JP5002376B2 - Design simulation system, design simulation method, design simulation program, and recording medium - Google Patents

Design simulation system, design simulation method, design simulation program, and recording medium Download PDF

Info

Publication number
JP5002376B2
JP5002376B2 JP2007226767A JP2007226767A JP5002376B2 JP 5002376 B2 JP5002376 B2 JP 5002376B2 JP 2007226767 A JP2007226767 A JP 2007226767A JP 2007226767 A JP2007226767 A JP 2007226767A JP 5002376 B2 JP5002376 B2 JP 5002376B2
Authority
JP
Japan
Prior art keywords
building
calculated
damping
damping member
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007226767A
Other languages
Japanese (ja)
Other versions
JP2009059221A (en
Inventor
治 高橋
仁 中村
要介 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kozo Keikaku Engineering Inc
Original Assignee
Kozo Keikaku Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kozo Keikaku Engineering Inc filed Critical Kozo Keikaku Engineering Inc
Priority to JP2007226767A priority Critical patent/JP5002376B2/en
Publication of JP2009059221A publication Critical patent/JP2009059221A/en
Application granted granted Critical
Publication of JP5002376B2 publication Critical patent/JP5002376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、設計シミュレーションシステムに関し、さらに詳しくは、建造物に設置する制振部材の適正な数と配置位置を決定する設計シミュレーションシステムに関するものである。   The present invention relates to a design simulation system, and more particularly to a design simulation system for determining an appropriate number and arrangement position of damping members to be installed in a building.

地震が多発する日本では、建造物は、その規模に応じた耐震強度を有するように設計されている。阪神大震災以降、一般の住宅の価値を評価する基準に耐震強度が含まれるようになっている。また、特に、高層建造物においては、地震の揺れを抑えて居住性を高めるために制振部材を備えるものが増えており、建造物の規模或いは形状により制振部材の数や配置が適正になるように設計される。一般には、建築に先立って設計段階でコンピュータによるシミュレーショにより建造物の構造解析を行なって制振部材の数と配置位置が決定される。   In Japan, where earthquakes occur frequently, buildings are designed to have seismic strength according to their scale. Since the Great Hanshin Earthquake, earthquake resistance has been included in the standard for evaluating the value of ordinary houses. In particular, high-rise buildings are increasingly equipped with damping members in order to suppress seismic vibrations and improve comfortability, and the number and arrangement of damping members are appropriate depending on the scale or shape of the building. Designed to be In general, prior to construction, the number of vibration damping members and their arrangement positions are determined by performing structural analysis of a building by computer simulation at the design stage.

また、制振部材に関する従来技術として特許文献1には、柱粱架構内に適切にブレース等の耐震要素を高減衰装置を介在させて設置することにより、構造物に高い減衰機能を持たせ、地震や風等の外乱による構造物の揺れを低減する高減衰構造物について開示されている。
また、特許文献2には、建物の周辺の情報に対応した制振装置の種類を記憶しておき、入力された建物の周辺の情報に基づいて、制振装置の種類を選択して表示する制振装置決定装置について開示されている。
特許第513356号 特開2007−107206公報
In addition, in Patent Document 1 as a conventional technique related to a vibration damping member, a structure is provided with a high damping function by appropriately installing a seismic element such as a brace through a high damping device in a column frame, A highly damped structure that reduces the shaking of the structure due to disturbances such as earthquakes and winds is disclosed.
Further, in Patent Document 2, the type of the vibration damping device corresponding to the information around the building is stored, and the type of the vibration damping device is selected and displayed based on the inputted information around the building. A vibration damping device determination device is disclosed.
Patent No. 513356 JP 2007-107206 A

しかしながら、従来の建造物に制振部材を組み込む際の設計方法は、各建造物ごとに地震応答解析を行い、その結果に基づいて必要減衰量を算定して制振部材の数と配置位置を決定していた。そのため、建造物の数、種類が多くなるとシミュレーションに多大の時間とコストを要するといった問題がある。   However, the conventional design method for incorporating damping members into a building is to perform an earthquake response analysis for each building, calculate the required amount of attenuation based on the results, and determine the number and location of damping members. It was decided. Therefore, there is a problem that the simulation requires a lot of time and cost when the number and types of buildings increase.

また、特許文献1に開示されている従来技術は、高減衰装置の減衰係数を、3次の振動モードに対する減衰定数の最大値と、1次の振動モードに対する減衰定数の最大値との間に設定するので、各建物ごとに3次と1次の振動モードを計算する必要があり、その結果により高減衰装置の種類が増加するといった問題がある。
また、特許文献2に開示されている従来技術においては、制振装置の種類を選択するためには、建物の周辺の情報を正確に入力する必要があり、情報の精度により誤った制振装置を選択する虞がある。
Further, in the prior art disclosed in Patent Document 1, the damping coefficient of the high damping device is set between the maximum value of the damping constant for the third-order vibration mode and the maximum value of the damping constant for the first-order vibration mode. Since it is set, it is necessary to calculate the third-order and first-order vibration modes for each building, and as a result, there is a problem that the types of high-damping devices increase.
Further, in the prior art disclosed in Patent Document 2, in order to select the type of the vibration damping device, it is necessary to accurately input information around the building. There is a possibility of selecting.

本発明は、かかる課題に鑑みてなされたものであり、予め、類似の構造特性を有する建造物を2つの要素により分解してマトリックスを構成し、このマトリックスの外郭に沿って位置する建造物を代表建造物の候補とし、その候補の中から所定の代表建造物を選択し、この代表建造物をシミュレーションにより地震応答解析を行って必要減衰量を算定することにより、代表建造物以外の建造物に対して地震応答解析を省略することが可能となり、シミュレーションの時間とコストを削減すると共に、制振部材の数と配置位置を精度良く決定することができる設計シミュレーションシステム及び方法を提供することを目的とする。   The present invention has been made in view of such a problem, and a building having similar structural characteristics is previously decomposed by two elements to form a matrix, and a building located along the outline of the matrix is arranged. By selecting a specific representative building from the candidates as a candidate for a representative building, and performing a seismic response analysis on this representative building through simulation to calculate the required attenuation, a building other than the representative building is calculated. To provide a design simulation system and method that can omit the earthquake response analysis, reduce the simulation time and cost, and determine the number and location of the damping members with high accuracy. Objective.

本発明はかかる課題を解決するために、請求項1は、振動を吸収する制振部材を備えた建造物の設計シミュレーションシステムであって、耐震要素を使用した建造物の剛性、重量、耐力に係る特性値を算定する特性値算定手段と、所定の地震波を与えた時に該建造物の設計目標を満足する必要減衰量を算定する必要減衰量算定手段と、該必要減衰量算定手段により算定された必要減衰量に基づいて該建造物に必要な制振部材数を算定する制振部材数算定手段と、該制振装置数算定手段により算定された数の制振部材を該建造物のどの位置に配置するかを決定する制振部材配置位置決定手段と、該制振部材配置位置決定手段により決定した配置位置により該建造物の偏心率が適正な値になるか否かを判定する偏心率判定手段と、を備え、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物についての特性値を前記特性値算定手段により夫々算定し、前記必要減衰量算定手段により必要減衰量を夫々算定し、算定された前記特性値及び前記必要減衰量に基づいて前記制振部材数算定手段により前記代表建造物以外の建造物に使用する制振部材の数を算定し、前記制振部材配置位置決定手段により配置位置を夫々決定することを特徴とする。   In order to solve this problem, the present invention provides a design simulation system for a building including a vibration damping member that absorbs vibrations, and the rigidity, weight, and proof strength of the building using an earthquake-resistant element are as follows. Calculated by the characteristic value calculating means for calculating the characteristic value, the necessary attenuation calculating means for calculating the required attenuation that satisfies the design target of the building when a predetermined seismic wave is given, and the required attenuation calculating means. The number of damping members calculating means for calculating the number of damping members required for the building based on the required amount of damping, and the number of damping members calculated by the number of damping devices calculating means An eccentricity for determining whether or not the eccentricity rate of the building is an appropriate value by the damping member arrangement position determining means for determining whether to arrange at the position, and the arrangement position determined by the damping member arrangement position determining means Rate determination means, and similar Characteristic values for a plurality of representative buildings selected in advance from a plurality of buildings having structural characteristics are calculated by the characteristic value calculation means, and necessary attenuation amounts are calculated by the required attenuation amount calculation means, Based on the calculated characteristic value and the required amount of damping, the number of damping members used in the building other than the representative building is calculated by the number of damping members calculation means, and the damping member arrangement position determining means The arrangement positions are respectively determined by the above.

制振部材を建造物に設置するためには、建造物の必要減衰量を予め知る必要がある。この必要減衰量を算定するためには、建造物に所定の地震波を与えて、地震応答解析を行わなければならない。従って、基本的には各建造物ごとに地震応答解析を行う必要がある。しかし、類似の構造特性を有する建造物の場合は、代表建造物の地震応答解析の結果を反映すれば、他の建造物との間に必要減衰量に大きな誤差が出ないことが知られている。そこで本発明では、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物に対して特性値と必要減衰量を夫々算定し、算定された特性値及び必要減衰量に基づいて、代表建造物以外の建造物に使用する制振部材の数を算定し、配置位置を夫々決定する。これにより、代表建造物以外の建造物に対して地震応答解析を省略することが可能となり、シミュレーションの時間とコストを削減すると共に、制振部材の数と配置位置を精度良く決定することができる。   In order to install the damping member in the building, it is necessary to know in advance the necessary attenuation amount of the building. In order to calculate this required attenuation, a seismic response analysis must be performed by applying a predetermined seismic wave to the building. Therefore, basically it is necessary to perform an earthquake response analysis for each building. However, in the case of buildings with similar structural characteristics, it is known that there is no large error in the required attenuation with other buildings if the results of the seismic response analysis of the representative building are reflected. Yes. Therefore, in the present invention, a characteristic value and a required attenuation amount are calculated for each of a plurality of representative buildings selected in advance from a plurality of buildings having similar structural characteristics, and the calculated characteristic value and the required attenuation amount are calculated. Based on the above, the number of damping members used for the building other than the representative building is calculated, and the arrangement position is determined respectively. Thereby, it is possible to omit the seismic response analysis for buildings other than the representative building, and it is possible to reduce the simulation time and cost, and to determine the number and arrangement positions of the damping members with high accuracy. .

