JP4954177B2 - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP4954177B2
JP4954177B2 JP2008264936A JP2008264936A JP4954177B2 JP 4954177 B2 JP4954177 B2 JP 4954177B2 JP 2008264936 A JP2008264936 A JP 2008264936A JP 2008264936 A JP2008264936 A JP 2008264936A JP 4954177 B2 JP4954177 B2 JP 4954177B2
Authority
JP
Japan
Prior art keywords
impeller
braking
flow
fluid
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008264936A
Other languages
Japanese (ja)
Other versions
JP2010096512A (en
Inventor
智行 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008264936A priority Critical patent/JP4954177B2/en
Publication of JP2010096512A publication Critical patent/JP2010096512A/en
Application granted granted Critical
Publication of JP4954177B2 publication Critical patent/JP4954177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体が流れる管路内に設けた羽根車と、この羽根車の外周に設けた磁極の磁界を管路の外部から検知する磁気センサとからなる流量センサに関する。   The present invention relates to a flow rate sensor including an impeller provided in a conduit through which a fluid flows and a magnetic sensor that detects a magnetic field of a magnetic pole provided on the outer periphery of the impeller from the outside of the conduit.

従来のこの種の流量センサとして、例えば、管路内に羽根車を設け、管路内に流体が流れるとその流れによって羽根車を回転させるようにしたものが知られている。この羽根車の羽根の先端は帯磁され磁極が設けられている。羽根車の回転数は流速にほぼ比例して増減する。一方、管路の外部には磁気センサが取り付けられており、羽根車の回転により変化する磁界をこの磁気センサで検知している。   As a conventional flow sensor of this type, for example, a sensor in which an impeller is provided in a pipe and the impeller is rotated by the flow of fluid in the pipe is known. The tip of the impeller blade is magnetized and provided with a magnetic pole. The rotational speed of the impeller increases and decreases in proportion to the flow velocity. On the other hand, a magnetic sensor is attached to the outside of the pipe, and a magnetic field that changes as the impeller rotates is detected by the magnetic sensor.

磁気センサからの出力信号により羽根車の回転数が検出できる。この回転数は上述のように管路内の流速に比例しているので、管路内の断面積と流速から管路内の流体の流量を求めることができる(例えば、特許文献1参照)。
特開2000−009503号公報(図1)
The rotational speed of the impeller can be detected from the output signal from the magnetic sensor. Since the number of rotations is proportional to the flow velocity in the pipeline as described above, the flow rate of the fluid in the pipeline can be obtained from the cross-sectional area in the pipeline and the flow velocity (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2000-009503 (FIG. 1)

上述のような流量センサでは流体の流れによって羽根車を回転させるが、羽根車を比較的大きく形成すると、小さな力では羽根車が回転しなくなるため低流量での感度が鈍り、低流量では羽根車が流速に比例して回転しないという問題が生じる。一方、羽根車を比較的小さく形成すると羽根車の自重が軽くなり、低流量でも安定して羽根車を回転させることは可能であるが、逆に大流量では高速で回転するため、羽根車の軸受部が摩耗しやすいという不具合が生じる。   In the flow rate sensor as described above, the impeller is rotated by the fluid flow. However, if the impeller is formed relatively large, the impeller does not rotate with a small force, so the sensitivity at a low flow rate becomes dull. Does not rotate in proportion to the flow velocity. On the other hand, if the impeller is formed to be relatively small, the impeller's own weight is reduced, and it is possible to rotate the impeller stably even at a low flow rate. There arises a problem that the bearing portion is easily worn.

そこで本発明は、上記の問題点に鑑み、低流量での感度を向上させると共に大流量時での摩耗等の不具合を解消することのできる流量センサを提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a flow sensor capable of improving sensitivity at a low flow rate and solving problems such as wear at a large flow rate.

上記課題を解決するために本発明による流量センサは、流体が流れる管路の途中に、羽根の先端に磁極を有し流体の流れによって回転する羽根車を設けると共に、羽根車の回転数を検出するため、管路の外部から羽根車の先端の磁極による磁界を検知する磁気センサを備えた流量センサにおいて、上記羽根車を流れ方向に対して移動自在に設けると共に、流体の流れを受け、羽根車を下流側に移動させる流体受け部を羽根車に設け、羽根車の下流側に、流体の流れによって流れ方向に移動することなく回転する制動羽根車を設け、かつ、羽根車と制動羽根車との間を離間させる方向に付勢する付勢手段と、この付勢手段による付勢力に抗して羽根車が制動羽根車に所定距離まで近づいた場合に、羽根車と制動羽根車とを連結させて両羽根車を等速で回転させる連結機構を設けたことを特徴とする。   In order to solve the above problems, a flow sensor according to the present invention is provided with an impeller having a magnetic pole at the tip of a blade and rotating by the flow of the fluid in the middle of a conduit through which the fluid flows, and detecting the number of rotations of the impeller. Therefore, in the flow rate sensor having a magnetic sensor for detecting the magnetic field generated by the magnetic pole at the tip of the impeller from the outside of the conduit, the impeller is provided to be movable in the flow direction, and the flow of the fluid is received. The impeller is provided with a fluid receiving portion for moving the vehicle downstream, the braking impeller that rotates without moving in the flow direction due to the flow of the fluid is provided on the downstream side of the impeller, and the impeller and the braking impeller An urging means for urging in a direction to separate them from each other, and when the impeller approaches the braking impeller to a predetermined distance against the urging force of the urging means, the impeller and the braking impeller Connect both impellers Providing the coupling mechanism for rotating at a speed characterized.

上記構成によれば、低流量時では流体受け部が流れを受けることにより生じる羽根車を下流側に移動させようとする力は小さいので、弾性手段による弾性力に抗して羽根車が下流に移動することはない。そのため羽根車は制動羽根車から独立して単独で回転する。   According to the above configuration, since the force for moving the impeller generated by the fluid receiving portion receiving the flow at the low flow rate is small, the impeller is moved downstream against the elastic force of the elastic means. Never move. Therefore, the impeller rotates independently from the braking impeller.

流速が大きくなると羽根車を下流側へ移動させる力が大きくなり、付勢力に抗して徐々に羽根車は制動羽根車に接近する。両羽根車の距離が所定距離まで近づくと連結機構により羽根車と制動羽根車とが連結するので、羽根車の質量が両羽根車の合計質量に増加したことになり、羽根車の回転数が減速される。なお、流速が小さくなると付勢手段によって羽根車と制動羽根車との距離が再び離されるので、連結機構による連結が解除される。   As the flow velocity increases, the force that moves the impeller downstream increases, and the impeller gradually approaches the braking impeller against the biasing force. When the distance between the two impellers approaches a predetermined distance, the impeller and the braking impeller are connected by the connection mechanism, so that the mass of the impeller has increased to the total mass of both impellers, and the rotational speed of the impeller is Decelerated. When the flow velocity decreases, the urging means separates the distance between the impeller and the braking impeller again, so that the connection by the connecting mechanism is released.

なお、上記羽根車は、上記制動羽根車の回転軸線に沿って上流側に延設された回転軸に回転自在に取り付けることができる。   In addition, the said impeller can be rotatably attached to the rotating shaft extended in the upstream along the rotating shaft line of the said brake impeller.

以上の説明から明らかなように、本発明は、流速が遅い状態では羽根車が単独で回転できるので感度が高く、また流速が増加すると羽根車は制動羽根車と連結して回転するので高速になりにくく、摩耗等の不具合が生じない。   As is apparent from the above description, the present invention is highly sensitive because the impeller can rotate independently at a low flow rate, and the impeller rotates in conjunction with the braking impeller as the flow rate increases. It does not easily occur and does not cause problems such as wear.

図1を参照して、Pは流体である水が流れる管路である。この管路P内に樹脂製のスリーブ1を挿入し、そのスリーブ1に制動羽根車2を回転自在に保持させた。スリーブ1の上流側端部には水流を回転させるための整流フィン11が設けられている。また、制動羽根車2から上流側に延設されている回転軸21に羽根車3が取り付けられている。この羽根車3は回転軸21に対して回転自在であり、かつ回転軸21の軸線すなわち水流方向に対して移動自在である。また、羽根車3と制動羽根車2との間には付勢手段であるバネ部材4が挿入されており、羽根車3と制動羽根車2との間隔を広げる方向に付勢力が作用するように形成されている。管路Pの外周には磁気センサ5が取り付けられており、この磁気センサ5の出力信号は演算部6に入力される。   Referring to FIG. 1, P is a conduit through which water as a fluid flows. A resin sleeve 1 was inserted into the pipe P, and a braking impeller 2 was rotatably held by the sleeve 1. A rectifying fin 11 for rotating the water flow is provided at the upstream end of the sleeve 1. An impeller 3 is attached to a rotating shaft 21 extending upstream from the braking impeller 2. The impeller 3 is rotatable with respect to the rotation shaft 21 and is movable with respect to the axis of the rotation shaft 21, that is, the water flow direction. Further, a spring member 4 as an urging means is inserted between the impeller 3 and the braking impeller 2 so that the urging force acts in the direction of widening the interval between the impeller 3 and the braking impeller 2. Is formed. A magnetic sensor 5 is attached to the outer periphery of the pipe P, and an output signal of the magnetic sensor 5 is input to the arithmetic unit 6.

図2を参照して、制動羽根車2には4枚の羽根2a,2b,2c,2dが形成されており、上部には回転軸21が設けられている。各羽根のうち、羽根2aの先端はN極に帯磁されており、羽根2bの先端はS極に帯磁されている。残りの羽根2c,2dは共に帯磁されておらず、したがって先端には磁極が設けられていない。   Referring to FIG. 2, the braking impeller 2 is formed with four blades 2a, 2b, 2c, 2d, and a rotating shaft 21 is provided on the upper part. Of each blade, the tip of the blade 2a is magnetized to the N pole, and the tip of the blade 2b is magnetized to the S pole. The remaining blades 2c and 2d are not magnetized, and therefore no magnetic pole is provided at the tip.

また、羽根2aの上縁には連結機構となる凹部状の係合凹部23が形成されており、残りの羽根2b,2c,2dの上縁には切欠き状の逃げ部22が形成されている。   In addition, a concave engagement recess 23 serving as a coupling mechanism is formed on the upper edge of the blade 2a, and a notch-shaped relief portion 22 is formed on the upper edge of the remaining blades 2b, 2c, 2d. Yes.

羽根車3には4枚の羽根3a,3b,3c,3dが形成されており、各羽根3a,3b,3c,3dの上面には十文字状の水平面からなる流体受け部31が形成されている。また、羽根3aの下部には上記係合凹部23に係合して共に連結機構を構成する係合凸部32が形成されている。なお、羽根3a,3cは共にN極に帯磁され、羽根3b,3dはS極に帯磁されている。   Four blades 3a, 3b, 3c, 3d are formed on the impeller 3, and a fluid receiving portion 31 formed of a cross-shaped horizontal surface is formed on the upper surface of each blade 3a, 3b, 3c, 3d. . In addition, an engaging convex portion 32 that engages with the engaging concave portion 23 to form a coupling mechanism is formed at the lower portion of the blade 3a. The blades 3a and 3c are both magnetized to the N pole, and the blades 3b and 3d are magnetized to the S pole.

バネ部材4は上下2枚のワッシャ部41と両ワッシャ部41を連結する帯状の弾性変形部42とから構成されている。上下方向から圧縮方向の外力が作用すると弾性変形部42が変形して両ワッシャ41の間隔が狭くなるが、外力が無くなると弾性変形部42が復元して両ワッシャ部41の間隔が拡がる、スプリングとして機能する。   The spring member 4 includes two upper and lower washers 41 and a belt-like elastic deformation portion 42 that connects both washers 41. When an external force in the compression direction is applied from the up and down direction, the elastic deformation portion 42 is deformed and the interval between both washers 41 is reduced. However, when there is no external force, the elastic deformation portion 42 is restored and the interval between both washer portions 41 is increased. Function as.

上記構成によれば、水流が整流フィン11を通過して回転流になると、その回転流が羽根車3および制動羽根車2の各羽根に作用して両羽根車2,3を回転させる。ただし、羽根車3は制動羽根車2より上流に位置し、かつ回転を阻害する摩擦力や質量が小さいので低流速時から回転を開始し、流速の上昇に対応して回転数が急速に上昇する。これに対して制動羽根車2は低流速での感度が低く、かつ、流速の上昇に対して回転数の増加速度も遅い。   According to the above configuration, when the water flow passes through the rectifying fins 11 and becomes a rotating flow, the rotating flow acts on each blade of the impeller 3 and the braking impeller 2 to rotate both the impellers 2 and 3. However, since the impeller 3 is located upstream from the braking impeller 2 and the frictional force and mass that inhibit the rotation are small, the impeller 3 starts rotating at a low flow rate, and the rotation speed rapidly increases in response to the increase in the flow rate. To do. On the other hand, the braking impeller 2 has low sensitivity at a low flow rate, and the increase speed of the rotational speed is slow as the flow rate increases.

図3を参照して、流速が低速であり、羽根車3と制動羽根車2との距離がバネ部材4によって広げられている状態では、係合凸部32は係合凹部23に係合することがないので、図3(a)に示すように、羽根3aと羽根2aとは相互に同期することなく個別に回転している。なお、上述のように羽根3aの回転速度は羽根2aの回転速度より速い。   Referring to FIG. 3, in a state where the flow velocity is low and the distance between impeller 3 and braking impeller 2 is widened by spring member 4, engagement convex portion 32 engages with engagement concave portion 23. Therefore, as shown in FIG. 3A, the blade 3a and the blade 2a rotate individually without being synchronized with each other. As described above, the rotation speed of the blade 3a is faster than the rotation speed of the blade 2a.

流速が増加し、流体受け部31で受ける水流により羽根車3が下流側、すなわち制動羽根車2側に移動すると、図3(b)に示すように係合凸部32が係合凹部23に係合する。羽根車3は常に制動羽根車2よりも高速で回転しようとするので、係合凸部32は係合凹部23に押し付けられた状態を保持することになり、したがって、羽根車3と制動羽根車2とは同期して同じ速度で回転する。なお、流速が減少して羽根車3が上流側に戻ると、図3(a)に示す状態に戻り、再び羽根車3と制動羽根車2とは互いに独立して回転することになる。   When the flow velocity increases and the impeller 3 moves to the downstream side, that is, the braking impeller 2 side by the water flow received by the fluid receiving portion 31, the engaging convex portion 32 becomes the engaging concave portion 23 as shown in FIG. Engage. Since the impeller 3 always tries to rotate at a higher speed than the braking impeller 2, the engaging convex portion 32 keeps being pressed against the engaging concave portion 23, and therefore the impeller 3 and the braking impeller 2 and rotate at the same speed in synchronization. When the flow velocity decreases and the impeller 3 returns to the upstream side, the state returns to the state shown in FIG. 3A, and the impeller 3 and the braking impeller 2 again rotate independently of each other.

図4を参照して、L1は羽根車3が単独で回転した場合の流量と回転数との関係を示すグラフであり、L2は羽根車3と制動羽根車2とが連結した状態で回転した場合の流量と回転数との関係を示すグラフである。   Referring to FIG. 4, L1 is a graph showing the relationship between the flow rate and the rotational speed when the impeller 3 rotates alone, and L2 rotates with the impeller 3 and the braking impeller 2 connected to each other. It is a graph which shows the relationship between the flow volume in case, and rotation speed.

流れが止まっている状態から流速が徐々に増加すると、羽根車3は直ちに回転を開始し(a点)、L1に沿って回転数が増速する。b点まで増速すると上述のように羽根車3と制動羽根車2とが連結されるため、回転数はc点まで急速に減速する。その後は連結した状態を保ったままL2に沿って回転数が増速する。   When the flow velocity gradually increases from the state where the flow is stopped, the impeller 3 immediately starts rotating (point a), and the rotational speed increases along L1. When the speed is increased to the point b, the impeller 3 and the braking impeller 2 are connected as described above, so that the rotational speed is rapidly decelerated to the point c. Thereafter, the rotational speed increases along L2 while maintaining the connected state.

次にその状態から流速が減少すると、L2に沿って回転数がd点まで減速した時点で羽根車3と制動羽根車2との連結が解除され、回転数はe点まで急激に増速し、その後はL1に沿って羽根車3の回転数が減速する。   Next, when the flow velocity decreases from that state, the connection between the impeller 3 and the braking impeller 2 is released when the rotational speed decelerates to point d along L2, and the rotational speed increases rapidly to point e. Thereafter, the rotational speed of the impeller 3 decelerates along L1.

この羽根車3の回転数の変化は磁気センサ5で検知することができる。そして、検知された信号は演算部6で演算処理され、流量が求められる。   This change in the rotational speed of the impeller 3 can be detected by the magnetic sensor 5. And the detected signal is arithmetically processed by the calculating part 6, and a flow volume is calculated | required.

ところで、演算部6には磁気センサ5からの検知信号しか入力されないので、羽根車3と制動羽根車2とが連結されているか否かを検知信号から判断する必要がある。   By the way, since only the detection signal from the magnetic sensor 5 is input to the calculation unit 6, it is necessary to determine from the detection signal whether the impeller 3 and the braking impeller 2 are connected.

この検知信号には羽根車3の回転による信号と制動羽根車2の回転による信号とが互いに重畳されている。演算部6では両信号を最初に分離して、図5に示す2つの信号を得る。図5(a)は羽根車3の回転による信号であり、(b)は制動羽根車2の回転による信号を示している。   A signal due to the rotation of the impeller 3 and a signal due to the rotation of the braking impeller 2 are superimposed on this detection signal. The arithmetic unit 6 first separates both signals to obtain two signals shown in FIG. FIG. 5A shows a signal due to the rotation of the impeller 3, and FIG. 5B shows a signal due to the rotation of the braking impeller 2.

羽根車3と制動羽根車2とが相互に連結されていない状態では、(b)の波長F2は(a)の波長F1の2倍より長くなる。したがって、F1<0.5F2であれば羽根車3と制動羽根車2とは相互に連結されていないことが分かり、演算部6は図4のL1を用いて流量を求める。   In a state where the impeller 3 and the braking impeller 2 are not connected to each other, the wavelength F2 in (b) is longer than twice the wavelength F1 in (a). Therefore, if F1 <0.5F2, it can be seen that the impeller 3 and the braking impeller 2 are not connected to each other, and the calculation unit 6 obtains the flow rate using L1 in FIG.

羽根車3と制動羽根車2とが相互に連結されると、F1=0.5F2となり、また羽根3aと羽根2aとは共にN極に帯磁され、羽根3bと羽根2bとは共にS極に帯磁されていることから、図5の(b)に示す信号が検知信号から分離できなくなる。このことから演算部6は羽根車3と制動羽根車2とが相互に連結したと判断し、図4のL2を用いて流量を演算する。   When the impeller 3 and the braking impeller 2 are connected to each other, F1 = 0.5F2, the blade 3a and the blade 2a are both magnetized to the N pole, and the blade 3b and the blade 2b are both the S pole. Due to the magnetism, the signal shown in FIG. 5B cannot be separated from the detection signal. Therefore, the calculation unit 6 determines that the impeller 3 and the braking impeller 2 are connected to each other, and calculates the flow rate using L2 in FIG.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。例えば、上記実施の形態では羽根車の上面に流体受け部31を設けたが、各羽根3a,3b,3c,3dから水平方向に庇状の突起を設けて、その突起の上面を流体受け部31として機能させることにより、流体受け部31の総面積を増加させてもよい。   In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention. For example, in the above embodiment, the fluid receiving portion 31 is provided on the upper surface of the impeller, but a hook-like protrusion is provided in the horizontal direction from each blade 3a, 3b, 3c, 3d, and the upper surface of the protrusion is the fluid receiving portion. By functioning as 31, the total area of the fluid receiving portion 31 may be increased.

本発明の一実施の形態の構成を示す図The figure which shows the structure of one embodiment of this invention 羽根車と制動羽根車とを示す斜視図Perspective view showing impeller and braking impeller 羽根車と制動羽根車との連結状態を説明する図The figure explaining the connection state of an impeller and a braking impeller 流速と回転数との関係を示す図Diagram showing the relationship between flow velocity and rotation speed 検知信号に重畳される信号を示す図The figure which shows the signal superimposed on the detection signal

符号の説明Explanation of symbols

1 スリーブ
2 制動羽根車
3 羽根車
4 バネ部材
5 磁気センサ
6 演算部
11 整流フィン
21 回転軸
23 係合凹部
32 係合凸部
P 管路
DESCRIPTION OF SYMBOLS 1 Sleeve 2 Brake impeller 3 Impeller 4 Spring member 5 Magnetic sensor 6 Calculation part 11 Current flow fin 21 Rotating shaft 23 Engagement recessed part 32 Engagement convex part P Pipe line

Claims (2)

流体が流れる管路の途中に、羽根の先端に磁極を有し流体の流れによって回転する羽根車を設けると共に、羽根車の回転数を検出するため、管路の外部から羽根車の先端の磁極による磁界を検知する磁気センサを備えた流量センサにおいて、上記羽根車を流れ方向に対して移動自在に設けると共に、流体の流れを受け、羽根車を下流側に移動させる流体受け部を羽根車に設け、羽根車の下流側に、流体の流れによって流れ方向に移動することなく回転する制動羽根車を設け、かつ、羽根車と制動羽根車との間を離間させる方向に付勢する付勢手段と、この付勢手段による付勢力に抗して羽根車が制動羽根車に所定距離まで近づいた場合に、羽根車と制動羽根車とを連結させて両羽根車を等速で回転させる連結機構を設けたことを特徴とする流量センサ。   In the middle of the conduit through which the fluid flows, an impeller that has a magnetic pole at the tip of the blade and rotates by the flow of the fluid is provided, and the magnetic pole at the tip of the impeller from the outside of the conduit is detected in order to detect the rotational speed of the impeller. In the flow rate sensor having a magnetic sensor for detecting the magnetic field by the impeller, the impeller is provided with the impeller so as to be movable in the flow direction, and receives a fluid flow and moves the impeller downstream. And a biasing means provided on the downstream side of the impeller to provide a braking impeller that rotates without moving in the flow direction due to a fluid flow, and to bias the impeller and the braking impeller in a separating direction. And a connecting mechanism for connecting the impeller and the braking impeller to rotate both impellers at a constant speed when the impeller approaches the braking impeller to a predetermined distance against the urging force of the urging means. A flow characterized by the provision of Sensor. 上記羽根車は、上記制動羽根車の回転軸線に沿って上流側に延設された回転軸に回転自在に取り付けられていることを特徴とする請求項1に記載の流量センサ。   The flow sensor according to claim 1, wherein the impeller is rotatably attached to a rotation shaft that extends upstream along a rotation axis of the braking impeller.
JP2008264936A 2008-10-14 2008-10-14 Flow sensor Active JP4954177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264936A JP4954177B2 (en) 2008-10-14 2008-10-14 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264936A JP4954177B2 (en) 2008-10-14 2008-10-14 Flow sensor

Publications (2)

Publication Number Publication Date
JP2010096512A JP2010096512A (en) 2010-04-30
JP4954177B2 true JP4954177B2 (en) 2012-06-13

Family

ID=42258313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264936A Active JP4954177B2 (en) 2008-10-14 2008-10-14 Flow sensor

Country Status (1)

Country Link
JP (1) JP4954177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340664B2 (en) * 2014-05-14 2018-06-13 株式会社テージーケー Hot water supply system, detection unit and sensor
CN111175538B (en) * 2020-01-16 2021-10-22 兰州理工大学 Fish wing type floating type current meter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048120U (en) * 1983-09-09 1985-04-04 シ−ケ−ディコントロ−ルズ株式会社 flow sensor
JPS6059926U (en) * 1983-09-30 1985-04-25 株式会社ノーリツ flow rate detector
JPS6115519U (en) * 1984-07-03 1986-01-29 シ−ケ−デイコントロ−ルズ株式会社 flow sensor
JPS62187813U (en) * 1986-05-20 1987-11-30
JPH0688736A (en) * 1992-09-08 1994-03-29 Aichi Tokei Denki Co Ltd Turbine-type flowmeter
JP2518785B2 (en) * 1992-12-28 1996-07-31 リンナイ株式会社 Flow sensor
JP4066521B2 (en) * 1998-06-26 2008-03-26 株式会社ノーリツ Water volume sensor

Also Published As

Publication number Publication date
JP2010096512A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP4954177B2 (en) Flow sensor
WO2008103584A3 (en) Sensor misalignment detection and estimation system
JP5967446B2 (en) Rotation speed detector
JP2006317233A (en) Flow sensor and piping unit
JP4913088B2 (en) Flowmeter
US9885595B2 (en) Non-contact continuous type sensing device for a flowmeter and sensing method thereof
JP5567626B2 (en) Axial flow sensor
JP5973667B2 (en) Vehicle control device
EP2447680B1 (en) Anti-rotation mechanism for pitot tube
CN107000681B (en) Webbing retractor with sender unit ring
CA2793482A1 (en) Entrapment detection for variable speed pump system using load coefficient
JP7090498B2 (en) Speed sensorless motor control device
KR102010743B1 (en) Method for Discriminating Initial Position of Brake by Wire System
JP2518785B2 (en) Flow sensor
US8448526B1 (en) Dual paddlewheel flow sensor
JP6554337B2 (en) Water supply equipment
JPH0210415Y2 (en)
US20190017802A1 (en) Optical sensing device for wheel set and optical sensing method using the same
JP4594499B2 (en) Flow meter
CN208778334U (en) A kind of centrifugation impeller of pump with position detecting function
JP2005257309A (en) Turbine flowmeter and fluid rotary machine
JP3615667B2 (en) Flow detector
KR102633244B1 (en) Stall recognition device and axial flow blower including same
JP2008267888A (en) Flow rate sensor
EP3290286B1 (en) End car of a rail vehicle and associated rail vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4954177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250