JP4997997B2 - Anomaly judgment repair measuring equipment - Google Patents

Anomaly judgment repair measuring equipment Download PDF

Info

Publication number
JP4997997B2
JP4997997B2 JP2007025042A JP2007025042A JP4997997B2 JP 4997997 B2 JP4997997 B2 JP 4997997B2 JP 2007025042 A JP2007025042 A JP 2007025042A JP 2007025042 A JP2007025042 A JP 2007025042A JP 4997997 B2 JP4997997 B2 JP 4997997B2
Authority
JP
Japan
Prior art keywords
calculation
value
abnormality
differential pressure
simulated input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007025042A
Other languages
Japanese (ja)
Other versions
JP2008190977A (en
Inventor
守広 藤崎
覚 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007025042A priority Critical patent/JP4997997B2/en
Publication of JP2008190977A publication Critical patent/JP2008190977A/en
Application granted granted Critical
Publication of JP4997997B2 publication Critical patent/JP4997997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、測定物理量に基づく電気信号に対し、複数ステップの演算を行う測定機器に関し、演算結果の異常を判定し、その異常の修復を実現する測定機器に関するものである。   The present invention relates to a measuring device that performs a multi-step calculation on an electrical signal based on a measured physical quantity, and relates to a measuring device that determines an abnormality in a calculation result and realizes the repair of the abnormality.

特許文献1において、1つのハードウエアで、特定のソフトウエアによる演算処理を行うことで、演算の異常を判定する差圧伝送器を実現している。図5は、従来のこのような差圧伝送器の機能ブロック図である。図5において差圧伝送器は48は、ホスト装置などの上位機器29、直流電源26、伝送線路28などに接続されている。   In Patent Document 1, a differential pressure transmitter for determining an abnormality in computation is realized by performing computation processing using specific software with a single piece of hardware. FIG. 5 is a functional block diagram of such a conventional differential pressure transmitter. In FIG. 5, a differential pressure transmitter 48 is connected to a host device 29 such as a host device, a DC power source 26, a transmission line 28, and the like.

差圧伝送器48は、圧力センサ1、計数手段2、順方向演算手段3、逆方向演算手段8、照合手段46、出力手段20などから構成される。圧力センサ1は、圧力を検出し電気信号に変換する。計数手段2は、その電気信号の周波数を測定し、順方向演算手段3は、その周波数値に基づき、差圧値を演算し、その差圧値に対応したPWM(パルス幅変調)信号を出力する。出力値切換え手段16が、そのPWM信号を選択出力したとき、出力手段20が負荷抵抗27に、演算された差圧値に対応した電流(例えば4から20ミリアンペアの範囲)を流すように制御する。   The differential pressure transmitter 48 includes a pressure sensor 1, a counting unit 2, a forward direction calculating unit 3, a reverse direction calculating unit 8, a collating unit 46, an output unit 20, and the like. The pressure sensor 1 detects pressure and converts it into an electrical signal. The counting unit 2 measures the frequency of the electric signal, and the forward direction calculating unit 3 calculates a differential pressure value based on the frequency value and outputs a PWM (pulse width modulation) signal corresponding to the differential pressure value. To do. When the output value switching means 16 selects and outputs the PWM signal, the output means 20 controls the load resistor 27 to pass a current corresponding to the calculated differential pressure value (for example, a range of 4 to 20 milliamperes). .

PWM演算7の演算値は逆方向演算手段8に入力され、逆方向演算手段8は、順方向演算手段3の演算の方向とは逆の方向に進行する演算を行う。照合手段46は、それぞれ対応する順方向演算手段3と逆方向演算手段8の演算値が一致するかを判定する。   The calculation value of the PWM calculation 7 is input to the reverse direction calculation means 8, and the reverse direction calculation means 8 performs a calculation that proceeds in the direction opposite to the calculation direction of the forward direction calculation means 3. The collating means 46 determines whether the calculated values of the corresponding forward direction calculating means 3 and backward direction calculating means 8 match each other.

照合手段46において不一致と判定されたとき、出力値切換え手段16は、照合手段46の出力に基づき異常警報手段15の出力を選択出力し、出力手段20は、負荷抵抗27に正常なときの電流範囲外の電流(例えば3.2mAまたは21.6mA、以下「バーンアウト電流」という)を流すように制御する。そして、差圧伝送器のユーザーは、上位機器29でバーンアウト電流値を見ることによって、差圧伝送器48の演算値不一致による異常を認識できる。   When the collating means 46 determines that there is a mismatch, the output value switching means 16 selectively outputs the output of the abnormality alarm means 15 based on the output of the collating means 46, and the output means 20 is the current when the load resistance 27 is normal. Control is performed so that a current outside the range (for example, 3.2 mA or 21.6 mA, hereinafter referred to as “burnout current”) flows. Then, the user of the differential pressure transmitter can recognize an abnormality caused by a mismatch in the calculation value of the differential pressure transmitter 48 by viewing the burnout current value on the host device 29.

特開2005−309913号公報JP 2005-309913 A

図5の差圧伝送器48に対し、伝送線路28や空中を伝播するノイズを受けることによって、差圧伝送器内部のメモリに記憶されたデータ(例えば、特許文献1の定数A)が変更されることがある。そのとき、照合手段46は不一致と判定し、バーンアウト電流が負荷抵抗27に流れ続ける。そのため、上位機器29は、プラント設備においてプロセス制御(例えば、圧力制御)を行えなくなる。   The data stored in the memory inside the differential pressure transmitter (for example, constant A in Patent Document 1) is changed by receiving noise that propagates through the transmission line 28 and the air with respect to the differential pressure transmitter 48 in FIG. Sometimes. At that time, the collating means 46 determines that there is a mismatch, and the burnout current continues to flow through the load resistor 27. Therefore, the host device 29 cannot perform process control (for example, pressure control) in the plant facility.

また、差圧伝送器のユーザーまたは製造業者は、順方向演算手段3のうち、どのステップの演算の演算値に異常が発生したのか分からないので、その異常箇所の特定の調査が困難となり多くの工数を費やすことになる。   In addition, since the user or manufacturer of the differential pressure transmitter does not know which step of the calculation value in the forward calculation means 3 has an abnormality, it is difficult to identify the abnormal part, and many Man-hours will be spent.

本発明の目的は、測定物理量に基づく電気信号に対し、複数ステップの演算を行う測定機器に関し、演算結果の異常を判定し、その異常の修復を行い、正常な動作に復帰させることによって、信頼性を高めた測定機器を提供することである。また、測定機器内部のメモリなどの故障によって、異常を修復できないときに演算を停止させるほか、異常箇所を特定しユーザーなどに知らせることによって、ユーザーなどは調査工数を低減し、発生した異常の履歴を上位機器において管理可能とする測定機器を提供することである。   The object of the present invention relates to a measuring device that performs a multi-step operation on an electrical signal based on a measured physical quantity, and determines the abnormality of the operation result, repairs the abnormality, and restores the normal operation. It is to provide a measuring instrument with improved performance. In addition to stopping the calculation when the abnormality cannot be repaired due to a failure in the memory of the measuring instrument, etc., the user can reduce the number of investigations by identifying the abnormal part and notifying the user, etc. Is to provide a measuring device that can be managed by a host device.

このような目的を達成するために、請求項1の発明は、
測定物理量に基づく電気信号に対し複数ステップの演算を行う測定機器において、
前記複数ステップのうち各ステップの演算結果の異常を判定する判定手段と、
前記判定手段の結果に基づき前記演算結果の異常を修復する修復手段を備え
前記判定手段は、
前記複数ステップを通常の演算方向とは逆の方向に進行させる逆方向演算手段と、
前記複数ステップのうち各ステップの演算値と前記逆方向演算の各ステップの演算値との一致判定を行う演算値一致判定手段と、
前記演算値一致判定手段によって不一致と判定されたステップの演算を構成する各演算に入力する値を生成する模擬入力生成手段と、
前記各ステップの演算を構成する各演算で通常の演算を行うときの値と前記模擬入力生成手段の出力値とを選択制御信号により選択し前記各ステップの演算を構成する各演算に出力する少なくとも1つの選択手段と、
前記模擬入力生成手段の出力に基づき前記選択制御信号を出力する選択制御手段と、
前記各ステップの演算を構成する各演算と同じ演算を前記模擬入力生成手段の出力値に行う模擬入力演算手段と、
前記模擬入力生成手段の出力値に対して演算された、前記演算値一致判定手段によって不一致と判定されたステップの演算を構成する各演算の演算値と前記模擬入力演算手段の演算値との一致判定を行う模擬演算値一致判定手段を備えた、
ことを特徴とする。
In order to achieve such an object, the invention of claim 1
In measuring equipment that performs multi-step operations on electrical signals based on measured physical quantities,
Determination means for determining an abnormality in the calculation result of each step among the plurality of steps;
A repair unit that repairs the abnormality of the calculation result based on the result of the determination unit ,
The determination means includes
Reverse direction calculation means for causing the plurality of steps to travel in a direction opposite to the normal calculation direction;
A calculation value match determination means for performing a match determination between the calculated value of each step of the plurality of steps and the calculated value of each step of the backward calculation;
Simulated input generation means for generating a value to be input to each calculation constituting the calculation of the step determined to be inconsistent by the calculation value match determination means;
A value for performing a normal calculation in each calculation constituting the calculation of each step and an output value of the simulated input generating means are selected by a selection control signal and output to each calculation constituting the calculation of each step One selection means;
Selection control means for outputting the selection control signal based on the output of the simulated input generation means;
Simulated input calculation means for performing the same calculation as each calculation constituting the calculation of each step on the output value of the simulated input generation means;
The calculated value of each calculation constituting the calculation of the step determined to be inconsistent by the calculated value coincidence determining means calculated with respect to the output value of the simulated input generating means and the calculated value of the simulated input calculating means Provided with a simulated operation value match determination means for performing the determination,
It is characterized by that.

請求項の発明は、請求項に記載の発明において、
前記複数ステップのうち各ステップの演算結果の異常が、前記修復手段による少なくとも1回以上の修復によって修復しないとき、そのステップの演算を停止させる停止手段を備えた、
ことを特徴とする。
請求項3の発明は、請求項2に記載の発明において、
前記停止手段は、前記修復しないステップの演算に用いられる定数をゼロに変更し固定する、ことを特徴とする。
The invention of claim 2 is the invention of claim 1 ,
When the abnormality of the calculation result of each step of the plurality of steps is not repaired by at least one or more repairs by the repairing means, the stop means for stopping the calculation of the step is provided.
It is characterized by that.
The invention of claim 3 is the invention of claim 2,
The stopping means is characterized in that a constant used for the calculation of the step not to be repaired is changed to zero and fixed.

請求項の発明は、請求項1からのいずれかに記載の発明において、
前記修復手段は、前記複数ステップのうち演算結果に異常を発生したステップの演算に関連する値に所定の値を設定する、
ことを特徴とする。
The invention of claim 4 is the invention according to any one of claims 1 to 3 ,
The repairing means sets a predetermined value to a value related to the calculation of the step in which an abnormality has occurred in the calculation result among the plurality of steps.
It is characterized by that.

請求項の発明は、請求項1からのいずれかに記載の発明において、
前記複数ステップのうち各ステップの演算結果の異常が、前記修復手段によって修復しないとき、その異常情報を伝送する、
ことを特徴とする。
The invention of claim 5 is the invention according to any one of claims 1 to 4 ,
When the abnormality of the calculation result of each step among the plurality of steps is not repaired by the repairing means, the abnormality information is transmitted.
It is characterized by that.

請求項の発明は、請求項1からのいずれかに記載の発明において、
前記測定機器は、フィールド機器である、
ことを特徴とする。
The invention of claim 6 is the invention according to any one of claims 1 to 5 ,
The measuring device is a field device,
It is characterized by that.

本発明によれば、測定物理量に基づく電気信号に対し、複数ステップの演算を行う測定機器に関し、演算結果の異常を判定し、その異常の修復を行い、正常な動作に復帰させることによって、信頼性を高めた測定機器を実現できる。 The present invention relates to a measuring device that performs a multi-step calculation on an electrical signal based on a measured physical quantity, and determines the abnormality of the calculation result, repairs the abnormality, and restores the normal operation, thereby enabling reliable operation. A measuring instrument with improved performance can be realized.

[第1の実施例]
第1の実施例を図1を用いて説明する。図1は、本発明を適用した測定機器の1つである差圧伝送器のブロック図であり、図5と同一のものは同一符号を付し説明を省略する。本実施例は、順方向演算とそれと逆の方向に進行する逆方向演算を行い、両方の演算値の一致判定と異常の修復を行うものである。
[First embodiment]
A first embodiment will be described with reference to FIG. FIG. 1 is a block diagram of a differential pressure transmitter which is one of measuring instruments to which the present invention is applied. The same components as those in FIG. In the present embodiment, a forward calculation and a backward calculation that proceeds in the opposite direction are performed, and the coincidence determination of both the calculation values and the repair of the abnormality are performed.

差圧伝送器25は、圧力センサ1、計数手段2、順方向演算手段3、逆方向演算手段8、演算値一致判定手段13、出力手段20、修復手段17などから構成され、伝送線路28を介し、負荷抵抗27、上位機器29、直流電源26に接続されている。   The differential pressure transmitter 25 includes a pressure sensor 1, a counting unit 2, a forward direction calculating unit 3, a reverse direction calculating unit 8, a calculated value coincidence determining unit 13, an output unit 20, a restoration unit 17, and the like. Through the load resistor 27, the host device 29, and the DC power supply 26.

圧力センサ1は、測定物理量である圧力を検出し、圧力値に対応した周波数を有する電気信号に変換して、その周波数は計数手段2によって測定される。 The pressure sensor 1 detects a pressure that is a physical quantity to be measured, converts the pressure into an electrical signal having a frequency corresponding to the pressure value, and the frequency is measured by the counting means 2.

計数手段2の出力は、順方向演算手段3によって演算される。順方向演算手段3は、差圧演算4、差圧補正演算5、スケーリング演算6、PWM演算7の複数ステップの演算の順によって構成されている。   The output of the counting means 2 is calculated by the forward direction calculating means 3. The forward direction calculation means 3 is constituted by a plurality of steps of a calculation of a differential pressure calculation 4, a differential pressure correction calculation 5, a scaling calculation 6, and a PWM calculation 7.

差圧演算4は、計数手段2によって測定された周波数fc、frと圧力センサ1の特性を示す定数A、B、Cを用いて、下記式(1)により差圧値Xを演算する(・は乗算を表す)。   The differential pressure calculation 4 calculates the differential pressure value X by the following equation (1) using the frequencies fc, fr measured by the counting means 2 and constants A, B, C indicating the characteristics of the pressure sensor 1 ( Represents multiplication).

Figure 0004997997
Figure 0004997997

差圧補正演算5は、式(1)で演算されたXとEEPROM 22に記憶された温度および静圧に依存する動的な補正係数kiを用いて、下記式(2)により温度および静圧により補正された差圧値dpcompを演算する。   The differential pressure correction calculation 5 is performed by using the dynamic correction coefficient ki depending on the temperature and static pressure stored in the EEPROM 22 and X calculated by the formula (1), and the temperature and static pressure by the following formula (2). The differential pressure value dpcomp corrected by the above is calculated.

Figure 0004997997
Figure 0004997997

スケーリング演算6は、式(2)で演算されたdpcompに対し、ユーザー指定レンジであるurv(100%)とlrv(0%)でスケーリングした差圧値dpscaledを、下記式(3)により演算する。   The scaling calculation 6 calculates a differential pressure value dpscaled scaled by user-specified ranges urv (100%) and lrv (0%) with respect to dpcomp calculated by the expression (2) by the following expression (3). .

Figure 0004997997
Figure 0004997997

PWM演算7は、式(3)で演算されたdpscaledとEEPROM 22に記憶された温度依存性のある動的な補正係数Ciを用いて、下記式(4)によりPWM信号を演算する。   The PWM calculation 7 calculates the PWM signal by the following equation (4) using the dpscaled calculated by the equation (3) and the temperature-dependent dynamic correction coefficient Ci stored in the EEPROM 22.

Figure 0004997997
Figure 0004997997

式(4)で演算されたPWM信号は出力値切換え手段16に入力される。順方向演算手段3の各ステップの演算が正常なとき、出力値切換え手段16はPWM信号を選択し、出力手段20に出力する。   The PWM signal calculated by the equation (4) is input to the output value switching means 16. When the calculation of each step of the forward calculation means 3 is normal, the output value switching means 16 selects the PWM signal and outputs it to the output means 20.

出力手段20は、PWM信号に基づき直流電源26から負荷抵抗27に、補正された差圧値dpcompに対応した電流(例えば4から20ミリアンペアの範囲)を流すように制御する。ホスト装置などの上位機器29は、負荷抵抗27に流れる電流値を読み取り、補正された差圧値dpcompに換算する。また、差圧伝送器25は、マイクロプロセッサ19、通信手段21、出力手段20によって、伝送線路28を介し上位機器29と通信を行い、補正された差圧値dpcompなどを送信し、上位機器29から設定データなどを受信する。なお、通信プロトコルにはハート通信などがある。 The output means 20 controls the current corresponding to the corrected differential pressure value dpcomp (for example, a range of 4 to 20 milliamperes) to flow from the DC power supply 26 to the load resistor 27 based on the PWM signal. The host device 29 such as the host device reads the current value flowing through the load resistor 27 and converts it into a corrected differential pressure value dpcomp. Further, the differential pressure transmitter 25 communicates with the host device 29 via the transmission line 28 by the microprocessor 19, the communication unit 21, and the output unit 20, and transmits the corrected differential pressure value dpcomp and the like. Receive setting data from. Communication protocols include heart communication.

PWM演算7の演算値pwmは、逆方向演算手段8に入力され、逆方向演算手段8は、順方向演算手段3の各ステップの演算と逆の方向に進行する演算を行う。逆方向演算手段8は、逆PWM演算12、逆スケーリング演算11、逆差圧補正演算10、逆差圧演算9の複数ステップの演算によって構成されている。   The calculation value pwm of the PWM calculation 7 is input to the reverse direction calculation means 8, and the reverse direction calculation means 8 performs a calculation that proceeds in the direction opposite to the calculation of each step of the forward direction calculation means 3. The reverse direction calculation means 8 includes a plurality of steps of a reverse PWM calculation 12, a reverse scaling calculation 11, a reverse differential pressure correction calculation 10, and a reverse differential pressure calculation 9.

逆PWM演算12は、式(4)で演算されたpwmを逆の方向に演算して、dpscaled'を下記式(5)により演算する。 The inverse PWM calculation 12 calculates pwm calculated by the equation (4) in the reverse direction, and calculates dpscaled ′ by the following equation (5).

Figure 0004997997
Figure 0004997997

逆スケーリング演算11は、式(3)で演算されたdpscaledを逆の方向に演算して、dpcomp'を下記式(6)により演算する。 The inverse scaling calculation 11 calculates dpscaled calculated by the equation (3) in the reverse direction, and calculates dpcomp ′ by the following equation (6).

Figure 0004997997
Figure 0004997997

逆差圧補正演算10は、式(2)で演算されたdpcompを逆の方向に演算して、X'を下記式(7)により演算する。 The reverse differential pressure correction calculation 10 calculates dpcomp calculated by the equation (2) in the reverse direction, and calculates X ′ by the following equation (7).

Figure 0004997997
Figure 0004997997

逆差圧演算9は、式(1)で演算されたXを逆の方向に演算して、fc'を下記式(8)により演算する。 The reverse differential pressure calculation 9 calculates X calculated in the formula (1) in the reverse direction, and calculates fc 2 ′ by the following formula (8).

Figure 0004997997
Figure 0004997997

演算値一致判定手段13は、それぞれ対応する順方向演算手段3と逆方向演算手段8の演算値が一致するかを判定する。例えば、順方向演算手段3のうち式(3)で演算されたdpscaledと逆方向演算手段8のうち式(5)で演算されたdpscaled'が一致するか判定する。同様に、dpcompとdpcomp'、XとX'、fcとfc'を、それぞれ一致するか判定する。なお、判定手段14は、逆方向演算手段8と演算値一致判定手段13から構成される。 The calculation value coincidence determination means 13 determines whether the calculation values of the corresponding forward direction calculation means 3 and reverse direction calculation means 8 match each other. For example, it is determined whether dpscaled calculated by the expression (3) in the forward calculation means 3 and dpscaled ′ calculated by the expression (5) in the backward calculation means 8 match. Similarly, it is determined whether dpcomp and dpcomp ′, X and X ′, and fc 2 and fc 2 ′ match. The determination unit 14 includes a backward direction calculation unit 8 and a calculation value match determination unit 13.

演算値一致判定手段13は、演算結果に不一致を生じ異常と判定したとき、修復手段17は、演算値一致判定手段13の出力に基づき、不一致の異常を発生したステップの演算を修復する。例えば、差圧演算4が行う式(1)の演算において、RAM 23に記憶された定数Aがノイズによって変更されたとき、演算値Xは逆差圧補正演算10の演算値X'と不一致となる。そのため、修復手段17は、式(1)に関連する定数A、B、Cを変更前の正常な値に変更する(復帰させる)ことによって、差圧演算4の演算結果の異常を修復でき、正常な演算に復帰させることができる。   When the calculation value coincidence determination unit 13 determines that the calculation result does not match and is abnormal, the repair unit 17 repairs the calculation at the step in which the mismatch abnormality occurred based on the output of the calculation value match determination unit 13. For example, in the calculation of Expression (1) performed by the differential pressure calculation 4, when the constant A stored in the RAM 23 is changed by noise, the calculated value X does not match the calculated value X ′ of the reverse differential pressure correction calculation 10. . Therefore, the restoration means 17 can repair the abnormality of the calculation result of the differential pressure calculation 4 by changing (returning) the constants A, B, and C related to the expression (1) to normal values before the change, Normal operation can be restored.

修復手段17の出力は、差圧演算4のほか、差圧補正演算5、スケーリング演算6、PWM演算7にも入力され、修復手段17は、演算結果に異常を生じた各ステップの演算に対し修復を行う。なお、修復手段17は、逆方向演算手段8の各ステップの演算に対し修復を行ってもよい。   In addition to the differential pressure calculation 4, the output of the restoration means 17 is also input to the differential pressure correction calculation 5, the scaling calculation 6, and the PWM calculation 7. The restoration means 17 performs the calculation for each step in which an abnormality has occurred in the calculation result. Perform repairs. The repairing unit 17 may repair the calculation of each step of the backward calculation unit 8.

つぎに、図3のフローチャートを用いて、前記一致判定と修復の特徴部分について説明する。   Next, the matching determination and restoration characteristic portions will be described with reference to the flowchart of FIG.

順方向演算手段3において、差圧演算4などの各ステップの演算を行い演算値を保持する(S1)。逆方向演算手段8において、逆PWM演算12などの各ステップの演算を行い演算値を保持する(S2)。   The forward calculation means 3 calculates each step such as the differential pressure calculation 4 and holds the calculated value (S1). In the reverse direction calculation means 8, the calculation of each step such as the reverse PWM calculation 12 is performed and the calculated value is held (S2).

演算値一致判定手段13が、それぞれ保持され対応する順方向演算手段3と逆方向演算手段8の各ステップの演算値の一致判定を行い(S3)、一致していれば演算結果は正常なので、S1から繰り返す。   The calculation value coincidence determination means 13 determines the coincidence of the calculation values at the respective steps of the forward direction calculation means 3 and the reverse direction calculation means 8 that are held and correspond to each other (S3). Repeat from S1.

一方、不一致であれば、修復手段17が演算結果に異常を生じたステップに対し、N回(Nは1以上の自然数)修復を行ったかを判断し(S4)、行っていなければ修復を行い(S5)、S1から繰り返す。なお、行っていたときに実施するS6、S7については後述する。なお、演算値一致判定手段13は、演算値同士が一致するときのほか、演算値同士の差が所定の値の範囲内であるときに一致すると判定してもよい。   On the other hand, if they do not match, it is determined whether the repairing unit 17 has repaired N times (N is a natural number of 1 or more) for the step in which the calculation result is abnormal (S4). (S5) Repeat from S1. Note that S6 and S7, which are performed when it is performed, will be described later. The calculation value match determination means 13 may determine that the calculation values match when the calculation values match, or when the difference between the calculation values is within a predetermined value range.

順方向演算手段3、逆方向演算手段8、演算値一致判定手段13などは、マイクロプロセッサ19によって実現し、EEPROM 22、RAM 23、ROM 24がマイクロプロセッサ19に接続されてもよい。   The forward direction calculation unit 3, the reverse direction calculation unit 8, the calculation value match determination unit 13, and the like may be realized by the microprocessor 19, and the EEPROM 22, the RAM 23, and the ROM 24 may be connected to the microprocessor 19.

本実施例によって、測定物理量に基づく電気信号に対し、複数ステップの演算を行う測定機器に関し、演算結果の異常を判定し、その異常の修復を行い、正常な動作に復帰させることによって、信頼性を高めた測定機器を実現できる。 According to the present embodiment, with respect to a measuring device that performs a multi-step operation on an electrical signal based on a measured physical quantity, reliability is determined by determining an abnormality in the operation result, repairing the abnormality, and returning to normal operation. Can be achieved.

[第2の実施例]
第2の実施例を図2を用いて説明する。図2は、本発明を適用した測定機器の1つである差圧伝送器のブロック図であり、図1と同一のものは同一符号を付し説明を省略する。本実施例は、各ステップの演算にテスト用の模擬入力値に対する演算を行わせ、別の演算手段に前記模擬入力値に対する同様の演算を行わせ、両方の演算値の一致判定と修復を行うものである。
[Second Embodiment]
A second embodiment will be described with reference to FIG. FIG. 2 is a block diagram of a differential pressure transmitter which is one of measuring instruments to which the present invention is applied. The same components as those in FIG. In this embodiment, the calculation at each step is calculated for the simulated input value for testing, and another calculation means is configured to perform the same calculation for the simulated input value, thereby performing coincidence determination and restoration of both the calculated values. Is.

差圧伝送器45は、圧力センサ1、計数手段2、fc演算30、33、fr演算31、34、その他の演算32、35、模擬演算値一致判定手段37、模擬入力生成手段40、、模擬入力演算手段36、選択制御手段41、選択手段38、39、出力手段20、修復手段42などから構成され、伝送線路28を介し、負荷抵抗27、上位機器29、直流電源26に接続されている。   The differential pressure transmitter 45 includes a pressure sensor 1, a counting unit 2, fc computations 30 and 33, fr computations 31 and 34, other computations 32 and 35, a simulated computation value match determination unit 37, a simulated input generation unit 40, a simulation The input calculating means 36, the selection control means 41, the selection means 38 and 39, the output means 20, the restoration means 42, etc., are connected to the load resistor 27, the host device 29, and the DC power supply 26 via the transmission line 28. .

fc演算30、33は、式(1)の演算のうち、A・fcの演算を行い、fr演算31、34は、fc演算30、33の演算値に、B・frを加算する。その他の演算32、35は、式(1)のうちのCを加算することと式(2)、(3)、(4)を行う。なお、模擬入力演算手段36は、fc演算33、fr演算34、その他の演算35から構成される。 The fc computations 30 and 33 perform A · fc 2 computation of the formula (1), and the fr computations 31 and 34 add B · fr 2 to the computation values of the fc computations 30 and 33. The other operations 32 and 35 perform addition of C in Expression (1) and Expressions (2), (3), and (4). The simulated input calculation means 36 includes an fc calculation 33, an fr calculation 34, and other calculations 35.

圧力センサ1が圧力を検出し、それに基づき各ステップで差圧値などを演算する通常の演算(演算の異常判定を行わない)を行うときには、選択手段38、39は、選択制御手段41の出力する選択制御信号に基づき、Lを選択する。なお同様に、その他の演算32、35の中にも、各ステップの演算に対しそれぞれ選択手段を備える。   When the pressure sensor 1 detects a pressure and performs a normal calculation (no abnormality determination of calculation is performed) in which a differential pressure value is calculated at each step based on the pressure, the selection means 38 and 39 output the selection control means 41. Based on the selection control signal to be selected, L is selected. Similarly, the other computations 32 and 35 are each provided with a selection means for each step computation.

図4は、演算の異常判定と修復の動作を示すフローチャートであり、これを用いて、一致判定と修復の特徴部分について説明する。   FIG. 4 is a flow chart showing the operation abnormality determination and repair operation, and the matching judgment and repair feature parts will be described using this flowchart.

模擬入力生成手段40は、各ステップの演算に入力するためのテスト用の模擬の値(以下、「模擬入力値」という)を生成し、模擬入力値を選択手段と模擬入力演算手段36に出力する(S8)。選択制御手段41は、模擬入力生成手段40の出力に基づき、選択制御信号を選択手段に出力する。選択手段のいづれか1つは、選択制御信号に基ずきRを選択し、模擬入力値を各ステップの演算に出力して、各ステップの演算は、模擬入力値に基づき演算を行い演算値を保持する(S9)。   The simulated input generation means 40 generates a simulated value for testing (hereinafter referred to as “simulated input value”) to be input to the calculation at each step, and outputs the simulated input value to the selection means and the simulated input calculation means 36. (S8). The selection control unit 41 outputs a selection control signal to the selection unit based on the output of the simulated input generation unit 40. One of the selection means selects R based on the selection control signal, outputs the simulated input value to the calculation of each step, and the calculation of each step performs the calculation based on the simulated input value and outputs the calculated value. Hold (S9).

同様に、模擬入力演算手段36の中のfc演算33などは、選択制御信号に基ずき、模擬入力値に対しfc演算30などの各ステップの演算と同様の演算を行い、演算値を保持する(S10)。その後、選択制御手段41は、選択手段をLに選択するための選択制御信号を選択手段に出力し、選択手段はLを選択し(S11)、差圧伝送器45は通常の演算を行う。   Similarly, the fc calculation 33 in the simulated input calculation means 36 performs the same calculation as the calculation in each step such as the fc calculation 30 on the simulated input value based on the selection control signal, and holds the calculated value. (S10). Thereafter, the selection control means 41 outputs a selection control signal for selecting the selection means to L to the selection means, the selection means selects L (S11), and the differential pressure transmitter 45 performs a normal calculation.

模擬演算値一致判定手段37が、それぞれ保持された演算値同士(例えば、fc演算30、33の演算値)の一致判定を行い(S12)、一致していれば演算結果は正常なので、S8から繰り返す。   The simulated calculation value match determination means 37 performs a match determination between the stored calculation values (for example, the calculation values of the fc calculations 30 and 33) (S12). If they match, the calculation result is normal. repeat.

一方、不一致であれば、修復手段42が演算結果に異常を生じたステップに対し、N回(Nは1以上の自然数)修復を行ったかを判断し(S13)、行っていなければ修復を行い(S14)、S8から繰り返す。なお、行っていたときに実施するS15、S16については後述する。なお、模擬演算値一致判定手段37は、演算値同士が一致するときのほか、演算値同士の差が所定の値の範囲内であるときに一致すると判定してもよい。   On the other hand, if they do not match, it is determined whether or not the repair means 42 has repaired N times (N is a natural number of 1 or more) for the step in which the calculation result is abnormal (S13). (S14) and S8 are repeated. Note that S15 and S16, which are performed when it is performed, will be described later. The simulated calculation value match determination means 37 may determine that the calculation values match when the calculation values match, or when the difference between the calculation values is within a predetermined value range.

例えば、fc演算30の異常判定を行うとき、模擬入力生成手段40は、fcに入力する模擬入力値を生成出力し、選択手段のうち選択手段38が選択制御信号に基づきRを選択する。fc演算30は、模擬入力値fcに対し、A・fcの演算を行い、fc演算33も同様に、模擬入力fcに対しA・fcの演算を行う。模擬演算値一致判定手段37は、fc演算30、33の演算値同士の一致判定を行う。 For example, when the abnormality determination of the fc calculation 30 is performed, the simulated input generation unit 40 generates and outputs a simulated input value input to fc, and the selection unit 38 of the selection units selects R based on the selection control signal. The fc calculation 30 calculates A · fc 2 for the simulated input value fc, and the fc calculation 33 similarly calculates A · fc 2 for the simulated input fc. The simulation calculation value coincidence determination means 37 performs a coincidence determination between the calculation values of the fc calculations 30 and 33.

ここで、fc演算30で使用するRAM 23に記憶された定数Aがノイズによって変更されて不一致となったとき、修復手段42は、その定数Aを変更前の正常な値に変更する(復帰させる)ことによって、fc演算30の演算結果の異常を修復でき、正常な演算に復帰させられる。なお、fc演算33で使用する定数Aは別の記憶場所に記憶されていて、ノイズによって変更されていない。 Here, when the constant A stored in the RAM 23 used in the fc calculation 30 is changed due to noise and becomes inconsistent, the repair unit 42 changes (returns) the constant A to a normal value before the change. Thus, the abnormality of the calculation result of the fc calculation 30 can be repaired, and the normal calculation can be restored. The constant A used in the fc calculation 33 is stored in another storage location and is not changed by noise.

同様に、fr演算31の異常判定を行うとき、模擬入力生成手段40は、A・fcとfrに入力する2つの模擬入力値を生成出力し、選択手段のうち選択手段39が選択制御信号に基づきRを選択する。fr演算31は、模擬入力値A・fcとfrに対し、A・fc+B・frの演算を行い、fr演算34も同様に、模擬入力値A・fcとfrに対し、A・fc+B・frの演算を行う。模擬演算値一致判定手段37は、fr演算31、34の演算値同士の一致判定を行う。 Similarly, when the abnormality determination of the fr calculation 31 is performed, the simulated input generation unit 40 generates and outputs two simulated input values input to A · fc 2 and fr, and the selection unit 39 among the selection units selects the selection control signal. R is selected based on fr operation 31, compared simulated input value A · fc 2 and fr, performs an operation of A · fc 2 + B · fr 2, similarly fr operation 34, with respect to the simulated input value A · fc 2 and fr, A・ Calculate fc 2 + B · fr 2 . The simulated calculation value coincidence determination means 37 performs a coincidence determination between the calculation values of the fr calculations 31 and 34.

ここで、fr演算31に使用するRAM 23に記憶された定数Bがノイズによって変更されて不一致となったとき、修復手段42は、その定数Bを変更前の正常な値に変更する(復帰させる)ことによって、fr演算31の演算結果の異常を修復でき、正常な演算に復帰させられる。なお、fr演算34で使用する定数Bは別の記憶場所に記憶されていて、ノイズによって変更されていない。そして、各ステップの他の演算に対し同様の動作を行う。 Here, when the constant B stored in the RAM 23 used for the fr calculation 31 is changed due to noise and becomes inconsistent, the repair means 42 changes (returns) the constant B to a normal value before the change. Thus, the abnormality of the calculation result of the fr calculation 31 can be repaired, and the normal calculation can be restored. Note that the constant B used in the fr calculation 34 is stored in a different storage location and is not changed by noise. And the same operation | movement is performed with respect to the other calculation of each step.

なお、修復手段42は、模擬入力演算手段36の各ステップの演算に対し修復を行ってもよい。fc演算30、33、fr演算31、34、その他の演算32、35、模擬演算値一致判定手段37、模擬入力生成手段40、模擬入力演算手段36、選択制御手段41、選択手段38、39などは、マイクロプロセッサ44によって実現し、EEPROM 22、RAM 23、ROM 24がマイクロプロセッサ44に接続されてもよい。 The repair means 42 may repair the calculation of each step of the simulated input calculation means 36. fc calculations 30, 33, fr calculations 31, 34, other calculations 32, 35, simulated calculation value match determination means 37, simulated input generation means 40, simulated input calculation means 36, selection control means 41, selection means 38, 39, etc. May be realized by the microprocessor 44, and the EEPROM 22, the RAM 23, and the ROM 24 may be connected to the microprocessor 44.

次に、図1の演算値一致判定手段13の結果に基づき、図2の模擬入力値で演算値の一致判定と修復を行う場合について説明する。   Next, based on the result of the calculation value match determination unit 13 in FIG. 1, a case where the calculation value match determination and restoration are performed with the simulated input value in FIG. 2 will be described.

図3のS3において不一致のとき、図4のS8以降を行う。例えば、図1の差圧演算4は、図2のfc演算30、fr演算31などから構成されている。まず、選択手段はLを選択し、図3のS1とS2が行われ、演算値一致判定手段13は、差圧演算4の演算値Xと逆差圧補正演算10の演算値X'の一致判定を行い(図3のS3)、不一致であれば図4のS8以降を行う。そして、差圧演算4を構成するfc演算30、fr演算31に対し、順番に模擬入力値を入力して演算結果の異常判定と修復を行う。これによって、差圧演算4の演算を細分化し、異常を発生した演算個所を特定し修復できる。差圧補正演算5などにも同様の動作を行う。   When there is a mismatch in S3 of FIG. 3, S8 and subsequent steps in FIG. For example, the differential pressure calculation 4 in FIG. 1 includes the fc calculation 30 and the fr calculation 31 in FIG. First, L is selected as the selection means, and S1 and S2 in FIG. 3 are performed. The calculation value coincidence determination means 13 determines whether the calculation value X of the differential pressure calculation 4 and the calculation value X ′ of the reverse differential pressure correction calculation 10 match. (S3 in FIG. 3), and if not coincident, S8 and subsequent steps in FIG. 4 are performed. Then, simulated input values are sequentially input to the fc calculation 30 and the fr calculation 31 constituting the differential pressure calculation 4 to perform abnormality determination and repair of the calculation result. Thereby, the calculation of the differential pressure calculation 4 can be subdivided, and the calculation part where the abnormality has occurred can be identified and repaired. The same operation is performed for the differential pressure correction calculation 5 and the like.

本実施例によって、測定物理量に基づく電気信号に対し、複数ステップの演算を行う測定機器に関し、演算結果の異常を判定し、その異常の修復を行い、正常な動作に復帰させることによって、信頼性を高めた測定機器を実現できる。 According to the present embodiment, with respect to a measuring device that performs a multi-step operation on an electrical signal based on a measured physical quantity, reliability is determined by determining an abnormality in the operation result, repairing the abnormality, and returning to normal operation. Can be achieved.

[第3の実施例]
第3の実施例を図1から図4を用いて説明する。図1、2の差圧伝送器25、45は、それぞれ修復手段17、42の結果に基づき動作する停止手段18、43を備える。その動作を図3、4のフローチャートを用いて説明する。
[Third embodiment]
A third embodiment will be described with reference to FIGS. The differential pressure transmitters 25 and 45 of FIGS. 1 and 2 include stop means 18 and 43 that operate based on the results of the repair means 17 and 42, respectively. The operation will be described with reference to the flowcharts of FIGS.

演算値一致判定手段13、模擬演算値一致判定手段37における演算値の一致判定で不一致となり(S3、S12)、修復手段17、42が、異常を発生した演算に対しすでにN回修復を行っていたとき(S4、S13)、停止手段18、43は、その演算を停止させる(S6、S15)。   The calculation value match determination means 13 and the simulation calculation value match determination means 37 do not match in the calculation value match determination (S3, S12), and the repair means 17, 42 have already repaired N times for the calculation in which an abnormality has occurred. (S4, S13), the stopping means 18, 43 stop the calculation (S6, S15).

例えば、差圧演算4の演算結果Xに異常が発生したとき、停止手段18は、定数A、B、Cをゼロに変更し固定することによってXは常にゼロとなり、差圧演算4の演算機能を停止させることができる。なお、停止手段18、43は、逆方向演算手段8、模擬入力演算手段36の各ステップの演算を停止してもよい。   For example, when an abnormality occurs in the calculation result X of the differential pressure calculation 4, the stop unit 18 changes the constants A, B, and C to zero and fixes them so that X always becomes zero. Can be stopped. The stop means 18 and 43 may stop the calculation of each step of the reverse direction calculation means 8 and the simulated input calculation means 36.

本実施例によって、測定機器内部のメモリなどの故障によって、異常を修復できないときに演算を停止させ、例えばプラント設備に対し、測定機器の異常により発生する損害を抑えることによって、信頼性、安全性を高めた測定機器を実現できる。 According to the present embodiment, the calculation is stopped when the abnormality cannot be repaired due to a failure of the memory inside the measuring device, for example, to reduce the damage caused by the abnormality of the measuring device to the plant equipment, thereby improving the reliability and safety. Can be achieved.

[第4の実施例]
第4の実施例を図1から図4を用いて説明する。図3、4において、演算値一致判定手段13、模擬演算値一致判定手段37における演算値の一致判定で不一致となり(S3、S12)、修復手段17、42が、異常を発生した演算に対しすでにN回修復を行っていたとき(S4、S13)、差圧伝送器25、45は、異常情報を上位機器29などの外部機器に伝送する(S7、S16)。
[Fourth embodiment]
A fourth embodiment will be described with reference to FIGS. 3 and 4, the calculation value match determination means 13 and the simulated calculation value match determination means 37 do not match in the calculation value match determination (S 3, S 12). When repairing has been performed N times (S4, S13), the differential pressure transmitters 25, 45 transmit abnormality information to an external device such as the host device 29 (S7, S16).

異常情報は、異常を発生した演算やN回修復を行ったことなどの情報からなり、図1、2において、異常情報を有したとき、その情報に基づき出力値切換え手段16は、異常警報手段15の出力を選択し出力する。異常警報手段15の出力は、出力手段20によって負荷抵抗27にバーンアウト電流を流すためのディーティー比を有するPWM信号である。そして、差圧伝送器のユーザーや製造業者は、上位機器29でバーンアウト電流値を見ることによって、差圧伝送器の演算値不一致による異常を認識できる。なお、バーンアウト電流を流すことも異常情報の1つである。   The abnormality information is made up of information such as the operation that caused the abnormality and N times of repairs. In FIGS. 1 and 2, when the abnormality information is present, the output value switching means 16 is based on the information, and the abnormality alarm means 15 outputs are selected and output. The output of the abnormality alarm means 15 is a PWM signal having a duty ratio for allowing a burnout current to flow through the load resistor 27 by the output means 20. Then, the user or manufacturer of the differential pressure transmitter can recognize an abnormality caused by the mismatch of the calculation values of the differential pressure transmitter by viewing the burnout current value on the host device 29. Note that the flow of burnout current is also one of abnormal information.

また、通信手段21、出力手段20は、異常情報を伝送線路28を介し上位機器29に送信し、ユーザーや製造業者は上位機器29において、差圧伝送器の演算値不一致による異常を認識できる。なお、通信プロトコルにはハート通信のほか、フィールドバス通信(ファウンデーションフィールドバス、プロフィーバス通信など)などがある。   Further, the communication means 21 and the output means 20 transmit abnormality information to the upper device 29 via the transmission line 28, and the user or manufacturer can recognize the abnormality due to the operation value mismatch of the differential pressure transmitter in the upper device 29. Communication protocols include heart communication, field bus communication (foundation field bus, profibus communication, etc.), and the like.

本実施例によって、測定機器の異常箇所を特定し、ユーザーなどに知らせることによって、ユーザーなどは調査工数を低減し、発生した異常の履歴を上位機器において管理可能とする測定機器を実現できる。 According to the present embodiment, it is possible to realize a measuring device in which an abnormal portion of the measuring device is identified and notified to the user, so that the user or the like can reduce the number of investigation steps and manage the history of the generated abnormality in the host device.

なお、フィールド機器には、差圧伝送器のほか、測定物理量である温度や流量を測定する温度伝送器や渦流量計、電磁流量計、超音波流量計、コリオリ流量計などの各種流量計などがある。温度伝送器には、圧力センサ1の代わりに熱電対や測温抵抗体が、計数手段2の代わりに電圧増幅器とADコンバータなどが用いられる。また、測定機器には、各種測定物理量を測定する信号変換器や記録計などがある。   In addition to differential pressure transmitters, field devices include temperature transmitters that measure physical quantities such as temperature and flow rates, and various flow meters such as vortex flow meters, electromagnetic flow meters, ultrasonic flow meters, and Coriolis flow meters. There is. In the temperature transmitter, a thermocouple or a resistance temperature detector is used instead of the pressure sensor 1, and a voltage amplifier and an AD converter are used instead of the counting means 2. In addition, the measurement equipment includes a signal converter and a recorder that measure various measurement physical quantities.

本発明を適用した差圧伝送器のブロック図である。It is a block diagram of a differential pressure transmitter to which the present invention is applied. 本発明を適用した差圧伝送器のブロック図の他の例である。It is another example of the block diagram of the differential pressure transmitter to which the present invention is applied. 本発明を適用した差圧伝送器の動作フローチャートである。It is an operation | movement flowchart of the differential pressure transmitter to which this invention is applied. 本発明を適用した差圧伝送器の動作フローチャートの他の例である。It is another example of the operation | movement flowchart of the differential pressure transmitter to which this invention is applied. 従来の差圧伝送器のブロック図である。It is a block diagram of the conventional differential pressure transmitter.

符号の説明Explanation of symbols

1 圧力センサ
2 計数手段
3 順方向演算手段
4 差圧演算
5 差圧補正演算
6 スケーリング演算
7 PWM演算
8 逆方向演算手段
9 逆差圧演算
10 逆差圧補正演算
11 逆スケーリング演算
12 逆PWM演算
13 演算値一致判定手段
14 判定手段
15 異常警報手段
16 出力値切換え手段
17 修復手段
18 停止手段
19 マイクロプロセッサ
20 出力手段
21 通信手段
25 差圧伝送器
DESCRIPTION OF SYMBOLS 1 Pressure sensor 2 Counting means 3 Forward calculation means 4 Differential pressure calculation 5 Differential pressure correction calculation 6 Scaling calculation 7 PWM calculation 8 Reverse direction calculation means 9 Reverse differential pressure calculation 10 Reverse differential pressure correction calculation 11 Reverse scaling calculation 12 Reverse PWM calculation 13 Calculation Value coincidence determination means 14 Determination means 15 Abnormal alarm means 16 Output value switching means 17 Repair means 18 Stop means 19 Microprocessor 20 Output means 21 Communication means 25 Differential pressure transmitter

Claims (6)

測定物理量に基づく電気信号に対し複数ステップの演算を行う測定機器において、
前記複数ステップのうち各ステップの演算結果の異常を判定する判定手段と、
前記判定手段の結果に基づき前記演算結果の異常を修復する修復手段を備え
前記判定手段は、
前記複数ステップを通常の演算方向とは逆の方向に進行させる逆方向演算手段と、
前記複数ステップのうち各ステップの演算値と前記逆方向演算の各ステップの演算値との一致判定を行う演算値一致判定手段と、
前記演算値一致判定手段によって不一致と判定されたステップの演算を構成する各演算に入力する値を生成する模擬入力生成手段と、
前記各ステップの演算を構成する各演算で通常の演算を行うときの値と前記模擬入力生成手段の出力値とを選択制御信号により選択し前記各ステップの演算を構成する各演算に出力する少なくとも1つの選択手段と、
前記模擬入力生成手段の出力に基づき前記選択制御信号を出力する選択制御手段と、
前記各ステップの演算を構成する各演算と同じ演算を前記模擬入力生成手段の出力値に行う模擬入力演算手段と、
前記模擬入力生成手段の出力値に対して演算された、前記演算値一致判定手段によって不一致と判定されたステップの演算を構成する各演算の演算値と前記模擬入力演算手段の演算値との一致判定を行う模擬演算値一致判定手段を備えた、
ことを特徴とする測定機器。
In measuring equipment that performs multi-step operations on electrical signals based on measured physical quantities,
Determination means for determining an abnormality in the calculation result of each step among the plurality of steps;
A repair unit that repairs the abnormality of the calculation result based on the result of the determination unit ,
The determination means includes
Reverse direction calculation means for causing the plurality of steps to travel in a direction opposite to the normal calculation direction;
A calculation value match determination means for performing a match determination between the calculated value of each step of the plurality of steps and the calculated value of each step of the backward calculation;
Simulated input generation means for generating a value to be input to each calculation constituting the calculation of the step determined to be inconsistent by the calculation value match determination means;
A value for performing a normal calculation in each calculation constituting the calculation of each step and an output value of the simulated input generating means are selected by a selection control signal and output to each calculation constituting the calculation of each step One selection means;
Selection control means for outputting the selection control signal based on the output of the simulated input generation means;
Simulated input calculation means for performing the same calculation as each calculation constituting the calculation of each step on the output value of the simulated input generation means;
The calculated value of each calculation constituting the calculation of the step determined to be inconsistent by the calculated value coincidence determining means calculated with respect to the output value of the simulated input generating means and the calculated value of the simulated input calculating means Provided with a simulated operation value match determination means for performing the determination,
Measuring equipment characterized by that.
前記複数ステップのうち各ステップの演算結果の異常が、前記修復手段による少なくとも1回以上の修復によって修復しないとき、そのステップの演算を停止させる停止手段を備えた、
ことを特徴とする請求項に記載の測定機器。
When the abnormality of the calculation result of each step of the plurality of steps is not repaired by at least one or more repairs by the repairing means, the stop means for stopping the calculation of the step is provided.
The measuring instrument according to claim 1 .
前記停止手段は、前記修復しないステップの演算に用いられる定数をゼロに変更し固定する、The stopping means changes and fixes a constant used for the calculation of the step that is not repaired to zero,
ことを特徴とする請求項2に記載の測定機器。The measuring instrument according to claim 2.
前記修復手段は、前記複数ステップのうち演算結果に異常を発生したステップの演算に関連する値に所定の値を設定する、
ことを特徴とする請求項1からのいずれかに記載の測定機器。
The repairing means sets a predetermined value to a value related to the calculation of the step in which an abnormality has occurred in the calculation result among the plurality of steps.
The measuring instrument according to any one of claims 1 to 3 , wherein
前記複数ステップのうち各ステップの演算結果の異常が、前記修復手段によって修復しないとき、その異常情報を伝送する、
ことを特徴とする請求項1からのいずれかに記載の測定機器。
When the abnormality of the calculation result of each step among the plurality of steps is not repaired by the repairing means, the abnormality information is transmitted.
The measuring instrument according to any one of claims 1 to 4 , wherein
前記測定機器は、フィールド機器である、
ことを特徴とする請求項1からのいずれかに記載の測定機器。
The measuring device is a field device,
The measuring instrument according to any one of claims 1 to 5 , wherein
JP2007025042A 2007-02-05 2007-02-05 Anomaly judgment repair measuring equipment Active JP4997997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025042A JP4997997B2 (en) 2007-02-05 2007-02-05 Anomaly judgment repair measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025042A JP4997997B2 (en) 2007-02-05 2007-02-05 Anomaly judgment repair measuring equipment

Publications (2)

Publication Number Publication Date
JP2008190977A JP2008190977A (en) 2008-08-21
JP4997997B2 true JP4997997B2 (en) 2012-08-15

Family

ID=39751217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025042A Active JP4997997B2 (en) 2007-02-05 2007-02-05 Anomaly judgment repair measuring equipment

Country Status (1)

Country Link
JP (1) JP4997997B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715988B2 (en) * 1995-05-26 1998-02-18 日本電気株式会社 Program simulator device and program debugging method
JP3413739B2 (en) * 1995-08-07 2003-06-09 バブコック日立株式会社 Relay device
JPH1164041A (en) * 1997-08-12 1999-03-05 Mitsubishi Electric Corp Physical quantity sensor
JP2002112578A (en) * 2000-09-29 2002-04-12 Toyoda Mach Works Ltd Position-measuring device and motor controller
JP3661595B2 (en) * 2001-02-22 2005-06-15 トヨタ自動車株式会社 Abnormality detection apparatus and abnormality detection method for measuring apparatus
JP4366652B2 (en) * 2004-04-23 2009-11-18 横河電機株式会社 Transmitter and duplexing method thereof
JP4126701B2 (en) * 2004-06-01 2008-07-30 多摩川精機株式会社 R / D converter abnormality detection method
JP2006242655A (en) * 2005-03-01 2006-09-14 Yazaki Corp Electronic gas meter

Also Published As

Publication number Publication date
JP2008190977A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US10698388B2 (en) Field device
EP2733466B1 (en) A Hall effect measurement instrument with temperature compensation
CN103512679B (en) Utilize the industrial process temperature transmitter that sensor stress is diagnosed
US9207212B2 (en) Method for operating a resonant measurement system
US20080103629A1 (en) Diagnostic device for use in process control system
EP2365345A2 (en) System and method of sensing an amplifier load current
EP3064905A2 (en) Electromagnetic flowmeter
US20130338943A1 (en) Method for operating a resonance measuring system and a resonance measuring system in this regard
JP4858255B2 (en) Field devices that support abnormality diagnosis by simulation
JP6183309B2 (en) Flow meter and insulation deterioration diagnosis system
EP2857805B1 (en) Field device
CN102954814B (en) Two-wire process control loop current diagnostic
CN203177991U (en) Process variable transmitter employing EMF detection and correction
JP4997997B2 (en) Anomaly judgment repair measuring equipment
US9404780B2 (en) Electromagnetic flow meter, miswiring detection apparatus and miswiring detection method
JP6229852B2 (en) Electromagnetic flow meter
CN106556416A (en) Process variable transmitter with the diagnosis of self-teaching ring
JP4537438B2 (en) Encoder and motor control device
JP2015141018A (en) Electronic indicating gauge
JP4456402B2 (en) DC circuit ground fault monitoring device
CN105222822A (en) Electronic installation
JP5323401B2 (en) Insulation resistance tester
Odungide Self-Validating Sensors, Types and Uncertainty: A Literature Review
RU203601U1 (en) Output signal conditioning device for differential measuring transducer
US20220357257A1 (en) Method for calculating a quality of a measuring tube of a coriolis measuring device and such a measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4997997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3