請求項は、振動を吸収する制振部材を備えた建造物の設計シミュレーション方法であって、特性値算定手段が、耐震要素を使用した建造物の剛性、重量、耐力に係る特性値を算定するステップと、必要減衰量算定手段が、所定の地震波を与えた時に該建造物の設計目標を満足する必要減衰量を算定するステップと、制振部材数算定手段が、前記必要減衰量算定手段により算定された必要減衰量に基づいて該建造物に必要な制振部材数を算定するステップと、制振部材配置位置決定手段が、前記制振部材数算定手段により算定された数の制振部材を該建造物のどの位置に配置するかを決定するステップと、偏心率判定手段が、前記制振部材配置位置決定手段により決定した配置位置により該建造物の偏心率が適正な値になるか否かを判定するステップと、を備え、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物についての特性値を前記特性値算定手段により夫々算定し、前記必要減衰量算定手段により必要減衰量を夫々算定し、算定された前記特性値及び前記必要減衰量に基づいて前記制振部材数算定手段により前記代表建造物以外の建造物に使用する制振部材の数を算定し、前記制振部材配置位置決定手段により配置位置を夫々決定することを特徴とする。
本発明は請求項1と同様の作用効果を奏する。
Claim 2 is a design simulation method for a building including a vibration damping member that absorbs vibration, and the characteristic value calculating means calculates characteristic values related to the rigidity, weight, and proof strength of the building using the earthquake-resistant element. steps and, should the attenuation calculating means comprises the steps of calculating the required amount of attenuation to satisfy the design goals該建creation when given a predetermined seismic vibration damping member number calculating means, the required attenuation calculating means for A step of calculating the number of damping members required for the building based on the required damping amount calculated by the step, and a damping member arrangement position determining means comprising the number of damping members calculated by the damping member number calculating means. The step of determining where the member is to be arranged in the building, and the eccentricity rate determining means has an appropriate value for the eccentricity of the building by the arrangement position determined by the damping member arrangement position determining means. determines whether or not the Comprising a step, the respectively calculated and by the characteristic value calculating means a characteristic value for the preselected plurality of representative building from a plurality of buildings having similar structural characteristics, by the required attenuation calculating means Calculate the required damping amount, respectively, calculate the number of damping members to be used for the building other than the representative building by the damping member number calculating means based on the calculated characteristic value and the required damping amount, The vibration damping member arrangement position determining means determines the arrangement position, respectively.
The present invention has the same effect as that of the first aspect.

請求項は、コンピュータに請求項に記載の設計シミュレーション方法を実行させるための設計シミュレーションプログラムである。
本発明によれば、本発明の設計シミュレーション方法をコンピュータが制御可能なOSに従ってプログラミングすることにより、そのOSを備えたコンピュータであれば同じ処理方法により制御することができる。
請求項は、請求項に記載の設計シミュレーションプログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする。
本発明によれば、設計シミュレーションプログラムをコンピュータが読み取り可能な形式で記録媒体に記録することにより、この記録媒体を持ち運ぶことにより何処でもプログラムを稼動することができる。

A third aspect of the present invention is a design simulation program for causing a computer to execute the design simulation method according to the second aspect .
According to the present invention, by programming the design simulation method of the present invention according to an OS that can be controlled by a computer, any computer equipped with the OS can be controlled by the same processing method.
A fourth aspect is characterized in that the design simulation program according to the third aspect is recorded in a computer-readable format.
According to the present invention, a design simulation program is recorded on a recording medium in a computer-readable format, so that the program can be operated anywhere by carrying the recording medium.

本発明によれば、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物に対して特性値と必要減衰量を夫々算定し、算定された特性値及び必要減衰量に基づいて、代表建造物以外の建造物に使用する制振部材の数を算定し、配置位置を夫々決定するので、代表建造物以外の建造物に対して地震応答解析を省略することが可能となり、シミュレーションの時間とコストを削減すると共に、制振部材の数と配置位置を精度良く決定することができる。
また、建造物全体の必要減衰係数Creqが求められれば、制振部材1つの減衰係数Cで除算することにより、必要な制振部材の数nが求められるので、代表建造物のシミュレーションにより求めた減衰定数hから容易に必要減衰係数Creqと制振装置の数nを求めることができる。
According to the present invention, a characteristic value and a required attenuation amount are calculated for each of a plurality of representative buildings pre-selected from a plurality of buildings having similar structural characteristics, and the calculated characteristic value and required attenuation are calculated. Based on the quantity, the number of damping members used for buildings other than the representative building is calculated, and the arrangement position is determined respectively. Therefore, it is possible to omit seismic response analysis for buildings other than the representative building. As a result, simulation time and cost can be reduced, and the number and arrangement positions of the damping members can be accurately determined.
Further, if the necessary damping coefficient Creq of the entire building is obtained, the number n of necessary damping members can be obtained by dividing by the damping coefficient C of one damping member. The necessary damping coefficient Creq and the number n of damping devices can be easily obtained from the damping constant h.

また、nを偶数とし、且つ、X,Y方向共に同数制振部材を配置するので、建造物に制振部材を配置した場合に、偏心率を可能な限り抑えることができる。
また、対象となる建造物を2つの要素に分解してマトリックスを構成し、このマトリックスの外郭に沿って位置する建造物を代表建造物の候補とするので、マトリックス内部の対象建造物の地震応答解析を省略することができる。
また、本発明の設計シミュレーション方法をコンピュータが制御可能なOSに従ってプログラミングすることにより、そのOSを備えたコンピュータであれば同じ処理方法により制御することができる。
また、設計シミュレーションプログラムをコンピュータが読み取り可能な形式で記録媒体に記録することにより、この記録媒体を持ち運ぶことにより何処でもプログラムを稼動することができる。
Further, since n is an even number and the same number of damping members are arranged in both the X and Y directions, the eccentricity can be suppressed as much as possible when the damping members are arranged in the building.
In addition, the target building is decomposed into two elements to form a matrix, and the buildings located along the outline of this matrix are selected as representative building candidates, so the seismic response of the target building inside the matrix Analysis can be omitted.
Further, by programming the design simulation method of the present invention in accordance with an OS that can be controlled by a computer, any computer equipped with the OS can be controlled by the same processing method.
Further, by recording the design simulation program on a recording medium in a computer-readable format, the program can be operated anywhere by carrying the recording medium.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の設計シミュレーションシステム100の機能ブロック図である。この設計シミュレーションシステム100は、建造物の振動を吸収する制振装置を備えた建造物の設計シミュレーション装置であって、フレーム、パネル、ユニット等の耐震要素1を使用した建造物の剛性、重量、耐力に係る特性値を算定する特性値算定手段2と、所定の地震波3を与えた時に建造物の設計目標を満足する必要減衰量hを算定する必要減衰量算定手段4と、必要減衰量算定手段4により算定された必要減衰量hに基づいて建造物に必要な制振部材数nを算定する制振部材数算定手段6と、制振部材数算定手段6により算定された数nの制振部材を建造物のどの位置に配置するかを決定する制振部材配置位置決定手段7と、制振部材配置位置決定手段7により決定した配置位置により建造物の偏心率が適正な値になるか否かを判定する偏心率判定手段8と、を備えて構成されている。尚、制振部材配置位置決定手段7は、偏心率判定手段8によりフィードバックがかかり、偏心率が適正な値でない場合は、再度、制振部材の配置をし直すように構成されている。
そして、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物に対して特性値算定手段2により特性値を夫々算定する。また、必要減衰量算定手段4により必要減衰量を夫々算定し、算定された特性値及び必要減衰量に基づいて、制振装置数算定手段6により代表建造物以外の建造物に使用する制振部材の数を算定し、制振部材配置位置決定手段7により配置位置を夫々決定する。尚、本実施形態では各手段をハードウェアにより構成しているが、コンピュータ等の情報処理装置により、各手段をソフトウェアにより構成してプログラムの手順により各機能を実行するようにしても良い。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a functional block diagram of a design simulation system 100 of the present invention. This design simulation system 100 is a building design simulation apparatus provided with a vibration damping device that absorbs vibrations of a building, and uses the seismic element 1 such as a frame, a panel, a unit, etc. Characteristic value calculating means 2 for calculating the characteristic value related to the proof stress, necessary attenuation calculating means 4 for calculating the required attenuation h that satisfies the design target of the building when given seismic wave 3 is provided, and calculating the required attenuation The number of damping members calculating means 6 for calculating the number n of damping members necessary for the building based on the required amount of damping h calculated by the means 4, and the number n of damping members calculated by the number of damping members calculating means 6 The eccentricity of the building becomes an appropriate value by the damping member arrangement position determining means 7 for determining where the vibration member is arranged in the building, and the arrangement position determined by the damping member arrangement position determining means 7. Whether or not And it is configured to include the eccentricity determination means 8 for constant, the. The damping member arrangement position determining means 7 is configured to re-arrange the damping members when the eccentricity rate determining means 8 receives feedback and the eccentricity is not an appropriate value.
Then, the characteristic value is calculated by the characteristic value calculating means 2 for a plurality of representative buildings selected in advance from a plurality of buildings having similar structural characteristics. Further, the necessary attenuation amount is calculated by the required attenuation amount calculating means 4, and based on the calculated characteristic value and the required attenuation amount, the vibration damping device number calculating means 6 uses the vibration control to be used for a building other than the representative building. The number of members is calculated, and the arrangement positions are determined by the damping member arrangement position determining means 7 respectively. In the present embodiment, each unit is configured by hardware. However, each unit may be configured by software by an information processing apparatus such as a computer, and each function may be executed by a program procedure.

即ち、制振部材を建造物に設置するためには、建造物の必要減衰量hを予め知る必要がある。この必要減衰量hを算定するためには、建造物に所定の地震波3を与えて、地震応答解析を行わなければならない。従って、基本的には各建造物ごとに地震応答解析を行う必要がある。しかし、類似の構造特性を有する建造物の場合は、代表建造物の地震応答解析の結果を反映すれば、他の建造物との間に必要減衰量hに大きな誤差が出ないことが知られている。そこで本実施形態では、類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物に対して特性値と必要減衰量を夫々算定し、算定された特性値及び必要減衰量に基づいて、代表建造物以外の建造物に使用する制振部材の数nを算定し、配置位置を夫々決定する。これにより、代表建造物以外の建造物に対して地震応答解析を省略することが可能となり、シミュレーションの時間とコストを削減すると共に、制振部材の数と配置位置を精度良く決定することができる。   That is, in order to install the vibration damping member in the building, it is necessary to know in advance the necessary attenuation h of the building. In order to calculate this required attenuation amount h, a predetermined seismic wave 3 must be given to the building and an earthquake response analysis must be performed. Therefore, basically it is necessary to perform an earthquake response analysis for each building. However, in the case of buildings with similar structural characteristics, it is known that if the result of the seismic response analysis of the representative building is reflected, there will be no large error in the required amount of attenuation h with other buildings. ing. Therefore, in the present embodiment, the characteristic value and the required attenuation are calculated for each of a plurality of representative buildings selected in advance from a plurality of buildings having similar structural characteristics, and the calculated characteristic value and the required attenuation are calculated. Based on the quantity, the number n of damping members used for the building other than the representative building is calculated, and the arrangement position is determined respectively. Thereby, it is possible to omit the seismic response analysis for buildings other than the representative building, and it is possible to reduce the simulation time and cost, and to determine the number and arrangement positions of the damping members with high accuracy. .

図2は代表建造物を選択する一例を示すマトリックス50の図である。例えば、類似の構造特性を有する複数の建造物が2階建てと仮定すると、縦軸に1階の重量W1(屯:t)を表し、横軸に2階の重量W2(t)を表し、各建造物が×印のように分布しているものとする。例えば、建造物aは1階の重量が5tで2階の重量が5tであり、比較的小型の総2階の建造物であることが分かる。また、建造物cは、1階の重量が27tで2階の重量が5tであり、1階の建屋面積が大きく、2階の建屋面積が小さいことが分かる。また、建造物eは、1階の重量が35tで2階の重量も35tであり、比較的大型の総2階の建造物であることが分かる。このように類似の構造特性を有する全ての建造物の1階と2階の建造物の重量をマトリックス50上にプロットすることにより、図のような分布ができる。そして、マトリックス50の外郭11上に沿って位置する建造物a〜fを代表建造物の候補とし、その中から代表建造物を選択する(実際には、1000棟の中から20棟位を選択する)。尚、マトリックス50を構成する要素として1階と2階の重量を選んだが、これに限らず、間口の大きさと戸並び数を要素としてマトリックスを構成しても良い。
即ち、本実施形態では、地震応答解析の回数を省略するために、代表建造物を選択する。その一つの方法として、類似の構造特性を有する全ての建造物(対象建造物)を2つの要素に分解してマトリックス50を構成し、このマトリックス50の外郭11に沿って位置する建造物a〜fを代表建造物の候補とする。従って、マトリックス50の外郭の内部に分布する建造物は、必ず代表建造物a〜fの何れかに包含される。これにより、マトリックス50内部の対象建造物の地震応答解析を省略することができる。
FIG. 2 is a diagram of a matrix 50 showing an example of selecting a representative building. For example, assuming that a plurality of buildings having similar structural characteristics are two-story, the vertical axis represents the weight W1 (屯: t) of the first floor, the horizontal axis represents the weight W2 (t) of the second floor, Assume that each building is distributed as indicated by a cross. For example, the building a has a weight of the first floor of 5t and a weight of the second floor of 5t, and it can be seen that the building a is a relatively small two-story building. In addition, it can be seen that the building c has a weight of the first floor of 27 t and a weight of the second floor of 5 t, the building area of the first floor is large, and the building area of the second floor is small. In addition, the building e has a relatively large total of two floors, with the first floor having a weight of 35 t and the second floor having a weight of 35 t. By plotting the weights of the first- and second-floor buildings of all the buildings having similar structural characteristics on the matrix 50, a distribution as shown in the figure can be obtained. Then, the buildings a to f located on the outer shell 11 of the matrix 50 are selected as representative building candidates, and the representative building is selected from the candidates (actually, 20 buildings are selected from among 1000 buildings). To do). In addition, although the weight of the 1st floor and the 2nd floor was chosen as an element which comprises the matrix 50, it is not restricted to this, You may comprise a matrix by making the size of a frontage and the number of rows of doors into an element.
That is, in this embodiment, a representative building is selected in order to omit the number of times of earthquake response analysis. As one of the methods, all the buildings (target buildings) having similar structural characteristics are decomposed into two elements to form the matrix 50, and the buildings a to be positioned along the outer shell 11 of the matrix 50. Let f be a candidate for a representative building. Therefore, the buildings distributed inside the outer shell of the matrix 50 are always included in any of the representative buildings a to f. Thereby, the earthquake response analysis of the target building in the matrix 50 can be omitted.

図3は固有周期Tと等価減衰定数hの関係式を算定する方法を説明する図である。図3(a)は、桁方向(X方向)の減衰定数hと固有周期の関係をプロットした図である。縦軸に減衰定数h、横軸に固有周期Tを表す。この図では、a〜fまでの建造物をプロットした図である。そして、各プロットを包含するように直線51を引くと、その直線の近似式がh=0.4T−0.144になったと仮定する。ここで、例えばa点の建造物の必要減衰量hreqを求める場合は、a点から引いた垂線が直線51と交わる点Pとすると、P点の減衰定数hは約0.03となる。従って、本来プロットしたときの建造物aの減衰定数hは約0.015であるが、本発明の手法で求めた減衰定数は2倍の0.03となり、この値が建造物aの必要減衰定数hreqとなる。このように、求まった必要減衰定数hreqは必ず建造物aが必要とする減衰定数hより大きくなる。これにより、単純な手法により最適な必要減衰定数hreqを求めることができる。他の建造物についても同様である。
図3(b)は妻方向(Y方向)の減衰定数hと固有周期の関係をプロットした図である。当然直線52の勾配が異なるが、基本的に図3(a)と考え方は同様であるので、説明を省略する。
FIG. 3 is a diagram for explaining a method for calculating a relational expression between the natural period T and the equivalent attenuation constant h. FIG. 3A is a graph plotting the relationship between the attenuation constant h in the digit direction (X direction) and the natural period. The vertical axis represents the attenuation constant h, and the horizontal axis represents the natural period T. In this figure, the buildings from a to f are plotted. Then, when the straight line 51 is drawn so as to include each plot, it is assumed that the approximate expression of the straight line is h = 0.4T−0.144. Here, for example, when the required attenuation amount hreq of the building at point a is obtained, assuming that the perpendicular drawn from point a intersects with the straight line 51, the attenuation constant h at point P is about 0.03. Therefore, the attenuation constant h of the building a when originally plotted is about 0.015, but the attenuation constant obtained by the method of the present invention is doubled to 0.03, and this value is the required attenuation of the building a. It becomes a constant hreq. Thus, the required attenuation constant hreq obtained is always larger than the attenuation constant h required by the building a. As a result, the optimum necessary damping constant hreq can be obtained by a simple method. The same applies to other buildings.
FIG. 3B is a diagram in which the relationship between the attenuation constant h in the wife direction (Y direction) and the natural period is plotted. Of course, the slope of the straight line 52 is different, but the concept is basically the same as in FIG.

図4は本発明の設計シミュレーションシステム100の動作を説明するフローチャートである。尚、このフローチャートは、図2の実施形態で説明した代表建造物の必要減衰量hを求めるフローチャートである。図1を参照して説明する。まず、フレーム、パネル、ユニット等の耐震要素1を決定する(S1)。これらの耐震要素1は建造物のプランが決定されると必然的に決まる要素である。次に、ステップS1で決定された耐震要素1を使用した建造物の剛性、重量、耐力に係る特性値を特性値算定手段2により算定する(S2)。ここで、算定された特性値に制限を与えるために、固有周期Tを所定の値(例えば0.4秒)以下になるようにステップS2を繰り返す(S3)。ステップS3で固有周期Tが所定の値になるように特性値が算定されると(S3でYES)、所定の地震波3を与えた時に建造物の設計目標を満足する必要減衰量h(減衰定数)を算定する(S4)。次に、必要減衰量算定手段4により算定された必要減衰量hに基づいて建造物に必要な制振部材数nを算定する(S5)。ここで、建造物の代表的な特性として、剛性、質量、耐力がある。この中で剛性をK、質量をMとしたとき、ω=(K/M)1/2と表せる。また、必要減衰量算定手段4により算定された減衰定数をhとした場合、必要減衰係数CreqはCreq=2h/ω・Kにより求められる。従って、建造物全体の必要減衰係数Creqが求められれば、制振部材1つの減衰係数Cで除算することにより、必要な制振部材の数nが求められる。これにより、代表建造物のシミュレーションにより求めた減衰定数hから容易に必要減衰係数Creqと制振装置の数nを求めることができる。 FIG. 4 is a flowchart for explaining the operation of the design simulation system 100 of the present invention. In addition, this flowchart is a flowchart which calculates | requires the required attenuation amount h of the representative building demonstrated in embodiment of FIG. A description will be given with reference to FIG. First, a seismic element 1 such as a frame, a panel, or a unit is determined (S1). These seismic elements 1 are elements that are inevitably determined when a building plan is determined. Next, the characteristic value calculation means 2 calculates the characteristic values relating to the rigidity, weight, and proof strength of the building using the seismic element 1 determined in step S1 (S2). Here, in order to limit the calculated characteristic value, step S2 is repeated so that the natural period T is not more than a predetermined value (for example, 0.4 seconds) (S3). When the characteristic value is calculated so that the natural period T becomes a predetermined value in step S3 (YES in S3), the required attenuation amount h (attenuation constant) that satisfies the design target of the building when the predetermined seismic wave 3 is given. ) Is calculated (S4). Next, the number n of damping members necessary for the building is calculated based on the required attenuation h calculated by the required attenuation calculation means 4 (S5). Here, as typical characteristics of a building, there are rigidity, mass, and yield strength. When the rigidity is K and the mass is M, ω = (K / M) 1/2 can be expressed. Further, when the attenuation constant calculated by the required attenuation calculation means 4 is h, the required attenuation coefficient Creq is obtained by Creq = 2h / ω · K. Therefore, when the necessary damping coefficient Creq of the entire building is obtained, the necessary number n of damping members is obtained by dividing by one damping coefficient C of the damping member. Thereby, the required damping coefficient Creq and the number n of damping devices can be easily obtained from the damping constant h obtained by simulation of the representative building.

次に、制振部材の数nが決定すると、代表建造物に制振部材を配置する(S6)。そのとき、制振部材の数nを偶数とし、且つ、X,Y方向共に同数配置する。即ち、建造物の床平面の形は一般的に矩形である。従って制振部材の数nが求まれば、その制振部材をバランスよく配置するために、数は偶数であることが好ましい。ここで、制振部材を配置する位置は、代表建造物の偏心が最小になるように配置されなければならない。そこで偏心率を例えば5%以下か否かをチェックして(S7)、5%以下でなければ(S7でNO)ステップS6に戻って配置をやり直す。即ち、建造物の偏心率を少なくするためには、制振機能をバランスよく機能させることが重要である。従って、座標的にX,Y方向には同数制振部材を配置することが好ましい。これにより、建造物に制振部材を配置した場合に、偏心率を可能な限り抑えることができる。   Next, when the number n of damping members is determined, damping members are arranged in the representative building (S6). At that time, the number n of vibration damping members is an even number, and the same number is arranged in both the X and Y directions. That is, the floor plane shape of the building is generally rectangular. Therefore, if the number n of damping members is obtained, the number is preferably an even number in order to arrange the damping members in a balanced manner. Here, the position where the damping member is arranged must be arranged so that the eccentricity of the representative building is minimized. Therefore, it is checked whether the eccentricity is 5% or less, for example (S7), and if it is not 5% or less (NO in S7), the process returns to step S6 and redoes the arrangement. That is, in order to reduce the eccentricity of the building, it is important to make the vibration damping function work in a balanced manner. Therefore, it is preferable to arrange the same number of damping members in the X and Y directions in terms of coordinates. Thereby, when the damping member is arranged in the building, the eccentricity can be suppressed as much as possible.

図5は代表建造物により算定した必要減衰量hに基づいて、類似の構造特性を有する他の建造物の制振部材の数nと配置を決定する動作を説明するフローチャートである。図3のステップS1〜S4により算定した必要減衰量hに基づいてCreq=2h/ω・Kを計算して、制振部材1つの減衰係数Cで除算することにより必要制振部材の数nを算定する(S10)。次に、制振部材の数nが決定すると、代表建造物に制振部材を配置する(S11)。そのとき、制振部材の数nを偶数とし、且つ、X,Y方向共に同数配置する。即ち、建造物の床平面の形は一般的に矩形である。従って制振部材の数nが求まれば、その制振部材をバランスよく配置するために、数は偶数であることが好ましい。ここで、制振部材を配置する位置は、代表建造物の偏心が最小になるように配置されなければならない。そこで偏心率を例えば5%以下か否かをチェックして(S12)、5%以下でなければ(S12でNO)ステップS11に戻って配置をやり直す。
このように、本実施形態によれば、図3のステップS1〜S4を省略して制振装置の数nと配置を決定することができる。
FIG. 5 is a flowchart for explaining the operation of determining the number n and the arrangement of damping members of other buildings having similar structural characteristics based on the required attenuation amount h calculated by the representative building. By calculating Creq = 2h / ω · K based on the required damping amount h calculated in steps S1 to S4 in FIG. 3 and dividing by the damping coefficient C of one damping member, the number n of necessary damping members is obtained. Calculate (S10). Next, when the number n of damping members is determined, damping members are arranged in the representative building (S11). At that time, the number n of vibration damping members is an even number, and the same number is arranged in both the X and Y directions. That is, the floor plane shape of the building is generally rectangular. Therefore, if the number n of damping members is obtained, the number is preferably an even number in order to arrange the damping members in a balanced manner. Here, the position where the damping member is arranged must be arranged so that the eccentricity of the representative building is minimized. Therefore, it is checked whether the eccentricity is 5% or less, for example (S12), and if it is not 5% or less (NO in S12), the process returns to step S11 and redoes the arrangement.
As described above, according to the present embodiment, steps S1 to S4 in FIG. 3 can be omitted, and the number n and the arrangement of the damping devices can be determined.

本発明の設計シミュレーションシステム100の機能ブロック図である。It is a functional block diagram of the design simulation system 100 of this invention. 代表建造物を選択する一例を示すマトリックス50の図である。It is a figure of the matrix 50 which shows an example which selects a representative building. 固有周期Tと等価減衰定数hの関係式を算定する方法を説明する図である。It is a figure explaining the method of calculating the relational expression of the natural period T and the equivalent attenuation constant h. 本発明の設計シミュレーションシステム100の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the design simulation system 100 of this invention. 代表建造物により算定した必要減衰量hに基づいて、類似の構造特性を有する他の建造物の制振部材の数nと配置を決定する動作を説明するフローチャートである。It is a flowchart explaining the operation | movement which determines the number n and arrangement | positioning of the damping member of the other building which has a similar structural characteristic based on the required attenuation amount h calculated by the typical building.

符号の説明Explanation of symbols

1 耐震要素、2 特性値算定手段、3 地震波、4 必要減衰量算定手段、5 制振部材性能、6 制振部材数算定手段、7 制振装置配置位置決定手段、8 偏心率判定手段、50 マトリックス、100 設計シミュレーションシステム   1 Seismic element 2 Characteristic value calculation means 3 Seismic wave 4 Required attenuation calculation means 5 Damping member performance 6 Damping member number calculation means 7 Damping device arrangement position determination means 8 Eccentricity determination means 50 Matrix, 100 Design simulation system

Claims (4)

振動を吸収する制振部材を備えた建造物の設計シミュレーションシステムであって、
耐震要素を使用した建造物の剛性、重量、耐力に係る特性値を算定する特性値算定手段と、
所定の地震波を与えた時に該建造物の設計目標を満足する必要減衰量を算定する必要減衰量算定手段と、
該必要減衰量算定手段により算定された必要減衰量に基づいて該建造物に必要な制振部材数を算定する制振部材数算定手段と、
該制振部材数算定手段により算定された数の制振部材を該建造物のどの位置に配置するかを決定する制振部材配置位置決定手段と、
該制振部材配置位置決定手段により決定した配置位置により該建造物の偏心率が適正な値になるか否かを判定する偏心率判定手段と、を備え、
類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物についての特性値を前記特性値算定手段により夫々算定し、前記必要減衰量算定手段により必要減衰量を夫々算定し、算定された前記特性値及び前記必要減衰量に基づいて前記制振部材数算定手段により前記代表建造物以外の建造物に使用する制振部材の数を算定し、前記制振部材配置位置決定手段により配置位置を夫々決定することを特徴とする設計シミュレーションシステム。
A design simulation system for a building including a vibration damping member that absorbs vibration,
Characteristic value calculating means for calculating characteristic values related to the rigidity, weight, and proof strength of a building using seismic elements;
A necessary attenuation amount calculating means for calculating a necessary attenuation amount that satisfies a design target of the building when a predetermined seismic wave is given;
A damping member number calculating means for calculating the number of damping members required for the building based on the required damping amount calculated by the required damping amount calculating means;
Damping member arrangement position determining means for deciding in which position of the building the number of damping members calculated by the number of damping member calculation means is arranged;
An eccentricity determination means for determining whether the eccentricity of the building is an appropriate value based on the arrangement position determined by the vibration damping member arrangement position determination means,
Characteristic values for a plurality of representative buildings selected in advance from a plurality of buildings having similar structural characteristics are calculated by the characteristic value calculating means, and the required attenuation amounts are calculated by the required attenuation calculating means. The number of damping members to be used for the building other than the representative building is calculated by the number of damping member calculation means based on the calculated characteristic value and the required attenuation amount, and the damping member arrangement position is calculated. A design simulation system characterized in that an arrangement position is determined by a determination means.
振動を吸収する制振部材を備えた建造物の設計シミュレーション方法であって、
特性値算定手段が、耐震要素を使用した建造物の剛性、重量、耐力に係る特性値を算定するステップと、
必要減衰量算定手段が、所定の地震波を与えた時に該建造物の設計目標を満足する必要減衰量を算定するステップと、
制振部材数算定手段が、前記必要減衰量算定手段により算定された必要減衰量に基づいて該建造物に必要な制振部材数を算定するステップと、
制振部材配置位置決定手段が、前記制振部材数算定手段により算定された数の制振部材を該建造物のどの位置に配置するかを決定するステップと、
偏心率判定手段が、前記制振部材配置位置決定手段により決定した配置位置により該建造物の偏心率が適正な値になるか否かを判定するステップと、を備え、
類似の構造特性を有する複数の建造物の中から予め選択された複数の代表建造物についての特性値を前記特性値算定手段により夫々算定し、前記必要減衰量算定手段により必要減衰量を夫々算定し、算定された前記特性値及び前記必要減衰量に基づいて前記制振部材数算定手段により前記代表建造物以外の建造物に使用する制振部材の数を算定し、前記制振部材配置位置決定手段により配置位置を夫々決定することを特徴とする設計シミュレーション方法。
A design simulation method for a building including a vibration damping member that absorbs vibration,
A step of calculating a characteristic value relating to rigidity, weight, and proof strength of the building using the earthquake-resistant element;
A step of calculating a required attenuation amount satisfying a design target of the building when the required attenuation amount calculation means gives a predetermined seismic wave;
Damping member number calculating means, the steps of calculating the damping member required number該建creation based on the required attenuation are calculated by the required attenuation calculating means,
Vibration damping member arrangement position determining means, determining whether to place a number of damping members, which are calculated by the damping member number calculating means which position the該建creation,
The eccentricity determining means comprises a step of determining whether the eccentricity of the building is an appropriate value based on the arrangement position determined by the vibration damping member arrangement position determining means,
Characteristic values for a plurality of representative buildings selected in advance from a plurality of buildings having similar structural characteristics are calculated by the characteristic value calculating means, and the required attenuation amounts are calculated by the required attenuation calculating means. The number of damping members to be used for the building other than the representative building is calculated by the number of damping member calculation means based on the calculated characteristic value and the required attenuation amount, and the damping member arrangement position is calculated. A design simulation method characterized in that an arrangement position is determined by a determination means.
コンピュータに請求項に記載の設計シミュレーション方法を実行させるための設計シミュレーションプログラム。 A design simulation program for causing a computer to execute the design simulation method according to claim 2 . 請求項に記載の設計シミュレーションプログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする記録媒体。 A recording medium in which the design simulation program according to claim 3 is recorded in a computer-readable format.
JP2007226767A 2007-08-31 2007-08-31 Design simulation system, design simulation method, design simulation program, and recording medium Expired - Fee Related JP5002376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226767A JP5002376B2 (en) 2007-08-31 2007-08-31 Design simulation system, design simulation method, design simulation program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226767A JP5002376B2 (en) 2007-08-31 2007-08-31 Design simulation system, design simulation method, design simulation program, and recording medium

Publications (2)

Publication Number Publication Date
JP2009059221A JP2009059221A (en) 2009-03-19
JP5002376B2 true JP5002376B2 (en) 2012-08-15

Family

ID=40554887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226767A Expired - Fee Related JP5002376B2 (en) 2007-08-31 2007-08-31 Design simulation system, design simulation method, design simulation program, and recording medium

Country Status (1)

Country Link
JP (1) JP5002376B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143077B2 (en) * 2009-04-16 2013-02-13 住友林業株式会社 Building wall structure design support system
CN101923597B (en) * 2010-09-16 2012-02-15 天津大学 Visual modeling method for simulating stress change of building in moving process
JP6242735B2 (en) * 2014-04-08 2017-12-06 株式会社アイ・イーエス Viscous damper specification determination support device and program
JP7246826B2 (en) * 2018-12-06 2023-03-28 日本無線株式会社 Strength/Displacement Judgment Method and Strength/Displacement Judgment Program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555728B2 (en) * 1998-01-05 2004-08-18 積水ハウス株式会社 Prediction method of building vibration characteristics
JP2000027481A (en) * 1998-07-09 2000-01-25 Sumitomo Constr Co Ltd Device and method for supporting design of base isolating device and support program storage medium
JP3571619B2 (en) * 2000-06-07 2004-09-29 旭化成ホームズ株式会社 Building vibration level prediction method and building design method
JP2003108618A (en) * 2001-09-28 2003-04-11 Nippon Soken Holdings:Kk Method for system for supporting determination of quantity of vibration damper to be arranged in building and its program
JP2004027679A (en) * 2002-06-26 2004-01-29 Sekisui House Ltd Natural frequency prediction method for building, natural frequency prediction program for building, and natural frequency prediction device for building
JP2006299783A (en) * 2004-11-29 2006-11-02 Sekisui Chem Co Ltd Seismic response analytical model and seismic response analytical system

Also Published As

Publication number Publication date
JP2009059221A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Bhatt et al. Assessing the seismic response of existing RC buildings using the extended N2 method
Kolay et al. Implementation and application of the unconditionally stable explicit parametrically dissipative KR‐α method for real‐time hybrid simulation
Ahmed et al. Irregularity effects on the seismic performance of L-shaped multi-story buildings
Porter et al. Guidelines for component-based analytical vulnerability assessment of buildings and nonstructural elements
Cimellaro et al. Optimal softening and damping design for buildings
JP2013145529A (en) Calculation method of allowable shearing proof stress of bearing wall having aperture, design method of bearing wall having aperture, arithmetic unit of allowable shearing proof stress of bearing wall having aperture, and calculation program of allowable shearing proof stress of bearing wall having aperture
JP5002376B2 (en) Design simulation system, design simulation method, design simulation program, and recording medium
Arslan et al. Performance evaluation of in-plan irregular RC frame buildings based on Turkish seismic code
Bohlouli et al. Seismic evaluation of geometrically irregular steel moment resisting frames with setbacks considering their dynamic characteristics
JP5016468B2 (en) Design support system for damping buildings
Aninthaneni et al. Prediction of fundamental period of regular frame buildings
Xu et al. Estimation of maximum drift of multi‐degree‐of‐freedom shear structures with unknown parameters using only one accelerometer
JP7297209B2 (en) Swing index value calculation method, sway index value calculation device, and sway index value calculation program
Saravanan et al. Dynamic testing of open ground story structure and in situ evaluation of displacement demand magnifier
JP6383585B2 (en) How to change the horizontal stiffness of seismic isolation members that support buildings
JP2011094377A (en) Building, method for arranging vibration control device of building, unit building, and program for arranging vibration control device of building
Pian et al. A hybrid force/displacement seismic design method for reinforced concrete infilled-MRFs and wall-frame dual systems
JP2001349776A (en) Method of predicting vibration level for building and method of designing building
JP2006299783A (en) Seismic response analytical model and seismic response analytical system
JP5155047B2 (en) Method for predicting vertical vibration of buildings
JP2018116021A (en) Seismic reinforcement design support device, seismic reinforcement design method, and program
JP7107781B2 (en) Design support system
JP2009271684A (en) Quantitative aseismic capacity evaluation program for structure
Fajfar Seismic assessment of structures by a practice-oriented method
Maheshwari et al. Seismic assessment of confined masonry against URM and RC-framed buildings on sloping ground in hilly regions: performance-based analysis and application of the Indian code

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees