JP4980670B2 - Cyclic olefin and process for producing the same - Google Patents

Cyclic olefin and process for producing the same Download PDF

Info

Publication number
JP4980670B2
JP4980670B2 JP2006209858A JP2006209858A JP4980670B2 JP 4980670 B2 JP4980670 B2 JP 4980670B2 JP 2006209858 A JP2006209858 A JP 2006209858A JP 2006209858 A JP2006209858 A JP 2006209858A JP 4980670 B2 JP4980670 B2 JP 4980670B2
Authority
JP
Japan
Prior art keywords
tetrahydrofluorene
indene
methanol
reaction
cyclopentadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006209858A
Other languages
Japanese (ja)
Other versions
JP2008037756A (en
Inventor
智博 鈴木
達己 松下
直浩 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006209858A priority Critical patent/JP4980670B2/en
Publication of JP2008037756A publication Critical patent/JP2008037756A/en
Application granted granted Critical
Publication of JP4980670B2 publication Critical patent/JP4980670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物の製造方法に関するものである。   The present invention relates to a method for producing a 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition.

αオレフィンと環状オレフィンの共重合によって得られるαオレフィン−環状オレフィン共重合体は透明性、耐熱性、防湿性、耐薬品性、耐溶剤性、誘電特性、及び種々の機械的性質にも優れ優れた合成樹脂であり、様々な分野で広く用いられている。この環状オレフィンは有機金属錯体触媒を用いて重合される。1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンは従来よりインデンとシクロペンタジエンとの付加反応性生物として合成されており、得られた1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンを前述のとおりポリマー原料として用いる方法がメタセシス重合として特許文献1および付加重合として特許文献2に提案されている。 The α-olefin-cycloolefin copolymer obtained by copolymerization of α-olefin and cyclic olefin is excellent in transparency, heat resistance, moisture resistance, chemical resistance, solvent resistance, dielectric properties, and various mechanical properties. Synthetic resin and widely used in various fields. This cyclic olefin is polymerized using an organometallic complex catalyst. 1,4-Methanol 1,4,4a, 9a-tetrahydrofluorene has been conventionally synthesized as an addition reaction product of indene and cyclopentadiene, and the resulting 1,4-methanol 1,4,4a, 9a- As described above, methods using tetrahydrofluorene as a polymer raw material have been proposed in Patent Document 1 as metathesis polymerization and Patent Document 2 as addition polymerization.

特許文献3にはインデンとシクロペンタジエンのディールスアルダー反応では、1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンのほかシクロペンタジエンの三量体等が副生するため、シクロペンタジエンの三量体の含有量を一定範囲に制御する方法が開示されている。   In Patent Document 3, in the Diels-Alder reaction between indene and cyclopentadiene, 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene as well as cyclopentadiene trimer and the like are by-produced. A method for controlling the body content within a certain range is disclosed.

ところで本発明者らの検討によれば、蒸留精製中に1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンが分解し、インデンが生じることで蒸留収率が低下し、さらに重合工程においてインデンがポリマーの品質悪化要因となる改善すべき課題があることを見出した。
特開平7−53680号公報 特開平5−97719号公報 特開2000−26331号公報
By the way, according to the study by the present inventors, 1,4-methanone 1,4,4a, 9a-tetrahydrofluorene is decomposed during the purification by distillation, and indene is generated, thereby reducing the distillation yield. Inden found that there is a problem to be improved that causes deterioration of polymer quality.
JP-A-7-53680 JP-A-5-97719 JP 2000-26331 A

本発明が解決しようとする課題は、光学用途などの高純度を要求される樹脂の原料として有用で、かつ高収率で経済的に製造できる1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物を提供することにある。   The problem to be solved by the present invention is 1,4-methanol 1,4,4a, 9a- that is useful as a raw material for resins that require high purity such as optical applications and that can be economically produced in high yield. It is to provide a tetrahydrofluorene composition.

本発明者らは、上記の従来技術に鑑み鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、
[1]シクロペンタジエン及び/又はジシクロペンタジエンとインデンとを混合し重合禁止剤の存在下に加熱、反応した後、缶底温度が130℃以上150℃以下の蒸留により分離精製することを含む、下記式(1)で表わされる1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンを含有し、インデン含量が100乃至5,000ppmである、1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物の製造法。
As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention. That is, the present invention
[1] including cyclopentadiene and / or dicyclopentadiene and indene mixed, heated and reacted in the presence of a polymerization inhibitor, and then separated and purified by distillation at a bottom temperature of 130 ° C. to 150 ° C. 1,4-methano-1,4,4a containing 1,4-methano-1,4,4a, 9a-tetrahydrofluorene represented by the following formula (1) and having an indene content of 100 to 5,000 ppm , 9a-Tetrahydrofluorene composition production method.

〔2〕前記1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物は、下記式(2)で表わされる1,4,5,11−ジメタノ−1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンの含有量が10ppm以下である、請求項1に記載の1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物の製造法。 [2] The 1,4-methano-1,4,4a, 9a-tetrahydrofluorene composition comprises 1,4,5,11-dimethano-1,1a, 4,4a, represented by the following formula (2): The method for producing a 1,4-methano-1,4,4a, 9a-tetrahydrofluorene composition according to claim 1, wherein the content of 5,5a, 9a, 10,10a-octahydrobenzofluorene is 10 ppm or less. .

本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物を重合の原料として用いると、着色を抑制することが可能となり、光学性能に優れた重合体を得ることができる。   When the 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention is used as a raw material for polymerization, coloring can be suppressed and a polymer having excellent optical performance can be obtained.

以下本発明について、具体例を挙げつつ詳細に説明する。
本発明に係る式(1)で表わされる1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物は、シクロペンタジエン及び/又はジシクロペンタジエン、及びインデンのディールス−アルダー反応型の熱付加反応を行うことによって合成することができる。得られた反応混合物には、式(1)で表わされる、目的の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン以外に、未反応シクロペンタジエン、ジシクロペンタジエン、インデン、更には式(2)で表わされる、式(1)とシクロペンタジエンの反応物である1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン、下記式(3)、(4)で表わされるシクロペンタジエン3量体三量体などが含まれている。
Hereinafter, the present invention will be described in detail with specific examples.
The 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition represented by the formula (1) according to the present invention is a Diels-Alder reaction type thermal addition of cyclopentadiene and / or dicyclopentadiene and indene. It can synthesize | combine by performing reaction. In addition to the target 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene represented by the formula (1), the reaction mixture thus obtained includes unreacted cyclopentadiene, dicyclopentadiene, indene, and further the formula 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene represented by (2), which is a reaction product of formula (1) and cyclopentadiene And cyclopentadiene trimer trimer represented by the following formulas (3) and (4).

式(1)の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンは、熱によりディールス−アルダー反応の逆反応が起こり原料のインデンとシクロペンタジエンに分解してしまい収率を下げることになる。また生成した1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンとシクロペンタジエンが更に反応することで式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンが生成する。1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンは1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンよりも高沸点であり蒸留により缶底より除去することが可能であるが、缶底に1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンが増加すると、缶底温度を上げなければならず、温度を上げると前述の逆ディールス−アルダー反応が起こり、製品中にインデンが混入することになってしまう。そのため、反応工程及び/又は精製工程を厳密に運転制御することで本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物を得ることができる。   1,4-Methanol 1,4,4a, 9a-tetrahydrofluorene of the formula (1) reduces the yield because the reverse reaction of Diels-Alder reaction occurs due to heat and decomposes into indene and cyclopentadiene as raw materials. Become. In addition, 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene and cyclopentadiene further react to produce 1,4,5,11-dimethanol 1,1a, 4,4a represented by the formula (2). 5,5a, 9a, 10,10a-octahydrobenzofluorene is formed. 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene is higher than 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene Although it has a boiling point and can be removed from the bottom of the can by distillation, 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzo When the fluorene increases, the bottom temperature of the can must be raised, and when the temperature is raised, the above-mentioned reverse Diels-Alder reaction occurs, and indene is mixed in the product. Therefore, the 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention can be obtained by strictly controlling the reaction process and / or the purification process.

本発明で使用する原料のシクロペンタジエンは、予めジシクロペンタジエンを熱分解蒸留したものを用いることができるほか、ジシクロペンタジエンをそのまま反応器に供給し、反応器内でシクロペンタジエンに熱分解して使用することもできる。このようなジシクロペンタジエンとしては、市販のものを使用することができ、その純度は90%以上であることが望ましい。ジシクロペンタジエンの不純物は、主として下記式(5)で表わされる5−メチル−3a,4,7,7a−テトラヒドロ−1H−インデンのほか、C5乃至C6の鎖状又は環状ジオレフィンとシクロペンタジエンとの付加物からなり、これら不純物の量が多いとシクロペンタジエン三量体をはじめとする重質の副生成物が多くなるため、高純度の原料を用いることが好ましい。   As the raw material cyclopentadiene used in the present invention, dicyclopentadiene obtained by pyrolysis distillation can be used in advance. Alternatively, dicyclopentadiene is directly supplied to the reactor and is thermally decomposed into cyclopentadiene in the reactor. It can also be used. As such dicyclopentadiene, a commercially available product can be used, and its purity is desirably 90% or more. Impurities of dicyclopentadiene are mainly 5-methyl-3a, 4,7,7a-tetrahydro-1H-indene represented by the following formula (5), C5 to C6 chain or cyclic diolefin, and cyclopentadiene. When the amount of these impurities is large, heavy by-products such as cyclopentadiene trimer increase. Therefore, it is preferable to use a high-purity raw material.

本発明で使用することができるインデンは純度が90%以上であることが好ましい。主な不純物としてはベンゾニトリル、ベンゾインデン、ジアルキルベンゼンなどが含まれる。
インデンとシクロペンタジエンの供給比率は、インデン/シクロペンタジエンのモル比が2乃至100、より好ましくは2乃至20である。なお、ジシクロペンタジエンを原料として用いるときはシクロペンタジエンにモル比換算する。この範囲の下限よりもインデンが少ないと式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンが生成し、高沸点であるため蒸留精製時に缶底温度が上昇することによる副反応、すなわち、式(1)の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンの逆ディールス−アルダー反応によりインデンとシクロペンタジエンが生成してしまう不具合が生じる。またこの範囲を上に超えてインデンが多い場合は、蒸留精製で系外に留去するインデン量が増えてしまい好ましくない。
The indene that can be used in the present invention preferably has a purity of 90% or more. Main impurities include benzonitrile, benzoindene, dialkylbenzene and the like.
The supply ratio of indene to cyclopentadiene is such that the molar ratio of indene / cyclopentadiene is 2 to 100, more preferably 2 to 20. When dicyclopentadiene is used as a raw material, the molar ratio is converted to cyclopentadiene. When the indene is less than the lower limit of this range, 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene represented by the formula (2) is formed. However, due to the high boiling point, the side reaction due to the rise in the bottom temperature during purification by distillation, that is, the reverse Diels-Alder reaction of 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene of formula (1) There is a problem that indene and cyclopentadiene are generated. Moreover, when there is much indene exceeding this range, the amount of indene distilled out of the system by distillation purification increases, which is not preferable.

インデンは、熱や光などにより変性及び/又は重合してしまう。そのため、シクロペンタジエン及び/又はジシクロペンタジエンとインデンとの反応を行う際に重合禁止剤を加えることが好ましい。重合禁止剤としては、ハイドロキノン、2,6−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチルクレゾール、4−メトキシフェノール、4−tert−ブチルカテコールなどのフェノール系化合物、N,N−ジメチルヒドロキシルアミン、N,N−ジエチルヒドロキシルアミン、N−ニトロソ−N−フェニルベンゾアミン、フェノチアジンなどのアミン化合物などが好適に添加される。添加量は、反応器中に供給されるインデンに対し、10乃至10,000ppmであることが好ましく、より好ましくは50乃至5,000ppmである。また、製品である本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物にも保存安定剤として同様に加えることができる。   Indene is modified and / or polymerized by heat or light. Therefore, it is preferable to add a polymerization inhibitor when reacting cyclopentadiene and / or dicyclopentadiene with indene. As polymerization inhibitors, phenol compounds such as hydroquinone, 2,6-di-tert-butylphenol, 2,6-di-tert-butylcresol, 4-methoxyphenol, 4-tert-butylcatechol, N, N- Amine compounds such as dimethylhydroxylamine, N, N-diethylhydroxylamine, N-nitroso-N-phenylbenzoamine, and phenothiazine are preferably added. The addition amount is preferably 10 to 10,000 ppm, more preferably 50 to 5,000 ppm with respect to the indene supplied into the reactor. Moreover, it can add to the 1, 4- methanol 1,4,4a, 9a-tetrahydrofluorene composition of this invention which is a product similarly as a storage stabilizer.

これら原料及び重合禁止剤を使用して1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンの合成を行う。   1,4-Methanol 1,4,4a, 9a-tetrahydrofluorene is synthesized using these raw materials and a polymerization inhibitor.

また、反応する際には、溶媒使用又は無溶媒のいずれでもよいが、溶媒を使用すると後段の精製工程で、溶媒蒸留のための蒸留設備などが余計に必要となるので、数百t〜数千tレベルの大量生産時には設備負荷が大きくなり経済的ではないので、その際は無溶媒の方が好ましい。   In the reaction, either using a solvent or no solvent may be used. However, if a solvent is used, an additional distillation facility for solvent distillation is required in the subsequent purification step. In mass production at the level of 1,000 t, the equipment load becomes large and it is not economical, and in that case, it is preferable to use no solvent.

製造方法は回分式、半流通式、流通式何れによっても製造することができるが、流通式で行うことが好ましい。反応器は完全混合型、管型、ループリアクターなどを使用することができ、反応器内は液満状態でも、気相部があっても行うことができる。反応は一段又は二段以上の多段で行うことができ、反応器を直列あるいは並列につないで使用することもできる。   The production method can be any of batch type, semi-flow type, and flow type, but is preferably carried out by the flow type. As the reactor, a complete mixing type, a tube type, a loop reactor or the like can be used, and the reaction can be carried out even when the reactor is full of liquid or has a gas phase part. The reaction can be carried out in one stage or multiple stages including two or more stages, and the reactors can be used in series or in parallel.

反応温度は100乃至300℃、好ましくは150乃至250℃である。特にジシクロペンタジエンを使用するときは予め熱分解蒸留したシクロペンタジエンを使用せず直接反応器にジシクロペンタジエンを導入し、反応器内で熱分解してシクロペンタジエンを生成させる必要があることから100℃以上、更に好ましくは150℃以上で行う。また反応温度が250℃を超えて高い場合は前述の式[2]で表される1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン及び/又は前述の式[3]、式[4]で表されるシクロペンタジエン三量体が生成するようになるので好ましくない。   The reaction temperature is 100 to 300 ° C, preferably 150 to 250 ° C. In particular, when dicyclopentadiene is used, it is necessary to introduce dicyclopentadiene directly into the reactor without using cyclopentadiene previously pyrolyzed and distilled, and to thermally decompose in the reactor to produce cyclopentadiene. C. or higher, more preferably 150.degree. C. or higher. When the reaction temperature is higher than 250 ° C., 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octa represented by the above formula [2] Hydrobenzofluorene and / or a cyclopentadiene trimer represented by the above formula [3] or formula [4] is generated, which is not preferable.

反応時間は回分式の場合昇温時間に時間を要するが、前述の反応温度に到達した後、0.5乃至10時間、より好ましくは1乃至5時間、更に好ましくは1乃至3時間である。反応圧力は常圧乃至10MPaG、より好ましくは常圧乃至5MPaG、更に好ましくは常圧乃至1MPaGである。   The reaction time in the batch method requires time for the temperature raising time, but is 0.5 to 10 hours, more preferably 1 to 5 hours, and further preferably 1 to 3 hours after reaching the above reaction temperature. The reaction pressure is normal pressure to 10 MPaG, more preferably normal pressure to 5 MPaG, and still more preferably normal pressure to 1 MPaG.

半流通式の場合は、予め反応器に入れた原料にシクロペンタジエン及び/又はジシクロペンタジエンとインデンを追加で連続的に供給し抜き出しは回分式で行うことができる。原料は予め混合しておいても別々に供給することもできる。また、半流通式では原料のシクロペンタジエン及び/又はジシクロペンタジエンとインデンの比率を反応時間とともに変化させて供給することもできる。反応温度は回分式と同様に、予め定めた反応温度に到達後0.5乃至10時間、より好ましくは1乃至5時間、更に好ましくは1乃至3時間である。反応圧力は常圧乃至10MPaG、より好ましくは常圧乃至5MPaG、更に好ましくは常圧乃至1MPaGである。   In the case of the semi-circulation type, cyclopentadiene and / or dicyclopentadiene and indene can be continuously added to the raw material previously placed in the reactor, and the extraction can be carried out batchwise. The raw materials can be mixed separately or supplied separately. In the semi-circulation type, the raw material cyclopentadiene and / or the ratio of dicyclopentadiene and indene can be changed with the reaction time. The reaction temperature is 0.5 to 10 hours, preferably 1 to 5 hours, more preferably 1 to 3 hours after reaching the predetermined reaction temperature, as in the batch process. The reaction pressure is normal pressure to 10 MPaG, more preferably normal pressure to 5 MPaG, and still more preferably normal pressure to 1 MPaG.

流通式では原料のシクロペンタジエン及び/又はジシクロペンタジエンとインデンを別々にあるいは予め混合して供給することができる。流通式反応器の滞留時間は0.5乃至10時間、より好ましくは1乃至5時間、更に好ましくは1乃至3時間である。反応圧力は常圧乃至10MPaG、より好ましくは常圧乃至5MPaG、更に好ましくは常圧乃至1MPaGである。   In the flow type, the raw materials cyclopentadiene and / or dicyclopentadiene and indene can be supplied separately or mixed in advance. The residence time of the flow reactor is 0.5 to 10 hours, more preferably 1 to 5 hours, still more preferably 1 to 3 hours. The reaction pressure is normal pressure to 10 MPaG, more preferably normal pressure to 5 MPaG, and still more preferably normal pressure to 1 MPaG.

続いて反応器から抜き出した反応混合物を精製工程に導入する。精製法は蒸留精製が好ましい。その操作法は回分式でも連続式でも行うことができる。回分式では缶底での滞留時間が長くなるため、連続的に供給、抜き出しを行える連続式がより好ましい。回分式では軽沸分から段階的に塔頂より留去して、製品の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンを留去し、製品よりも重質分は缶出液として缶底より抜き出すことになる。この際、回収したシクロペンタジエン、ジシクロペンタジエン、インデンは再び合成原料としてそのまま、あるいは再度精留して使用することができる。回分式蒸留では還流を行いその還流比は時間とともに段階的に変化させることが好ましい。還流比は0.01乃至50で行い、時間とともに変化させる場合は還流比を段々大きくしていくことが好ましい。   Subsequently, the reaction mixture withdrawn from the reactor is introduced into the purification step. The purification method is preferably distillation purification. The operation can be carried out either batchwise or continuously. In the batch system, since the residence time at the bottom of the can becomes long, the continuous system that can continuously supply and extract is more preferable. In the batch system, distillate from the top of the tower step by step from light boiling, 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene is distilled off, and heavier than the product is used as the bottoms. It will be extracted from the bottom of the can. At this time, the recovered cyclopentadiene, dicyclopentadiene, and indene can be used again as synthesis raw materials or after being rectified again. In batch distillation, it is preferable to perform reflux and change the reflux ratio stepwise with time. The reflux ratio is 0.01 to 50, and when changing with time, it is preferable to gradually increase the reflux ratio.

蒸留を連続的に行う場合は蒸留塔は2塔以上の多段式で行う。蒸留を2段階で行う場合には、1段目で1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンよりも軽沸分を留去し、2段目で塔頂より1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンを、缶底より1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンよりも重質分を抜き出す。蒸留を3段で行う場合には1段目でシクロペンタジエン、ジシクロペンタジエンなどのインデンよりも軽沸成分を留去し、2段目でインデン及び/または1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンよりも軽沸分を留去し、3段目で1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンを塔頂より留去し、重質分を缶底より抜き出す。   When distillation is performed continuously, the distillation column is a multistage system with two or more columns. When the distillation is carried out in two stages, the light boiling portion is distilled off from 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene in the first stage, and 1,4-methanoyl is obtained from the top of the tower in the second stage. Methanol 1,4,4a, 9a-tetrahydrofluorene is extracted from the bottom of the can more heavily than 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene. When distillation is performed in three stages, light boiling components are distilled away from indene such as cyclopentadiene and dicyclopentadiene in the first stage, and indene and / or 1,4-methanol 1,4,4a in the second stage. , 9a-Tetrahydrofluorene is distilled off from the bottom, 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene is distilled off from the top of the column in the third stage, and heavy components are extracted from the bottom of the can. .

蒸留は減圧条件で行うことが好ましい。減圧で行うことでより低温で蒸留することが可能となる。これは目的の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンが熱により逆ディールス−アルダー反応を起こし、原料のシクロペンタジエンとインデンが生成して1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンの収率が低下してしまうことを抑制するためである。蒸留圧力としては0.01乃至100kPa、より好ましくは0.1乃至50kPa、更に好ましくは0.1乃至20kPaである。   The distillation is preferably performed under reduced pressure conditions. Distilling at a lower temperature is possible by carrying out under reduced pressure. This is because the desired 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene undergoes a reverse Diels-Alder reaction by heat, and the raw materials cyclopentadiene and indene are produced to produce 1,4-methanol 1,4,4a. , 9a-tetrahydrofluorene is intended to suppress the decrease in yield. The distillation pressure is 0.01 to 100 kPa, more preferably 0.1 to 50 kPa, and still more preferably 0.1 to 20 kPa.

蒸留は、缶底温度30乃至150℃、好ましくは95乃至150℃で行う。温度150℃を超えて行うと蒸留中に前述の逆ディールス−アルダー反応でシクロペンタジエンとインデンが生成し、目的の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンに原料が混入して純度を下げてしまうことになる。また、95℃より低い場合は、高い真空度が必要となり、設備負荷が上がるため、数百〜数千tの大量生産時には若干難がある。蒸留塔は、充填塔、棚段塔などを用いることができるが、充填塔がより好ましい。
以上のようにして製造された本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物はインデンを100乃至5,000ppm含有し、前述の式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンの含有量が10ppm以下である。
The distillation is performed at a bottom temperature of 30 to 150 ° C, preferably 95 to 150 ° C. When the temperature is higher than 150 ° C., cyclopentadiene and indene are produced by the above-mentioned reverse Diels-Alder reaction during distillation, and the raw material is mixed into the desired 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene. The purity will be lowered. On the other hand, when the temperature is lower than 95 ° C., a high degree of vacuum is required and the equipment load increases. As the distillation column, a packed column, a plate column, or the like can be used, but a packed column is more preferable.
The 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention produced as described above contains 100 to 5,000 ppm of indene, and is represented by the formula (2) described above. The content of 4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene is 10 ppm or less.

本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物は従来公知の方法でメタセシス重合又はオレフィン部位の付加重合に供することができる。メタセシス重合ではたとえば特開平9−183832号公報、特開平8−151435号公報、特開平5−043663号公報、特開平1−172422号公報、などに開示されている方法で行うことができる。   The 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention can be subjected to metathesis polymerization or olefin moiety addition polymerization by a conventionally known method. Metathesis polymerization can be carried out by methods disclosed in, for example, JP-A-9-183832, JP-A-8-151435, JP-A-5-043663, JP-A-1-172422, and the like.

付加重合ではオレフィン部位の単独又は低級αオレフィンとの共重合を行うことができる。付加重合の触媒としてチーグラー触媒、メタロセン触媒などを使用して行う。チーグラー触媒を用いる製造方法としてはたとえば特開平9−176396号公報、特開昭62−252406号公報、特開昭62−252407号公報に記載されているように、炭化水素溶媒に可溶なバナジウム化合物及び有機アルミニウム化合物から形成される触媒を用いる方法によってエチレンなどのαオレフィンと環状オレフィンとの共重合体を合成することができる。   In addition polymerization, the olefin part can be copolymerized alone or with a lower α-olefin. A Ziegler catalyst or a metallocene catalyst is used as a catalyst for addition polymerization. Examples of the production method using a Ziegler catalyst include vanadium soluble in a hydrocarbon solvent as described in JP-A-9-176396, JP-A-62-252406, and JP-A-62-2252407. A copolymer of an α-olefin such as ethylene and a cyclic olefin can be synthesized by a method using a catalyst formed from a compound and an organoaluminum compound.

また近年新たな触媒としてたとえば特開平11−315109号公報に示されるようなサリチルアルドイミン配位子を有する遷移金属化合物を触媒として、例えば特開2004−331966に示されるようにエチレンなどのαオレフィンと環状オレフィンとの共重合体を合成することができる。   In recent years, as a new catalyst, for example, a transition metal compound having a salicylaldoimine ligand as disclosed in JP-A-11-315109 is used as a catalyst. For example, as shown in JP-A-2004-331966, an α-olefin such as ethylene is used. And a cyclic olefin copolymer can be synthesized.

このようにして得た重合体溶液は、触媒残渣を脱灰した後、モノマー溶媒分離工程に送られ、多管式熱交換器、ホッパーまたは薄膜蒸発器などの回転式脱溶媒器等により加熱、フラッシュ、減圧吸引されて、溶媒や未反応モノマーが乾燥除去され、オレフィン系重合体が回収される。重合溶液には重合溶媒とともに、未反応モノマーが共存している。そのため、加熱して重合体と分離する場合には、モノマーの熱安定性が必要になる。本発明における環状オレフィンモノマー1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物はインデンを100乃至5,000ppm含有し、前述の式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンの含有量が10ppm以下である。インデンがこの範囲を上に超えて多く含有すると重合体からの分離が不十分になり、また過熱により黄色く着色したインデン変性物が重合体に残存し樹脂を黄色く変色させてしまい、光学材料用途として不具合が生じる。また、前述の式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンがこの範囲を上に超えて多く含有すると、高沸点化合物であるため、上述の乾燥工程において重合体からの除去が困難になり、樹脂の品質を悪化させる不具合が生じる。本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物はインデンを100乃至5,000ppm含有し、前述の式(2)で表わされる1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンの含有量が10ppm以下であるため、このような不具合を生じず、光学用途として優れた性能を示す樹脂原料として有用である。   The polymer solution thus obtained is deashed from the catalyst residue and then sent to the monomer solvent separation step, where it is heated by a rotary desolvator such as a multi-tube heat exchanger, a hopper or a thin film evaporator, By flashing and sucking under reduced pressure, the solvent and unreacted monomers are removed by drying, and the olefin polymer is recovered. In the polymerization solution, unreacted monomers coexist with the polymerization solvent. Therefore, when it separates from a polymer by heating, the thermal stability of a monomer is needed. The cyclic olefin monomer 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition in the present invention contains 100 to 5,000 ppm of indene and is represented by 1,4,5,11 represented by the above formula (2). The content of dimethanone 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene is 10 ppm or less. If the indene content exceeds this range, the separation from the polymer becomes insufficient, and the indene-modified product colored yellow due to overheating remains in the polymer and causes the resin to turn yellow. A malfunction occurs. Further, 1,4,5,11-dimethanone 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene represented by the above formula (2) exceeds this range. If it is contained in a large amount, it is a high-boiling compound, so that it is difficult to remove it from the polymer in the drying step described above, resulting in a problem of deteriorating the quality of the resin. The 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention contains 100 to 5,000 ppm of indene and is 1,4,5,11-dimethanol 1 represented by the above formula (2). , 1a, 4,4a, 5,5a, 9a, 10,10a-Octahydrobenzofluorene content of 10 ppm or less, the resin raw material exhibiting excellent performance as an optical application without causing such problems Useful.

[実施例]
以下、実施例により本発明の内容をさらに具体的に説明するが、本発明はこれらに何ら限定を受けるものではない。なお、実施例中において特に断らない限り「部」は「重量部」を示す。
[参考例1]
[Example]
Hereinafter, the contents of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these. In the examples, “parts” means “parts by weight” unless otherwise specified.
[Reference Example 1]

(モノマー合成工程)
インデン(純度96.8重量%)2,369部、ジシクロペンタジエン(純度95.0%)652部(インデン/ジシクロペンタジエンモル比=4)に重合禁止剤としてN−ニトロソ−N−フェニルベンゾアミン2.3部をそれぞれ、5mオートクレーブに投入した。反応は回分式で行った。気相部を窒素で置換した後、3時間かけて180℃に昇温した。昇温後の系内圧力は0.1MPaGであった。180℃のまま3時間加熱攪拌して反応を完結させた。反応終了後の液組成はインデン/1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン/1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン=42/49/3であった。
(Monomer synthesis process)
Indene (purity 96.8% by weight) 2,369 parts, dicyclopentadiene (purity 95.0%) 652 parts (indene / dicyclopentadiene molar ratio = 4) as a polymerization inhibitor N-nitroso-N-phenylbenzo Each 2.3 parts of amine was charged into a 5 m 3 autoclave. The reaction was carried out batchwise. After replacing the gas phase with nitrogen, the temperature was raised to 180 ° C. over 3 hours. The system pressure after the temperature increase was 0.1 MPaG. The reaction was completed by heating and stirring at 180 ° C. for 3 hours. The liquid composition after completion of the reaction was indene / 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene / 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10, 10a-octahydrobenzofluorene = 42/49/3.

得られた反応液は蒸留により精製した。蒸留は回分式で行い、まず初留の留去を温度は60℃乃至110℃、圧力は0.02乃至0.03kPa、還流比は1で行った。そのまま温度を上げて目的の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンを含む留分を採取した。そのとき温度は110乃至140℃、圧力は0.015乃至0.03kPa、還流比は1乃至2.5で行った。その後缶底液を抜き出し、更に1回目に採取した 1,4−メタノー1,4,4a,9a−テトラヒドロフルオレンの留分を再度蒸留した。蒸留は120乃至122℃、圧力0.015乃至0.05kPa、還流比2乃至3で行った。得られた1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物は不純物がインデン2,400ppm、1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン10ppm以下であった。   The resulting reaction solution was purified by distillation. Distillation was carried out batchwise. First, the first distillation was distilled off at a temperature of 60 ° C. to 110 ° C., a pressure of 0.02 to 0.03 kPa, and a reflux ratio of 1. The temperature was raised as it was, and a fraction containing the desired 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene was collected. At that time, the temperature was 110 to 140 ° C., the pressure was 0.015 to 0.03 kPa, and the reflux ratio was 1 to 2.5. Thereafter, the bottom liquid was extracted, and the 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene fraction collected at the first time was distilled again. Distillation was performed at 120 to 122 ° C., a pressure of 0.015 to 0.05 kPa, and a reflux ratio of 2 to 3. The resulting 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition has impurities of 2,400 ppm indene, 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a. , 10,10a-octahydrobenzofluorene was 10 ppm or less.

(モノマー合成工程)
インデン(純度96.8重量%)884部、ジシクロペンタジエン(純度95.0%)201部(インデン/ジシクロペンタジエンモル比=5)に重合禁止剤としてN−ニトロソ−N−フェニルベンゾアミン0.9部を混合しした溶液を調製し、2mのオートクレーブに連続的に供給した。反応器での滞留時間は3時間になるように制御した。反応温度は180℃、圧力は0.5MPaで行った。反応器出口の液組成はインデン/1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン/1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン=47/50/2であった。
(Monomer synthesis process)
Indene (purity 96.8% by weight) 884 parts, dicyclopentadiene (purity 95.0%) 201 parts (indene / dicyclopentadiene molar ratio = 5) N-nitroso-N-phenylbenzoamine 0 as a polymerization inhibitor A mixed solution of 9 parts was prepared and continuously fed into a 2 m 3 autoclave. The residence time in the reactor was controlled to be 3 hours. The reaction temperature was 180 ° C. and the pressure was 0.5 MPa. The liquid composition at the outlet of the reactor was indene / 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene / 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10, 10a-octahydrobenzofluorene = 47/50/2.

得られた反応液はそのまま蒸留塔へ導入された。蒸留操作は2段の連続蒸留で行った。1段目の運転条件は缶底温度130℃、塔頂圧力2kPa、2段目の運転条件は缶底温度143℃、塔頂圧力1kPaで行った。得られた1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物は不純物としてインデン2,000ppm、1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン10ppm以下であった。   The obtained reaction liquid was introduced into the distillation column as it was. The distillation operation was performed by two-stage continuous distillation. The first stage operating conditions were a can bottom temperature of 130 ° C. and a tower top pressure of 2 kPa, and the second stage operating conditions were a can bottom temperature of 143 ° C. and a tower top pressure of 1 kPa. The resulting 1,4-methanone 1,4,4a, 9a-tetrahydrofluorene composition has 2,000 ppm indene as impurities, 1,4,5,11-dimethanone 1,1a, 4,4a, 5,5a, 9a. , 10,10a-octahydrobenzofluorene was 10 ppm or less.

(重合工程)
実施例2の如くして得られた1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物とエチレンの共重合を行った。容積300Lの連続重合反応器に脱水精製したシクロヘキサン130L毎時、エチルアルミニウムセスキクロライドのヘキサン溶液(80mmol/L)を27毎時mmol、バナジウム触媒としてVO(OEt)Clのヘキサン溶液(30mmol/L)をアルミニウムに対するバナジウムのモル比としてAl/V=14、エチレン0.81kg毎時、1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物9.2kg毎時、水素3.6NL毎時の条件で供給し、温度20℃、全圧0.3MPaで重合させた。重合槽からは重合溶液として、重合体と未反応モノマー、溶媒の混合物を抜き出した。この重合溶液は次に脱灰工程に導入した。
(Polymerization process)
The 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition obtained as in Example 2 was copolymerized with ethylene. Dehydrated and purified cyclohexane 130L per hour, ethylaluminum sesquichloride hexane solution (80 mmol / L) 27 mmol / h, vanadium catalyst VO (OEt) Cl 2 hexane solution (30 mmol / L) in a 300 L continuous polymerization reactor The molar ratio of vanadium to aluminum is Al / V = 14, ethylene 0.81 kg per hour, 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition 9.2 kg per hour, hydrogen 3.6 NL per hour The polymerization was conducted at a temperature of 20 ° C. and a total pressure of 0.3 MPa. From the polymerization tank, a mixture of polymer, unreacted monomer and solvent was extracted as a polymerization solution. This polymerization solution was then introduced into the decalcification process.

(脱灰工程)
80℃のボイラー水及びpH調整剤として濃度が25重量%の水酸化ナトリウム水溶液を添加して、重合反応を停止させるとともに、重合溶液中に残存する触媒残渣を除去(脱灰)した。
(Decalcification process)
A boiler water at 80 ° C. and an aqueous sodium hydroxide solution having a concentration of 25% by weight as a pH adjuster were added to stop the polymerization reaction and remove (deash) the catalyst residue remaining in the polymerization solution.

(溶媒、モノマー分離工程)
脱灰された重合溶液を溶媒、モノマー分離工程へ送る。二重管加熱器に30kg毎時の量で供給して205℃の温度に加熱した。加熱された重合溶液はフラッシュバルブで常圧に解放され、260℃に加熱された二重管加熱器を経て、ホッパーに導いて溶媒、モノマーを加熱蒸発して重合体から分離した。重合体は3kg毎時で得られた。得られた重合体は真空ベントつき押出機(スクリュー径30φmm、かみ合い型二軸押出機、L/D=30)を用いバレル温度260℃、真空ベントの圧力0.7kPaに設定して混練、ストランドを冷却、切断することでペレットとして回収した。残存する未反応モノマーは押出機において真空ベントで低減させた。
(Solvent and monomer separation process)
The deashed polymerization solution is sent to a solvent and monomer separation step. The double tube heater was supplied at a rate of 30 kg per hour and heated to a temperature of 205 ° C. The heated polymerization solution was released to normal pressure with a flash valve, passed through a double tube heater heated to 260 ° C., and led to a hopper to heat and evaporate the solvent and the monomer to separate from the polymer. The polymer was obtained at 3 kg per hour. The obtained polymer was kneaded by using an extruder with a vacuum vent (screw diameter: 30 mm, meshing twin screw extruder, L / D = 30) at a barrel temperature of 260 ° C. and a vacuum vent pressure of 0.7 kPa. The pellet was recovered by cooling and cutting. The remaining unreacted monomer was reduced by a vacuum vent in the extruder.

得られた重合体の分子量の指標である135℃のデカリン中で測定した極限粘度[η]は0.50dl/g、示差走査熱量計(Perkin Elmer社製DSC−7)を用いて30℃から10℃/分で昇温し、ガラス転移点で観測される吸熱ピーク温度は145℃であった。
日本電色工業(株)製カラーメーターSQ−300Hを用いて反射光より測定した試料のb値は4.8であった。
The intrinsic viscosity [η] measured in decalin at 135 ° C., which is an index of the molecular weight of the obtained polymer, is 0.50 dl / g, from 30 ° C. using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer). The temperature was increased at 10 ° C./min, and the endothermic peak temperature observed at the glass transition point was 145 ° C.
The b value of the sample measured from the reflected light using a color meter SQ-300H manufactured by Nippon Denshoku Industries Co., Ltd. was 4.8.

[比較例1]
インデン(純度96.8重量%)1,895部、ジシクロペンタジエン(純度95.0%)1,135部(インデン/ジシクロペンタジエンモル比=2)に重合禁止剤としてN−ニトロソ−N−フェニルベンゾアミン1.8部を用いる以外は参考例1と同様にして反応を行った。反応終了後の液組成はインデン/1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン/1,4,5,11−ジメタノ−1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン=10/84/6であった。
[Comparative Example 1]
Indene (purity 96.8% by weight) 1,895 parts, dicyclopentadiene (purity 95.0%) 1,135 parts (indene / dicyclopentadiene molar ratio = 2) as a polymerization inhibitor N-nitroso-N- The reaction was performed in the same manner as in Reference Example 1 except that 1.8 parts of phenylbenzoamine was used. The liquid composition after completion of the reaction was indene / 1,4-methano-1,4,4a, 9a-tetrahydrofluorene / 1,4,5,11-dimethano-1,1a, 4,4a, 5,5a, 9a, 10,10a-Octahydrobenzofluorene = 10/84/6.

得られた反応液は参考例1と同様に蒸留により精製した。ただし、缶底温度は最大168℃まで上昇した。得られた1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物は不純物としてインデン21,000ppm、1,4,5,11−ジメタノー1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレン100ppmであった。蒸留中に1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンの分解反応によりインデンが生成してしまい純度を上げることができなかった。 The obtained reaction solution was purified by distillation in the same manner as in Reference Example 1 . However, the can bottom temperature rose to a maximum of 168 ° C. The resulting 1,4-methano-1,4,4a, 9a-tetrahydrofluorene composition has 21,000 ppm of indene as impurities, 1,4,5,11-dimethanol 1,1a, 4,4a, 5,5a, 9a, 10,10a-octahydrobenzofluorene was 100 ppm. During the distillation, indene was produced by the decomposition reaction of 1,4-methano-1,4,4a, 9a-tetrahydrofluorene, and the purity could not be increased.

次に実施例3と同様にして重合反応を行った。得られた重合体の物性は以下のとおりであった。
極限粘度[η]は0.38dl/g、ガラス転移点は141℃、b値は18.0であった。
Next, a polymerization reaction was carried out in the same manner as in Example 3. The physical properties of the obtained polymer were as follows.
The intrinsic viscosity [η] was 0.38 dl / g, the glass transition point was 141 ° C., and the b value was 18.0.

本発明の1,4−メタノー1,4,4a,9a−テトラヒドロフルオレン組成物を使用した重合物は着色が抑制された光学用途に好適な環状オレフィン重合体を製造することができる。   The polymer using the 1,4-methanol 1,4,4a, 9a-tetrahydrofluorene composition of the present invention can produce a cyclic olefin polymer suitable for optical use in which coloring is suppressed.

Claims (2)

シクロペンタジエン及び/又はジシクロペンタジエンとインデンとを混合し重合禁止剤の存在下に加熱、反応した後、缶底温度が130℃以上150℃以下の蒸留により分離精製することを含む、
下記式(1)で表わされる1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンを含有し、インデン含量が100乃至5,000ppmである、1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物の製造法
Heated in the presence of cyclopentadiene and / or dicyclopentadiene and indene and a mixture of a polymerization inhibitor, after reacting involves can bottom temperature separated and purified by distillation of 130 ° C. or higher 0.99 ° C. or less,
1,4-methano-1,4,4a containing 1,4-methano-1,4,4a, 9a-tetrahydrofluorene represented by the following formula (1) and having an indene content of 100 to 5,000 ppm , 9a-Tetrahydrofluorene composition production method .
前記1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物は、下記式(2)で表わされる1,4,5,11−ジメタノ−1,1a,4,4a,5,5a,9a,10,10a−オクタヒドロベンゾフルオレンの含有量が10ppm以下である、請求項1に記載の1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン組成物の製造法。The 1,4-methano-1,4,4a, 9a-tetrahydrofluorene composition is a 1,4,5,11-dimethano-1,1a, 4,4a, 5,5a represented by the following formula (2). , 9a, 10, 10a-Octahydrobenzofluorene content of 10 ppm or less, the method for producing 1,4-methano-1,4,4a, 9a-tetrahydrofluorene composition according to claim 1.
JP2006209858A 2006-08-01 2006-08-01 Cyclic olefin and process for producing the same Active JP4980670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209858A JP4980670B2 (en) 2006-08-01 2006-08-01 Cyclic olefin and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209858A JP4980670B2 (en) 2006-08-01 2006-08-01 Cyclic olefin and process for producing the same

Publications (2)

Publication Number Publication Date
JP2008037756A JP2008037756A (en) 2008-02-21
JP4980670B2 true JP4980670B2 (en) 2012-07-18

Family

ID=39173194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209858A Active JP4980670B2 (en) 2006-08-01 2006-08-01 Cyclic olefin and process for producing the same

Country Status (1)

Country Link
JP (1) JP4980670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112023003400A2 (en) 2020-08-26 2023-04-11 Mitsui Chemicals Inc ESTER COMPOUND
CN115819656A (en) * 2021-09-16 2023-03-21 华为技术有限公司 Cycloolefin copolymer, process for producing the same and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778114B2 (en) * 1987-04-08 1995-08-23 帝人株式会社 Method for producing crosslinked polymer molding and combination of reactive solution
JP2000026330A (en) * 1998-07-06 2000-01-25 Nippon Petrochem Co Ltd 1,4-METHANO-1,4,4a,9a-TETRAHYDROFLUORENE COMPOSITION

Also Published As

Publication number Publication date
JP2008037756A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP2905910B2 (en) Gas phase pyrolysis method for dicyclopentadiene and method for producing high-purity dicyclopentadiene
CN109665934B (en) Method for preparing dicyclopentadiene
CN113336613B (en) Preparation method of tetracyclododecene compound
CN105585415A (en) A method of preparing high-purity dicyclopentadiene through reactive distillation
JP4980670B2 (en) Cyclic olefin and process for producing the same
CN111548246A (en) Method for preparing high-purity dicyclopentadiene from cracking carbon nine fraction
CN110938164B (en) One-pot method for tandem catalytic copolymerization of ethylene and 1, 2-disubstituted polar internal olefin and product thereof
CN101092319A (en) Method for separating cyclopentadiene
CN112154159B (en) Suspension process for the preparation of ethylene copolymers in a reactor cascade
CN113880989B (en) Method for thermal polymerization of carbon five carbon nine copolymerization petroleum resin and application thereof
JPH10287592A (en) Crude tetracyclododecene mixture and its production, production of purified tetracyclododecene and apparatus for producing the same
CN105481625B (en) A kind of production method of ENB
CN113582824A (en) Preparation method of high-purity cyclopropyl methyl ketone
WO2000001742A1 (en) Tetracyclododecene compositions and process for producing the same
JP4526142B2 (en) Method for simultaneous production of norbornene and high purity tetracyclododecene
WO2024139679A1 (en) Production process for norbornene
KR100831631B1 (en) Method of preparation norbornene derivatives
CN110563533A (en) Method for preparing methyl cyclopentadiene dimer from cracking carbon nine fraction
EP4424724A1 (en) Polypropylene production using a propylene stream comprising propane
EP0625503B1 (en) Process for preparing diacetoxybutene
CN114621046B (en) Method for preparing high-purity dicyclopentadiene through ionic liquid catalysis
CN113956123B (en) Preparation method and application of 2-alkylanthracene
AU642728B2 (en) Solution process for the preparation of polymers of alpha-olefins
CN114456047B (en) Process for producing oligomeric tertiary alkyl ether
CN114195939A (en) Tubular reactor and thermal polymerization C5/C9Method for copolymerizing petroleum resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250