JP4989023B2 - Heavy duty tire - Google Patents

Heavy duty tire Download PDF

Info

Publication number
JP4989023B2
JP4989023B2 JP2004336568A JP2004336568A JP4989023B2 JP 4989023 B2 JP4989023 B2 JP 4989023B2 JP 2004336568 A JP2004336568 A JP 2004336568A JP 2004336568 A JP2004336568 A JP 2004336568A JP 4989023 B2 JP4989023 B2 JP 4989023B2
Authority
JP
Japan
Prior art keywords
groove
wear
tire
edge component
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004336568A
Other languages
Japanese (ja)
Other versions
JP2006143019A (en
Inventor
伸吾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004336568A priority Critical patent/JP4989023B2/en
Priority to US11/280,240 priority patent/US7762297B2/en
Priority to CN2009101431278A priority patent/CN101574903B/en
Priority to CN2009101431282A priority patent/CN101574904B/en
Publication of JP2006143019A publication Critical patent/JP2006143019A/en
Priority to US12/285,621 priority patent/US8381782B2/en
Priority to US12/285,620 priority patent/US8336590B2/en
Application granted granted Critical
Publication of JP4989023B2 publication Critical patent/JP4989023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Description

本発明は、オールシーズンタイヤとして好適であり、摩耗進行に伴う雪上性能及びウエット性能の低下を抑制した重荷重用タイヤに関する。   The present invention relates to a heavy-duty tire that is suitable as an all-season tire and that suppresses a decrease in on-snow performance and wet performance as wear progresses.

例えばバス、トラック等に用いられるオールシーズン用の重荷重用タイヤでは、残雪路でも走行できかつ高いウエット性能を保持するために、トレッド面をブロックを含む複数の陸部に区画した例えばブロックパターン、リブ・ブロックパターン等が採用されている。そしてこの雪上性能及びウエット性能等の諸性能をより向上させるために、従来、種々なパターン形状が提案されている。   For example, in heavy duty tires for all seasons used for buses, trucks, etc., the tread surface is partitioned into a plurality of land parts including blocks, for example, block patterns and ribs in order to be able to run on snowy roads and maintain high wet performance.・ Block patterns are used. In order to improve various performances such as performance on snow and wet performance, various pattern shapes have been proposed.

しかしこれら諸性能は、新品時の状態においてある程度向上されてはいるものの、これら諸性能の摩耗進行に伴う低下抑制は不十分であり、近年、その改善が強く望まれている。   However, although these various performances have been improved to some extent in the state of new products, the reduction of these performances with the progress of wear is insufficient, and in recent years there has been a strong demand for improvements.

例えば摩耗後期におけるウエット性能の低下抑制としては、トレッドゴムをゴム組成が異なる複数層で形成し、摩耗後期においてウエットスキッド性に優れる摩擦力の高いゴム層をトレッド面に露出させる技術が提案されている。しかし係る技術では、偏摩耗などによって前記ゴム層の露出が不均一となり、逆にウエット性能を損ねたり、又ゴム層間で層間剥離を起こすなどの問題を招く。   For example, in order to suppress the reduction in wet performance in the late wear phase, a technology has been proposed in which the tread rubber is formed of multiple layers having different rubber compositions, and in the late wear phase, a high frictional rubber layer with excellent wet skid properties is exposed on the tread surface. Yes. However, in such a technique, the rubber layer is not uniformly exposed due to uneven wear or the like, and conversely, the wet performance is deteriorated or delamination occurs between the rubber layers.

このような状況に鑑み本発明者は、トレッドパターンにおける前記陸部の周囲縁からなるエッジの成分長さに着目して研究を行った。その結果、
(1)ウエット性能として重視される旋回性能に関しては、タイヤ周方向のエッジ成分が特に重要であり、このウエット性能を新品時と同程度に高く確保するためには、前記タイヤ周方向のエッジ成分長さを、摩耗進行に伴ってむしろ増加させることが必要であること;
(2)雪上性能として重視されるトラクション性能に関しては、タイヤ軸方向のエッジ成分が重要であり、タイヤ周方向のエッジ成分長さと同様、摩耗進行に伴って増加させることが好ましい。しかし冬用のタイヤでは、50%摩耗時までの雪上性能を保証するため、50%摩耗以降の雪上性能は、ウエット性能ほど高く確保する必要はなく、従ってタイヤ軸方向のエッジ成分は、少なくとも新品時のエッジ成分長さの0.5倍以上確保されていれば良いこと;並びに
(3)これらタイヤ周方向とタイヤ軸方向とのエッジ成分長さの比率を、各摩耗段階において適正化すること;
が重要であり、これにより摩耗進行に伴う雪上性能及びウエット性能の低下を低く抑えうることを究明し得た。
In view of such a situation, the present inventor conducted research by paying attention to the component length of the edge formed by the peripheral edge of the land portion in the tread pattern. as a result,
(1) The edge component in the tire circumferential direction is particularly important for the turning performance that is regarded as important as the wet performance. In order to ensure the wet performance as high as that of a new product, the edge component in the tire circumferential direction is used. It is necessary to increase the length rather as the wear progresses;
(2) With regard to the traction performance that is regarded as important on the snow performance, the edge component in the tire axial direction is important, and it is preferable to increase as the wear progresses, as with the edge component length in the tire circumferential direction. However, in winter tires, it is not necessary to ensure the snow performance after 50% wear as high as the wet performance in order to guarantee the performance on the snow until 50% wear, so the edge component in the tire axial direction is at least new. (3) To optimize the ratio of the edge component length between the tire circumferential direction and the tire axial direction at each wear stage. ;
It has been found that the decrease in the performance on the snow and the wet performance as the wear progresses can be kept low.

即ち本発明は、トレッドパターンの陸部におけるタイヤ周方向のエッジ成分長さとタイヤ軸方向のエッジ成分長さとを、新品時、50%摩耗時、90%摩耗時の各摩耗段階において適正化することを基本として、摩耗進行に伴う雪上性能及びウエット性能の低下を低く抑えうる重荷重用タイヤを提供することを目的としている。   That is, according to the present invention, the edge component length in the tire circumferential direction and the edge component length in the tire axial direction at the land portion of the tread pattern are optimized at each wear stage when new, 50% worn, and 90% worn. The object of the present invention is to provide a heavy-duty tire that can suppress a decrease in on-snow performance and wet performance as wear progresses.

なお特許文献1には、摩耗の進行に伴い溝面積を増加し、耐ハイドロプレーニング性能(ウエット性能)の低下を抑制する技術が開示されている。   Patent Document 1 discloses a technique for increasing the groove area with the progress of wear and suppressing the decrease in hydroplaning performance (wet performance).

特開平10−76812号公報Japanese Patent Laid-Open No. 10-76812

前記目的を達成するために、トレッド面に、タイヤ周方向にのびる複数本の縦溝と、この縦溝に交差する向きにのびる横溝とを含むトレッド溝を設けることにより、該トレッド面をブロックを含む複数の陸部に区画した空気入りタイヤであって、
前記横溝は、最もトレッド縁側をのびる外の縦溝と、トレッド縁との間を横切る外の横溝を含み、
前記外の横溝は、タイヤ軸方向外側に向かって溝幅が拡大する拡巾部を有し、しかも
前記外の横溝には、前記トレッド溝のうちの最深のトレッド溝の溝深さの50%が摩耗する50%摩耗状態で摩滅する50%摩滅溝部と、この50%摩滅溝部のタイヤ軸方向外側に前記最深のトレッド溝の溝深さの90%が摩耗する90%摩耗状態で摩滅する90%摩滅溝部とが段差を介して隣設され、
前記50%摩耗状態では、前記50%摩滅溝部の溝底のタイヤ軸方向外側のタイヤ周方向にのびる端縁(R12)を出現させるとともに、前記90%摩耗状態では、タイヤ周方向の長さが前記端縁(R12)よりも長い90%摩滅溝部の溝底の端縁(R13)を前記拡巾部に出現させ、しかも
前記陸部をトレッド面内で囲む陸部周エッジのタイヤ周方向の周方向エッジ成分を、トレッド面に位置する陸部全体について総和した総周方向エッジ成分ECと、前記陸部周エッジのタイヤ軸方向の軸方向エッジ成分を、陸部全体で総和した総軸方向エッジ成分ELとにおいて、
新品時の状態のトレッド面での前記総周方向エッジ成分をEC00、かつ前記総軸方向エッジ成分をEL00、前記50%摩耗状態における総周方向エッジ成分をEC50、かつ総軸方向エッジ成分をEL50、前記90%摩耗状態における総周方向エッジ成分をEC90、かつ総軸方向エッジ成分をEL90としたとき、次の式(1)〜(6)を充足させたことを特徴としている。
EC50>EC00 −−−−−(1)
EC90>EC00 −−−−−(2)
EL50>0.5×EL00 −−−−−(3)
EL90>0.5×EL00 −−−−−(4)
1.5<EC50/EL50<2.2 −−−−−(5)
2.85<EC90/EL90<3.4 −−−−−(6)
In order to achieve the above object, the tread surface is provided with a tread groove including a plurality of vertical grooves extending in the tire circumferential direction and a horizontal groove extending in a direction intersecting with the vertical grooves. A pneumatic tire partitioned into a plurality of land portions including,
The transverse groove includes an outer longitudinal groove extending most on the tread edge side and an outer transverse groove extending between the tread edges,
The outer lateral groove has a widened portion whose groove width increases toward the outer side in the tire axial direction, and the outer lateral groove has 50% of the deepest tread groove depth of the tread groove. A 50% wear groove portion that wears in a 50% wear state where the wear is worn, and a 90% wear state in which 90% of the groove depth of the deepest tread groove is worn on the outer side in the tire axial direction of the 50% wear groove portion. % Wear groove part is next to each other through a step,
In the 50% wear state, an edge (R12) extending in the tire circumferential direction on the outer side in the tire axial direction of the groove bottom of the 50% wear groove portion appears, and in the 90% wear state, the length in the tire circumferential direction is increased. The edge (R13) of the groove bottom of the 90% wear groove that is longer than the edge (R12) appears in the widened portion, and the land circumferential edge that surrounds the land within the tread surface in the tire circumferential direction. The total axial direction in which the circumferential edge component is summed for the entire land portion located on the tread surface, and the axial edge component in the tire axial direction of the land circumferential edge is summed for the entire land portion. In the edge component EL,
The total circumferential edge component on the tread surface in a new state is EC00, the total axial edge component is EL00, the total circumferential edge component in the 50% wear state is EC50, and the total axial edge component is EL50. When the total circumferential edge component in the 90% wear state is EC90 and the total axial edge component is EL90, the following expressions (1) to (6) are satisfied.
EC50> EC00 ----- (1)
EC90> EC00 ----- (2)
EL50> 0.5 × EL00 ----- (3)
EL90> 0.5 × EL00 ----- (4)
1.5 <EC50 / EL50 <2.2 ----- (5)
2.85 <EC90 / EL90 < 3.4 ----- (6)

請求項2の発明では、前記50%摩滅溝部、又は90%摩滅溝部はその溝底に細溝を具えることを特徴としている。
The invention according to claim 2 is characterized in that the 50% wear groove portion or the 90% wear groove portion has a narrow groove at the groove bottom.

本発明は叙上の如く構成しているため、摩耗進行に伴う雪上性能及びウエット性能の低下を低く抑えることができる。   Since the present invention is configured as described above, it is possible to suppress a decrease in on-snow performance and wet performance as wear progresses.

以下、本発明の実施の一形態を、図示例とともに説明する。図1は、本発明の重荷重用タイヤのトレッドパターンの一例を示す展開図である。
図1において、重荷重用タイヤ1は、トレッド面2に、タイヤ周方向にのびる縦溝3と、この縦溝3に交差する向きにのびる横溝4とを含むトレッド溝5を具える。これにより、該トレッド面2をブロック6を含む複数の陸部7に区画している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a development view showing an example of a tread pattern of the heavy duty tire of the present invention.
In FIG. 1, the heavy load tire 1 includes a tread groove 5 including a longitudinal groove 3 extending in the tire circumferential direction and a lateral groove 4 extending in a direction intersecting the longitudinal groove 3 on the tread surface 2. Thereby, the tread surface 2 is partitioned into a plurality of land portions 7 including the blocks 6.

具体的には、本例では、前記縦溝3は、タイヤ赤道C上をのびる内の縦溝3c、トレッド縁Ts側に配される外の縦溝3s、及び前記内の縦溝3cと外の縦溝3sその間に配される中の縦溝3mとから構成される。又横溝4は、前記内,中の縦溝3c, 3m間を横切る内の横溝4c、前記中,外の縦溝3m, 3s間を横切る中の横溝4m、及び前記外の縦溝3sとトレッド縁Tsとの間を横切る外の横溝4sから構成される。また、前記外の横溝4sは、タイヤ軸方向外側に向かって溝幅が拡大する拡巾部4s1を有する。
Specifically, in this example, the vertical groove 3 includes an internal vertical groove 3c extending on the tire equator C, an external vertical groove 3s disposed on the tread edge Ts side, and the internal vertical groove 3c and the external vertical groove 3c. 3s of vertical grooves 3s and intermediate vertical grooves 3m arranged therebetween. The transverse groove 4 includes an inner transverse groove 4c that traverses between the inner and inner longitudinal grooves 3c, 3m, an inner transverse groove 4m that traverses between the inner and outer longitudinal grooves 3m, 3s, and the outer longitudinal groove 3s and the tread. It is composed of an outer lateral groove 4s crossing between the edge Ts. The outer lateral groove 4s has a widened portion 4s1 whose groove width increases toward the outer side in the tire axial direction.

これにより前記トレッド面2を、縦溝3c,3mと横溝4cとで囲む複数の内のブロック6c、縦溝3m,3sと横溝4mとで囲む複数の中のブロック6m、及び縦溝3sとトレッド縁Tsと横溝4sとで囲む複数の外のブロック6sに区画したブロックパターンを形成している。なお前記陸部7としては、前記ブロック6以外に、タイヤ周方向に連続してのびるリブ(図示しない)を含むことができ、ブロック6の列のうちの少なくとも1本、例えば内のブロック6cの列をリブに置き換えたリブ・ブロックパターンを採用することもできる。   Thus, the tread surface 2 is surrounded by a plurality of blocks 6c surrounded by the vertical grooves 3c, 3m and the horizontal grooves 4c, a plurality of blocks 6m surrounded by the vertical grooves 3m, 3s and the horizontal grooves 4m, and the vertical grooves 3s and the tread. A block pattern partitioned into a plurality of outer blocks 6s surrounded by the edge Ts and the lateral grooves 4s is formed. The land portion 7 may include a rib (not shown) extending continuously in the tire circumferential direction in addition to the block 6, and includes at least one of the rows of the blocks 6, for example, the inner block 6c. It is also possible to adopt a rib / block pattern in which the rows are replaced with ribs.

前記縦溝3として、タイヤ周方向に直線状にのびるストレート溝を用いることができるが、トラクション性の観点からジグザグ溝が好適であり、本例では、内、外の縦溝3c,3sのジグザグの振幅を、中の縦溝3mのジグザグの振幅よりも大に設定したものを例示している。又各縦溝3c,3m,3sにおいて、ジグザグのピッチ数は互いに同数であり、又ジグザグの周方向の位相は互いに位置ズレしている。   A straight groove extending linearly in the tire circumferential direction can be used as the vertical groove 3, but a zigzag groove is preferable from the viewpoint of traction, and in this example, the zigzag of the inner and outer vertical grooves 3c and 3s is used. Is set larger than the zigzag amplitude of the inner vertical groove 3m. In each of the longitudinal grooves 3c, 3m, and 3s, the zigzag pitch numbers are the same, and the circumferential phases of the zigzags are shifted from each other.

又横溝4としては、トラクション性の観点から内、中の横溝4c、4mは互いに同向き(図1では左が上となる向き)に傾斜し、かつそのタイヤ軸方向に対する角度θc,θmを30°以下さらには20°以下に設定している。本例では、θc=θmの場合を例示する。これに対して外の横溝4sは、そのタイヤ軸方向に対する角度θsを前記角度θc,θmよりも小、しかも10°以下さらには5°以下として、前記内、中の横溝4c,4mと同向き或いは逆向きに傾斜している。又排水性の観点から、各横溝4は縦溝3とはそのジグザグの屈曲部で交差している。なお縦溝3、横溝4の溝巾は、本願では特に規制しないが、従来的な重荷重用タイヤと同様、6.0〜11.0mmの範囲のものが好適に採用しうる。   Further, as the lateral grooves 4, from the viewpoint of traction, the inner lateral grooves 4c and 4m are inclined in the same direction (the left is the top in FIG. 1), and the angles θc and θm with respect to the tire axial direction are set to 30. The angle is set to be equal to or lower than 20 ° and further equal to or lower than 20 °. In this example, the case of θc = θm is illustrated. On the other hand, the outer lateral groove 4s has an angle θs with respect to the tire axial direction smaller than the angles θc and θm, 10 ° or less, and further 5 ° or less, and has the same orientation as the inner and inner lateral grooves 4c and 4m. Alternatively, it is inclined in the opposite direction. Further, from the viewpoint of drainage, each horizontal groove 4 intersects with the vertical groove 3 at its zigzag bent portion. In addition, although the groove width of the vertical groove 3 and the horizontal groove 4 is not particularly limited in the present application, a groove width in the range of 6.0 to 11.0 mm can be suitably employed as in the case of a conventional heavy load tire.

又前記内、中のブロック6c,6mの各ブロック壁面には、中の縦溝3mにおけるジグザグの屈曲部に臨む位置に、本例では中の横溝4mと一直線状に並ぶ凹部9,及び内の横溝4cとは一直線状に並ぶ凹部10がそれぞれ凹設される。これにより、水を一時的に貯留し排水性を高めるとともに、トラクション性を向上している。   Further, in each of the inner wall surfaces of the inner blocks 6c and 6m, at the position facing the zigzag bent portion in the inner vertical groove 3m, in this example, the concave portion 9 aligned with the inner lateral groove 4m, Concave portions 10 arranged in a straight line with the lateral grooves 4c are respectively provided. Thereby, while storing water temporarily and improving drainage, the traction property is improved.

次に本発明では、トレッドパターンの前記陸部7(本例ではブロック6)の周囲縁がなすエッジの成分長さを、所定の摩耗段階で適正化している。   Next, in the present invention, the component length of the edge formed by the peripheral edge of the land portion 7 (block 6 in this example) of the tread pattern is optimized at a predetermined wear stage.

詳しくは、前記陸部7をトレッド面2内で囲む陸部周エッジeにおけるタイ周方向の周方向エッジ成分ecを、トレッド面2に位置する陸部全体について総和した値Σecを総周方向エッジ成分ECとし、又前記陸部周エッジeのタイヤ軸方向の軸方向エッジ成分elを、陸部全体で総和した値Σelを総軸方向エッジ成分ELとする。   Specifically, a value Σec obtained by summing the circumferential edge component ec in the tie circumferential direction in the land circumferential edge e surrounding the land 7 in the tread surface 2 for the entire land located on the tread surface 2 is the total circumferential edge. A component EC is set, and a value Σel obtained by summing the axial edge component el of the land circumferential edge e in the tire axial direction over the entire land portion is set as a total axial edge component EL.

ここで前記「陸部周エッジe」は、言い換えると前記陸部7を囲む周囲縁のうちでトレッド面2内に位置する周囲縁を意味している。従って、前記陸部7がトレッド面2の内外に跨って配される場合には、トレッド面2外に位置する周囲縁は前記陸部周エッジeからは除外される。又前記「周方向エッジ成分ec」は、図3に中のブロック6mを代表して示すように、前記陸部周エッジeをタイヤ周方向面(タイヤ赤道と平行な面)にタイヤ軸方向の一方側、他方側からそれぞれ投影したときの長さec1、ec2・・・・の総和であり、又前記「軸方向エッジ成分el」は、前記陸部周エッジeをタイヤ周方向面(タイヤ軸方向と平行な面)にタイヤ周方向の一方側、他方側からそれぞれ投影したときの長さel1、el2・・・・の総和を意味する。   Here, the “land portion circumferential edge e” means a peripheral edge located in the tread surface 2 among the peripheral edges surrounding the land portion 7. Therefore, when the land portion 7 is arranged across the inside and outside of the tread surface 2, the peripheral edge located outside the tread surface 2 is excluded from the land portion circumferential edge e. Further, the “circumferential edge component ec” indicates that the land circumferential edge e is aligned with the tire circumferential surface (surface parallel to the tire equator) in the tire axial direction, as shown by the block 6m in FIG. The sum of the lengths ec1, ec2,... When projected from the one side and the other side, respectively, and the “axial edge component el” represents the land circumferential edge e on the tire circumferential surface (tire axis). Is the sum of lengths el1, el2,... When projected from one side and the other side in the tire circumferential direction.

そして、新品時の状態Y00における前記総周方向エッジ成分をEC00、かつ前記総軸方向エッジ成分をEL00、50%摩耗状態における総周方向エッジ成分をEC50、かつ総軸方向エッジ成分をEL50、及び90%摩耗状態における総周方向エッジ成分をEC90、かつ総軸方向エッジ成分をEL90としたとき、次の式(1)〜(6)を充足させている。
EC50>EC00 −−−−−(1)
EC90>EC00 −−−−−(2)
EL50>0.5×EL00 −−−−−(3)
EL90>0.5×EL00 −−−−−(4)
1.5<EC50/EL50<2.2 −−−−−(5)
2.85<EC90/EL90<3.4 −−−−−(6)
Further, the total circumferential edge component in the new state Y00 is EC00, the total axial edge component is EL00, the total circumferential edge component in a 50% wear state is EC50, and the total axial edge component is EL50, and When the total circumferential edge component in the 90% wear state is EC90 and the total axial edge component is EL90, the following expressions (1) to (6) are satisfied.
EC50> EC00 ----- (1)
EC90> EC00 ----- (2)
EL50> 0.5 × EL00 ----- (3)
EL90> 0.5 × EL00 ----- (4)
1.5 <EC50 / EL50 <2.2 ----- (5)
2.85 <EC90 / EL90 < 3.4 ----- (6)

なお前記「50%摩耗状態Y50」とは、図4に示すように、前記トレッド溝5のうちで最深のトレッド溝5Aの溝深さHの50%が摩耗する摩耗状態を意味し、該溝深さHの90%が摩耗する摩耗状態を「90%摩耗状態Y90」、摩耗していない状態を「新品時の状態Y00」と呼ぶ。なお本例では前記縦溝3c,3m,3sが最深のトレッド溝5Aを構成している。   The “50% wear state Y50” means a wear state in which 50% of the groove depth H of the deepest tread groove 5A in the tread groove 5 is worn, as shown in FIG. The wear state in which 90% of the depth H is worn is called “90% wear state Y90”, and the unworn state is called “new state Y00”. In this example, the vertical grooves 3c, 3m, 3s constitute the deepest tread groove 5A.

ここで本発明者の研究の結果、ウエット性能において特に重視される旋回性に関しては、総周方向エッジ成分ECが重要であり、このウエット性能を新品時と同程度に高く確保するためには、前記総周方向エッジ成分ECを、摩耗進行に伴って新品時よりもむしろ増加させることが必要であることを究明した。これは、ウエット性能は、新品時から摩耗終期に至る全範囲で重要であるが、溝容積は摩耗進行に伴って必然的に低下する。従って、総周方向エッジ成分ECの増加によって、溝容積の低下を補う必要がある。そこで、式(1)、(2)において、各摩耗状態Y50,Y90における総周方向エッジ成分EC50,EC90を新品時における総周方向エッジ成分EC00よりも増加させている。このとき、EC50とEC90との関係は特に規制されないが、EC50≦EC90、さらにはEC50<EC90が好ましい。   As a result of the present inventors' research, the total circumferential direction edge component EC is important for the turning performance particularly important in the wet performance, and in order to ensure this wet performance as high as when new, It has been found that it is necessary to increase the total circumferential edge component EC rather than when it is new as wear progresses. This is because the wet performance is important in the entire range from the new product to the end of wear, but the groove volume inevitably decreases as the wear progresses. Therefore, it is necessary to compensate for the decrease in the groove volume by increasing the total circumferential edge component EC. Therefore, in Equations (1) and (2), the total circumferential edge components EC50 and EC90 in each of the wear states Y50 and Y90 are made larger than the total circumferential edge component EC00 in the new state. At this time, the relationship between EC50 and EC90 is not particularly restricted, but EC50 ≦ EC90 and further EC50 <EC90 are preferable.

又雪上性能において特に重視されるトラクション性に関しては、総軸方向エッジ成分ELが重要であり、総周方向エッジ成分ECと同様、大であることが好ましい。しかし冬用のタイヤでは、50%摩耗までの雪上性能を保証するものであって、50%摩耗以降の雪上性能については、ウエット性能ほど高く確保する必要はない。そこで、総周方向エッジ成分ECほどではないが、式(3)、(4)において、各摩耗状態Y50,Y90における総軸方向エッジ成分EL50,EL90を新品時における総軸方向エッジ成分EL00の0.5倍よりも増加させている。このとき、EL50とEL90との関係は特に規制されないが、EL90をEL50の0.6倍以上、さらには0.7倍以上確保し、90%摩耗以降の雪上性能をできるだけ高めることが好ましい。   Further, regarding the traction property particularly important in performance on snow, the total axial direction edge component EL is important, and it is preferable that it is large like the total circumferential direction edge component EC. However, winter tires guarantee on-snow performance up to 50% wear, and the snow performance after 50% wear need not be as high as the wet performance. Therefore, although not as much as the total circumferential edge component EC, in equations (3) and (4), the total axial edge components EL50 and EL90 in the respective wear states Y50 and Y90 are set to 0 of the total axial edge component EL00 when new. Increased more than 5 times. At this time, the relationship between EL50 and EL90 is not particularly restricted, but it is preferable to secure EL90 at least 0.6 times EL50, further 0.7 times or more, and to improve performance on snow after 90% wear as much as possible.

なお従来的なタイヤでは、90%摩耗状態Y90において、総周方向エッジ成分EC90は、総周方向エッジ成分EC00(新品時の状態Y00)の80%以下、かつ総軸方向エッジ成分EL90は、総軸方向エッジ成分EL00(新品時の状態Y00)の30%以下とそれぞれ非常に低くなっている。   In the conventional tire, in the 90% wear state Y90, the total circumferential edge component EC90 is 80% or less of the total circumferential edge component EC00 (the new state Y00), and the total axial edge component EL90 is The axial edge component EL00 (new state Y00) is 30% or less, which is very low.

又前述の如く50%摩耗以降の雪上性能は、ウエット性能ほど高く確保する必要がないなど、雪上性能とウエット性能との重要度は摩耗の進行に伴い相違する。従って、該雪上性能及びウエット性能を総合的にバランス良く発揮させるためには、総周方向エッジ成分ECと総軸方向エッジ成分ELとの比EC/ELを各摩耗段階Y50,Y90において適正化することが必要である。そのために、式(5)、(6)において、EC50/EL50、EC90/EL90を所定範囲に規制している。
Further, as described above, the performance on snow after 50% wear does not need to be as high as the wet performance, and the importance of the performance on snow and the wet performance differs with the progress of wear. Therefore, in order to exhibit the performance on the snow and the wet performance in a comprehensive manner, the ratio EC / EL between the total circumferential edge component EC and the total axial edge component EL is optimized in each wear stage Y50, Y90. It is necessary. Therefore, EC50 / EL50 and EC90 / EL90 are regulated within predetermined ranges in the equations (5) and (6) .

なお前記比EC50/EL50が1.5より小さいと50%摩耗段階におけるウェット性能が低下する。これは、相対的に周方向のエッジ成分が少なくなり、旋回時のグリップ力が低下することが原因である。一方、2.2より大きいと50%摩耗段階における雪上性能が低下する。これは、相対的に軸方向のエッジ成分が減少し、雪上発進におけるトラクション性能が低下するためである。従って、比EC50/EL50の下限値は2.0以上が好ましい。
又前記比EC90/EL90が2.85より小さいと90%摩耗段階におけるウェット性能が低下する。これは、相対的に周方向のエッジ成分が少なくなり、旋回時のグリップ力が低下するためである。一方、3.4より大きいと90%摩耗段階における雪上性能はもちろん、ウェットグリップ性能も低下する
If the ratio EC50 / EL50 is less than 1.5, the wet performance at the 50% wear stage is lowered. This is due to the fact that the edge component in the circumferential direction is relatively reduced and the grip force during turning is reduced. On the other hand, when it is larger than 2.2, the performance on snow in the 50% wear stage is deteriorated. This is because the edge component in the axial direction is relatively reduced, and the traction performance in starting on snow is lowered. Therefore, the lower limit of the ratio EC50 / EL50 is preferably 2.0 or more.
On the other hand, when the ratio EC90 / EL90 is smaller than 2.85, the wet performance at the 90% wear stage is lowered. This is because the edge component in the circumferential direction is relatively reduced, and the grip force during turning is reduced. On the other hand, when it is larger than 3.4 , the wet grip performance as well as the performance on the snow in the 90% wear stage are deteriorated .

又本例では、前記式(1)〜(6)を充足させるために、図2に示すように、前記トレッド溝5には、前記50%摩耗状態Y50で摩滅する50%摩滅溝部12と、90%摩耗状態Y90で摩滅する90%摩滅溝部13とを形成している。   In this example, in order to satisfy the above formulas (1) to (6), as shown in FIG. 2, the tread groove 5 has a 50% wear groove portion 12 that wears in the 50% wear state Y50, and A 90% wear groove 13 that wears in the 90% wear state Y90 is formed.

前記50%摩滅溝部12は、前記最深のトレッド溝5Aより浅いことにより、前記50%摩耗状態Y50において摩滅して、その溝底B12が前記50%摩耗状態Y50のトレッド面に露出する浅溝部分である。従って図4に示すように、その溝深さH1は、最深の溝深さHの50%以下である。しかし浅過ぎると早期に摩滅して本願効果を充分発揮できず、従って、前記溝深さH1は最深の溝深さHの40〜50%、好ましくは45〜50%に設定される。又前記90%摩滅溝部13は、その溝底B13が90%摩耗状態Y90でのトレッド面に露出する浅溝部分であり、その溝深さH2は、最深の溝深さHの90%以下、好ましくは80〜90%、さらに好ましくは85〜90%に設定される。   The 50% worn groove portion 12 is shallower than the deepest tread groove 5A, so that it is worn in the 50% worn state Y50, and the groove bottom B12 is exposed on the tread surface in the 50% worn state Y50. It is. Therefore, as shown in FIG. 4, the groove depth H1 is 50% or less of the deepest groove depth H. However, if it is too shallow, it will be worn away at an early stage, and the effect of the present application cannot be sufficiently exhibited. Therefore, the groove depth H1 is set to 40 to 50%, preferably 45 to 50% of the deepest groove depth H. The 90% wear groove portion 13 is a shallow groove portion where the groove bottom B13 is exposed on the tread surface in the 90% wear state Y90, and the groove depth H2 is 90% or less of the deepest groove depth H. Preferably it is set to 80 to 90%, more preferably 85 to 90%.

この摩滅溝部12、13は、縦溝3及び横溝4の適宜の位置に設けることができ、さらには縦溝3及び横溝4の1本の全てを摩滅溝部12、13として形成しても良い。本例では図2に示すように、50%摩滅溝部12を、前記中の横溝4mの中央部側、及び外の横溝4sのタイヤ軸方向内端側に形成するとともに、90%摩滅溝部13を、前記外の横溝4sに設けた50%摩滅溝部12のタイヤ軸方向外側に段差Kを介して隣設させている
The wear groove portions 12 and 13 can be provided at appropriate positions of the vertical groove 3 and the horizontal groove 4. Furthermore, all of the vertical groove 3 and the horizontal groove 4 may be formed as the wear groove portions 12 and 13. In this example, as shown in FIG. 2, the 50% wear groove portion 12 is formed on the center portion side of the inner lateral groove 4m and on the inner end side in the tire axial direction of the outer lateral groove 4s, and the 90% wear groove portion 13 is formed. The 50% wear groove 12 provided in the outer lateral groove 4s is adjacent to the outer side in the tire axial direction via a step K.

そして例えば外の横溝4sの場合を代表して示すように、摩耗進行し、50%摩耗状態Y50に至ったときには、図5(A)に示すように、50%摩滅溝部12の溝底B12が露出し、該50%摩滅溝部12の溝側縁Q12を喪失させるとともに、新たに溝底B12の両端縁R12を出現させることができる。なお、タイヤ軸方向外側の端縁R12は、タイヤ周方向にのびている。さらに摩耗進行し、90%摩耗状態Y90に至ったときには、図5(B)に示すように、90%摩滅溝部13の溝底B13が露出し、該90%摩滅溝部13の溝側縁Q13を喪失させるとともに、タイヤ周方向の長さが前記端縁R12よりも長い溝底B13の端縁R13を、端縁R12に代えて出現させることができる。
For example, as shown in the case of the outer lateral groove 4s, when the wear progresses and the 50% wear state Y50 is reached, the groove bottom B12 of the 50% wear groove 12 is formed as shown in FIG. It is exposed and the groove side edge Q12 of the 50% wear groove part 12 can be lost, and both end edges R12 of the groove bottom B12 can newly appear. In addition, the edge R12 on the outer side in the tire axial direction extends in the tire circumferential direction. When the wear further progresses and the 90% wear state Y90 is reached, as shown in FIG. 5B, the groove bottom B13 of the 90% wear groove 13 is exposed, and the groove side edge Q13 of the 90% wear groove 13 is defined. In addition to the loss, the edge R13 of the groove bottom B13 whose length in the tire circumferential direction is longer than the edge R12 can appear instead of the edge R12.

このように、摩滅溝部12、13は、摩耗の進行に伴って前記側縁及び端縁であるエッジを自在に追廃でき、式(1)〜(6)を充足させることが可能となる。なお図6に示すように、中の横溝4mに設けた前記50%摩滅溝部12には、その溝底B12に、該横溝4mと平行な細溝16を形成している。係る場合には細溝16のエッジの出現により溝側縁Q12の喪失を相殺しうるなど、両端縁R12からなる周方向エッジ成分ecを増加させることができる。   In this manner, the wear groove portions 12 and 13 can freely abolish the edges that are the side edges and the end edges as wear progresses, and can satisfy the expressions (1) to (6). As shown in FIG. 6, a narrow groove 16 parallel to the horizontal groove 4m is formed in the groove bottom B12 of the 50% wear groove 12 provided in the horizontal groove 4m. In such a case, the circumferential edge component ec composed of both end edges R12 can be increased such that the appearance of the edge of the narrow groove 16 can cancel out the loss of the groove side edge Q12.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1のトレッドパターンを有するサイズ11R22.5の重荷重用タイヤを、表1の仕様に基づいて試作し、各試供タイヤの雪上性能、ウエット性能を、それぞれ新品時の状態、50%摩耗状態、及び90%摩耗状態において評価するとともに、その結果を表1に示す。
なお表1中のEL00、EL50、EL90の各値は、比較例1においては該比較例1の新品時の総軸方向エッジ成分の長さL1を100とした指数で表示している。同様に、比較例2においては該比較例2の新品時の総軸方向エッジ成分の長さL2を100とした指数により、実施例1においては該実施例1の新品時の総軸方向エッジ成分の長さL3を100とした指数により、実施例3においては該実施例3の新品時の総軸方向エッジ成分の長さL4を100とした指数により、それぞれ示している。
又表1中のEC00、EC50、EC90の各値は、比較例1においては該比較例1の新品時の総周方向エッジ成分の長さC1を100とした指数で表示している。同様に、比較例2においては該比較例2の新品時の総周方向エッジ成分の長さC2を100とした指数により、実施例1においては該実施例1の新品時の総周方向エッジ成分の長さC3を100とした指数により、実施例3においては該実施例3の新品時の総周方向エッジ成分の長さC4を100とした指数により、それぞれ示している。
又図7に実施例1のタイヤにおける各摩耗状態のトレッド面の状況を示し、図8に比較例1のタイヤにおける各摩耗状態のトレッド面の状況を示している。
A heavy-duty tire of size 11R22.5 having the tread pattern of FIG. 1 was prototyped based on the specifications in Table 1, and the performance on the snow and wet performance of each sample tire were compared with the state when new, 50% worn state, and While evaluating in the 90% wear state, the results are shown in Table 1.
In Table 1, the values of EL00, EL50, and EL90 in Table 1 are displayed as indices in Comparative Example 1 where the length L1 of the total axial edge component of the Comparative Example 1 is 100. Similarly, in Comparative Example 2, the total axial edge component of the new example 1 in the first example is used as an index with the length L2 of the total axial edge component of the new example 2 set to 100 in the first comparative example. In the third embodiment, the length L3 of the total axial direction edge component of the third embodiment is indicated by an index with the length L3 being 100.
In Table 1, each value of EC00, EC50, and EC90 in Table 1 is represented by an index with the length C1 of the total circumferential edge component of Comparative Example 1 as new as 100. Similarly, in Comparative Example 2, the total circumferential direction edge component of the new example 1 in the first example is used as an index in which the length C2 of the total circumferential direction edge component in the new example 2 is 100. In the third embodiment, the length C3 is indicated by an index with the length C4 of the total circumferential edge component at the time of a new article as 100.
FIG. 7 shows the state of the tread surface in each wear state in the tire of Example 1, and FIG. 8 shows the state of the tread surface in each wear state in the tire of Comparative Example 1.

(1)雪上性能;
タイヤをリム(7.50×22.5)、内圧(800kPa)の条件で車輌(載量8tの2−D車両)の全輪に装着して、定積状態にて圧雪状の10%勾配上り坂で停止状態から発進し、10m進むまでのタイムを各摩耗状態(新品時の状態、50%摩耗状、90%摩耗状態)において測定した。そして、摩耗状態毎に、測定タイムの逆数を比較例1を100とした指数で表示した。数値が大きいほど雪上でのトラクション性に優れる。
(1) Performance on snow;
Tires are attached to all wheels of a rim (7.50 × 22.5) and internal pressure (800 kPa) on a vehicle (2-D vehicle with a load of 8 t), and a 10% gradient of pressure snow in a constant volume state The time until the vehicle started from the stop state on the uphill and traveled 10 m was measured in each wear state (new state, 50% wear state, 90% wear state). And the reciprocal number of the measurement time was displayed by the index | exponent which set the comparative example 1 to 100 for every abrasion state. The larger the value, the better the traction on the snow.

(2)ウエット性能;
上記と同じ車両を用い、湿潤状態にある半径30mのコースを1周するときのラップタイムを各摩耗状態において測定するとともに、摩耗状態毎に、測定タイムの逆数を比較例1を100とした指数で表示した。数値が大きいほどウエット性能に優れる。
(2) Wet performance;
Using the same vehicle as above, the lap time for one round of a course with a radius of 30 m in a wet state is measured in each wear state, and the reciprocal of the measurement time is an index with Comparative Example 1 as 100 for each wear state. displayed. The larger the value, the better the wet performance.

Figure 0004989023
Figure 0004989023

表の如く、実施例のタイヤは、摩耗進行に伴う雪上性能及びウエット性能の低下を低く抑えうることが確認できる。   As shown in the table, it can be confirmed that the tires of the examples can suppress the decrease in the performance on the snow and the wet performance as the wear progresses.

本発明の重荷重用タイヤのトレッドパターンの一実施例を示す展開図である。It is an expanded view which shows one Example of the tread pattern of the tire for heavy loads of this invention. その右半分を拡大して示す展開図である。It is an expanded view which expands and shows the right half. 陸部周エッジの周方向エッジ成分、軸方向エッジ成分を説明する平面図である。It is a top view explaining the circumferential direction edge component and axial direction edge component of a land part circumferential edge. 新品時の状態、50%摩耗状態、90%摩耗状態を説明する断面図である。It is sectional drawing explaining the state at the time of a new article, a 50% wear state, and a 90% wear state. (A)、(B)は、摩滅溝部によるエッジ成分の増減を説明する平面図である。(A), (B) is a top view explaining increase / decrease in the edge component by an abrasion groove part. 細溝を示す平面図である。It is a top view which shows a narrow groove. 表1の実施例1のタイヤにおける各摩耗状態のトレッド面の状況を示す展開図である。It is an expanded view which shows the condition of the tread surface of each abrasion state in the tire of Example 1 of Table 1. 表1の比較例1のタイヤにおける各摩耗状態のトレッド面の状況を示す展開図である。FIG. 3 is a development view illustrating a state of a tread surface in each wear state in the tire of Comparative Example 1 in Table 1.

符号の説明Explanation of symbols

2 トレッド面
3 縦溝
4 横溝
5 トレッド溝
5A 最深のトレッド溝
6 ブロック
7 陸部
12 50%摩滅溝部
13 90%摩滅溝部
16 細溝
e 陸部周エッジ
sc 周方向エッジ成分
el 軸方向エッジ成分
Y50 50%摩耗状態
Y90 90%摩耗状態
2 Tread surface 3 Vertical groove 4 Horizontal groove 5 Tread groove 5A Deepest tread groove 6 Block 7 Land portion 12 50% wear groove portion 13 90% wear groove portion 16 Narrow groove e Land portion circumferential edge sc Circumferential edge component el Axial edge component Y50 50% wear state Y90 90% wear state

Claims (2)

トレッド面に、タイヤ周方向にのびる複数本の縦溝と、この縦溝に交差する向きにのびる横溝とを含むトレッド溝を設けることにより、該トレッド面をブロックを含む複数の陸部に区画した空気入りタイヤであって、
前記横溝は、最もトレッド縁側をのびる外の縦溝と、トレッド縁との間を横切る外の横溝を含み、
前記外の横溝は、タイヤ軸方向外側に向かって溝幅が拡大する拡巾部を有し、しかも
前記外の横溝には、前記トレッド溝のうちの最深のトレッド溝の溝深さの50%が摩耗する50%摩耗状態で摩滅する50%摩滅溝部と、この50%摩滅溝部のタイヤ軸方向外側に前記最深のトレッド溝の溝深さの90%が摩耗する90%摩耗状態で摩滅する90%摩滅溝部とが段差を介して隣設され、
前記50%摩耗状態では、前記50%摩滅溝部の溝底のタイヤ軸方向外側のタイヤ周方向にのびる端縁(R12)を出現させるとともに、前記90%摩耗状態では、タイヤ周方向の長さが前記端縁(R12)よりも長い90%摩滅溝部の溝底の端縁(R13)を前記拡巾部に出現させ、しかも
前記陸部をトレッド面内で囲む陸部周エッジのタイヤ周方向の周方向エッジ成分を、トレッド面に位置する陸部全体について総和した総周方向エッジ成分ECと、前記陸部周エッジのタイヤ軸方向の軸方向エッジ成分を、陸部全体で総和した総軸方向エッジ成分ELとにおいて、
新品時の状態のトレッド面での前記総周方向エッジ成分をEC00、かつ前記総軸方向エッジ成分をEL00、前記50%摩耗状態における総周方向エッジ成分をEC50、かつ総軸方向エッジ成分をEL50、前記90%摩耗状態における総周方向エッジ成分をEC90、かつ総軸方向エッジ成分をEL90としたとき、次の式(1)〜(6)を充足させたことを特徴とする重荷重用タイヤ。
EC50>EC00 −−−−−(1)
EC90>EC00 −−−−−(2)
EL50>0.5×EL00 −−−−−(3)
EL90>0.5×EL00 −−−−−(4)
1.5<EC50/EL50<2.2 −−−−−(5)
2.85<EC90/EL90<3.4 −−−−−(6)
By providing a tread groove on the tread surface including a plurality of vertical grooves extending in the tire circumferential direction and a horizontal groove extending in a direction crossing the vertical grooves, the tread surface is partitioned into a plurality of land portions including blocks. A pneumatic tire,
The transverse groove includes an outer longitudinal groove extending most on the tread edge side and an outer transverse groove extending between the tread edges,
The outer lateral groove has a widened portion whose groove width increases toward the outer side in the tire axial direction, and the outer lateral groove has 50% of the deepest tread groove depth of the tread groove. A 50% wear groove portion that wears in a 50% wear state where the wear is worn, and a 90% wear state in which 90% of the groove depth of the deepest tread groove is worn on the outer side in the tire axial direction of the 50% wear groove portion. % Wear groove part is next to each other through a step,
In the 50% wear state, an edge (R12) extending in the tire circumferential direction on the outer side in the tire axial direction of the groove bottom of the 50% wear groove portion appears, and in the 90% wear state, the length in the tire circumferential direction is increased. The edge (R13) of the groove bottom of the 90% wear groove that is longer than the edge (R12) appears in the widened portion, and the land circumferential edge that surrounds the land within the tread surface in the tire circumferential direction. The total axial direction in which the circumferential edge component is summed for the entire land portion located on the tread surface, and the axial edge component in the tire axial direction of the land circumferential edge is summed for the entire land portion. In the edge component EL,
The total circumferential edge component on the tread surface in a new state is EC00, the total axial edge component is EL00, the total circumferential edge component in the 50% wear state is EC50, and the total axial edge component is EL50. A heavy-duty tire satisfying the following formulas (1) to (6), where EC90 is the total circumferential edge component and EL90 is the total axial edge component in the 90% wear state.
EC50> EC00 ----- (1)
EC90> EC00 ----- (2)
EL50> 0.5 × EL00 ----- (3)
EL90> 0.5 × EL00 ----- (4)
1.5 <EC50 / EL50 <2.2 ----- (5)
2.85 <EC90 / EL90 < 3.4 ----- (6)
前記50%摩滅溝部、又は90%摩滅溝部はその溝底に細溝を具えることを特徴とする請求項1記載の重荷重用タイヤ。   The heavy duty tire according to claim 1, wherein the 50% worn groove portion or the 90% worn groove portion includes a narrow groove at a groove bottom thereof.
JP2004336568A 2004-11-18 2004-11-19 Heavy duty tire Expired - Fee Related JP4989023B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004336568A JP4989023B2 (en) 2004-11-19 2004-11-19 Heavy duty tire
US11/280,240 US7762297B2 (en) 2004-11-18 2005-11-17 Heavy duty pneumatic tire
CN2009101431278A CN101574903B (en) 2004-11-18 2005-11-18 Heavy duty pneumatic tire
CN2009101431282A CN101574904B (en) 2004-11-18 2005-11-18 Heavy duty pneumatic tire
US12/285,621 US8381782B2 (en) 2004-11-18 2008-10-09 Heavy duty pneumatic tire
US12/285,620 US8336590B2 (en) 2004-11-18 2008-10-09 Heavy duty pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336568A JP4989023B2 (en) 2004-11-19 2004-11-19 Heavy duty tire

Publications (2)

Publication Number Publication Date
JP2006143019A JP2006143019A (en) 2006-06-08
JP4989023B2 true JP4989023B2 (en) 2012-08-01

Family

ID=36623196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336568A Expired - Fee Related JP4989023B2 (en) 2004-11-18 2004-11-19 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP4989023B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936520B2 (en) * 2006-08-28 2012-05-23 東洋ゴム工業株式会社 Pneumatic radial tire
JP2008114738A (en) * 2006-11-06 2008-05-22 Bridgestone Corp Tire for heavy load and usage thereof
JP4189009B2 (en) * 2007-03-15 2008-12-03 横浜ゴム株式会社 Pneumatic tire
JP5530059B2 (en) * 2007-10-30 2014-06-25 株式会社ブリヂストン Pneumatic tire
JP4760851B2 (en) * 2008-04-10 2011-08-31 横浜ゴム株式会社 Pneumatic tire
JP5231275B2 (en) * 2009-02-06 2013-07-10 株式会社ブリヂストン Pneumatic tires for construction vehicles
JP2013523520A (en) * 2010-03-31 2013-06-17 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ Tires for heavy duty vehicle wheels
JP5771398B2 (en) 2011-01-11 2015-08-26 株式会社ブリヂストン Pneumatic tire
JP6425930B2 (en) * 2014-07-15 2018-11-21 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JP2006143019A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
KR101974461B1 (en) Pneumatic tire
KR101636584B1 (en) Pneumatic tire
JP6110586B2 (en) Pneumatic tire
JP6092059B2 (en) Pneumatic tire
JP6816507B2 (en) tire
US11407255B2 (en) Pneumatic tire
KR20160028443A (en) Pneumatic tire
JP2003063212A (en) Pneumatic tire
JP2011161988A (en) Heavy duty tire
JP5965224B2 (en) Heavy duty pneumatic tire
EP3115229B1 (en) Heavy duty pneumatic tire
JP2007153338A (en) Tread of tire for large-size vehicle
JP2011183952A (en) Pneumatic tire
JP6077934B2 (en) Pneumatic tire
JP2006151083A (en) Tire for heavy load vehicle
JP6371726B2 (en) Pneumatic tire
JP3657934B2 (en) Heavy duty tire
JP4989023B2 (en) Heavy duty tire
JP6714985B2 (en) tire
JPH09188110A (en) Pneumatic radial tire for heavy load
JP2006142959A (en) Pneumatic tire for heavy load
JP4426546B2 (en) Pneumatic tire
JP4787352B2 (en) Pneumatic tire
JP2013039871A (en) Pneumatic tire
JP6060221B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees