JP4986152B2 - Adsorption type refrigerator combined desiccant air conditioning method and apparatus - Google Patents

Adsorption type refrigerator combined desiccant air conditioning method and apparatus Download PDF

Info

Publication number
JP4986152B2
JP4986152B2 JP2007248693A JP2007248693A JP4986152B2 JP 4986152 B2 JP4986152 B2 JP 4986152B2 JP 2007248693 A JP2007248693 A JP 2007248693A JP 2007248693 A JP2007248693 A JP 2007248693A JP 4986152 B2 JP4986152 B2 JP 4986152B2
Authority
JP
Japan
Prior art keywords
adsorption
dehumidifying agent
air
particles
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007248693A
Other languages
Japanese (ja)
Other versions
JP2008116193A (en
Inventor
博之 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007248693A priority Critical patent/JP4986152B2/en
Publication of JP2008116193A publication Critical patent/JP2008116193A/en
Application granted granted Critical
Publication of JP4986152B2 publication Critical patent/JP4986152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸湿性の多孔質粒子を媒体としたデシカント空調装置に関し、特に、吸着式冷凍機と結合することにより空調システム全体として効率的な作動を行うことができるようにした吸着式冷凍機結合デシカント空調方法、及びその方法を実施する装置に関する。   The present invention relates to a desiccant air conditioner using a hygroscopic porous particle as a medium, and in particular, an adsorption refrigerator that can be efficiently operated as an entire air conditioning system by being combined with an adsorption refrigerator. The present invention relates to a combined desiccant air conditioning method and an apparatus for carrying out the method.

化学プロセスにおける排熱や太陽熱で容易に得られる800℃以下の低温度熱エネルギーの有効利用技術開発は、現代社会の大きな問題となっている二酸化炭素排出量低減、ヒートアイランド現象、夏季電力需要変動等の、環境保全問題あるいはエネルギー問題への対応における重要課題のひとつである。これに対して有効と考えられる既存技術のひとつが、高い水の吸脱離性を有するデシカントを利用したデシカント空調システムである。   Development of effective utilization technology of low-temperature thermal energy of 800 ° C or less that can be easily obtained by exhaust heat or solar heat in chemical processes is a major problem in modern society, such as reduction of carbon dioxide emissions, heat island phenomenon, fluctuations in summer power demand, etc. This is one of the important issues in addressing environmental conservation issues or energy issues. On the other hand, one of the existing technologies considered to be effective is a desiccant air conditioning system using a desiccant having a high water absorption / desorption property.

従来より実用化されているデシカント空調システムにおいては、図8に示すように処理行程と再生行程が対面通行の形で行われる。即ちデシカント(乾燥剤)を塗布した除湿ローター101と顕熱交換ローター102が直列に配置されており、処理側に導入した環境空気の除湿と熱交換を逐次的に行う。顕熱交換ローター102の後流に水スプレー103を配置し、中温・低湿の空気に水を噴霧することで水の気化熱が奪われ、空気は低温・高湿となる。   In a desiccant air-conditioning system that has been put into practical use, the processing process and the regeneration process are performed in a face-to-face manner as shown in FIG. That is, a dehumidification rotor 101 coated with a desiccant (desiccant) and a sensible heat exchange rotor 102 are arranged in series, and dehumidification and heat exchange of environmental air introduced to the processing side are sequentially performed. The water spray 103 is disposed downstream of the sensible heat exchange rotor 102, and water is sprayed onto the medium-temperature / low-humidity air to remove the heat of vaporization of the water, so that the air becomes low-temperature / high-humidity.

一方、再生行程では、室内の中温・高湿の環境空気を取り込み、蒸発式冷却器104により低温・高湿の空気とし、顕熱交換ローター102に送り込まれる。処理側で高温となった顕熱交換ローター102は、この中温・高湿空気によって冷却される。また、顕熱交換ローター102より熱が与えられ、温度が高くなった空気はさらに加熱ヒータ105により加熱される。なお、この加熱ヒータ105の熱源としては種々のものを用いることができる。この高温空気によって除湿ローター101を加熱し、除湿剤上の水分を蒸発させ、除湿剤を再生する。   On the other hand, in the regeneration process, the indoor air of high temperature and high humidity is taken in, converted into low temperature and high humidity air by the evaporative cooler 104, and sent to the sensible heat exchange rotor 102. The sensible heat exchange rotor 102 that has reached a high temperature on the processing side is cooled by the medium temperature and high humidity air. Further, the air heated by the sensible heat exchange rotor 102 and heated to a higher temperature is further heated by the heater 105. Various heaters can be used as the heat source of the heater 105. The dehumidification rotor 101 is heated by this high-temperature air, the moisture on the dehumidifier is evaporated, and the dehumidifier is regenerated.

上記のようなデシカント空調システムにおいて、二つのローターはハニカム状になっており、空気との接触が良好に行われるようになっている。これらが低速で回転することによって、処理工程と再生行程を同時に行うことができ、パッケージ化に成功し、商業化されている。なお、このようなデシカント空調装置は例えば特開2003−35434号に記載されている。   In the desiccant air conditioning system as described above, the two rotors have a honeycomb shape, and contact with the air is favorably performed. By rotating at a low speed, the processing steps and the regeneration process can be performed simultaneously, and packaging has been successful and commercialized. Such a desiccant air conditioner is described in, for example, Japanese Patent Application Laid-Open No. 2003-35434.

このような従来のデシカント空調装置は、デシカント(吸着剤)をハニカム状の担体で形成したローターに保持して一体的に回転させるため、除湿と再生を同時に行わなくてはならなかった。そのため、除湿容量に限界があり、熱供給と除湿需要がマッチしないと小型化できないという問題があった。また、吸湿したデシカントの除湿再生時に加熱熱源を必要とするが、そのためにエネルギーを消費することによって効率が悪くなる問題もあった。   In such a conventional desiccant air conditioner, since the desiccant (adsorbent) is held by a rotor formed of a honeycomb-shaped carrier and is rotated integrally, dehumidification and regeneration must be performed at the same time. For this reason, there is a limit to the dehumidifying capacity, and there is a problem that the size cannot be reduced unless the heat supply and the dehumidifying demand match. In addition, a heating heat source is required at the time of dehumidification regeneration of the desiccant that has absorbed moisture, and there is also a problem that efficiency is deteriorated by consuming energy.

本発明者は上記問題点を解決するため、熱供給と除湿需要のアンバランスに容易に対応することができ、また除湿することによって冷房負荷を減らし、特に通常は固定して使用される民生用各種機器からの廃熱を利用することにより、その機器周辺空間の空調に必要なエネルギー消費を減らすことができるようにした小型デシカント空調装置を開発し、特許出願を行っている(特許文献2)。   In order to solve the above problems, the present inventor can easily cope with the imbalance between the heat supply and the dehumidification demand, and reduces the cooling load by dehumidification, especially for the consumer use that is usually fixed. A small desiccant air conditioner has been developed and a patent application has been filed so as to reduce the energy consumption required for air conditioning in the space around the equipment by utilizing waste heat from various equipment (Patent Document 2). .

この小型デシカント空調装置においては図9に示すようなものであり、除湿装置115では室内113の空気を送風機116で導入し、分散板117上を流下する乾燥した多孔質粒子で除湿され、エアコン114の熱交換器120で所定温度にして、適宜加湿装置128で加湿して送風機121から室内に供給する。分散板117を流下して室内空気の水分を吸着した粒子は、粒子溜118から再生装置122に入り、民生用コジェネ装置123等の民生用各種機器からの排熱を用いる熱交換器121で加熱して吸着した水分を脱離して再生する。再生した吸着剤粒子は真空ポンプ126によって吸引し吸着剤粒子を粒子溜111に搬送する。真空ポンプ126からの排気は適宜民生用機器の燃焼空気として利用する。
特開2003−35434号公報 特開2005−337559号公報
This small desiccant air conditioner is as shown in FIG. 9. In the dehumidifier 115, the air in the room 113 is introduced by the blower 116, and is dehumidified by the dry porous particles flowing down on the dispersion plate 117. The heat exchanger 120 is set to a predetermined temperature, is appropriately humidified by the humidifier 128, and is supplied into the room from the blower 121. Particles that have flowed down the dispersion plate 117 and adsorbed moisture in the room air enter the regenerator 122 from the particle reservoir 118 and are heated by the heat exchanger 121 using exhaust heat from various consumer devices such as the consumer cogeneration device 123. The adsorbed moisture is desorbed and regenerated. The regenerated adsorbent particles are sucked by the vacuum pump 126 and conveyed to the particle reservoir 111. The exhaust from the vacuum pump 126 is appropriately used as combustion air for consumer equipment.
JP 2003-35434 A JP 2005-337559 A

上記のような空調装置によって、熱供給と除湿需要のアンバランスに対応し、民生用各種機器からの廃熱を利用することにより、エネルギー消費を減らすことができるようになったものであるが、この装置においては除湿装置115で室内空気の除湿を行った粒子を粒子溜118に溜めた後直ちに再生装置122に送って粒子の再生を行っていたため、除湿装置5における除湿作用を行った後の粒子には、未だ充分除湿余力のある粒子が多数存在するにもかかわらず、そのまま再生を行っており、粒子の除湿余力を充分生かしていなかった。   With the air conditioner as described above, it has become possible to reduce energy consumption by dealing with the imbalance between heat supply and dehumidification demand and using waste heat from various consumer devices. In this apparatus, the particles that have been dehumidified by the dehumidifier 115 are stored in the particle reservoir 118 and then immediately sent to the regenerator 122 to regenerate the particles. Therefore, the dehumidifier 5 performs the dehumidifying action. Despite the fact that there are still many particles with sufficient dehumidifying capacity, the particles were regenerated as they were, and the dehumidifying capacity of the particles was not fully utilized.

また、前記ロータを用いた物も含め、外気が高温・高湿時には能力不足となり、あるいは高温・低湿時には除湿量が少ないことから空調能力が不足し、冷熱源を別途付加する必要があった。また断熱除湿を行わなければならないことも除湿能力が不足する原因であった。更に、粒子再生も断熱乾燥でローターを乾燥させる必要があり、必要風量が膨大となり排気動力も給気と同程度必要であった。   Further, including those using the rotor, the capacity is insufficient when the outside air is at high temperature and high humidity, or the amount of dehumidification is low at high temperature and low humidity, so the air conditioning capacity is insufficient, and it is necessary to add a cooling source separately. In addition, the need to perform adiabatic dehumidification was a cause of insufficient dehumidification capacity. Furthermore, it is necessary to dry the rotor by adiabatic drying for particle regeneration, and the required air volume is enormous and the exhaust power is required to be about the same as the supply air.

したがって本発明はデシカント空調システムにおいて、吸着式冷凍機を結合することにより空調機能を強化し、除湿部に冷却器を設け、等温除湿を可能とし、更に伝導加熱乾燥を行うことで除湿剤の再生に必要な排気動力をほとんど不要とすることを目的とする。   Therefore, in the desiccant air-conditioning system, the present invention enhances the air-conditioning function by combining an adsorption refrigeration machine, provides a cooler in the dehumidifying section, enables isothermal dehumidification, and further conducts conductive heating drying to regenerate the dehumidifying agent. The purpose is to make almost no exhaust power necessary for the operation.

本発明は前記課題を解決するため、本発明に係る吸着式冷凍機結合デシカント空調方法は、除湿剤粒子によりダクト内を流れる空気中の水分を吸着して除湿し、その後ダクト下部から抜き出した該除湿剤粒子を吸着式冷凍機に導入して、該除湿剤粒子の吸着余力により吸着式冷凍機の蒸発室内蒸気を吸着し、前記除湿剤粒子による蒸発室内蒸気の吸着で生じた低温により生成した冷却水によって、前記ダクト内空気または除湿粒子を冷却することを特徴とする。 In order to solve the above-mentioned problems, the present invention provides an adsorption type refrigerator combined desiccant air-conditioning method according to the present invention that adsorbs moisture in the air flowing in the duct by the dehumidifying agent particles and dehumidifies it, and then extracts it from the lower part of the duct. the dehumidifying agent particles is introduced into the adsorption chiller, it adsorbs evaporated indoor vapor adsorption type refrigerator by adsorption reserve capacity of the dehumidifying agent particles produced by the low temperature generated by the adsorption of the evaporation chamber the steam by the dehumidifying agent particles The air in the duct or the dehumidifying agent particles is cooled by cooling water.

また、本発明に係る他の吸着式冷凍機結合デシカント空調方法は、前記吸着式冷凍機結合デシカント空調方法において、前記除湿剤粒子によるダクト内空気中の水分の吸着除湿時には、冷却水供給源からの冷却水により冷却することで等温除湿を行うことを特徴とする。   Further, another adsorption type refrigerator combined desiccant air-conditioning method according to the present invention is the above-described adsorption type refrigerator combined desiccant air conditioning method, wherein the moisture in the air in the duct is adsorbed and dehumidified by the dehumidifying agent particles from the cooling water supply source. It is characterized by performing isothermal dehumidification by cooling with cooling water.

また、本発明に係る吸着式冷凍機結合デシカント空調装置は、ダクト内を流れる空気中の水分を吸着して除湿する除湿剤粒子を、ダクト内上部に供給し降下させる除湿剤粒子供給部と、前記空気中の水分を吸着した前記除湿剤粒子をダクト下部から抜き出して導入し、該除湿剤粒子による蒸発室の蒸気吸着で生じた低温により冷却水を生成する吸着式冷凍機と、前記吸着式冷凍機で生成した冷却水を導入し、前記ダクト内空気または前記除湿粒子を冷却する除湿空気冷却用熱交換器と、前記吸着式冷凍機の該除湿剤粒子を導入して再生する再生器とを備えたことを特徴とする。 Further, the adsorption-type refrigerator combined desiccant air conditioner according to the present invention is a dehumidifying agent particle supply unit for supplying and lowering dehumidifying agent particles that adsorb moisture in the air flowing in the duct and dehumidify it to the upper part in the duct, the dehumidifying agent particles moisture adsorbed to the air introducing withdrawn from the duct bottom, and the adsorption chiller that produces cooling water by a low temperature generated in the evaporation chamber of a steam adsorption by the dehumidifying agent particles, the adsorption type the cooling water produced by the refrigerator is introduced, and the dehumidified air cooling heat exchanger for cooling the duct air or the dehumidifying agent particles, reproduces by introducing the dehumidifying agent particles of the sorption refrigerator regenerator It is characterized by comprising.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、ダクト内を流れる空気中の水分を前記除湿剤粒子により除湿する除湿部に、冷却水供給源からの冷却水により冷却する除湿空気冷却用熱交換器を設け、該冷却用熱交換器による冷却によって等温除湿を可能としたことを特徴とする。 Further, another adsorption chiller-coupled desiccant air conditioner according to the present invention is the above-described adsorption refrigeration machine-coupled desiccant air conditioner, wherein the moisture in the air flowing in the duct is cooled to a dehumidifying part that dehumidifies with the dehumidifier particles. A heat exchanger for dehumidifying air cooling that is cooled by cooling water from a water supply source is provided, and isothermal dehumidification is enabled by cooling by the cooling heat exchanger.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記吸着式冷凍機の蒸発室における前記除湿剤粒子入口と出口とにロックホッパーバルブを設けるとともに、該蒸発室に減圧装置を連結し、前記両バルブの閉鎖と前記減圧装置の作動により前記蒸発室を減圧して低温の冷却水を生成することを特徴とする。 Another adsorption refrigeration combined desiccant air conditioner according to the present invention includes a lock hopper at the inlet and the outlet of the dehumidifying agent particles in the evaporation chamber of the adsorption refrigeration unit. provided with a valve, connecting the decompressor to the evaporation chamber, and generating a low-temperature cooling water said under reduced pressure the evaporation chamber by the operation of the closure and the pressure reducing device between the two valve.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記吸着式冷凍機において蒸気を吸着し高温となった前記除湿剤粒子の熱を、前記再生器の加熱熱源として用いる熱交換手段を備えたことを特徴とする。 Further, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is the adsorption type refrigerator combined desiccant air conditioner in the adsorption type refrigerator combined desiccant air conditioner, which absorbs the vapor in the adsorption type refrigerator and heats the dehumidifying agent particles that have become high temperature. The heat exchanger is used as a heating heat source for the regenerator.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記再生器の加熱源として、外部システムの廃熱を用いることを特徴とする。   Further, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is characterized in that in the adsorption type refrigerator combined desiccant air conditioner, waste heat of an external system is used as a heating source of the regenerator.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記吸着式冷凍機の蒸発室内の除湿剤粒子中を通過して蒸気を吸着し温度上昇した空気を、前記再生器の底部から吹き込み、前記再生器内の除湿剤粒子を流動化して加熱再生することを特徴とする。 Further, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is the adsorption type refrigerator combined desiccant air conditioner that adsorbs vapor through the dehumidifying agent particles in the evaporation chamber of the adsorption type refrigerator. the increased temperature air, blown from the bottom of the regenerator, characterized by thermal regeneration fluidized dehumidifying agent particles in the regenerator.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿剤粒子供給部は、前記除湿粒子をダクト内上部から降下させることを特徴とする。 Another adsorption chillers binding desiccant air-conditioning apparatus according to the present invention, in the suction chillers binding desiccant air-conditioning apparatus, said dehumidifying agent particle supply section, that lowering the dehumidifying agent particles from the upper duct Features.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿剤粒子供給部をダクト上部に配置し、該除湿剤粒子供給部からの除湿剤粒子をダクト内上部から自然落下により降下させることを特徴とする。 Another adsorption chillers binding desiccant air-conditioning apparatus according to the present invention, in the suction chillers binding desiccant air-conditioning apparatus, said dehumidifying agent particle supply section placed on the duct upper part, from the dehumidifying agent particles supply unit The dehumidifying agent particles are caused to fall from the upper part in the duct by natural fall.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記粒子供給部をダクト下部に配置し、該粒子供給部からダクト内上部に粒子を搬送する粒子搬送装置を設けたことを特徴とする。 Further, another adsorption refrigeration machine combined desiccant air conditioner according to the present invention is the adsorption refrigeration machine combination desiccant air conditioner, wherein the particle supply unit is arranged at a lower part of the duct, and particles are arranged from the particle supply unit to an upper part of the duct. it characterized in that a particle transfer device for transferring the.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿剤粒子搬送装置は、粒子噴射用ノズルであることを特徴とする。 In addition, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is characterized in that in the adsorption type refrigerator combined desiccant air conditioner, the dehumidifying agent particle conveying device is a nozzle for particle injection.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿剤粒子搬送装置は、粒子噴射用回転羽根車であることを特徴とする。 Another adsorption chillers binding desiccant air-conditioning apparatus according to the present invention, in the suction chillers binding desiccant air-conditioning apparatus, prior Symbol dehumidifying agent particle conveying device, a feature that it is a rotating impeller for particle injection To do.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿剤粒子搬送装置は、前記除湿剤粒子供給部の粒子を汲み取り、ダクト上部に搬送する金網製パケットであることを特徴とする。 Further, another adsorption refrigeration unit combined desiccant air conditioner according to the present invention is the adsorption refrigeration unit combination desiccant air conditioner, wherein the dehumidifying agent particle conveying device pumps particles of the dehumidifying agent particle supply unit, and the upper part of the duct It is characterized in that it is a packet made of wire mesh to be conveyed to.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記除湿空気冷却用熱交換器は、前記除湿剤粒子供給部内または前記ダクト内を流れる空気中の水分を前記除湿剤粒子により除湿する除湿部に配置し、除湿速度を等温除湿よりもさらに促進させたことを特徴とする。 Further, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is the adsorption type refrigerator combined desiccant air conditioner, wherein the dehumidified air cooling heat exchanger is disposed in the dehumidifier particle supply unit or in the duct. It is characterized in that the moisture in the flowing air is disposed in a dehumidifying part that dehumidifies with the dehumidifying agent particles , and the dehumidifying rate is further promoted than the isothermal dehumidification.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、前記再生部では伝導加熱を行い、粒子再生用必要風量を削減することを特徴とする。   Further, another adsorption type refrigerator combined desiccant air conditioner according to the present invention is characterized in that, in the adsorption type refrigerator combined desiccant air conditioner, the regeneration unit performs conduction heating to reduce a necessary air volume for particle regeneration. To do.

また、本発明に係る他の吸着式冷凍機結合デシカント空調装置は、前記吸着式冷凍機結合デシカント空調装置において、室内排気の出口に加湿器と熱交換器を順に設け、前記熱交換器で排気により冷却された冷却水を前記除湿空気冷却用熱交換器に供給することを特徴とする。   Further, another adsorption refrigeration combined desiccant air conditioner according to the present invention is the above-described adsorption refrigeration combined desiccant air conditioner, wherein a humidifier and a heat exchanger are provided in order at the outlet of the indoor exhaust, and the heat exchanger exhausts the air. The cooling water cooled by the above is supplied to the heat exchanger for cooling the dehumidified air.

本発明は上記のように構成したので、デシカント空調装置において、吸着式冷凍機を結合することにより粒子の除湿余力を充分生かし、全体として効率の良いデシカント空調装置とすることができ、また、除湿だけでなく、温度を低下させることができるため高温・高湿時にも空調能力が低下せず、デシカント空調装置の冷却能力不足を解消できる。また、従来のロータ式デシカント空調は除湿のみに使われ、冷凍機を別途必要とする場合が多かったが、温度制御機能が強化されたことにより単独の空調機として導入されやすくなる。   Since the present invention is configured as described above, in the desiccant air conditioner, an adsorption type refrigerator can be combined to fully utilize the dehumidification surplus of the particles, and the desiccant air conditioner can be made efficient as a whole. In addition, since the temperature can be lowered, the air conditioning capacity does not decrease even at high temperatures and high humidity, and the lack of cooling capacity of the desiccant air conditioner can be solved. Further, the conventional rotor type desiccant air conditioner is used only for dehumidification and often requires a separate refrigerator, but it is easy to be introduced as a single air conditioner due to the enhanced temperature control function.

本発明は粒子循環型デシカント空調システムにおいて、吸着式冷凍機を結合することにより粒子の除湿余力を充分生かし、全体として効率の良いデシカント空調システムとするため、除湿剤粒子によりダクト内を流れる空気中の水分を吸着して除湿し、その後ダクト下部から抜き出した該粒子を吸着式冷凍機に導入して、該粒子の吸着余力により吸着式冷凍機の蒸発室内蒸気を吸着し、前記粒子による蒸発室内蒸気の吸着で生じた低温により生成した冷却水によって、前記ダクト内で除湿後の空気を冷却するようにしたものである。
その際、前記除湿剤粒子によるダクト内空気中の水分の吸着除湿時には、冷却水供給源からの冷却水により冷却することで等温除湿を行うことができるようにする。
In the particle circulation type desiccant air-conditioning system, the adsorption-type refrigerator is combined to sufficiently utilize the dehumidification surplus capacity of the particles, so that the desiccant air-conditioning system is efficient as a whole. Then, the particles extracted from the lower portion of the duct are introduced into an adsorption refrigerator, and the vapor in the evaporation chamber of the adsorption refrigerator is adsorbed by the residual adsorption capacity of the particles, The dehumidified air is cooled in the duct by cooling water generated at a low temperature generated by the adsorption of steam.
At that time, when the moisture in the air in the duct is adsorbed and dehumidified by the dehumidifying agent particles, isothermal dehumidification can be performed by cooling with cooling water from a cooling water supply source.

本発明の実施例を図面に沿って説明する。図1は本発明による粒子循環型デシカント空調装置の一実施例を模式的に示している。図1(a)の例においては、空気供給ダクト1の空気取り込み口2と除湿空気出口3との間に、取り込んだ空気をクーリングタワーなどからの冷却水により冷却する取り込み空気冷却用熱交換器4、空気供給ダクト上方から粒子を自由落下、或いはゆっくり降下させてダクトを流れる空気中の水分を吸着する除湿部5、除湿された空気を後述するような冷却水で冷却する除湿空気冷却用熱交換器6を順に配置した例を示している。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an embodiment of a particle circulation type desiccant air conditioner according to the present invention. In the example of FIG. 1A, an intake air cooling heat exchanger 4 that cools the intake air with cooling water from a cooling tower or the like between the air intake port 2 and the dehumidified air outlet 3 of the air supply duct 1. , A dehumidifying unit 5 that adsorbs moisture in the air flowing through the duct by free-falling or slowly dropping particles from above the air supply duct, heat exchange for dehumidified air cooling that cools the dehumidified air with cooling water as described later The example which has arrange | positioned the apparatus 6 in order is shown.

図示したデシカント空調装置においては、供給空気除湿用のデシカント粒子は、粒子供給部としての乾燥粒子供給貯槽7から、空気供給ダクト1の除湿部5の上方に配置した粒子供給口8を介してダクト内に降下させる。その際には粒子を自由落下させ、その落下の過程で空気供給ダクト内を流れる空気中の水分を図2に示すような除湿部冷却器27により一定温度に保ちながら吸着し、ダクト下部に集められる。このように粒子をダクト内で自由落下させると、例えば図4に示すような分配板17を流下させ、その間に空気を通して除湿を行う手法よりも空気の流通抵抗を大きく低下した圧力損失を減少させることができる。そのため他の従来から提案されている各種粒子と空気との接触除湿手法と比較しても、簡単な構造で供給空気の圧損を充分に小さくすることができる。   In the desiccant air conditioner shown in the figure, desiccant particles for supplying air dehumidification are ducted from a dry particle supply storage tank 7 as a particle supplying unit through a particle supply port 8 disposed above the dehumidifying unit 5 of the air supply duct 1. Descent in. In that case, the particles are allowed to fall freely, and moisture in the air flowing in the air supply duct is adsorbed while being kept at a constant temperature by a dehumidifying part cooler 27 as shown in FIG. It is done. When the particles are allowed to fall freely in the duct in this way, for example, the distribution plate 17 as shown in FIG. 4 is caused to flow down, and the pressure loss that greatly reduces the air flow resistance is reduced as compared with the method of dehumidifying through the air. be able to. Therefore, the pressure loss of the supply air can be sufficiently reduced with a simple structure as compared with other conventionally proposed contact dehumidification methods of various particles and air.

上記除湿部5には粒子が自由落下するため、微細化した粒子が室内に供給されないように、また他に飛散しないように必要に応じて金網等の空気のみを透過する隔壁19で囲むことが好ましい。このようにして空気供給ダクト1の下部に集められた粒子には1〜20%程度しか水分が吸着されていないため、未だ水分の吸着余力が充分にある。したがってその粒子は図中供給側弁10を備えている供給管11により、吸着式冷凍機12の蒸発器に送ってこれを利用する。   Since the particles fall freely in the dehumidifying section 5, they can be surrounded by a partition wall 19 that allows only air, such as a wire mesh, to pass therethrough so that the fine particles are not supplied into the room and are not scattered to the other. preferable. Since only about 1 to 20% of moisture is adsorbed to the particles collected in the lower part of the air supply duct 1 in this way, there is still sufficient moisture adsorption capacity. Therefore, the particles are sent to the evaporator of the adsorption refrigeration machine 12 through the supply pipe 11 provided with the supply side valve 10 in the figure and used.

吸着式冷凍機12は蒸発器の凝縮器を用いた周知の種々のものを用いることができるが、例えば、容器内に供給する上記吸着性粒子によって容器内の水蒸気を吸着し、それにより生じる水分の蒸発促進効果によって、水分蒸発部分の冷却を行う、という作用を行う吸着式冷凍機を用いることができる。したがってこの実施例においてもその作用を用い、吸着式冷凍機12の蒸発器内に蒸発用熱交換器13を設け、内部を流れる水を冷却可能とし、得られた冷却水を他に供給可能としている。   As the adsorption refrigerator 12, various well-known devices using a condenser of an evaporator can be used. For example, the water vapor generated by adsorbing water vapor in the container by the adsorbent particles supplied into the container is used. An adsorption refrigerator that performs the action of cooling the water evaporation portion due to the evaporation promoting effect of can be used. Therefore, also in this embodiment, using this action, an evaporation heat exchanger 13 is provided in the evaporator of the adsorption refrigeration machine 12 so that the water flowing inside can be cooled, and the obtained cooling water can be supplied elsewhere. Yes.

図示実施例ではその冷却水を空気供給ダクト1の除湿空気出口3側に設けた除湿空気冷却用熱交換器6との間で循環させる。それにより、前記のように空気中の水分を吸着した後の、未だ水分吸着能力のある粒子を、供給管11から吸着式冷凍機12に供給させることによって内部空間の水蒸気を吸着させて、蒸発冷却器として作用する蒸発用熱交換器13の周囲の水分を蒸発させ、蒸発用熱交換器13内を流れる水を冷却し、除湿空気冷却用熱交換器6に供給する。それにより空気供給ダクト1において室内に供給される空気は冷却され冷房負荷を減少させる。また、除湿空気冷却用熱交換器6で空気を冷却した冷却水は、再び吸着式冷凍機2の蒸発用熱交換器13に戻して循環させる。   In the illustrated embodiment, the cooling water is circulated between the dehumidified air cooling heat exchanger 6 provided on the dehumidified air outlet 3 side of the air supply duct 1. As a result, after the moisture in the air is adsorbed as described above, the particles still having the ability to adsorb moisture are supplied from the supply pipe 11 to the adsorption refrigerator 12 to adsorb the water vapor in the internal space and evaporate. The water around the evaporating heat exchanger 13 acting as a cooler is evaporated, the water flowing in the evaporating heat exchanger 13 is cooled, and supplied to the dehumidified air cooling heat exchanger 6. As a result, the air supplied to the room in the air supply duct 1 is cooled to reduce the cooling load. Further, the cooling water whose air has been cooled by the heat exchanger 6 for cooling the dehumidified air is returned to the evaporation heat exchanger 13 of the adsorption refrigerator 2 and circulated again.

このような水分吸着粒子の吸着能力利用システムを構成することにより、ダクト内の空気を除湿した後の未だ充分水分吸着能力のある粒子を、吸着式冷凍機の水蒸気吸着に用いて冷却水を供給可能とし、その冷却水を除湿空気の冷却用に用い、室内に供給する空気の冷却のために用いることができ、効率的な空調装置とすることができる。特にこのデシカント空調装置において、ダクト内の水分を粒子によって吸着を行った後は、吸着熱により温度が上昇するので、その空気を冷却することが好ましいため、空気冷却用熱交換は吸着部5の空気流下流に設ける。   By constructing a system that uses the adsorption capacity of such moisture adsorption particles, supply the cooling water by using the particles still having sufficient moisture adsorption capacity after dehumidifying the air in the duct for water vapor adsorption of the adsorption refrigerator. The cooling water can be used for cooling the dehumidified air and can be used for cooling the air supplied to the room, so that an efficient air conditioner can be obtained. In particular, in this desiccant air conditioner, after the moisture in the duct is adsorbed by the particles, the temperature rises due to the heat of adsorption. Therefore, it is preferable to cool the air. Provide downstream of the air flow.

吸着式冷凍機12内で特に蒸発用熱交換器13の周囲の水分を充分吸着し、ほぼ水分吸着余力の無くなった粒子は、図中排出側弁14を備えている排出管15から粒子再生器16に供給される。粒子再生器16には必要に応じて前記図4の従来例のような、外部システムで不要となった廃熱を利用した加熱器17を設け、粒子の温度を上昇させることにより吸着した水分を放出させ、粒子の吸着能力を再生させる。このようにして放出された水分は、凝縮器18で凝縮し、凝縮後の水を蒸発用熱交換器13に戻し、前記のような吸着余力のある粒子による吸着用水分として用いる。この凝縮器18の冷熱源として、前記蒸発用熱交換器13により得られた冷却水の一部を利用することもできる。   In the adsorption refrigeration machine 12, in particular, the water around the evaporating heat exchanger 13 is sufficiently adsorbed, and the particles having almost no water adsorption capacity are removed from the discharge pipe 15 provided with the discharge side valve 14 in the figure. 16 is supplied. If necessary, the particle regenerator 16 is provided with a heater 17 that uses waste heat that is no longer necessary in the external system, as in the conventional example of FIG. 4, and adsorbs moisture by raising the temperature of the particles. Release and regenerate the adsorption capacity of the particles. The water released in this way is condensed in the condenser 18, and the condensed water is returned to the evaporating heat exchanger 13 and used as the moisture for adsorption by the particles having the above-mentioned adsorption capacity. A part of the cooling water obtained by the evaporating heat exchanger 13 can be used as a cooling heat source for the condenser 18.

更に、吸着式冷凍機12内で水分を吸着した粒子は温度が上昇するため、その粒子が貯溜されている部分が高温となる。したがってその部分に流体が流通する熱交換器を設け、粒子の熱を除去して吸着効率を向上させると共に、温度が上昇した流体を粒子再生器16内の熱交換器に導いて循環可能とし、粒子再生器16における粒子加熱用の熱源として利用することも可能である。特に吸着式冷凍機12と粒子再生器16とが近接配置が可能なときには、吸着式冷凍機12において水分吸着により発生した熱をそのまま粒子再生器16における再生用熱として用いることができ、簡単で且つ効率的な装置とすることができる。   Furthermore, since the temperature of the particles that have adsorbed moisture in the adsorption refrigerator 12 rises, the portion where the particles are stored becomes high temperature. Therefore, a heat exchanger through which the fluid flows is provided in that part, and the heat of the particles is removed to improve the adsorption efficiency, and the fluid whose temperature has been raised is led to the heat exchanger in the particle regenerator 16 to be circulated, It can be used as a heat source for heating particles in the particle regenerator 16. In particular, when the adsorption refrigeration machine 12 and the particle regenerator 16 can be arranged close to each other, the heat generated by moisture adsorption in the adsorption refrigeration machine 12 can be used as heat for regeneration in the particle regenerator 16 as it is. And it can be set as an efficient apparatus.

また、吸着部5における粒子による吸着能力は粒子の温度が低い方が吸着能力が高いので、再生により高温になった乾燥粒子を、低温の室内空気を取り込んでいる再生粒子冷却用熱交換器で室内空気と熱交換して冷却し、それを乾燥粒子供給貯槽7に供給するようにしても良い。あるいは、クーリングタワーなどからの冷却水で冷却しても良い。このような乾燥粒子の供給に際しては、空気流に搬送させる空気輸送方式、真空ポンプで吸引する方式、或いはコンベア輸送、パケット輸送等の各種機械的輸送手段を用いることができる。   Moreover, since the adsorption capacity by the particles in the adsorption unit 5 is higher when the temperature of the particles is lower, the dried particles that have become hot due to the regeneration are replaced with a regenerative particle cooling heat exchanger that takes in the low-temperature indoor air. It may be cooled by exchanging heat with room air and supplied to the dry particle supply storage tank 7. Or you may cool with the cooling water from a cooling tower. In supplying such dry particles, it is possible to use an air transportation method in which the particles are transported in an air stream, a suction method using a vacuum pump, or various mechanical transportation means such as conveyor transportation and packet transportation.

吸着式冷凍機12においては、図示するような2つ1組とした供給側弁10、10’と同様に2つ1組とした排出側弁14、14’を備えるときには、これらをロックホッパーとして作用させ、両弁を閉じた状態で図示されていない真空ポンプを作動して内部の圧力を低下させる。吸着式冷凍機12内と同圧になった時に供給弁10’を開けて粒子を12内に供給する。また、排出弁側も12内と同圧になった時に14’を開放して粒子を抜き取る。それにより蒸発用熱交換器は低圧で蒸発が行われるため蒸発能力が高く、低温の冷却水を生成することが可能となり、空調装置の冷却を効果的に行うことができる。この作用を行った後、ロックホッパーを操作して吸着式冷凍機12内に再び粒子を充填・抜き取る、という作動を繰り返す。   When the adsorption refrigerator 12 is provided with two discharge side valves 14 and 14 ′ in the same manner as the pair of supply side valves 10 and 10 ′ as shown in the figure, these are used as lock hoppers. The vacuum pump (not shown) is operated with both valves closed to lower the internal pressure. When the same pressure as in the adsorption refrigerator 12 is reached, the supply valve 10 ′ is opened to supply particles into the 12. Further, when the pressure on the discharge valve side becomes the same as that in the inside, 14 'is opened and the particles are extracted. As a result, the evaporation heat exchanger is evaporated at a low pressure, and thus has a high evaporation capability, can generate low-temperature cooling water, and can effectively cool the air conditioner. After performing this action, the operation of operating the lock hopper to refill and withdraw particles from the adsorption refrigerator 12 is repeated.

前記実施例においては、空気供給用ダクト1を水平に配置した中で粒子を自由落下させた例を示したが、空気供給ダクト1を適宜の傾斜状態に設置しても実施することができ、また水平に配置した空気供給用ダクト1内において、空気を適宜の傾斜状体で供給して自由落下させても良い。   In the above-described embodiment, an example in which particles are freely dropped while the air supply duct 1 is disposed horizontally is shown, but the air supply duct 1 can be implemented even when installed in an appropriate inclined state. Further, in the air supply duct 1 arranged horizontally, air may be supplied by an appropriate inclined body and allowed to fall freely.

図1(b)には他の態様を示しており、吸着式冷凍機12の蒸発室と再生器16の底部開口22とを空気供給管20で連結し、空気供給管20にブロワ24を設け、再生器16の底部に空気吹き出し口23を設ける。このような装置において、ブロワ24を駆動して再生器16底部において水分吸着により高温で低湿度になった粒子の間を通った空気を、再生器16の底部から高速で吹き込むと、再生器16内の粒子は流動化し、その流動状体で吹き込まれた高温の空気と接触し、効率よく熱交換を行う。このようなシステムの作動に際して、必要に応じて吸着式冷凍機12に空気供給口21を、また再生器16に排出口25を設ける。   FIG. 1B shows another embodiment, in which the evaporation chamber of the adsorption refrigerator 12 and the bottom opening 22 of the regenerator 16 are connected by an air supply pipe 20, and a blower 24 is provided in the air supply pipe 20. An air outlet 23 is provided at the bottom of the regenerator 16. In such an apparatus, when the blower 24 is driven and air that has passed through the particles that have become high temperature and low humidity due to moisture adsorption at the bottom of the regenerator 16 is blown from the bottom of the regenerator 16 at a high speed, the regenerator 16. The particles inside are fluidized and come into contact with the high-temperature air blown by the fluidized body to efficiently exchange heat. When operating such a system, an air supply port 21 is provided in the adsorption refrigerator 12 and a discharge port 25 is provided in the regenerator 16 as necessary.

図1に示すシステムにおいては吸着式冷凍機を結合することにより、粒子の除湿余力を充分生かすことができるシステムとすることができるものであるが、更に図2に示すように、クーリングタワー26等の冷却水供給源からの冷却水により冷却する除湿部冷却器27を設けることにより、等温除湿を行うことができるようにすると、より効率的な吸着式冷凍機結合デシカント空調システムとすることができる。   In the system shown in FIG. 1, it is possible to make a system that can fully utilize the dehumidification surplus of the particles by combining the adsorption refrigerator, but as shown in FIG. If an isothermal dehumidification can be performed by providing the dehumidifying part cooler 27 that cools with cooling water from a cooling water supply source, a more efficient adsorption refrigeration combined desiccant air conditioning system can be obtained.

即ち、図2に示す例においては、別途設けたクーリングタワー26で冷却した後の冷却水を、前記図1の例と同様に取り込み空気冷却用熱交換器4に供給する。また、空気供給ダクト上方から粒子を自由落下、或いはゆっくり降下させてダクトを流れる空気中の水分を吸着する除湿部5に除湿部冷却器27を設け、この除湿部冷却器27にも冷却水を供給して等温除湿を可能としている。このような等温除湿は断熱除湿と比較して高効率で除湿を行うことが広く知られており、図2に示す装置においてはこのような等温除湿を行うことが可能となる。また、除湿速度を等温除湿よりも更に促進させることも可能である。前記の例ではクーリングタワーを用いて冷却したものであるが、その他別途設けた蒸気圧縮式冷凍機、吸収式冷凍機、吸着式冷凍機等を用いることもできる。   That is, in the example shown in FIG. 2, the cooling water after cooling by the separately provided cooling tower 26 is taken in and supplied to the air cooling heat exchanger 4 as in the example of FIG. Further, a dehumidifying part cooler 27 is provided in the dehumidifying part 5 that adsorbs moisture in the air flowing through the duct by allowing particles to freely fall or slowly descend from above the air supply duct, and the dehumidifying part cooler 27 is also supplied with cooling water. Supplying it enables isothermal dehumidification. Such isothermal dehumidification is widely known to perform dehumidification with higher efficiency than adiabatic dehumidification, and the apparatus shown in FIG. 2 can perform such isothermal dehumidification. It is also possible to further accelerate the dehumidification rate than the isothermal dehumidification. In the above example, the cooling is performed by using a cooling tower, but a vapor compression refrigerator, an absorption refrigerator, an adsorption refrigerator, or the like provided separately can also be used.

図3に示す例においては、吸着式冷凍機12で得られた冷却水を、除湿部冷却器27に供給して前記と同様に等温除湿を行うことができるようにし、更に前記図1と同様に再生粒子冷却用熱交換器4’を設け、更に乾燥粒子供給貯槽7内に乾燥粒子冷却用熱交換器28を設けた例を示している。この例においては、再生粒子返送ラインの途中に再生粒子冷却用熱交換器4’を設けることにより、乾燥粒子供給貯槽7に送る途中において再生粒子を冷却し、更に乾燥粒子供給貯槽7内の乾燥粒子冷却用熱交換器28により、吸着式冷凍機12で発生した冷熱を利用して更に冷却している。   In the example shown in FIG. 3, the cooling water obtained by the adsorption refrigeration machine 12 is supplied to the dehumidifying section cooler 27 so that the isothermal dehumidification can be performed in the same manner as described above. In this example, a heat exchanger 4 ′ for regenerated particle cooling is provided, and a heat exchanger 28 for cooling dry particles is further provided in the dry particle supply storage tank 7. In this example, the regenerated particle cooling heat exchanger 4 ′ is provided in the middle of the regenerated particle return line, so that the regenerated particles are cooled while being sent to the dry particle supply storage tank 7, and the dry particles in the dry particle supply storage tank 7 are further dried. The particle cooling heat exchanger 28 further cools using the cold generated in the adsorption refrigerator 12.

このような粒子冷却装置を用いることにより、吸着部5における粒子による吸着能力は粒子の温度が低い方が吸着能力が高いため、再生により高温になった乾燥粒子を前記のように冷却し、吸着能力を高めている。なお、前記再生粒子冷却用熱交換器4’の冷却に際しては、図2に示したようなクーリングタワー26からの冷熱を用いて冷却しても良い。この図3に示す例においても、前記図2の例と同様に除湿部冷却器27を設けているが、図3の例においては除湿部冷却器27に吸着式冷凍機で発生した冷熱を用いて冷却する例を示している。   By using such a particle cooling device, the adsorption capacity by the particles in the adsorption unit 5 is higher when the temperature of the particles is lower. Therefore, the dried particles that have become hot due to regeneration are cooled and adsorbed as described above. I am raising my ability. In the cooling of the regenerative particle cooling heat exchanger 4 ′, the regenerative particle cooling heat exchanger 4 ′ may be cooled using cold heat from the cooling tower 26 as shown in FIG. 2. In the example shown in FIG. 3 as well, the dehumidifying part cooler 27 is provided in the same manner as in the example of FIG. 2. However, in the example of FIG. 3, the dehumidifying part cooler 27 uses the cold generated by the adsorption refrigerator. Shows an example of cooling.

図4には更に他の例として、粒子再生器16における再生用の加熱器17として、室内空気の排気を用いるほか、伝導加熱器17’を設けた例を示している。伝導加熱器17’としては種々のものを用いることができるが、例えば前記のように外部の排熱を利用することができ、温水や加熱蒸気を供給する熱交換器等を配置しても良い。また、必要に応じて電熱器を用いても良い。   As another example, FIG. 4 shows an example in which exhaust air from room air is used as a heater 17 for regeneration in the particle regenerator 16, and a conductive heater 17 'is provided. Although various things can be used as the conduction heater 17 ', for example, as described above, external exhaust heat can be used, and a heat exchanger or the like for supplying hot water or heating steam may be disposed. . Moreover, you may use an electric heater as needed.

このように再生部に伝導加熱を併用することにより粒子再生用の必要風量を削減し、再生用空気として室内49からの排気の全量を使用しなくてすむようにしたことで、給気送風機と同程度必要であった排風機30の消費電力をほとんどカットすることができる。それにより、室内の排気は自然排気や換気扇などの低消費電力によって作動する排風機30を用いることができるようになる。更に、室内からの排気を除湿剤再生部から排出される高温排気を混合するように排気筒を配置することにより、排風機を不要にし、或いは極めて小型の排風機のみですませ、消費電力を低減するようにしても良い。   In this way, the necessary air volume for particle regeneration is reduced by using conductive heating in combination with the regeneration section, and it is not necessary to use the entire amount of exhaust from the room 49 as regeneration air. The power consumption of the exhaust fan 30 that is necessary to some extent can be cut off. As a result, the exhaust fan 30 that operates with low power consumption, such as natural exhaust or a ventilation fan, can be used for indoor exhaust. Furthermore, by arranging the exhaust pipe so that the exhaust from the room is mixed with the high-temperature exhaust exhausted from the dehumidifying agent regeneration unit, the exhaust fan is unnecessary, or only a very small exhaust fan is used, reducing power consumption. You may make it do.

図5には更に他の例として、室内49の空気を排気する排風機30の出口ダクト53に加湿器51と、フィンプレートやヒートパイプ等の低圧損の熱交換器52を順に設け、室内空気がもっている低温度と加湿器による気化熱によって冷水を作り、ここで得られた冷水によって図5に示す例においては、クーリングタワー26で冷却した水を冷却器53で更に冷却可能とし、取り込み空気冷却用熱交換器4、及び除湿部冷却器7において、より低温に冷却することができるようにしている。   In FIG. 5, as another example, a humidifier 51 and a low pressure loss heat exchanger 52 such as a fin plate or a heat pipe are provided in this order in the outlet duct 53 of the exhaust fan 30 that exhausts the air in the room 49. In the example shown in FIG. 5, the water cooled by the cooling tower 26 can be further cooled by the cooler 53 in the example shown in FIG. 5 by the low temperature and the heat of vaporization by the humidifier. In the heat exchanger 4 for use and the dehumidifying part cooler 7, the cooling can be performed at a lower temperature.

前記実施例においては、空気供給ダクト1内に粒子を、単に上方から自由落下させた例を示したが、その他例えば図6に示すように、空気供給ダクト1の下方に粒子供給部31を設け、内部の粒子を空気供給ダクト1の上方に供給する粒子搬送装置を設けても良い。図6(a)に示す粒子搬送装置としては、下端を粒子供給部31内の粒子貯溜部分に挿入した粒子噴出用ノズル32に高圧送風機33を設け、粒子噴出ノズル32を空気供給ダクト1内の除湿部5において、ダクト上流の上方に向けて開口するように配置する。粒子供給部31の下面は網等の通気性部材により外部と空気流通可能とし、それにより高圧送風機33を駆動することにより粒子供給部31下方の粒子を外部からの空気と共に吸引し、空気供給ダクト1の除湿部5において、ダクト内の空気流に対向して上方に噴射している。   In the above-described embodiment, an example in which particles are simply dropped freely from above in the air supply duct 1 is shown. However, as shown in FIG. 6, for example, a particle supply unit 31 is provided below the air supply duct 1. In addition, a particle conveying device that supplies the particles inside the air supply duct 1 may be provided. In the particle conveying device shown in FIG. 6A, a high-pressure blower 33 is provided in a particle ejection nozzle 32 having a lower end inserted into a particle storage portion in the particle supply unit 31, and the particle ejection nozzle 32 is disposed in the air supply duct 1. In the dehumidifying part 5, it arrange | positions so that it may open toward the upper upper direction of a duct. The lower surface of the particle supply unit 31 can be air circulated to the outside by a breathable member such as a net, and thereby the high-pressure blower 33 is driven to suck particles below the particle supply unit 31 together with air from the outside, thereby supplying an air supply duct. In the 1 dehumidifying part 5, it sprays upwards facing the air flow in a duct.

除湿部5において下方から上方に、且つ空気流に対向して噴出した粒子は、空気供給ダクト1における除湿部5の部分の断面積が大きいこともあって流速の遅い空気流と接触しながらダクト内を自然落下する。その過程で空気供給ダクト1内に取り込んだ空気を除湿し、除湿作用を行った粒子は空気供給ダクト内の下面に落下する。この落下した粒子は開口34から、空気供給ダクト1の下部に隣接して設けた粒子処理部35における吸着式冷凍機36内に落下する。   The particles ejected from the lower side to the upper side in the dehumidifying part 5 and facing the air flow are in contact with the air flow having a low flow velocity because the cross-sectional area of the dehumidifying part 5 in the air supply duct 1 is large. Naturally falls inside. In the process, the air taken into the air supply duct 1 is dehumidified, and the dehumidified particles fall on the lower surface in the air supply duct. The dropped particles fall from the opening 34 into the adsorption refrigerator 36 in the particle processing unit 35 provided adjacent to the lower part of the air supply duct 1.

粒子処理部35は図6(a)のA−A部分断面として示す(b)の平面図のように内部が4分割され、吸着式冷凍機に落下した未だ水分吸着能力のある粒子は前記図1と同様に内部の蒸気を吸着して吸着式冷凍機36を作動し、その後隣接する再生器37に送られ、外部からの加熱により吸着した水分を放出して再生し、隣接する乾燥粒子貯溜部38に貯溜する。その貯溜乾燥粒子は粒子噴出ノズル32を設けている粒子供給部としての粒子供給室31に送られ、前記のように粒子噴出ノズル32によって空気供給ダクト5に送られ、循環使用される。ここで、1Wは上部にある給気ダクト側壁の投影線の位置を示す。   The particle processing unit 35 is divided into four parts as shown in the plan view of (b) shown as the AA partial cross section in FIG. 1, the internal vapor is adsorbed and the adsorption refrigerator 36 is operated, and is then sent to the adjacent regenerator 37 to release and regenerate the adsorbed moisture by heating from the outside. Store in part 38. The stored dry particles are sent to a particle supply chamber 31 as a particle supply unit provided with a particle jet nozzle 32, and sent to the air supply duct 5 by the particle jet nozzle 32 as described above, and are used in a circulating manner. Here, 1W indicates the position of the projection line on the side of the air supply duct at the top.

吸着式冷凍機36においては、図1の例と同様に、生成された冷却水を除湿空気冷却用熱交換器6に供給し、これを戻して循環させる。再生器37では図1の例と同様に外部の廃熱等を利用して粒子の加熱を行い、必要に応じて前記実施例と同様に内部に凝縮器を設け、凝縮した水を吸着式冷凍機に戻すこともできる。更に、再生器27で再生した粒子を再生粒子冷却用熱交換器4で冷却しても良いことも前記実施例と同様である。また、吸着式冷凍機36の上方に第1シャッター40を配置し、また吸着式冷凍機36と再生器37との連通路に第2シャッター41を配置してこれをロックホッパー式に作動し、吸着式冷凍機36の内部を減圧し、冷却能力を向上させても良い。   In the adsorption refrigeration machine 36, the generated cooling water is supplied to the heat exchanger 6 for cooling the dehumidified air as in the example of FIG. In the regenerator 37, the particles are heated using external waste heat or the like as in the example of FIG. 1, and if necessary, a condenser is provided in the same manner as in the above-described embodiment, and the condensed water is adsorbed by freezing. It can also be returned to the machine. Further, the particles regenerated by the regenerator 27 may be cooled by the regenerative particle cooling heat exchanger 4 as in the above embodiment. In addition, the first shutter 40 is disposed above the adsorption refrigerator 36, and the second shutter 41 is disposed in the communication path between the adsorption refrigerator 36 and the regenerator 37, and this is operated in a lock hopper type. The inside of the adsorption refrigerator 36 may be decompressed to improve the cooling capacity.

図6(a)に示す例においては、粒子供給部31からの乾燥粒子を空気供給ダクト1における除湿部5の上方に搬送するに際して、粒子噴出ノズル32を設けた例を示したが、その他例えば図6(b)に示すように、粒子供給部31の粒子を攪拌羽根で空気供給ダクト1内の上部に射出する粒子射出用回転車45を用いても良い。   In the example shown in FIG. 6A, an example in which the particle ejection nozzle 32 is provided when the dry particles from the particle supply unit 31 are conveyed above the dehumidifying unit 5 in the air supply duct 1 is shown. As shown in FIG. 6B, a particle injection rotating wheel 45 that injects the particles of the particle supply unit 31 to the upper part of the air supply duct 1 with stirring blades may be used.

更に同図(d)に示すように、多数のパケット46を粒子供給部31から空気供給ダクト1内の上方との間に循環するパケット式搬送装置47を設け、粒子供給部21の乾燥粒子を空気供給ダクト1内の上部に搬送し、その上端部でパケットを反転することにより内部の粒子をダクト内にばらまくように構成しても良い。   Further, as shown in FIG. 4D, a packet type conveying device 47 for circulating a large number of packets 46 from the particle supply unit 31 to the upper part in the air supply duct 1 is provided, and the dry particles in the particle supply unit 21 are collected. You may comprise so that an internal particle may be scattered in a duct by conveying to the upper part in the air supply duct 1, and inverting a packet in the upper end part.

また同図(e)に示すように、金網製のパケット48を回転軸49を中心に放射状に配置したパケット式搬送装置50を用い、下部に位置する粒子供給部31の粒子をパケットにくみ取り、上方でパケットから下方のパケットに自重で落下させ、前方を回転する金網製パケットの裏側に落下させて粒子を吸着式冷凍機の蒸発室に排出するように構成しても良い。このように、空気供給ダクト1内で粒子を自由落下させて除湿を行う手法としては、各種の手法を使用することができる。   Also, as shown in FIG. 5 (e), using a packet-type transfer device 50 in which a wire mesh packet 48 is arranged radially around a rotation shaft 49, the particles of the particle supply unit 31 located at the lower part are collected into a packet, It may be configured such that the particles are dropped from the upper packet to the lower packet by its own weight, dropped to the back side of the wire mesh packet rotating forward, and discharged to the evaporation chamber of the adsorption refrigerator. As described above, various methods can be used as a method for performing dehumidification by allowing particles to freely fall in the air supply duct 1.

この実施例においては、空気供給ダクトで自然落下により空気流に対して抵抗の少ない状態で除湿を行った後、未だ水分の吸着能力のある粒子を吸着式冷凍機で利用して冷却水を生成し、この冷却水を除湿後の空気を冷却するために用い、その後この粒子を再生して循環させるに際して、粒子貯溜部を下方に配置し、且つ空気供給ダクトの内部上方にこの粒子を搬送するために、種々の粒子搬送装置を用いたものであるが、その際に吸着式冷凍機36、再生器37、乾燥粒子貯溜部38を隣接して配置し、全体としてコンパクトな粒子処理部とすることができる。なお、図6に示した例においては、乾燥粒子貯溜部38と粒子噴出用ノズル32を設けた粒子供給部31とを別に設けた例を示したが、これらは一体の室としても良い。   In this embodiment, after dehumidifying the air supply duct with a low resistance to the air flow due to natural fall in the air supply duct, cooling water is generated by using particles that still have the ability to adsorb moisture in the adsorption refrigerator. The cooling water is used to cool the air after dehumidification, and then, when the particles are regenerated and circulated, the particle reservoir is disposed below and the particles are transported above the air supply duct. For this purpose, various particle conveying devices are used. At that time, the adsorption refrigerator 36, the regenerator 37, and the dry particle storage unit 38 are arranged adjacent to each other to form a compact particle processing unit as a whole. be able to. In the example shown in FIG. 6, an example in which the dry particle storage unit 38 and the particle supply unit 31 provided with the particle ejection nozzle 32 are separately provided is shown, but these may be an integral chamber.

前記各実施例においては、空気供給ダクト内の水分を除湿剤粒子で吸着するに際して、ダクト上方から降下させる例として種々のものを示したが、本発明において空気中の水分を吸着する余力が発生しやすい例として前記のような実施例を示したものであり、その他本発明者等が既に開示している流動層方式等、各種の除湿手法を採用することもできる。   In each of the above-described embodiments, various examples are shown in which the moisture in the air supply duct is lowered from above the duct when adsorbing the moisture in the air supply duct with the dehumidifying agent particles. The above-mentioned embodiment is shown as an easy example, and various other dehumidification methods such as a fluidized bed method already disclosed by the present inventors can also be adopted.

この実施例においても前記実施例と同様に種々の態様で実施することができるものであるが、例えば図7に示すように、クーリングタワー26からの冷却水を供給する除湿部冷却器27を設け、また吸気を冷却する空気冷却用熱交換器4にも冷却水を供給して、前記図2に示す例のように実施することもできる。それにより前記図2に示す例と同様に、除湿部冷却器27で除湿部を冷却することにより等温除湿を可能とし、また、除湿速度を等温除湿よりも更に促進させることも可能となる。   In this embodiment, it can be carried out in various manners as in the previous embodiment. For example, as shown in FIG. 7, a dehumidifying section cooler 27 for supplying cooling water from the cooling tower 26 is provided. Also, the cooling water can be supplied to the air cooling heat exchanger 4 for cooling the intake air, and the embodiment shown in FIG. Accordingly, similar to the example shown in FIG. 2, isothermal dehumidification can be performed by cooling the dehumidifying unit with the dehumidifying unit cooler 27, and the dehumidifying rate can be further promoted than the isothermal dehumidification.

本発明の第1実施例の概要図である。It is a schematic diagram of the 1st example of the present invention. 同実施例の他の態様の概要図である。It is a schematic diagram of the other aspect of the Example. 同実施例の更に他の態様の概要図である。It is a schematic diagram of the further another aspect of the Example. 同実施例の更に他の態様の概要図である。It is a schematic diagram of the further another aspect of the Example. 同実施例の更に他の態様の概要図である。It is a schematic diagram of the further another aspect of the Example. 本発明の第2実施例の概要図である。It is a schematic diagram of 2nd Example of this invention. 同実施例の他の態様の概要図である。It is a schematic diagram of the other aspect of the Example. 従来例を示す概要図である。It is a schematic diagram which shows a prior art example. 本発明者等が提案しているデシカント空調装置の実施例を示す図である。It is a figure which shows the Example of the desiccant air conditioner which the present inventors etc. have proposed.

符号の説明Explanation of symbols

1 空気供給ダクト
2 空気取り込み口
3 除湿空気出口
4 取り込み空気冷却用熱交換器
4’再生粒子冷却用熱交換器
5 除湿部
6 除湿空気冷却用熱交換器
7 乾燥粒子供給貯槽
8 粒子供給口
10 供給側弁
11 供給管
12 吸着式冷凍機
13 蒸発用熱交換器
14 排出側弁
15 排出管
16 粒子再生器
17 加熱器
18 凝縮器
19 隔壁
20 空気供給管
21 空気供給口
22 開口
23 空気吹き出し口
24 ブロワ
25 排出口
DESCRIPTION OF SYMBOLS 1 Air supply duct 2 Air intake port 3 Dehumidification air exit 4 Heat exchanger for intake air cooling 4 'Heat exchanger for cooling regenerative particles 5 Dehumidification part 6 Heat exchanger for dehumidification air cooling 7 Dry particle supply storage tank 8 Particle supply port 10 Supply side valve 11 Supply pipe 12 Adsorption type refrigerator 13 Evaporation heat exchanger 14 Ejection side valve 15 Discharge pipe 16 Particle regenerator 17 Heater 18 Condenser 19 Bulkhead 20 Air supply pipe 21 Air supply port 22 Opening 23 Air outlet 24 Blower 25 Discharge port

Claims (17)

除湿剤粒子によりダクト内を流れる空気中の水分を吸着して除湿し、
その後ダクト下部から抜き出した該除湿剤粒子を吸着式冷凍機に導入して、該除湿剤粒子の吸着余力により吸着式冷凍機の蒸発室内蒸気を吸着し、
前記除湿剤粒子による蒸発室内蒸気の吸着で生じた低温により生成した冷却水によって、前記ダクト内空気または前記除湿粒子を冷却することを特徴とする吸着式冷凍機結合デシカント空調方法。
Dehumidifier particles adsorb moisture in the air flowing through the duct to dehumidify,
Then the dehumidifying agent particles withdrawn from the lower duct portion is introduced into the adsorption chiller, it adsorbs evaporated indoor vapor adsorption type refrigerator by adsorption margin of該除humectant particles,
By the cooling water generated by a low-temperature occurring in the adsorption of the evaporation chamber the steam by the dehumidifying agent particles, adsorption chillers binding desiccant air-conditioning method characterized by cooling the duct air or the dehumidifying agent particles.
前記除湿剤粒子によるダクト内空気中の水分の吸着除湿時には、冷却水供給源からの冷却水により冷却することで等温除湿を行うことを特徴とする請求項1記載の吸着式冷凍機結合デシカント空調方法。   The adsorption refrigeration unit combined desiccant air-conditioner according to claim 1, wherein the dehumidifying agent-coupled desiccant air-conditioner performs isothermal dehumidification by cooling with cooling water from a cooling water supply source when moisture in the air in the duct is adsorbed and dehumidified by the dehumidifying agent particles. Method. ダクト内を流れる空気中の水分を吸着して除湿する除湿剤粒子を、ダクト内上部に供給し降下させる除湿剤粒子供給部と、
前記空気中の水分を吸着した前記除湿剤粒子をダクト下部から抜き出して導入し、該除湿剤粒子による蒸発室の蒸気吸着で生じた低温により冷却水を生成する吸着式冷凍機と、
前記吸着式冷凍機で生成した冷却水を導入し、前記ダクト内空気または前記除湿粒子を冷却する除湿空気冷却用熱交換器と、
前記吸着式冷凍機の該除湿剤粒子を導入して再生する再生器とを備えたことを特徴とする吸着式冷凍機結合デシカント空調装置。
A dehumidifying agent particle supply unit that adsorbs moisture in the air flowing in the duct and dehumidifies it, and supplies and lowers the dehumidifying agent particle to the upper part of the duct;
A suction type refrigerator wherein the dehumidifying agent particles adsorbed the moisture in the air introduced withdrawn from the duct bottom, and generates a coolant with a low temperature generated in the evaporation chamber of a steam adsorption by the dehumidifying agent particles,
Wherein the adsorption by introducing the resulting cooled water in the refrigerator, the dehumidified air cooling heat exchanger for cooling the duct air or the dehumidifying agent particles,
Adsorption chillers binding desiccant air-conditioning apparatus characterized by comprising a reproducing device for reproducing by introducing the dehumidifying agent particles of the adsorption refrigerator.
ダクト内を流れる空気中の水分を前記除湿剤粒子により除湿する除湿部に、冷却水供給源からの冷却水により冷却する除湿空気冷却用熱交換器を設け、該冷却用熱交換器による冷却によって等温除湿を可能としたことを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。 The moisture in the air flowing through the duct to the dehumidifying part for dehumidifying by the dehumidifying agent particles, the dehumidified air cooling heat exchanger for cooling the cooling water from the cooling water supply source is provided, by cooling by the cooling heat exchanger The adsorption type refrigerator combined desiccant air conditioner according to claim 3, wherein isothermal dehumidification is possible. 前記吸着式冷凍機の蒸発室における前記除湿剤粒子の入口と出口とにロックホッパーバルブを設けるとともに、該蒸発室に減圧装置を連結し、
前記両バルブの閉鎖と前記減圧装置の作動により前記蒸発室を減圧して低温の冷却水を生成することを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。
A lock hopper valve is provided at the inlet and outlet of the dehumidifying agent particles in the evaporation chamber of the adsorption refrigerator, and a decompression device is connected to the evaporation chamber,
The adsorption type refrigerator combined desiccant air conditioner according to claim 3, wherein the evaporation chamber is depressurized by the closing of both valves and the operation of the pressure reducing device to generate low-temperature cooling water.
前記吸着式冷凍機において蒸気を吸着し高温となった前記除湿剤粒子の熱を、前記再生器の加熱熱源として用いる熱交換手段を備えたことを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。 The adsorption-type refrigerator according to claim 3, further comprising heat exchange means for using heat of the dehumidifying agent particles that has become a high temperature as a result of adsorbing vapor in the adsorption-type refrigerator as a heating heat source of the regenerator. Combined desiccant air conditioner. 前記再生器の加熱源として、外部システムの廃熱を用いることを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。   4. The adsorption type refrigerator combined desiccant air conditioner according to claim 3, wherein waste heat of an external system is used as a heating source of the regenerator. 前記吸着式冷凍機の蒸発室内の除湿剤粒子中を通過して蒸気を吸着し温度上昇した空気を、前記再生器の底部から吹き込み、前記再生器内の除湿剤粒子を流動化して加熱再生することを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。 The said through the dehumidifying agent particles in the evaporation chamber of the adsorption chiller adsorbed to the temperature rise of steam air, blown from the bottom of the regenerator, heat reproduces fluidized dehumidifying agent particles in said regenerator The adsorption type refrigerator combined desiccant air conditioner according to claim 3. 前記除湿剤粒子供給部は、前記除湿粒子をダクト内上部から降下させることを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。 The adsorption type refrigerator combined desiccant air conditioner according to claim 3, wherein the dehumidifying agent particle supply unit lowers the dehumidifying agent particles from the upper part in the duct. 前記除湿剤粒子供給部をダクト上部に配置し、該除湿剤粒子供給部からの除湿剤粒子をダクト内上部から自然落下により降下させることを特徴とする請求項9記載の吸着式冷凍機結合デシカント空調装置。 The dehumidifying agent particle supply section placed on the duct upper, the dehumidifying agent adsorption refrigerator binding dehumidifying agent according to claim 9 wherein the particles from the upper duct, wherein the lowering by gravity from the particle supplying section desiccant Air conditioner. 前記除湿剤粒子供給部をダクト下部に配置し、該除湿剤粒子供給部からダクト内上部に前記除湿剤粒子を搬送する除湿剤粒子搬送装置を設けたことを特徴とする請求項9記載の吸着式冷凍機結合デシカント空調装置。 The dehumidifying agent particle supply section disposed in the duct bottom, adsorption of claim 9, wherein in that a dehumidifying agent particle conveying device for conveying the dehumidifying agent particles duct upper from the dehumidifying agent particles supply unit Type refrigerator combined desiccant air conditioner. 前記除湿剤粒子搬送装置は、粒子噴射用ノズルであることを特徴とする請求項11記載の吸着式冷凍機結合デシカント空調装置。 The adsorption type refrigerator combined desiccant air conditioner according to claim 11, wherein the dehumidifying agent particle conveying device is a particle injection nozzle. 記除湿剤粒子搬送装置は、粒子噴射用回転羽根車であることを特徴とする請求項11記載の吸着式冷凍機結合デシカント空調装置。 Before SL dehumidifying agent particle conveying apparatus, an adsorption type refrigerating machine coupled desiccant air-conditioning apparatus according to claim 11, characterized in that the impeller particle injection. 前記除湿剤粒子搬送装置は、前記除湿剤粒子供給部の粒子を汲み取り、ダクト上部に搬送する金網製パケットであることを特徴とする請求項11記載の吸着式冷凍機結合デシカント空調装置。 The adsorption type refrigeration machine combined desiccant air conditioner according to claim 11, wherein the dehumidifying agent particle conveying device is a wire mesh packet that draws particles from the dehumidifying agent particle supply unit and conveys the particles to the upper part of the duct. 前記除湿空気冷却用熱交換器は、前記除湿剤粒子供給部内または前記ダクト内を流れる空気中の水分を前記除湿剤粒子により除湿する除湿部に配置し、除湿速度を等温除湿よりもさらに促進させたことを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。 The dehumidifying air cooling heat exchanger is disposed in a dehumidifying unit that dehumidifies moisture in the air flowing in the dehumidifying agent particle supply unit or the duct by the dehumidifying agent particles, and further accelerates the dehumidifying rate as compared to isothermal dehumidification. The adsorption type refrigerator combined desiccant air conditioner according to claim 3. 前記再生部では伝導加熱を行い、粒子再生用必要風量を削減することを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。   The adsorption refrigerating machine combined desiccant air-conditioning apparatus according to claim 3, wherein the regeneration section performs conductive heating to reduce a necessary air volume for particle regeneration. 室内排気の出口に加湿器と熱交換器を順に設け、
前記熱交換器で排気により冷却された冷却水を前記除湿空気冷却用熱交換器に供給することを特徴とする請求項3記載の吸着式冷凍機結合デシカント空調装置。
A humidifier and a heat exchanger are installed in order at the outlet of the indoor exhaust,
4. The adsorption type refrigerator combined desiccant air conditioner according to claim 3, wherein cooling water cooled by exhaust gas in the heat exchanger is supplied to the heat exchanger for cooling dehumidified air.
JP2007248693A 2006-10-10 2007-09-26 Adsorption type refrigerator combined desiccant air conditioning method and apparatus Expired - Fee Related JP4986152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248693A JP4986152B2 (en) 2006-10-10 2007-09-26 Adsorption type refrigerator combined desiccant air conditioning method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006276165 2006-10-10
JP2006276165 2006-10-10
JP2007248693A JP4986152B2 (en) 2006-10-10 2007-09-26 Adsorption type refrigerator combined desiccant air conditioning method and apparatus

Publications (2)

Publication Number Publication Date
JP2008116193A JP2008116193A (en) 2008-05-22
JP4986152B2 true JP4986152B2 (en) 2012-07-25

Family

ID=39502258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248693A Expired - Fee Related JP4986152B2 (en) 2006-10-10 2007-09-26 Adsorption type refrigerator combined desiccant air conditioning method and apparatus

Country Status (1)

Country Link
JP (1) JP4986152B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
ES2638792T3 (en) * 2005-07-28 2017-10-24 Carbon Sink Inc. Removal of carbon dioxide from the air
AU2007233275B2 (en) 2006-03-08 2012-07-26 Carbon Sink, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
EP2077911B1 (en) 2006-10-02 2020-01-29 Carbon Sink Inc. Method for extracting carbon dioxide from air
WO2008131132A1 (en) 2007-04-17 2008-10-30 Global Research Technologies, Llc Capture of carbon dioxide (co2) from air
WO2009105566A2 (en) 2008-02-19 2009-08-27 Global Research Technologies, Llc Extraction and sequestration of carbon dioxide
WO2009131203A1 (en) 2008-04-25 2009-10-29 東レ株式会社 Nucleic acid containing chimeric gene derived from hepatitis type-c virus
US8999279B2 (en) 2008-06-04 2015-04-07 Carbon Sink, Inc. Laminar flow air collector with solid sorbent materials for capturing ambient CO2
WO2019161114A1 (en) 2018-02-16 2019-08-22 Carbon Sink, Inc. Fluidized bed extractors for capture of co2 from ambient air
JP6963351B2 (en) * 2018-04-27 2021-11-05 Mdi株式会社 Air conditioner and management server for air conditioner
CN115930313B (en) * 2022-12-23 2024-06-04 上海交通大学 Low-temperature waste heat driven fresh air dehumidification system and operation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100323A (en) * 1982-12-01 1984-06-09 Sanenerugii Kk Cooling method
JP2505640B2 (en) * 1990-10-23 1996-06-12 一雄 後藤 Dehumidifier
JPH07163830A (en) * 1993-12-15 1995-06-27 Kajima Corp Dry dehumidifier and air conditioner used therewith
JPH11108499A (en) * 1997-09-30 1999-04-23 Calsonic Corp Adsorber and adsorption refrigerator
JP2000002472A (en) * 1998-06-17 2000-01-07 Honda Motor Co Ltd Absorptive freezer
JP3991869B2 (en) * 2003-01-10 2007-10-17 松下電器産業株式会社 Dehumidifying device and method for treating condensed water in the device
JP4565111B2 (en) * 2003-06-18 2010-10-20 独立行政法人産業技術総合研究所 Fluidized bed desiccant air conditioning system
JP2005214551A (en) * 2004-01-30 2005-08-11 Kobe Steel Ltd Absorption type heat accumulator
JP4352139B2 (en) * 2004-05-17 2009-10-28 独立行政法人産業技術総合研究所 Small desiccant air conditioner
JP4264740B2 (en) * 2004-05-26 2009-05-20 独立行政法人産業技術総合研究所 Small desiccant air conditioner

Also Published As

Publication number Publication date
JP2008116193A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4986152B2 (en) Adsorption type refrigerator combined desiccant air conditioning method and apparatus
JP6738920B1 (en) Carbon dioxide adsorption equipment
KR101071350B1 (en) Hybrid desiccant cooling oac system for cleanroom
JP4169747B2 (en) Air conditioner
JP4799635B2 (en) Liquid desiccant regenerator and desiccant dehumidifier air conditioner
KR101250769B1 (en) Hybrid air conditioning system
CN101715533A (en) Humidity control system using a desiccant device
CN103502760B (en) The evaporation-cooled device of cooling fluid and method
CN102353102B (en) Vacuum solution regenerating air dehumidification system and temperature and humidity independent control air conditioning system
JP5083878B2 (en) Particle flow type desiccant air conditioner
EP4196723A1 (en) Method and system for dehumidification and atmospheric water extraction with minimal energy consumption
JP6018938B2 (en) Air conditioning system for outside air treatment
CN107270456B (en) A kind of energy-saving cold and heat supply dehumidifying integrated apparatus
JP2009090979A (en) Small desiccant air conditioner
JP2002022291A (en) Air conditioner
CN104128074B (en) A kind of compressed air drying adsorption system
CN105148689A (en) Adsorption tower for drying compressed air
CN217654015U (en) Humidity control device
JP4753102B2 (en) Small desiccant air conditioner
JP4565111B2 (en) Fluidized bed desiccant air conditioning system
JP2009083851A (en) Small desiccant air conditioner
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
JP4200214B2 (en) Particle circulation adsorption heat pump
JP4264740B2 (en) Small desiccant air conditioner
JP4352139B2 (en) Small desiccant air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees