JP4953406B2 - All-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery Download PDF

Info

Publication number
JP4953406B2
JP4953406B2 JP2001253194A JP2001253194A JP4953406B2 JP 4953406 B2 JP4953406 B2 JP 4953406B2 JP 2001253194 A JP2001253194 A JP 2001253194A JP 2001253194 A JP2001253194 A JP 2001253194A JP 4953406 B2 JP4953406 B2 JP 4953406B2
Authority
JP
Japan
Prior art keywords
lithium
sulfide
solid electrolyte
secondary battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001253194A
Other languages
Japanese (ja)
Other versions
JP2003068361A (en
Inventor
和典 高田
繁雄 近藤
遵 渡辺
高義 佐々木
太郎 稲田
亮尚 梶山
佐々木  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toda Kogyo Corp
GS Yuasa International Ltd
Original Assignee
National Institute for Materials Science
Toda Kogyo Corp
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toda Kogyo Corp, GS Yuasa International Ltd filed Critical National Institute for Materials Science
Priority to JP2001253194A priority Critical patent/JP4953406B2/en
Publication of JP2003068361A publication Critical patent/JP2003068361A/en
Application granted granted Critical
Publication of JP4953406B2 publication Critical patent/JP4953406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、負極活物質に炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウム二次電池に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータ・携帯電話等のポータブル機器の開発にともない、その電源として電池の需要は非常に大きなものとなっている。特に、リチウム電池は、リチウムが小さな原子量を持ちかつイオン化エネルギーが大きな物質であることから、高エネルギー密度を得ることができる電池として各方面で盛んに研究が行われている。
【0003】
また一方、リチウム電池の汎用化につれて、含有活物質量の増加による内部エネルギーの増加と、さらに電解質に用いられる可燃性物質である有機溶媒の含有量の増加により、電池の発火などの危険性に対する関心が近年クローズアップされてきた。リチウム電池の安全性を確保するための方法としては、有機溶媒電解質に代えて不燃性の物質である固体電解質を用いることが極めて有効であり、高い安全性を備えた全固体リチウム電池の開発が望まれている。
【0004】
全固体リチウム電池に用いられるリチウムイオン伝導性固体電解質としては、高いイオン伝導性を有するものが好ましい。このような物質としては、1980年代に10−3S/cmのイオン伝導性を有する硫化物ガラス、すなわちLiI−LiS−P、LiI−LiS−B、LiI−LiS−SiSなどが見出され、さらに近年では、LiPO−LiS−SiS、LiSiO−LiS−SiSなども見出されてきた。またこれらガラス状物質に加え、近年では結晶質の硫化物においても高いイオン伝導性が観測され、LiS−SiS−Ga、LiS−P(結晶化ガラス)の組成で表すことができるリチウムイオン伝導性固体電解質の報告がなされている。
【0005】
【発明が解決しようとする課題】
しかしながら、これら固体電解質のうち、特定の電極活物質に対して好適なものの選択に関してはこれまで言及されたことがなく、たとえば特開平11−219722号では、全固体リチウム二次電池を作製する上において、「本発明におけるリチウムイオン伝導性固体電解質としては、電池の出力を大きなものとするために、イオン伝導性の高いものを用いることが好ましい。LiS−SiS、LiS−B、LiS−Pなどの硫化物系の非晶質(ガラス状)リチウムイオン伝導性固体電解質は、10−4S/cm以上の高いイオン伝導性を有することから好適である。」とのみ記載されており、さらにこれらリチウムイオン伝導性固体電解質より選ばれる好適な固体電解質としては、「これらの固体電解質は、一般的に出発物質の混合物を高温で溶融し、急冷することで合成される。LiS−SiSは、SiSの蒸気圧がBやPに比べて高いため、電解質合成時の出発物質の蒸散が少なく、工業的な大量合成にもっとも適している。」と記載されている。
【0006】
電解質としてLiS−SiS系固体電解質を用いた全固体リチウム二次電池に関しては、R.Komiya,A.Hayashi,H.Morimoto,M.Tatsumisago,T.Minami,Solid State Ionics,140,83(2001)や、K.Iwamoto,N.Aotani,K.Takada,S.Kondo,Solid State Ionics,79,288(1995)、岩本和也,藤野信,高田和典,近藤繁雄,電気化学,67,151(1999)などの報告があり、これらの固体電解質のうち、LiS−SiS系固体電解質が全固体リチウム二次電池に用いられるものとして最も好適であるかの印象を与える。
【0007】
これらの報告において、全固体二次電池の負極活物質としては、インジウム−リチウム合金、あるいはLi4/3Ti5/3が用いられている。一方、現在リチウム二次電池の負極活物質としては、黒鉛層間化合物に代表される炭素材料が用いられている。黒鉛層間化合物は、372mAh/gもの理論容量と、約0.1Vのきわめて卑な電位を示し、リチウム二次電池を高エネルギー密度化する上において上記文献で報告されたインジウム−リチウム合金、あるいはLi4/3Ti5/3に比べ優れた材料である。
【0008】
今回、発明者の検討において、黒鉛を負極活物質として用いた場合の電池特性は固体電解質の種類に大きく異なり、優れた性能の全固体リチウム二次電池を作製するためには、リチウムイオン伝導性固体電解質の選択がきわめて重要であることが明らかとなった。
発明は、負極活物質として黒鉛層間化合物を用いた全固体リチウム二次電池において、用いる電解質としてもっとも好適なものを選択し、全個体リチウム二次電池の高エネルギー密度化を可能とすることを目的とする。
【0009】
【課題を解決するための手段】
負極活物質が炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウムイオン二次電池において,少なくとも該負極活物質に接するリチウムイオン伝導性固体電解質が硫化リチウムと硫化リンと成分Xからなる物質とする。
【0010】
さらに,上記の成分Xはヨウ化リチウム,硫化ホウ素,硫化アルミニウム,リン酸リチウム,ホウ酸リチウム,酸化リチウムより選択される少なくとも一種を用いる。
【0011】
【発明の実施の形態】
硫化物系リチウムイオン伝導性固体電解質は、基本的に不動の骨格構造を形成する硫化物と、可動のリチウムイオン源となる硫化物より合成される。後者の硫化物としては硫化リチウムが用いられ、前者の硫化物としては先に述べた硫化リン、硫化ホウ素、硫化ケイ素をはじめ、硫化ゲルマニウム、硫化アルミニウム、硫化ガリウム等が用いられる。たとえばLISICON型結晶構造を有するLiGeSではGeSの四面体が骨格構造を形成し、その構造中を可動のリチウムイオンが拡散するものと考えられている。
【0012】
本発明は、負極活物質として炭素材料を用いた全固体二次電池の固体電解質として、これらの骨格構造形成硫化物の中で、硫化ケイ素あるいは硫化ゲルマニウムを骨格構造形成に用いた固体電解質を用いた場合、充電時にリチウムイオンが炭素材料の層間に挿入される反応に加えて、ケイ素あるいはゲルマニウムの還元反応が副反応として生じることを見出したことに基づく。
【0013】
すなわち、LiS−SiS、LiS−GeS等のケイ素あるいはゲルマニウムを含む固体電解質を用いた場合には、電池の充電中に流れた電流は炭素材料へのリチウムイオンの挿入反応とケイ素あるいはゲルマニウムの還元反応に使われる。これらの反応のうち、後者の反応は可逆性に乏しく、したがって充電した電気量のうちケイ素あるいはゲルマニウムの還元反応に消費された電気量は、電池の放電時に取り出すことができない。
【0014】
この課題に鑑みなされた本発明において最も重要な点は、負極活物質として炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウム二次電池において、少なくとも該負極活物質に接する固体電解質が、ケイ素とゲルマニウムを含有しない物質であることである。さらに、骨格構造形成硫化物として硫化リンを用いた場合には、リンが特に還元されにくい元素であり、さらに高いイオン伝導性を示す固体電解質とすることができるため好ましい。
【0015】
本発明におけるリチウムイオン固体電解質は、LiS−Pの組成を基本とする。この組成を基本的な組成として有する限りにおいて、固体電解質は結晶質、非晶質のいずれのものも用いることができる。さらに、本発明において用いられるリチウムイオン伝導性固体電解質では、ケイ素とゲルマニウムを含まない範囲において、硫化リチウムと硫化リンにそのほかの成分(X)を加えることにより、LiS−P−Xの組成としてもよい。
【0016】
イオン伝導性をLiS−Pそのものに比べて高いものとするために加えられるXとしては、ヨウ化リチウム(LiI)、硫化ホウ素(B)、硫化アルミニウム(Al)が挙げられる。XがLiIの場合には、LiIがLiS−P構造中においてミクロドメインを形成し、イオン伝導性を高める。また、XがB、Alの場合には、混合アニオン効果によりやはりイオン伝導性が高まる。
【0017】
また、リチウムイオン伝導性固体電解質が非晶質(ガラス)の場合、Xとして酸化物あるいは酸素酸塩を用いることで、ガラス骨格をより安定なものとすることができる。このような効果を有するXとしては、リン酸リチウム、ホウ酸リチウム、酸化リチウムなどがあげられる。これらのXは、単独で、あるいは複数のものを同時に用いることができる。
【0018】
本発明における固体電解質が遷移金属元素を含まないものである必要性は、周知のものである。固体電解質に遷移金属元素が含まれている場合には、負極活物質との接触において遷移金属元素が還元され、固体電解質として用いた物質が電子伝導性を示すようになり、電解質として作用しなくなる。
【0019】
本発明における負極活物質は、炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質である。黒鉛に代表される炭素材料をリチウム二次電池の負極活物質に用いた場合、充電状態においては炭素材料の層間にリチウムイオンが挿入された状態であり、完全放電状態においては層間のリチウムは脱離し、炭素材料となる。したがって、本発明における全固体リチウム二次電池の負極活物質の形態は、炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質である。
【0020】
本発明における全固体リチウム二次電池の正極材料としては、LiCoO、LiNiO、LiMnなどリチウム電池の正極材料として公知なものを用いることができる。そのほかの正極材料として、MnO、V等の材料を用いることもできる。しかしながら、本発明における負極活物質は炭素材料であり、炭素材料はリチウムイオンを挿入されていない状態が安定であることから、工業的にはリチウムを含有しない状態の炭素材料を用いて電池を構成することが好ましい。そのため、それに対して使用される正極活物質にはこれら化合物のうちリチウムが含有されていることが好ましい。
【0021】
これらLiCoO、LiNiO、LiMnは、リチウムイオンの脱離にともないリチウム基準で4Vの電位を示す。そのため、前記のXとしてLiIを用いた場合には、正極活物質との接触面においてヨウ化物イオンの酸化が起こる。そのため、これらの物質を正極活物質として用いる場合には、XとしてLiIを含まないリチウムイオン伝導性固体電解質を用いるか、あるいは正極活物質と接触する部分においてLiIを含まない、他種のリチウムイオン伝導性固体電解質を用いる必要がある。
【0022】
【実施例】
以下、本発明について実施例を用いて詳細に説明する。
【0023】
[実施例]
本実施例においては、リチウムイオン伝導性固体電解質としてLiI−LiS−P系の硫化物ガラスを用い、炭素材料として黒鉛の電極特性を調べた。固体電解質は、以下の方法により合成した。
【0024】
まず、ヨウ化リチウム(LiI)、硫化リチウム(LiS)、五硫化二リン(P)を40:41:19のモル比で混合した。次に、内面を炭素で被覆した石英菅中にこの混合物を減圧封入し、950℃に加熱した。さらにこの石英菅を水中に投じ、上記混合物の融液を急冷することにより、非晶質のリチウムイオン伝導性固体電解質を得た。
【0025】
炭素材料としては、黒鉛(TIMCAL製、SFG−50)を用い、その電極特性を下記の方法で調べた。
【0026】
上記で得たリチウムイオン伝導性固体電解質と黒鉛を1:1の重量比で混合し、電極材料とした。この電極材料(20mg)と、対極としてインジウムとリチウムの合金を用い、これらの間に上記の固体電解質を介し、3層のペレット状に成型し、測定セルとした。
【0027】
この測定セルを10μAの定電流で充放電させることにより、黒鉛の電極特性を調べた。その結果を図1に示した。なお、図中において左の縦軸は測定セルの端子電圧、右の縦軸はその端子電圧より計算された黒鉛電極のリチウム電極基準の電位、下の横軸は黒鉛1gに対する容量、上の横軸はその容量から計算されたリチウムイオンの挿入量を示す。この図から明らかなように第一回目の還元過程において344mAh/gの還元容量が観測され、それに対する第一回目の酸化過程における酸化電気量は292mAh/gであった。
【0028】
[比較例1]
本比較例においては、リチウムイオン伝導性固体電解質としてLiS−GeS−P系固体電解質を用いた以外は実施例と同様に黒鉛の電極特性を調べた。固体電解質は、以下の方法により合成した。
【0029】
まず、硫化リチウム(LiS)、硫化ゲルマニウム(GeS)、五硫化二リン(P)を13:2:3のモル比で混合した。次に、内面を炭素で被覆した石英菅中にこの混合物を減圧封入し、700℃に加熱した。8時間過熱の後、冷却し、リチウムイオン伝導性固体電解質を得た。
【0030】
このようにしていた固体電解質を用いた以外は実施例と同様に測定セルを作製し、黒鉛の電極挙動を調べた。その結果、図2に示したように、第一回目の還元過程において1385mAh/gもの大きな還元電気量が観測された。それに対して、第一回目の酸化過程における酸化電気量は241mAh/gであった。
【0031】
[比較例2]
本比較例においては、リチウムイオン伝導性固体電解質としてLiPO−LiS−SiS系固体電解質を用いた以外は実施例と同様に黒鉛の電極特性を調べた。
【0032】
固体電解質は、リン酸リチウム(LiPO)、硫化リチウム(LiS)、二硫化ケイ素(SiS)を1:63:36のモル比で混合し、この混合物をアルゴン気流中950℃で溶融した後、双ローラーで融液を急冷することにより合成した。
【0033】
このようにしていた固体電解質を用いた以外は実施例と同様に測定セルを作製し、黒鉛の電極挙動を調べた。その結果、第一回目の還元過程において1278mAh/gもの大きな還元電気量が観測された。それに対して、第一回目の酸化過程における酸化電気量は401mAh/gであった。
【0034】
以上、実施例と比較例を比較すると明らかなように、ケイ素あるいはゲルマニウムを含んだ固体電解質を用いた場合には、一回目の還元過程において黒鉛へのリチウムイオン挿入反応の理論容量(372mAh/g)をはるかに超える還元電気量が観測され、また一回目の酸化過程における電気量は還元課程における電気量に比べて極めて小さなものであった。この結果は、一回目の還元過程においては、黒鉛へのリチウムイオン挿入反応と同時に固体電解質中のケイ素あるいはゲルマニウムの還元反応が生じており、この反応が可逆性に乏しいことを意味するものと考えられた。
【0035】
それに対して、ケイ素あるいはゲルマニウムを含まない固体電解質を用いた場合には、一回目の還元電気量は黒鉛へのリチウム挿入反応の理論容量に極めて近いものであり、またその可逆性も高く、固体電解質の還元反応が起こっていないものと思われた。
【0036】
なお本発明の効果を明快な形で明らかとするために、負極の単極挙動のみを調べ、本発明の効果を示した。全固体リチウム二次電池を構成する上で、これに対して使用する正極としては、LiCoO、LiNiO等、これまでに公知な技術を用いることで、全固体リチウム二次電池を作製することが可能であることは明らかである。
【0037】
【発明の効果】
本発明によると、負極活物質として炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウム二次電池を作製することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例における黒鉛材料の電極特性(充放電特性)を示した図である。
【図2】 本発明の一比較例における黒鉛材料の電極特性(充放電特性)を示した図である
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an all solid lithium secondary battery using a carbon material or a material in which lithium ions are inserted between carbon material layers as a negative electrode active material.
[0002]
[Prior art]
In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as a power source has become very large. In particular, lithium batteries are actively studied in various fields as batteries capable of obtaining a high energy density because lithium has a small atomic weight and a large ionization energy.
[0003]
On the other hand, as lithium batteries become more and more versatile, internal energy increases due to an increase in the amount of active material, and the content of organic solvents, which are flammable substances used in electrolytes, increases the risk of battery ignition. Interest has been highlighted in recent years. As a method for ensuring the safety of a lithium battery, it is extremely effective to use a solid electrolyte that is a nonflammable substance instead of an organic solvent electrolyte, and the development of an all-solid lithium battery with high safety has been developed. It is desired.
[0004]
As the lithium ion conductive solid electrolyte used in the all solid lithium battery, those having high ion conductivity are preferable. Such materials include sulfide glasses having an ion conductivity of 10 −3 S / cm in the 1980s, that is, LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , LiI. such as -Li 2 S-SiS 2 is found, in recent years, it has been found well as Li 3 PO 4 -Li 2 S- SiS 2, Li 4 SiO 4 -Li 2 S-SiS 2. In addition to these glassy substances, high ionic conductivity has recently been observed in crystalline sulfides, and Li 2 S—SiS 2 —Ga 2 S 3 , Li 2 S—P 2 S 5 (crystallized glass). A lithium ion conductive solid electrolyte that can be expressed by the following composition has been reported.
[0005]
[Problems to be solved by the invention]
However, of these solid electrolytes, the selection of a suitable one for a specific electrode active material has not been mentioned so far. For example, in Japanese Patent Application Laid-Open No. 11-219722, an all solid lithium secondary battery is manufactured. in "as the lithium ion conductive solid electrolyte in the present invention, in order to the output of the battery is large, .Li 2 S-SiS 2 it is preferable to use a high ionic conductivity, Li 2 S-B Sulfide-based amorphous (glassy) lithium ion conductive solid electrolytes such as 2 S 3 and Li 2 S—P 2 S 5 are suitable because they have a high ion conductivity of 10 −4 S / cm or more. As a suitable solid electrolyte selected from these lithium ion conductive solid electrolytes, “these solid electrolytes” are described. Generally by melting a mixture of starting materials at a high temperature, .Li 2 S-SiS 2, which is synthesized by quenching the vapor pressure of SiS 2 is higher than the B 2 S 3 and P 2 S 5 Therefore, there is little transpiration of the starting material at the time of electrolyte synthesis, and it is most suitable for industrial mass synthesis. "
[0006]
Regarding an all-solid lithium secondary battery using a Li 2 S—SiS 2 -based solid electrolyte as an electrolyte, R.C. Komiya, A .; Hayashi, H .; Morimoto, M .; Tatsumisago, T .; Minami, Solid State Ionics, 140 , 83 (2001); Iwamoto, N .; Aotani, K .; Takada, S .; Kondo, Solid State Ionics, 79 , 288 (1995), Iwamoto Kazuya, Fujino Nobu, Takada Kazunori, Kondo Shigeo, Electrochemistry, 67 , 151 (1999), and the like. Among these solid electrolytes, Li 2 It gives the impression that the S-SiS 2 solid electrolyte is most suitable for use in an all-solid lithium secondary battery.
[0007]
In these reports, an indium-lithium alloy or Li 4/3 Ti 5/3 O 4 is used as the negative electrode active material of the all-solid-state secondary battery. On the other hand, carbon materials typified by graphite intercalation compounds are currently used as negative electrode active materials for lithium secondary batteries. The graphite intercalation compound shows a theoretical capacity of 372 mAh / g and a very low potential of about 0.1 V, and indium-lithium alloy reported in the above-mentioned literature in order to increase the energy density of a lithium secondary battery, or Li It is a material superior to 4/3 Ti 5/3 O 4 .
[0008]
In this study, the battery characteristics when graphite was used as the negative electrode active material differed greatly depending on the type of solid electrolyte. In order to produce an all-solid lithium secondary battery with excellent performance, lithium ion conductivity It became clear that the choice of solid electrolyte was very important.
The object of the present invention is to select the most suitable electrolyte as the electrolyte to be used in an all-solid lithium secondary battery using a graphite intercalation compound as a negative electrode active material, and to increase the energy density of an all-solid lithium secondary battery And
[0009]
[Means for Solving the Problems]
In an all-solid-state lithium ion secondary battery in which a negative electrode active material is a carbon material or a material in which lithium ions are inserted between carbon material layers, at least a lithium ion conductive solid electrolyte in contact with the negative electrode active material is lithium sulfide and phosphorus sulfide. And component X.
[0010]
Further, the component X is at least one selected from lithium iodide, boron sulfide, aluminum sulfide, lithium phosphate, lithium borate, and lithium oxide.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The sulfide-based lithium ion conductive solid electrolyte is synthesized from a sulfide that basically forms a stationary skeleton structure and a sulfide that serves as a movable lithium ion source. As the latter sulfide, lithium sulfide is used, and as the former sulfide, the above-mentioned phosphorus sulfide, boron sulfide, silicon sulfide, germanium sulfide, aluminum sulfide, gallium sulfide and the like are used. For example, in Li 4 GeS 4 having a LISICON-type crystal structure, it is considered that GeS 4 tetrahedrons form a skeletal structure, and movable lithium ions diffuse in the structure.
[0012]
The present invention uses a solid electrolyte using silicon sulfide or germanium sulfide for forming a skeleton structure among these skeleton structure-forming sulfides as a solid electrolyte of an all-solid secondary battery using a carbon material as a negative electrode active material. In this case, it is based on the finding that a reduction reaction of silicon or germanium occurs as a side reaction in addition to a reaction in which lithium ions are inserted between layers of carbon materials during charging.
[0013]
That is, when a solid electrolyte containing silicon or germanium, such as Li 2 S—SiS 2 , Li 2 S—GeS 2 , is used, the current that flows during the charging of the battery is an insertion reaction of lithium ions into the carbon material. Used for reduction reaction of silicon or germanium. Among these reactions, the latter reaction is poor in reversibility, and therefore the amount of electricity consumed in the reduction reaction of silicon or germanium out of the charged amount of electricity cannot be taken out when the battery is discharged.
[0014]
The most important point in the present invention made in view of this problem is that, in an all-solid lithium secondary battery using a carbon material or a material in which lithium ions are inserted between carbon material layers as a negative electrode active material, at least the negative electrode active material The solid electrolyte in contact with is a substance that does not contain silicon and germanium. Further, when phosphorus sulfide is used as the skeleton structure-forming sulfide, phosphorus is an element that is particularly difficult to be reduced, and it is preferable to obtain a solid electrolyte exhibiting higher ion conductivity.
[0015]
The lithium ion solid electrolyte in the present invention is based on the composition of Li 2 S—P 2 S 5 . As long as it has this composition as a basic composition, the solid electrolyte can be either crystalline or amorphous. Furthermore, in the lithium ion conductive solid electrolyte used in the present invention, Li 2 S—P 2 S 5 − is added by adding other component (X) to lithium sulfide and phosphorus sulfide within a range not including silicon and germanium. It is good also as a composition of X.
[0016]
Examples of X added to make the ion conductivity higher than that of Li 2 S—P 2 S 5 itself include lithium iodide (LiI), boron sulfide (B 2 S 3 ), and aluminum sulfide (Al 2 S). 3 ). When X is LiI, LiI forms a micro domain in the Li 2 S—P 2 S 5 structure and enhances ion conductivity. When X is B 2 S 3 or Al 2 S 3 , the ion conductivity is also increased due to the mixed anion effect.
[0017]
Further, when the lithium ion conductive solid electrolyte is amorphous (glass), by using an oxide or an oxyacid salt as X, the glass skeleton can be made more stable. Examples of X having such an effect include lithium phosphate, lithium borate, and lithium oxide. These X can be used alone or in combination.
[0018]
The necessity that the solid electrolyte in the present invention does not contain a transition metal element is well known. When the transition metal element is contained in the solid electrolyte, the transition metal element is reduced in contact with the negative electrode active material, and the substance used as the solid electrolyte exhibits electronic conductivity and does not function as an electrolyte. .
[0019]
The negative electrode active material in the present invention is a carbon material or a material in which lithium ions are inserted between carbon material layers. When a carbon material typified by graphite is used as the negative electrode active material of a lithium secondary battery, lithium ions are inserted between the carbon material layers in the charged state, and lithium between the layers is removed in the fully discharged state. Release to become a carbon material. Therefore, the form of the negative electrode active material of the all-solid-state lithium secondary battery in the present invention is a carbon material or a substance in which lithium ions are inserted between carbon material layers.
[0020]
As the positive electrode material of the all-solid lithium secondary battery in the present invention, known materials for the positive electrode of the lithium battery such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used. As other positive electrode materials, materials such as MnO 2 and V 2 O 5 can also be used. However, since the negative electrode active material in the present invention is a carbon material, and the carbon material is stable when lithium ions are not inserted, it is industrially constituted by using a carbon material that does not contain lithium. It is preferable to do. Therefore, it is preferable that the positive electrode active material used for it contains lithium among these compounds.
[0021]
These LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 exhibit a potential of 4 V on the basis of lithium as lithium ions are desorbed. Therefore, when LiI is used as X, iodide ions are oxidized on the contact surface with the positive electrode active material. Therefore, when these materials are used as the positive electrode active material, a lithium ion conductive solid electrolyte that does not contain LiI is used as X, or other types of lithium ions that do not contain LiI in the portion in contact with the positive electrode active material. It is necessary to use a conductive solid electrolyte.
[0022]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0023]
[Example]
In this example, LiI—Li 2 S—P 2 O 5 sulfide glass was used as the lithium ion conductive solid electrolyte, and the electrode characteristics of graphite as the carbon material were examined. The solid electrolyte was synthesized by the following method.
[0024]
First, lithium iodide (LiI), lithium sulfide (Li 2 S), and phosphorus pentasulfide (P 2 S 5 ) were mixed at a molar ratio of 40:41:19. Next, the mixture was sealed under reduced pressure in a quartz jar whose inner surface was coated with carbon, and heated to 950 ° C. Furthermore, this quartz soot was poured into water, and the melt of the above mixture was quenched to obtain an amorphous lithium ion conductive solid electrolyte.
[0025]
As the carbon material, graphite (manufactured by TIMCAL, SFG-50) was used, and the electrode characteristics were examined by the following method.
[0026]
The lithium ion conductive solid electrolyte obtained above and graphite were mixed at a weight ratio of 1: 1 to obtain an electrode material. This electrode material (20 mg) and an alloy of indium and lithium were used as a counter electrode, and a three-layer pellet was formed between the electrode material and the solid electrolyte between them.
[0027]
This measurement cell was charged / discharged at a constant current of 10 μA to examine the electrode characteristics of graphite. The results are shown in FIG. In the figure, the left vertical axis represents the terminal voltage of the measurement cell, the right vertical axis represents the potential of the graphite electrode based on the lithium electrode calculated from the terminal voltage, the lower horizontal axis represents the capacity relative to 1 g of graphite, and the upper horizontal The axis indicates the amount of lithium ion insertion calculated from the capacity. As is apparent from this figure, a reduction capacity of 344 mAh / g was observed in the first reduction process, and the amount of electricity oxidized in the first oxidation process was 292 mAh / g.
[0028]
[Comparative Example 1]
In this comparative example, the electrode characteristics of graphite were examined in the same manner as in the example except that a Li 2 S—GeS 2 —P 2 S 5 solid electrolyte was used as the lithium ion conductive solid electrolyte. The solid electrolyte was synthesized by the following method.
[0029]
First, lithium sulfide (Li 2 S), germanium sulfide (GeS 2 ), and diphosphorus pentasulfide (P 2 S 5 ) were mixed at a molar ratio of 13: 2: 3. Next, this mixture was sealed under reduced pressure in a quartz jar whose inner surface was coated with carbon, and heated to 700 ° C. After heating for 8 hours, the mixture was cooled to obtain a lithium ion conductive solid electrolyte.
[0030]
A measurement cell was prepared in the same manner as in Example except that the solid electrolyte was used, and the electrode behavior of graphite was examined. As a result, as shown in FIG. 2, a reduction electric energy as large as 1385 mAh / g was observed in the first reduction process. In contrast, the amount of electricity oxidized in the first oxidation process was 241 mAh / g.
[0031]
[Comparative Example 2]
In this comparative example was examined electrode characteristics of the graphite in the same manner as in Example except for using Li 3 PO 4 -Li 2 S- SiS 2 system solid electrolyte as lithium ion conductive solid electrolyte.
[0032]
As the solid electrolyte, lithium phosphate (Li 3 PO 4 ), lithium sulfide (Li 2 S), and silicon disulfide (SiS 2 ) were mixed at a molar ratio of 1:63:36, and the mixture was mixed at 950 ° C. in an argon stream. Then, the melt was rapidly cooled with a twin roller and synthesized.
[0033]
A measurement cell was prepared in the same manner as in Example except that the solid electrolyte was used, and the electrode behavior of graphite was examined. As a result, a large amount of reducing electricity of 1278 mAh / g was observed in the first reduction process. On the other hand, the amount of electricity oxidized in the first oxidation process was 401 mAh / g.
[0034]
As is apparent from the comparison of the examples and the comparative examples, when a solid electrolyte containing silicon or germanium is used, the theoretical capacity (372 mAh / g) of the lithium ion insertion reaction into graphite in the first reduction process. The amount of reduced electricity far exceeding) was observed, and the amount of electricity in the first oxidation process was extremely small compared to the amount of electricity in the reduction process. This result suggests that, in the first reduction process, the reduction reaction of silicon or germanium in the solid electrolyte occurs simultaneously with the lithium ion insertion reaction into graphite, and this reaction is poor in reversibility. It was.
[0035]
On the other hand, when a solid electrolyte containing no silicon or germanium is used, the first reduction electric charge is very close to the theoretical capacity of the lithium insertion reaction into graphite, and its reversibility is also high. It seemed that the electrolyte reduction reaction did not occur.
[0036]
In order to clarify the effect of the present invention in a clear form, only the unipolar behavior of the negative electrode was examined to show the effect of the present invention. In constructing an all-solid lithium secondary battery, as a positive electrode used for this, an all-solid lithium secondary battery is produced by using a known technique such as LiCoO 2 or LiNiO 2. It is clear that this is possible.
[0037]
【Effect of the invention】
According to the present invention, an all-solid lithium secondary battery using a carbon material or a material in which lithium ions are inserted between carbon material layers as a negative electrode active material can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing electrode characteristics (charge / discharge characteristics) of a graphite material in one example of the present invention.
FIG. 2 is a diagram showing electrode characteristics (charge / discharge characteristics) of a graphite material in one comparative example of the present invention.

Claims (1)

負極活物質が炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質であり,少なくとも該負極活物質に接するリチウムイオン伝導性固体電解質が硫化リチウムと硫化リンと成分Xとからなり,該成分Xがヨウ化リチウム,硫化ホウ素,硫化アルミニウム,リン酸リチウム,ホウ酸リチウム,酸化リチウムより選択される少なくとも一種であることを特徴とする全固体リチウム二次電池。 The negative electrode active material is a carbon material or a material in which lithium ions are inserted between carbon material layers, and at least a lithium ion conductive solid electrolyte in contact with the negative electrode active material is composed of lithium sulfide, phosphorus sulfide, and component X. An all-solid lithium secondary battery, wherein X is at least one selected from lithium iodide, boron sulfide, aluminum sulfide, lithium phosphate, lithium borate, and lithium oxide.
JP2001253194A 2001-08-23 2001-08-23 All-solid lithium secondary battery Expired - Fee Related JP4953406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253194A JP4953406B2 (en) 2001-08-23 2001-08-23 All-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253194A JP4953406B2 (en) 2001-08-23 2001-08-23 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003068361A JP2003068361A (en) 2003-03-07
JP4953406B2 true JP4953406B2 (en) 2012-06-13

Family

ID=19081562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253194A Expired - Fee Related JP4953406B2 (en) 2001-08-23 2001-08-23 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4953406B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871177B (en) * 2003-10-23 2010-12-22 出光兴产株式会社 Method for purifying lithium sulfide
US20070248888A1 (en) * 2004-06-04 2007-10-25 Idemitsu Kosan Co., Ltd. High-Performance All-Solid Lithium Battery
US7993782B2 (en) 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP2007115661A (en) 2005-09-21 2007-05-10 Sumitomo Electric Ind Ltd Thin film lithium cell
JP2008152925A (en) 2006-12-14 2008-07-03 Sumitomo Electric Ind Ltd Battery structure and lithium secondary battery using the same
JP5093449B2 (en) * 2007-01-09 2012-12-12 住友電気工業株式会社 Lithium battery
KR101085355B1 (en) * 2007-11-13 2011-11-21 스미토모덴키고교가부시키가이샤 Lithium battery and method for manufacturing the same
WO2011093129A1 (en) 2010-01-28 2011-08-04 株式会社村田製作所 Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
JP5534000B2 (en) 2010-02-18 2014-06-25 株式会社村田製作所 Electrode active material for all solid state secondary battery and all solid state secondary battery
JP5652132B2 (en) * 2010-10-29 2015-01-14 トヨタ自動車株式会社 Inorganic solid electrolyte and lithium secondary battery
WO2013024537A1 (en) 2011-08-17 2013-02-21 富士通株式会社 Lithium ion electroconductive body and method for manufacturing same, all-solid-state lithium secondary cell
JP5846307B2 (en) 2012-06-28 2016-01-20 株式会社村田製作所 All solid battery
EP2905835B1 (en) 2012-10-05 2016-10-12 Fujitsu Limited Lithium-ion conductor and all-solid lithium-ion secondary cell
CN104995691B (en) 2013-02-15 2017-07-25 富士通株式会社 Lithium ion electroconductive body and its manufacture method, all-solid lithium secondary battery
US10038192B2 (en) 2013-09-02 2018-07-31 Mitsubishi Gas Chemical Company, Inc. Solid-state battery
RU2672556C2 (en) 2013-09-02 2018-11-16 Мицубиси Газ Кемикал Компани, Инк. Battery with solid electrolyte and method of obtaining active material of electrode
JP6264344B2 (en) 2015-08-31 2018-01-24 トヨタ自動車株式会社 Negative electrode active material particles and method for producing negative electrode active material particles
PT3771013T (en) 2018-03-23 2023-06-14 Tomiyama Pure Chemical Industries Ltd Electrolyte for power storage devices and nonaqueous electrolyte solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338345A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Full solid lithium battery
JP2000182601A (en) * 1998-12-10 2000-06-30 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery
JP2001155731A (en) * 1999-11-26 2001-06-08 Hitachi Maxell Ltd Secondary cell

Also Published As

Publication number Publication date
JP2003068361A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4953406B2 (en) All-solid lithium secondary battery
EP2988360B1 (en) Sulfide solid electrolyte material material and lithium solid state battery
Seino et al. Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode
JP4578684B2 (en) Lithium secondary battery
JP6097686B2 (en) Method for producing lithium or sodium battery
JP5458740B2 (en) Sulfide solid electrolyte material
JP5552974B2 (en) Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid state battery
JPH11219722A (en) Lithium secondary battery
CN1803608A (en) Manganese ion lithium silicate/carbon composite anode material for rechargeable lithium battery and method for preparing the same
JP2001052733A (en) Entirely solid lithium secondary battery
US6210836B1 (en) Lithium secondary battery
JP5293926B2 (en) Secondary battery
JP2001006674A (en) Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP6015762B2 (en) Ionic conductor and secondary battery
JPH08162151A (en) Full solid lithium battery
JPH06275314A (en) Lithium secondary battery
JP3555321B2 (en) Anode material and lithium secondary battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2023043881A (en) Sulfide solid electrolyte, method of producing the same and all-solid-state battery comprising the same
JPH0562680A (en) Electrode material for solid battery
JP2022125020A (en) LITHIUM ANTIMONY SULFIDE AS Li-CONDUCTING COMPOUND FOR APPLICATION OF THICK COATING LAYER IN Li-METAL BATTERY AND FOR SOLID ELECTROLYTE IN ALL-SOLID-STATE LITHIUM BATTERY
JPH0896836A (en) Total solid lithium battery
JPS62176055A (en) Lithium battery
JPS61206167A (en) Lithium secondary battery
JPH03225775A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4953406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees