem that the adverse effects of could not be prevented. Also, when contaminants containing hard particles precipitate during storage and the concentration of hard particles increases, or when problems such as centrifugal cleaners and filters occur in the fuel processing system from the fuel tank to the engine inlet There is a possibility that a large amount of hard particles may be suddenly supplied to the drive engine, and it has been required to quantitatively and quickly grasp the hard particles in the fuel.

更にアルミナ、シリカ等の硬質粒子は導電性や磁性に顕著な特徴を持たないため、電気的、磁気的に検知することが困難であると共に、硬質粒子は化学的に安定な物質であるため、化学反応を利用して検出することが困難であるという問題があった。更にC重油等の液は、高粘度、不透明でアルミナ・シリカ粒子以外にも種々のスラッジ等の硬質粒子を含むため、特許文献1の如く光学的検知でも十分に対応できないという問題があった。   Furthermore, since hard particles such as alumina and silica do not have remarkable characteristics in conductivity and magnetism, it is difficult to detect electrically and magnetically, and hard particles are chemically stable substances. There was a problem that it was difficult to detect using a chemical reaction. Furthermore, since liquids such as C heavy oil are highly viscous and opaque and contain hard particles such as various sludges in addition to alumina / silica particles, there has been a problem that even optical detection as in Patent Document 1 cannot be sufficiently performed.

本発明は、斯かる実情に鑑み、液中の硬質粒子を定量的に且つ迅速に把握する硬質粒子の濃度検出方法を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a hard particle concentration detection method for quantitatively and quickly grasping hard particles in a liquid.

本発明の硬質粒子の濃度検出方法は、硬質粒子を含み得る液中に磁性部材と対応部材とを浸漬し、磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、液中の硬質粒子により磁性部材を摩耗して磁性粒子を発生させ、試料の液中に発生した磁性粒子の濃度を計測し、予め測定した磁性粒子の濃度と液中の硬質粒子の濃度との相関関係を示す検量線から磁性粒子の濃度を液中の硬質粒子の濃度に換算し、液中に含まれる硬質粒子の濃度を検出するものである。   In the method for detecting the concentration of hard particles according to the present invention, the magnetic member and the corresponding member are immersed in a liquid that may contain hard particles, and at least one of the magnetic member and the corresponding member is pressed against the other to move the hard member in the liquid. The magnetic member is worn by the particles to generate magnetic particles, the concentration of magnetic particles generated in the sample liquid is measured, and the correlation between the magnetic particle concentration measured in advance and the concentration of hard particles in the liquid is shown. From the calibration curve, the concentration of magnetic particles is converted into the concentration of hard particles in the liquid, and the concentration of hard particles contained in the liquid is detected.

また本発明の硬質粒子の濃度検出方法においては、磁性部材と対応部材との間に液中の硬質粒子を挟み込んで磁性部材と対応部材との少なくとも一方を他方に押圧して動かすことが好ましい。   In the hard particle concentration detection method of the present invention, it is preferable that hard particles in the liquid are sandwiched between the magnetic member and the corresponding member, and at least one of the magnetic member and the corresponding member is pressed against the other to move.

本発明の硬質粒子の濃度検出方法によれば、液中の硬質粒子の存在により磁性部材を摩耗して磁性粒子を発生させ、液中に発生した磁性粒子の濃度を計測し、検量線から磁性粒子の濃度を液中の硬質粒子の濃度に換算し、液中に含まれる硬質粒子の濃度を検出するので、液中の硬質粒子を定量的に且つ迅速に把握することができる。また液が油の場合には、未検査の燃料を使用する状況や、多量の硬質粒子が駆動機関に突発的に供給される状況を防止し、駆動機関への悪影響を抑制することができる。更に磁性部材の摩耗により生じた磁性粒子を用いて間接的に硬質粒子の濃度を検出するので、液自体を物理的、化学的に処理して硬質粒子を直接検出する操作や処理を不要にし、好適に液中の硬質粒子を定量的に且つ迅速に把握することができるという優れた効果を奏し得る。   According to the hard particle concentration detection method of the present invention, the magnetic member is worn by the presence of hard particles in the liquid to generate magnetic particles, the concentration of the magnetic particles generated in the liquid is measured, and the magnetic curve is measured from the calibration curve. Since the concentration of particles is converted into the concentration of hard particles in the liquid and the concentration of hard particles contained in the liquid is detected, the hard particles in the liquid can be grasped quantitatively and quickly. Further, when the liquid is oil, it is possible to prevent a situation in which uninspected fuel is used and a situation in which a large amount of hard particles are suddenly supplied to the driving engine, thereby suppressing adverse effects on the driving engine. Furthermore, since the concentration of hard particles is indirectly detected using magnetic particles generated by wear of the magnetic member, the operation and processing for directly detecting the hard particles by physically and chemically treating the liquid itself are unnecessary, The excellent effect that the hard particle | grains in a liquid can be grasped | ascertained quantitatively and rapidly suitably can be show | played.

本発明の硬質粒子の濃度検出方法の処理手順を示すフローである。It is a flow which shows the process sequence of the density | concentration detection method of the hard particle | grains of this invention. 本発明の硬質粒子の濃度検出方法であって磁性粒子発生手段を示す全体概念図である。It is a density | concentration detection method of the hard particle | grains of this invention, and is a whole conceptual diagram which shows a magnetic particle generation means. 図2の磁性粒子発生手段における磁性部材及び対応部材の部分を拡大して示す概念図である。It is a conceptual diagram which expands and shows the part of the magnetic member and corresponding member in the magnetic particle generation means of FIG. 図3のIV−IV矢視図である。It is the IV-IV arrow line view of FIG. (a)は他の磁性粒子発生手段における磁性部材及び対応部材の部分を示す概念図であり、(b)は別の磁性粒子発生手段における磁性部材及び対応部材の部分を示す概念図であり、(c)は更に他の磁性粒子発生手段における磁性部材及び対応部材の部分を示す概念図である。(A) is a conceptual diagram showing portions of magnetic members and corresponding members in other magnetic particle generating means, (b) is a conceptual diagram showing portions of magnetic members and corresponding members in another magnetic particle generating means, (C) is a conceptual diagram which shows the part of the magnetic member in another magnetic particle generation means, and a corresponding member. 本発明の硬質粒子の濃度検出方法であって磁性粒子計測手段の一例を示す全体概念図である。It is a density | concentration detection method of the hard particle | grains of this invention, Comprising: It is a whole conceptual diagram which shows an example of a magnetic particle measurement means. 本発明の硬質粒子の濃度検出方法であって磁性粒子計測手段の他例を示す全体概念図である。It is a density | concentration detection method of the hard particle | grains of this invention, Comprising: It is a whole conceptual diagram which shows the other example of a magnetic particle measurement means. 磁性粒子計測手段における信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing part in a magnetic particle measurement means. 磁性粒子の影響のない状態で出力信号から比較用の出力値までの処理を示す概念図である。It is a conceptual diagram which shows the process from an output signal to the output value for a comparison in the state without the influence of a magnetic particle. 磁性粒子の影響のある状態で出力信号から磁性粒子の濃度用の出力値までの処理を示す概念図である。It is a conceptual diagram which shows the process from an output signal to the output value for the density | concentration of a magnetic particle in the state which has the influence of a magnetic particle. 磁性粒子発生手段の駆動時間(研磨時間)と磁性粒子(磁性粉体Fe)の濃度との関係を示すグラフである。It is a graph which shows the relationship between the drive time (polishing time) of a magnetic particle generation means, and the density | concentration of a magnetic particle (magnetic powder Fe). 硬質粒子の濃度と磁性粒子(磁性粉体)の濃度との関係を示す検量線である。It is a calibration curve showing the relationship between the concentration of hard particles and the concentration of magnetic particles (magnetic powder).

以下、本発明の実施の形態例を図1〜図12を参照して説明する。図1〜図12は硬質粒子の濃度検出方法を実施する形態例である。   Embodiments of the present invention will be described below with reference to FIGS. FIGS. 1-12 is an example which implements the density | concentration detection method of a hard particle.

実施の形態例の硬質粒子の濃度検出方法は、液中に磁性粒子(磁性粉体)を発生させる磁性粒子発生手段(磁性粉体発生手段)1と、液中の磁性粒子の濃度を計測する磁性粒子計測手段2(図6〜図8参照)と、磁性粒子の濃度を処理する制御部3(図6、図7参照)とを備えており、当該実施例では液を油とした場合で説明する。   In the method for detecting the concentration of hard particles according to the embodiment, magnetic particle generating means (magnetic powder generating means) 1 for generating magnetic particles (magnetic powder) in the liquid and the concentration of the magnetic particles in the liquid are measured. A magnetic particle measuring means 2 (see FIGS. 6 to 8) and a control unit 3 (see FIGS. 6 and 7) for processing the concentration of magnetic particles are provided. In this embodiment, the liquid is oil. explain.

磁性粒子発生手段1は、回転軸4を下方に有するモータ等の駆動部5と、回転軸4を囲むように駆動部5に配置されるホルダ部6と、回転軸4に接続してホルダ部6から下部外方へ延在するロッド部7と、ホルダ部6に支持されてロッド部7の外周に装備されるスリーブ8と、スリーブ8を下方側へ余勢するバネ等の弾性手段9と、ナット等の固定手段10によりスリーブ8の下部に配置される摩耗板の対応部材11及び板状の磁性部材12とを備えている。   The magnetic particle generating means 1 includes a drive unit 5 such as a motor having a rotating shaft 4 below, a holder unit 6 disposed on the driving unit 5 so as to surround the rotating shaft 4, and a holder unit connected to the rotating shaft 4. A rod portion 7 extending from the lower portion 6 to the outside, a sleeve 8 supported on the holder portion 6 and provided on the outer periphery of the rod portion 7, an elastic means 9 such as a spring forcing the sleeve 8 downward, A wear plate corresponding member 11 and a plate-like magnetic member 12 are provided below the sleeve 8 by a fixing means 10 such as a nut.

駆動部5及びホルダ部6は、ロッド部7、スリーブ8等を下方に露出するように台座(図示せず)に固定されている。またホルダ部6には、燃料等の油Sを入れた試験管等の容器部13を取り付け得るように、容器部13を挿入し得る下方凸部14が構成されている。更に下方凸部14の外周には溝を設けてOリング15が配置されている。   The drive part 5 and the holder part 6 are fixed to a pedestal (not shown) so that the rod part 7, the sleeve 8 and the like are exposed downward. Further, the holder portion 6 is provided with a downward projecting portion 14 into which the container portion 13 can be inserted so that the container portion 13 such as a test tube containing oil S such as fuel can be attached. Further, an O-ring 15 is arranged with a groove on the outer periphery of the downward projection 14.

ロッド部7は、ホルダ部6に容器部13を配置した場合にスリーブ8、弾性手段9、対応部材11、磁性部材12と共に容器部13内へ収納し得る長さを有し、駆動部5によって回転するように構成されている。またロッド部7の下方位置には、ロッド部7の外周の両側を平面に切り欠いたような両側面7a(図4参照)を形成している。   The rod portion 7 has a length that can be accommodated in the container portion 13 together with the sleeve 8, the elastic means 9, the corresponding member 11, and the magnetic member 12 when the container portion 13 is disposed on the holder portion 6. It is configured to rotate. Further, on both sides of the rod portion 7, both side surfaces 7 a (see FIG. 4) are formed such that both sides of the outer periphery of the rod portion 7 are notched into a plane.

スリーブ8は、弾性手段9の下部を支持する上側受部16を形成していると共に、対応部材11に当接する下側受部17を形成している。また弾性手段9は、ホルダ部6の下方凸部14に支持され、スリーブ8を介して対応部材11を下方に余勢し、対応部材11を磁性部材12に押圧するようにしている。ここで対応部材11と磁性部材12の押圧は、バネ等の弾性手段9を変更して調整することが好ましい。   The sleeve 8 forms an upper receiving portion 16 that supports the lower portion of the elastic means 9 and also forms a lower receiving portion 17 that contacts the corresponding member 11. Further, the elastic means 9 is supported by the lower convex portion 14 of the holder portion 6 and biases the corresponding member 11 downward via the sleeve 8 so as to press the corresponding member 11 against the magnetic member 12. Here, the pressing of the corresponding member 11 and the magnetic member 12 is preferably adjusted by changing the elastic means 9 such as a spring.

対応部材11は、ロッド部7を挿通する孔(図示せず)を備え、ロッド部7の回転に追従することなく配置されており、磁性部材12は、ロッド部7を挿通する孔18(図4参照)を備え、当該孔18にロッド部7の下方の両側面7aに当接し得る両側直線部18aを形成して、ロッド部7の回転に追従するようにしている。また磁性部材12は、磁性を有する鉄系材料等の素材で構成され、対応部材11は、磁性部材12よりも硬く摩耗しづらい炭素鋼等の素材で構成されている。また対応部材11と磁性部材12のいずれか一方(図2、図3では磁性部材12)には、他方の部材に面する溝12aが構成されており、対応部材11と磁性部材12の間に硬質粒子が存在して磁性部材12が回転する場合には、硬質粒子により磁性部材12が削り取られてアブレシブ摩耗を生じるようになっている。ここで磁性部材12の素材は、摩耗により所定粒径の磁性粒子(磁性粉体)を構成するならば鉄に限定されるものでなく、他の素材でも良い。また対応部材11の素材は、磁性部材12から磁性粒子を発生させるならば他の素材でも良いし、磁性部材12と同じ素材にしても良い。更に磁性部材12と対応部材11は、配置を逆にしても良い。   The corresponding member 11 includes a hole (not shown) through which the rod portion 7 is inserted, and is arranged without following the rotation of the rod portion 7. The magnetic member 12 is a hole 18 (see FIG. 4), and a straight side portion 18a on both sides that can contact both side surfaces 7a below the rod portion 7 is formed in the hole 18 so as to follow the rotation of the rod portion 7. The magnetic member 12 is made of a material such as an iron-based material having magnetism, and the corresponding member 11 is made of a material such as carbon steel that is harder and harder to wear than the magnetic member 12. Further, a groove 12 a facing the other member is formed in one of the corresponding member 11 and the magnetic member 12 (the magnetic member 12 in FIGS. 2 and 3), and between the corresponding member 11 and the magnetic member 12. When the magnetic member 12 rotates with the presence of hard particles, the magnetic member 12 is scraped off by the hard particles to cause abrasive wear. Here, the material of the magnetic member 12 is not limited to iron as long as magnetic particles (magnetic powder) having a predetermined particle diameter are formed by wear, and other materials may be used. The material of the corresponding member 11 may be another material as long as magnetic particles are generated from the magnetic member 12, or may be the same material as the magnetic member 12. Furthermore, the arrangement of the magnetic member 12 and the corresponding member 11 may be reversed.

ここで磁性粒子発生手段1は磁性部材12及び対応部材11等の構成を変更した他の例でも良い。具体的に他の例としては、図5(a)に示す如く、駆動手段(図示せず)により回転する軸部19と、軸部19の中央に位置するローラ部20と、固定手段(図示せず)に固定されてローラ部20に当接する板部21と、ローラ部20を板部21に押圧するように軸部19を余勢するバネ等の弾性手段22とを備え、磁性部材をローラ部20及び板部21のいずれか一方にし、対応部材をローラ部20及び板部21のいずれか他方にする構成を備えている。   Here, the magnetic particle generating means 1 may be another example in which the configuration of the magnetic member 12 and the corresponding member 11 is changed. Specifically, as another example, as shown in FIG. 5A, a shaft portion 19 rotated by a driving means (not shown), a roller portion 20 positioned at the center of the shaft portion 19, and a fixing means (see FIG. 5). A plate portion 21 fixed to the roller portion 20 and an elastic means 22 such as a spring for biasing the shaft portion 19 so as to press the roller portion 20 against the plate portion 21. One of the portion 20 and the plate portion 21 is provided, and the corresponding member is the other of the roller portion 20 and the plate portion 21.

また別の例としては、図5(b)に示す如く、駆動手段(図示せず)により回転する軸部23と、軸部23の先端に位置する回転板24と、固定手段(図示せず)に固定されて回転板24の下面に当接する板部25と、回転板24を板部25に押圧するバネ等の弾性手段26とを備え、磁性部材を回転板24及び板部25のいずれか一方にし、対応部材を回転板24及び板部25のいずれか他方にする構成を備えている。   As another example, as shown in FIG. 5B, a shaft portion 23 rotated by a driving means (not shown), a rotating plate 24 positioned at the tip of the shaft portion 23, and a fixing means (not shown). ) And an elastic means 26 such as a spring for pressing the rotating plate 24 against the plate portion 25, and the magnetic member is any of the rotating plate 24 and the plate portion 25. One of them is configured such that the corresponding member is either the rotating plate 24 or the plate portion 25.

更に他の例としては、図5(c)に示す如く、駆動手段27により回転する偏芯ピン28と、偏芯ピン28の動きを往復移動に変換する連結部材29と、連結部材29に接続される往復板30と、固定手段(図示せず)に固定されて往復板30の下面に当接する板部31と、往復板30を板部31に押圧するバネ等の弾性手段32とを備え、磁性部材を往復板30及び板部31のいずれか一方にし、対応部材を往復板30及び板部31のいずれか他方にする構成を備えている。   As another example, as shown in FIG. 5C, an eccentric pin 28 rotated by the driving means 27, a connecting member 29 for converting the movement of the eccentric pin 28 into a reciprocating movement, and a connecting member 29 are connected. A reciprocating plate 30, a plate portion 31 fixed to a fixing means (not shown) and contacting the lower surface of the reciprocating plate 30, and elastic means 32 such as a spring for pressing the reciprocating plate 30 against the plate portion 31. The magnetic member is one of the reciprocating plate 30 and the plate portion 31, and the corresponding member is one of the other of the reciprocating plate 30 and the plate portion 31.

一方、磁性粒子計測手段2は、ppm単位の磁性粒子の濃度を計測できるならば構成は特に制限されるものではないが一例を説明する。図6〜図10に示す如く一例の磁性粒子計測手段2は、磁性粒子を含み得る油Sの流路Lに、流体導出入手段33及び検出手段34を備え、検出手段34には信号処理部35を接続し、更に信号処理部35には、信号処理部35の信号を磁性粒子の濃度に変換する濃度計測部36を接続している。   On the other hand, the configuration of the magnetic particle measuring means 2 is not particularly limited as long as it can measure the concentration of magnetic particles in ppm, but an example will be described. As shown in FIGS. 6 to 10, the magnetic particle measuring means 2 of the example includes a fluid lead-in / out means 33 and a detection means 34 in the flow path L of the oil S that may contain magnetic particles. 35 is connected, and the signal processing unit 35 is connected to a concentration measuring unit 36 for converting the signal of the signal processing unit 35 into the concentration of magnetic particles.

流体導出入手段33は、流路Lに開口37を形成する筒状の検出部本体38と、検出部本体38の内部を摺動して油Sを導出入するピストン39と、ピストン39を進退動させる駆動手段の回転部40(図8参照)と、検出部本体38の外周部に配置される検出手段34のコイル41を備えている。ここで流路Lは、配管やチューブ等でも良いし、油Sが流れるものならばどのようなものでも良い。   The fluid lead-in / out means 33 includes a cylindrical detection portion main body 38 that forms an opening 37 in the flow path L, a piston 39 that slides inside the detection portion main body 38 to lead in and out the oil S, and a forward and backward movement of the piston 39. The rotating part 40 (refer FIG. 8) of the drive means to move is provided, and the coil 41 of the detection means 34 arrange | positioned in the outer peripheral part of the detection part main body 38 is provided. Here, the flow path L may be a pipe, a tube, or the like, or any type as long as the oil S flows.

検出手段34のコイル41は、互いに逆方向に巻かれて直列に接続された二個の励磁用コイル41a,41aと、二個の励磁用コイル41a,41aの間に近接配置される検出用コイル(出力用コイル)41bとを備え、励磁用コイル41aに交流電圧を印加した際には、検出用コイル41bに交流電圧(励磁電圧)の出力信号を生じさせるようになっている。また二個の励磁用コイル41a,41aと、検出用コイル41bは、相互インダクタンスが略均等になるようにコイル41の巻き数、コイル41間の距離を調整して、相互インダクタンスが略同じとなるように調整している。更に励磁用コイル41aと検出用コイル41bの個数は特に限定されるものではない。   The coil 41 of the detection means 34 includes two excitation coils 41a and 41a wound in opposite directions and connected in series, and a detection coil disposed in proximity between the two excitation coils 41a and 41a. (Output coil) 41b. When an AC voltage is applied to the excitation coil 41a, an output signal of an AC voltage (excitation voltage) is generated in the detection coil 41b. Further, the two exciting coils 41a and 41a and the detecting coil 41b have the same mutual inductance by adjusting the number of turns of the coil 41 and the distance between the coils 41 so that the mutual inductance is substantially equal. It is adjusted so that. Further, the number of exciting coils 41a and detecting coils 41b is not particularly limited.

ここで検出手段34のコイル41は、図7に示す如く、一個の励磁用コイル41cと、一個の励磁用コイル41cに近接して配置される検出用コイル(出力用コイル)41dとを備えても良く、この場合も同様に、励磁用コイル41cに交流電圧を印加した際には、検出用コイル41dに交流電圧(励磁電圧)の出力信号を生じるようになっており、磁性粒子の非検出時には、検出用コイル41dの交流電圧(励磁電圧)の出力信号が小さくなるように調整されている。   Here, as shown in FIG. 7, the coil 41 of the detection means 34 includes one excitation coil 41c and a detection coil (output coil) 41d arranged in the vicinity of one excitation coil 41c. Similarly, in this case, when an AC voltage is applied to the excitation coil 41c, an output signal of an AC voltage (excitation voltage) is generated in the detection coil 41d, and magnetic particles are not detected. Sometimes, the output signal of the alternating voltage (excitation voltage) of the detection coil 41d is adjusted to be small.

信号処理部35は、図8に示す如く検出用コイル41bの出力信号から磁性粒子の検出信号又は補正用検出信号を取得するよう、検出用コイル41bに接続されて微弱な波形信号を増幅する増幅回路42と、増幅回路42に接続されて波形信号のノイズを所定範囲で削除するバンドパスフィルタ43と、励磁用コイル41aに接続されて励磁用の正弦波を得る正弦波発振回路44と、正弦波発振回路44に接続されて正弦波の位相をずらす位相回路45と、位相回路45に接続されて正弦波を矩形波にするエッジトリガー回路46とを備えている。   The signal processing unit 35 is connected to the detection coil 41b and amplifies a weak waveform signal so as to obtain a magnetic particle detection signal or a correction detection signal from the output signal of the detection coil 41b as shown in FIG. A circuit 42; a band-pass filter 43 connected to the amplifier circuit 42 for removing the noise of the waveform signal within a predetermined range; a sine wave oscillation circuit 44 connected to the excitation coil 41a to obtain an excitation sine wave; A phase circuit 45 that is connected to the wave oscillation circuit 44 and shifts the phase of the sine wave, and an edge trigger circuit 46 that is connected to the phase circuit 45 and converts the sine wave into a rectangular wave are provided.

ここで位相回路45は、設定の際や調整の際に、磁性粒子非検出時の状態で位相を10°〜170°、好ましくは45°〜135°、更に好ましくは90°前後ずらすことが好ましい。また位相回路45は、バンドパスフィルタ43と信号処理装置47との間に位置し、リファレンス信号の代わりに、磁性粒子の検出信号及び補正用検出信号をずらすようにしても良い。   Here, it is preferable that the phase circuit 45 shifts the phase by 10 ° to 170 °, preferably 45 ° to 135 °, and more preferably around 90 ° in the state when magnetic particles are not detected during setting or adjustment. . The phase circuit 45 may be positioned between the bandpass filter 43 and the signal processing device 47, and may shift the detection signal of magnetic particles and the detection signal for correction instead of the reference signal.

また信号処理部35は、バンドパスフィルタ43とエッジトリガー回路46とに夫々接続される信号処理装置47と、信号処理装置47に接続されて出力信号を直流電圧信号に変換するローパスフィルタ48と、ローパスフィルタ48に接続されて直流電圧信号を増幅する増幅器49と、増幅器49に接続され且つ検出流体の導出入による直流電圧信号の変動量のみを透過させる交流信号透過回路50と、交流信号透過回路50に接続される増幅器51とを備えている。ここで信号処理装置47は、ロックインアンプが好ましいが、位相差の変化を計測できる構成ならばどのようなものでも良い。   The signal processing unit 35 includes a signal processing device 47 connected to the band-pass filter 43 and the edge trigger circuit 46, a low-pass filter 48 connected to the signal processing device 47 to convert an output signal into a DC voltage signal, An amplifier 49 that is connected to the low-pass filter 48 and amplifies the DC voltage signal, an AC signal transmission circuit 50 that is connected to the amplifier 49 and transmits only the fluctuation amount of the DC voltage signal due to the introduction and detection of the detection fluid, and an AC signal transmission circuit 50 and an amplifier 51 connected to 50. Here, the signal processing device 47 is preferably a lock-in amplifier, but may be any device as long as it can measure a change in phase difference.

更に図6、図7に示す濃度計測部36は、信号処理部35の増幅器51に接続されて信号を磁性粒子の濃度に変換するようにしている。   Further, the concentration measuring unit 36 shown in FIGS. 6 and 7 is connected to the amplifier 51 of the signal processing unit 35 so as to convert the signal into the concentration of magnetic particles.

一方、磁性粒子の濃度を処理する制御部3は、磁性粒子計測手段2の濃度計測部36に接続されており、磁性粒子計測手段2で計測された磁性粒子の濃度を、予め求められた検量線(図12参照)と対比して油S中の硬質粒子の濃度に換算し、油S中に含まれる硬質粒子の濃度を検出して表示するように構成されている。ここで制御部3の処理は、人手により処理しても良く、特に制限されるものではない。   On the other hand, the control unit 3 for processing the concentration of the magnetic particles is connected to the concentration measuring unit 36 of the magnetic particle measuring unit 2, and the concentration of the magnetic particles measured by the magnetic particle measuring unit 2 is calculated in advance. In contrast to the line (see FIG. 12), the concentration of the hard particles in the oil S is converted into the concentration of the hard particles, and the concentration of the hard particles contained in the oil S is detected and displayed. Here, the processing of the control unit 3 may be performed manually, and is not particularly limited.

以下本発明の実施の形態例の作用を説明する。   The operation of the embodiment of the present invention will be described below.

硬質粒子を含み得る燃料等の油Sを検査する際には、最初に図1に示す如く燃料系統の機関入口等より検査分で少量の油S(試料)をサンプリングする(ステップS1)。ここで検査対象となる燃料等の油Sは、C重油等の重油に限定されるものではなく、硬質粒子を含み得るものならばガソリン、灯油、軽油等の他の油Sでも良い。また油Sの用途は、船舶等の駆動機関への供給に限定されるものではなく、タービンプラント等の種々の駆動機関や機器へ供給するものでも良い。また油の代わりに水や水溶液を用いても良く、硬質粒子を含み得るものならば特に制限されるものではない。更に水や水溶液を検査する場合には、水循環式コンプレッサ等の循環水中に混入した粒子状不純物の検出に用いても良いし、水圧機器の作動水の水質検査に用いても良いし、水処理設備における処理水の水質管理に用いても良い。更に硬質粒子は、油Sや水等の液中に含まれる非導電性及び非磁性の粒子であって磁性部材12を摩耗し得るものであり、アルミナ、シリカ、カーボン等に限定されるものではない。   When inspecting oil S such as fuel that may contain hard particles, first a small amount of oil S (sample) is sampled from the engine inlet of the fuel system as shown in FIG. 1 (step S1). Here, the oil S such as fuel to be inspected is not limited to heavy oil such as C heavy oil, and may be other oil S such as gasoline, kerosene, light oil and the like as long as it can contain hard particles. The use of the oil S is not limited to supply to a drive engine such as a ship, but may be supplied to various drive engines and equipment such as a turbine plant. Further, water or an aqueous solution may be used instead of oil, and it is not particularly limited as long as it can contain hard particles. Furthermore, when inspecting water or aqueous solution, it may be used for detection of particulate impurities mixed in circulating water such as a water circulation type compressor, it may be used for water quality inspection of working water of hydraulic equipment, or water treatment You may use for the quality control of the treated water in an installation. Further, the hard particles are non-conductive and non-magnetic particles contained in a liquid such as oil S or water and can wear the magnetic member 12, and are not limited to alumina, silica, carbon, or the like. Absent.

次にサンプリングした少量の油S(試料)を磁性粒子計測手段2にセットし、油S中に予め含まれる磁性粒子の濃度(A)を計測する(ステップS2)。ここで磁性粒子計測手段2の処理は以下の処理で説明するが、他の手段を用いて磁性粒子の濃度(A)を計測しても良い。また油Sを磁性粒子計測手段2にセットする際には、人手を介することなく、油Sのサンプリングから磁性粒子計測手段2へのセットまで給油流路等の給油手段を介して連続的に行うようにしても良い。   Next, a small amount of sampled oil S (sample) is set in the magnetic particle measuring means 2, and the concentration (A) of the magnetic particles contained in the oil S in advance is measured (step S2). Here, the processing of the magnetic particle measuring means 2 will be described in the following processing, but the concentration (A) of the magnetic particles may be measured using other means. In addition, when setting the oil S in the magnetic particle measuring means 2, the sampling from the oil S to the setting to the magnetic particle measuring means 2 is continuously performed via an oil supply means such as an oil supply channel without manual intervention. You may do it.

続いて油S中に予め含まれる磁性粒子の濃度(A)を計測した後、油S(試料)を容器部13に入れ、磁性粒子発生手段1に容器部13をセットして準備する(ステップS3)。具体体には、ロッド部7等ごと磁性部材12と対応部材11とが油S中に浸漬するように、油Sを入れた容器部13をホルダ部6の下方凸部14に固定する。また図5に示す磁性粒子発生手段1の他の構成の場合には、同様に磁性部材と対応部材とが油S中に浸漬するようにする。ここで磁性粒子計測手段2から磁性粒子発生手段1への移行は、手動で行っても良いし、流路や開閉弁等の移送手段を介して自動で行っても良い。   Subsequently, after measuring the concentration (A) of the magnetic particles contained in the oil S in advance, the oil S (sample) is put into the container part 13 and the container part 13 is set in the magnetic particle generating means 1 for preparation (step). S3). In the concrete body, the container part 13 containing the oil S is fixed to the downward convex part 14 of the holder part 6 so that the magnetic member 12 and the corresponding member 11 together with the rod part 7 and the like are immersed in the oil S. In the case of another configuration of the magnetic particle generating means 1 shown in FIG. 5, the magnetic member and the corresponding member are similarly immersed in the oil S. Here, the transition from the magnetic particle measuring means 2 to the magnetic particle generating means 1 may be performed manually or automatically via transfer means such as a flow path or an on-off valve.

続いて磁性粒子発生手段1を一定時間駆動して油S中に鉄粉等の磁性粒子を発生させる(ステップS4)。具体体には、駆動部5を駆動してロッド部7を回転し、磁性部材12を対応部材11に押圧しつつ回転させ、磁性部材12と対応部材11の間に入り込んだ硬質粒子により磁性部材12を摩耗して磁性粒子を発生させる。また図5に示す磁性粒子発生手段1の他の構成の場合にも、同様に磁性部材12を摩耗して鉄粉等の磁性粒子を発生させる。ここで油Sの粘度は一定に保たれているため、磁性部材12と対応部材11の押し付け面圧を適切に保てば、ある一定の大きさ以上の硬質粒子のみによって磁性粒子(鉄粉)を発生させ、それ未満の径の硬質粒子では磁性部材12と対応部材11の間隙を通過するのみで磁性粒子(鉄粉)を発生させない。   Subsequently, the magnetic particle generating means 1 is driven for a certain time to generate magnetic particles such as iron powder in the oil S (step S4). Specifically, the drive unit 5 is driven to rotate the rod unit 7, the magnetic member 12 is rotated while pressing the corresponding member 11, and the hard member that has entered between the magnetic member 12 and the corresponding member 11 causes the magnetic member to rotate. 12 is worn to generate magnetic particles. In the case of another configuration of the magnetic particle generating means 1 shown in FIG. 5, the magnetic member 12 is similarly worn to generate magnetic particles such as iron powder. Here, since the viscosity of the oil S is kept constant, if the pressing surface pressure of the magnetic member 12 and the corresponding member 11 is appropriately maintained, only the hard particles having a certain size or more can be used as magnetic particles (iron powder). In the case of hard particles having a diameter smaller than that, the magnetic particles (iron powder) are not generated only by passing through the gap between the magnetic member 12 and the corresponding member 11.

そして磁性粒子発生手段1で油S中に磁性粒子を発生させた後、磁性粒子発生手段1から磁性粒子計測手段2にセットして次の処理へ移行する。ここで磁性粒子発生手段1から磁性粒子計測手段2への移行は、手動で行っても良いし、流路や開閉弁等の移送手段を介して自動で行っても良い。   Then, after magnetic particles are generated in the oil S by the magnetic particle generating means 1, the magnetic particle generating means 1 sets the magnetic particles in the magnetic particle measuring means 2, and the process proceeds to the next processing. Here, the transition from the magnetic particle generating means 1 to the magnetic particle measuring means 2 may be performed manually or automatically via transfer means such as a flow path or an on-off valve.

次に磁性粒子計測手段2により磁性粒子の濃度(B)を計測する(ステップS5)。磁性粒子の濃度(B)を計測する際には、流体導出入手段33のピストン39を連続的に往復動することにより、検出部本体38内に油Sを導入した状態での計測処理と、検出部本体38内から油Sを排出した状態での計測処理とを交互に連続的に繰り返し、交流信号透過回路50等により、磁性体の濃度用の出力値と、比較用の出力値とから差分の信号を検出すると共に移動平均処理を行い、濃度計測部36を介して磁性粒子の濃度の平均値を求める。   Next, the magnetic particle concentration means 2 measures the magnetic particle concentration (B) (step S5). When measuring the concentration (B) of the magnetic particles, by continuously reciprocating the piston 39 of the fluid lead-in / out means 33, a measurement process in a state where the oil S is introduced into the detection unit main body 38; The measurement process in a state in which the oil S is discharged from the detection unit main body 38 is alternately and continuously repeated, and the AC signal transmission circuit 50 and the like are used to calculate the magnetic substance concentration output value and the comparison output value. A difference signal is detected and a moving average process is performed, and an average value of the concentration of the magnetic particles is obtained via the concentration measuring unit 36.

ここで具体的に磁性粒子の濃度を測定する処理を説明すると、油Sを検出部本体38内から排出した際には、検出部本体38から検出用コイル41b、増幅回路42及びバンドパスフィルタ43を介して補正用検出信号を取得する(図9では(A))と共に、励磁用コイル41a、正弦波発振回路44、位相回路45及びエッジトリガー回路46により所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備する(図9では(B)、位相は90°前後ずらす)。そして信号処理装置47によりリファレンス信号をあわせてノイズ除去を行うと共に、補正用検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ48により比較用の出力値として平滑な直流電圧信号に変換し(図9では(D))、増幅器49を介して交流信号透過回路50に入力する。一方、油Sを検出部本体38内に導入した際には、油Sから、検出用コイル41b、増幅回路42及びバンドパスフィルタ43を介して磁性体の検出信号を取得する(図10では(A'))と共に、励磁用コイル41a、正弦波発振回路44、位相回路45及びエッジトリガー回路46により、所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備する(図10では(B')、位相は90°前後ずらす)。そして信号処理装置47によりリファレンス信号をあわせてノイズ除去を行うと共に、磁性体の検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ48により、磁性体の濃度用の出力値として平滑な直流電圧信号に変換し(図10では(D'))、増幅器49を介して交流信号透過回路50に入力する。そして交流信号透過回路50により、磁性粒子の濃度用の出力値を補正するよう、図10に示す如く磁性粒子の濃度用の出力値と、比較用の出力値とから差分ΔVを求め、濃度計測部36により、予め求めた濃度との相関性(関数処理)によって差分を磁性粒子の濃度に変換する。   Here, the process of measuring the concentration of magnetic particles will be described in detail. When oil S is discharged from the detection unit main body 38, the detection coil 41b, the amplification circuit 42, and the bandpass filter 43 are extracted from the detection unit main body 38. (A in FIG. 9), and the excitation voltage is shifted by a predetermined angle by the excitation coil 41a, the sine wave oscillation circuit 44, the phase circuit 45 and the edge trigger circuit 46. A reference signal of a rectangular wave that produces a constant phase difference at the same frequency is prepared ((B) in FIG. 9, the phase is shifted by about 90 °). The signal processing device 47 combines the reference signal to remove noise, detects a phase difference between the correction detection signal and the reference signal, and converts it to a smooth DC voltage signal as a comparison output value by the low-pass filter 48. (D in FIG. 9) is input to the AC signal transmission circuit 50 through the amplifier 49. On the other hand, when the oil S is introduced into the detection unit main body 38, a detection signal of the magnetic material is acquired from the oil S through the detection coil 41b, the amplification circuit 42, and the band pass filter 43 (in FIG. A ′)) together with the exciting coil 41a, the sine wave oscillation circuit 44, the phase circuit 45 and the edge trigger circuit 46, a rectangular wave that shifts the phase by a predetermined angle and produces a constant phase difference at the same frequency as the excitation voltage. A reference signal is prepared (in FIG. 10, (B ′), the phase is shifted by about 90 °). The signal processing device 47 combines the reference signal to remove noise, detects the phase difference between the magnetic substance detection signal and the reference signal, and the low-pass filter 48 provides a smooth direct current as an output value for the magnetic substance concentration. It is converted into a voltage signal ((D ′) in FIG. 10) and input to the AC signal transmission circuit 50 via the amplifier 49. Then, the AC signal transmission circuit 50 obtains a difference ΔV from the output value for the concentration of the magnetic particles and the output value for comparison so as to correct the output value for the concentration of the magnetic particles, as shown in FIG. The unit 36 converts the difference into the concentration of the magnetic particles by the correlation (function processing) with the concentration obtained in advance.

また本発明者が行った実験結果によれば、実施の形態例でppm単位の磁性粒子(鉄粉)を含む油Sを測定した場合には、油Sの投入と同時に出力(濃度)が上昇し、更に油Sの排出に伴って出力(濃度)が低下しており、磁性粒子に対する反応が明瞭且つ迅速で、磁性粒子の濃度を精度良く計測できることが明らかであった。   According to the results of experiments conducted by the present inventor, when the oil S containing magnetic particles (iron powder) in ppm is measured in the embodiment, the output (concentration) increases at the same time when the oil S is introduced. Furthermore, the output (concentration) decreased with the discharge of the oil S, and it was clear that the reaction to the magnetic particles was clear and rapid, and the concentration of the magnetic particles could be measured with high accuracy.

磁性粒子計測手段2で磁性粒子の濃度を計測した後には、磁性粒子発生手段1で処理した後の磁性粒子の濃度(B)から、油S中に予め含まれる磁性粒子の濃度(A)を減算し(磁性粒子の濃度(B)−磁性粒子の濃度(A))、磁性粒子発生手段1で実際に発生した磁性粒子の濃度(c)を算出する(ステップS6)。   After measuring the concentration of the magnetic particles by the magnetic particle measuring means 2, the concentration (A) of the magnetic particles previously contained in the oil S is calculated from the concentration (B) of the magnetic particles after being processed by the magnetic particle generating means 1. Subtraction is performed (concentration of magnetic particles (B) −concentration of magnetic particles (A)), and the concentration (c) of magnetic particles actually generated by the magnetic particle generating means 1 is calculated (step S6).

ここで磁性粒子発生手段1の駆動時間(研磨時間)と磁性粒子(磁性粉体Fe)の濃度との関係を試験したところ、図11に示す如く研磨時間の経過に伴って直線的に油S中の磁性粒子の濃度が増加した。また油S中に予め含まれる硬質粒子の濃度を変えたところ(図11のグラフではαppm、約1/2αppm、含有せず、を示す)、硬質粒子の濃度と磁性粒子の発生濃度は、比例関係があることが判明した。これにより磁性粒子発生手段1の駆動時間(研磨時間)を一定にする条件下で、硬質粒子の濃度と磁性粒子(磁性粉体)の濃度とをプロットした場合には図12に示す如く磁性粒子の濃度と油S中の硬質粒子の濃度との相関関係を示す検量線が作成される。そして当該検量線を以下の処理で適用する。   Here, the relationship between the drive time (polishing time) of the magnetic particle generating means 1 and the concentration of the magnetic particles (magnetic powder Fe) was tested. As shown in FIG. The concentration of magnetic particles inside increased. Further, when the concentration of the hard particles previously contained in the oil S is changed (in the graph of FIG. 11, αppm and about 1 / 2αppm are not included), the concentration of the hard particles is proportional to the generation concentration of the magnetic particles. It turns out that there is a relationship. Thus, when the concentration of the hard particles and the concentration of the magnetic particles (magnetic powder) are plotted under the condition that the driving time (polishing time) of the magnetic particle generating means 1 is constant, as shown in FIG. A calibration curve showing the correlation between the concentration of the oil and the concentration of hard particles in the oil S is created. The calibration curve is applied in the following process.

そして実際に発生した磁性粒子の濃度(c)を算出した後には、前記検量線から磁性粒子の濃度を油S中の硬質粒子の濃度に換算する(ステップS7、図12ではAからB)。ここで硬質粒子の濃度への換算は、制御部3に予め前記検量線を登録して処理しても良いし、人手を介して処理しても良い。   After calculating the concentration (c) of the actually generated magnetic particles, the concentration of the magnetic particles is converted into the concentration of hard particles in the oil S from the calibration curve (step S7, A to B in FIG. 12). Here, the conversion into the concentration of the hard particles may be processed by registering the calibration curve in the control unit 3 in advance or may be processed manually.

そして硬質粒子の濃度を制御部3等の表示手段に表示し(ステップS8)、油S中に硬質粒子を検出すると共に油S中の硬質粒子を定量的に且つ迅速に把握する。これにより船舶等の所定の駆動機関に燃料等の油Sを供給する場合には、アルミナ・シリカ等の硬質粒子の濃度を現場で判定し、硬質粒子に起因する駆動機関への悪影響を未然に回避する。   And the density | concentration of a hard particle is displayed on display means, such as the control part 3 (step S8), and while detecting a hard particle in the oil S, the hard particle in the oil S is grasped | ascertained quantitatively and rapidly. As a result, when oil S such as fuel is supplied to a predetermined driving engine such as a ship, the concentration of hard particles such as alumina and silica is determined in the field, and adverse effects on the driving engine due to the hard particles are obviated. To avoid.

而して、このように実施の形態例によれば、油S中の硬質粒子の存在より磁性部材12を摩耗して磁性粒子を発生させ、油S中に発生した磁性粒子の濃度を計測し、検量線から磁性粒子の濃度を油S中の硬質粒子の濃度に換算し、油S中に含まれる硬質粒子の濃度を検出するので、従来の測定手段の如く硬質粒子の濃度の検出までに日数を要することがなく、油S中の硬質粒子を定量的に且つ迅速に把握することができ、よって、未検査の燃料を使用する状況や、多量の硬質粒子が駆動機関に突発的に供給される状況を防止し、駆動機関への悪影響を抑制することができる。また磁性部材12の摩耗により生じた鉄粉等の磁性粒子を用いて間接的に硬質粒子の濃度を検出するので、油S自体を物理的、化学的に処理して硬質粒子を直接検出するような操作や処理を不要にし、好適に油S中の硬質粒子を定量的に且つ迅速に把握することができる。   Thus, according to the embodiment, the magnetic member 12 is worn from the presence of the hard particles in the oil S to generate magnetic particles, and the concentration of the magnetic particles generated in the oil S is measured. Since the concentration of magnetic particles is converted to the concentration of hard particles in oil S from the calibration curve, and the concentration of hard particles contained in oil S is detected, until the concentration of hard particles is detected as in the conventional measuring means. The hard particles in the oil S can be grasped quantitatively and quickly without requiring days, so that the situation in which uninspected fuel is used and a large amount of hard particles are suddenly supplied to the drive engine. Can be prevented, and adverse effects on the drive engine can be suppressed. In addition, since the concentration of hard particles is indirectly detected using magnetic particles such as iron powder generated by wear of the magnetic member 12, the hard particles are directly detected by physically and chemically treating the oil S itself. Therefore, it is possible to grasp the hard particles in the oil S quantitatively and quickly.

実施の形態例において、磁性部材12と対応部材11との間に油S中の硬質粒子を挟み込んで磁性部材12と対応部材11との少なくとも一方を他方に押圧して動かすと、油S中の硬質粒子の存在より磁性部材12を適切に摩耗して磁性粒子を発生させるので、油S中に含まれる硬質粒子の濃度を容易に検出し、油S中の硬質粒子を更に好適に把握することができる。   In the embodiment, when hard particles in the oil S are sandwiched between the magnetic member 12 and the corresponding member 11 and at least one of the magnetic member 12 and the corresponding member 11 is pressed against the other and moved, Since the magnetic member 12 is appropriately worn by the presence of the hard particles to generate magnetic particles, the concentration of the hard particles contained in the oil S is easily detected, and the hard particles in the oil S are more suitably grasped. Can do.

また磁性部材12と対応部材11の少なくとも一方に、隙間にサンプル油の進入が容易になるよう溝12a等の侵入通路を設けた場合には、磁性粒子(鉄粉)の生成および排出を促進して磁性粒子を好適に発生させるので、油S中に含まれる硬質粒子の濃度を容易に検出し、油S中の硬質粒子を更に好適に把握することができる。   Further, when an entry passage such as a groove 12a is provided in at least one of the magnetic member 12 and the corresponding member 11 so that the sample oil can easily enter the gap, the generation and discharge of magnetic particles (iron powder) are promoted. Therefore, the concentration of the hard particles contained in the oil S can be easily detected and the hard particles in the oil S can be grasped more suitably.

更に油のみならず水や水溶液においても適用し得るので、汎用性が高く、また水や水溶液から硬質粒子の濃度を容易に検出することができる。   Furthermore, since it can be applied not only to oil but also to water or an aqueous solution, it is highly versatile, and the concentration of hard particles can be easily detected from water or an aqueous solution.

尚、本発明の硬質粒子の濃度検出方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The method for detecting the concentration of hard particles according to the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the scope of the present invention.

1 磁性粒子発生手段
2 磁性粒子計測手段
11 対応部材
12 磁性部材
S 油(液)
DESCRIPTION OF SYMBOLS 1 Magnetic particle generating means 2 Magnetic particle measuring means 11 Corresponding member 12 Magnetic member S Oil (liquid)

Claims (2)

硬質粒子を含み得る液中に磁性部材と対応部材とを浸漬し、磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、液中の硬質粒子により磁性部材を摩耗して磁性粒子を発生させ、試料の液中に発生した磁性粒子の濃度を計測し、予め測定した磁性粒子の濃度と液中の硬質粒子の濃度との相関関係を示す検量線から磁性粒子の濃度を液中の硬質粒子の濃度に換算し、液中に含まれる硬質粒子の濃度を検出することを特徴とする硬質粒子の濃度検出方法。   The magnetic member and the corresponding member are immersed in a liquid that may contain hard particles, and at least one of the magnetic member and the corresponding member is pressed against the other to move, and the magnetic member is abraded by the hard particles in the liquid to cause the magnetic particles to move. The concentration of magnetic particles generated in the liquid of the sample is measured, and the concentration of magnetic particles in the liquid is determined from a calibration curve indicating the correlation between the concentration of magnetic particles measured in advance and the concentration of hard particles in the liquid. A method for detecting the concentration of hard particles, wherein the concentration of hard particles is detected by converting to the concentration of hard particles. 磁性部材と対応部材との間に液中の硬質粒子を挟み込んで磁性部材と対応部材との少なくとも一方を他方に押圧して動かすことを特徴とする請求項1に記載の硬質粒子の濃度検出方法。   2. The hard particle concentration detection method according to claim 1, wherein hard particles in the liquid are sandwiched between the magnetic member and the corresponding member, and at least one of the magnetic member and the corresponding member is pressed against the other to move. .
JP2009059469A 2009-03-12 2009-03-12 Hard particle concentration detection method Expired - Fee Related JP5002608B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009059469A JP5002608B2 (en) 2009-03-12 2009-03-12 Hard particle concentration detection method
CN201080020783XA CN102422142B (en) 2009-03-12 2010-03-10 Hard particle concentration detection method
KR1020117020984A KR101196251B1 (en) 2009-03-12 2010-03-10 Hard particle concentration detection method
PCT/JP2010/001697 WO2010103824A1 (en) 2009-03-12 2010-03-10 Hard particle concentration detection method, particle concentration detection method, and device therefor
US13/256,119 US8659287B2 (en) 2009-03-12 2010-03-10 Hard particle concentration detecting method
EP10750581.0A EP2407768A4 (en) 2009-03-12 2010-03-10 Hard particle concentration detection method, particle concentration detection method, and device therefor
HK12109642.9A HK1168900A1 (en) 2009-03-12 2012-09-28 Hard particle concentration detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059469A JP5002608B2 (en) 2009-03-12 2009-03-12 Hard particle concentration detection method

Publications (2)

Publication Number Publication Date
JP2010210566A JP2010210566A (en) 2010-09-24
JP5002608B2 true JP5002608B2 (en) 2012-08-15

Family

ID=42970880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059469A Expired - Fee Related JP5002608B2 (en) 2009-03-12 2009-03-12 Hard particle concentration detection method

Country Status (1)

Country Link
JP (1) JP5002608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133292A (en) * 2009-12-24 2011-07-07 Ihi Corp Method and device for detecting concentration of particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777452B2 (en) * 2016-08-12 2020-10-28 株式会社Ihi原動機 Conductor concentration measuring device
CN116148083B (en) * 2022-12-02 2024-04-09 英立(江苏)机电有限公司 Device and process for testing tensile strength of BWFRP cable protection tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954956A (en) * 1982-09-22 1984-03-29 Daido Steel Co Ltd Measurement of amount of magnetic particle in fluid
JPS63300963A (en) * 1987-05-30 1988-12-08 Ameroido Nippon Saabisushiya:Kk Detector for hard impurity in fuel oil
US5790246A (en) * 1996-04-18 1998-08-04 Montores Pty. Ltd. Apparatus and network for determining a parameter of a particle in a fluid employing detector and processor
JP5165269B2 (en) * 2006-05-30 2013-03-21 株式会社ディーゼルユナイテッド Magnetic substance concentration measuring device and magnetic substance concentration measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133292A (en) * 2009-12-24 2011-07-07 Ihi Corp Method and device for detecting concentration of particles

Also Published As

Publication number Publication date
JP2010210566A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
KR101196251B1 (en) Hard particle concentration detection method
Zhu et al. Lubricating oil conditioning sensors for online machine health monitoring–A review
JP5467857B2 (en) Particle concentration detection method and apparatus
Karpuschewski et al. Surface integrity inspection on gears using Barkhausen noise analysis
JP5002608B2 (en) Hard particle concentration detection method
US20170248572A1 (en) Lubricant condition assessment system
JP2016511428A (en) Heterogeneous sample processing device and its X-ray analyzer application
EP1191330A2 (en) Detection of anomalies in a fluid system by means of magnetic resonance
Wu et al. Ferromagnetic metal particle detection including calculation of particle magnetic permeability based on micro inductive sensor
US11249048B2 (en) Detecting particles in a particle containing fluid
JP6704331B2 (en) Viscosity measuring device and viscosity measuring method
Myshkin et al. Wear prediction for tribosystems based on debris analysis
EP0376920B1 (en) Method and arrangement for diagnostics of friction systems of motors
KR100354283B1 (en) Apparatus and system for measuring worn ferrous particles level in oil based on inductance measurement
Malkov et al. Applications of submersible fluorescence sensors for monitoring hydrocarbons in treated and untreated waters
JP6777452B2 (en) Conductor concentration measuring device
JP5155588B2 (en) Conductor concentration measuring apparatus and conductor concentration measuring method
Greguss The effect of sound on combustion processes: Akust. Zh., 8, No. 4, p. 420 (1962)
KR20220064841A (en) A iron sensor capable of sensing and measuring iron using eddy current
UA146323U (en) METHOD OF INFORMATIVE TWO-PARAMETER CONTROL OF SAMPLE OF ACID WASTEWATER OF FOOD PRODUCTS
Lur'e Oxidation of phenol in the field of ultrasonic waves: J. Phys. Chem., 36, No. 12, p. 2616 (1962)
Krainer Experience with the assessment and interpretation of ultrasonic indications in the testing of forgings: Materials Research, 1, No. 1, p. 47 (1962)
Harris Immersion resonance testing: Ultrasonic news, 6, p. 1 (1962)
JP2003262618A (en) Nondestructive evaluation method and apparatus for evaluating cast iron
Krishnamurthi et al. Ultrasonic studies in chemically active liquid media; three aqueous solutions of magnesium, calcium and strontium acetates: Acustica, 12, No. 1, p. 83 (1962)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees