JP4944536B2 - Electrolyte separation apparatus and electrolyte separation method - Google Patents

Electrolyte separation apparatus and electrolyte separation method Download PDF

Info

Publication number
JP4944536B2
JP4944536B2 JP2006216138A JP2006216138A JP4944536B2 JP 4944536 B2 JP4944536 B2 JP 4944536B2 JP 2006216138 A JP2006216138 A JP 2006216138A JP 2006216138 A JP2006216138 A JP 2006216138A JP 4944536 B2 JP4944536 B2 JP 4944536B2
Authority
JP
Japan
Prior art keywords
electrolyte
chamber
stock solution
membrane
dialysate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006216138A
Other languages
Japanese (ja)
Other versions
JP2008036563A (en
Inventor
浩 古沢
善文 杉戸
康幸 礒野
道衞 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Kochi University of Technology
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Kochi University of Technology filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006216138A priority Critical patent/JP4944536B2/en
Publication of JP2008036563A publication Critical patent/JP2008036563A/en
Application granted granted Critical
Publication of JP4944536B2 publication Critical patent/JP4944536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

本発明は、化学工業、電子・電気工業、発酵工業、食品工業、生物工業、医薬品工業などの産業における脱塩、および海水の脱塩などに有用な電解質の分離装置および電解質の分離方法に関する。   The present invention relates to an electrolyte separation apparatus and an electrolyte separation method useful for desalting in industries such as the chemical industry, electronics / electric industry, fermentation industry, food industry, biological industry, pharmaceutical industry, and seawater desalination.

カチオン性重合体およびアニオン性重合体が膜表面から裏面に貫通し、互いに相接しているモザイク荷電膜は、低分子量の電解質を透過させることができるが、非電解質は透過させ難い機能性膜であり、例えば、生化学関連分野の脱塩用、あるいは海水などの脱塩に大きい期待がもたれており、種々の研究が従来よりなされている。   A mosaic charged membrane in which a cationic polymer and an anionic polymer penetrate from the membrane surface to the back surface and are in contact with each other can pass a low molecular weight electrolyte, but a non-electrolyte is difficult to permeate. For example, there is great expectation for desalination in biochemical-related fields, or desalination of seawater and the like, and various studies have been made.

モザイク荷電膜の製造方法として、ブロック共重合体の相分離を利用して製造する方法が提案されているが、ブロック共重合体自身の合成の困難さおよびイオン性の基の導入など、その製造方法は非常に煩雑で、大型膜の製造は困難であり、かつ非常に高価であった。これに対して、カチオン性重合体およびアニオン性重合体の微粒子を要素として集積してモザイク荷電膜を製造する方法が提案された。該モザイク荷電膜は、塗布法で形成されることから容易に大型膜が得られ、その工業的利用が検討されるに至った。   As a method for producing a mosaic charged membrane, a method using phase separation of a block copolymer has been proposed, but its production such as difficulty of synthesis of the block copolymer itself and introduction of ionic groups has been proposed. The method was very cumbersome, the production of large membranes was difficult and very expensive. On the other hand, a method for producing a mosaic charged membrane by accumulating fine particles of a cationic polymer and an anionic polymer as an element has been proposed. Since the mosaic charged film is formed by a coating method, a large film can be easily obtained, and its industrial use has been studied.

モザイク荷電膜を使用して原液室側と透析液室側とに電解質の濃度差を設け、電解質を分離する拡散透析法は、分離に長い時間を要すこと、さらに、カルシウムイオン、アルミニウムイオン、硫酸イオン、リン酸イオンなどの多価イオンからなる電解質の分離には、ナトリウムイオン、塩素イオンなどの一価イオンからなる電解質に比べてより長い時間を要するという問題があった。   The diffusion dialysis method that separates the electrolyte by providing a difference in electrolyte concentration between the stock solution chamber side and the dialysate chamber side using a mosaic charged membrane requires a long time for separation, and further, calcium ions, aluminum ions, Separation of electrolytes composed of multivalent ions such as sulfate ions and phosphate ions has a problem that it takes longer time than electrolytes composed of monovalent ions such as sodium ions and chlorine ions.

本発明の目的は、電解質および非電解質を含む溶液から電解質を分離するに際し、効率よく電解質の分離が可能であり、さらに、多価イオンからなる電解質の分離にも効果を有する電解質の分離装置および電解質の分離方法を提供することである。   An object of the present invention is to efficiently separate an electrolyte when separating an electrolyte from a solution containing an electrolyte and a non-electrolyte, and further to an electrolyte separation device having an effect for separating an electrolyte composed of multivalent ions, and It is to provide a method for separating electrolytes.

上記の目的は以下の本発明によって達成される。すなわち、本発明は、多価イオンを含む電解質と非電解質とを含有する電解質溶液から前記電解質を分離するために用いられる電解質の分離装置であって、原液室と透析液室とがイオン透過膜を挟んで配列した透析槽からなり、前記透析槽の最外側に、その内部に電解質液が導入される交流電極を有する交流電極室を備えていることを特徴とする電解質の分離装置、および該分離装置を使用する電解質の分離方法を提供する。
The above object is achieved by the present invention described below. That is, the present invention relates to an electrolyte separator used for separating the electrolyte from an electrolyte solution containing a polyvalent ion-containing electrolyte and a non-electrolyte, wherein the stock solution chamber and the dialysis solution chamber are ion-permeable membranes. An electrolyte separation apparatus comprising an AC electrode chamber having an AC electrode into which an electrolyte solution is introduced inside the dialysis tank on the outermost side of the dialysis tank; and An electrolyte separation method using a separation device is provided.

上記本発明の電解質の分離装置においては、イオン透過膜が、少なくとも一部が架橋した粒状重合体であるカチオン性重合体、アニオン性重合体およびマトリックスからなるモザイク荷電膜であることが好ましい。また、本発明の電解質の分離方法では、電解質の分離に際して原液室を加圧することが好ましい。   In the electrolyte separation device of the present invention, the ion permeable membrane is preferably a mosaic charged membrane comprising a cationic polymer, an anionic polymer, and a matrix that are at least partially crosslinked granular polymers. In the electrolyte separation method of the present invention, it is preferable to pressurize the stock solution chamber during the separation of the electrolyte.

原液室および透析液室がイオン透過膜を挟んで一組のあるいは交互に配列した透析槽からなり、該透析槽が好ましくは少なくとも2カ所に交流電極を備えている電解質の分離装置を使用して、原液、透析液および/または膜に交流電場を印加することにより、膜近傍における電解質(イオン)の大きな濃度勾配を緩和させ、イオンを膜表面まで速やかに移動させることを可能とし、さらに原液室の膜表面から透析液室へのイオンの移動を促進させ、一価イオンからなる電解質ばかりでなく、多価イオンからなる電解質も効率よく分離することができる。   The stock solution chamber and the dialysate chamber are composed of a pair of or alternately arranged dialysis tanks with an ion permeable membrane sandwiched between them, and the dialysis tank is preferably provided with an electrolyte separator having AC electrodes in at least two places. By applying an alternating electric field to the stock solution, dialysate and / or membrane, it is possible to relieve a large concentration gradient of the electrolyte (ions) in the vicinity of the membrane, and to move ions quickly to the membrane surface. The movement of ions from the membrane surface to the dialysate chamber is promoted, so that not only electrolytes composed of monovalent ions but also electrolytes composed of multivalent ions can be efficiently separated.

以下に、発明を実施するための最良の形態を挙げて本発明をさらに詳しく説明する。
本発明の電解質の分離装置および分離方法では、原液側と透析液側に電解質(塩)の濃度差をつくり電解質を分離する。本発明で使用するモザイク荷電膜は、膜内部にイオン透過のチャンネルが多数構築されているため、電解質の濃度が数百ppm以下でも、原液側と透析液側に電解質濃度の差があれば、電解質の透析が可能であるという特徴を有している。そのため、原液中の電解質の濃度が高い場合ばかりでなく、電解質濃度が1質量%以下という低い原液(原水)の場合でも優れた脱塩効果を発揮する。
Hereinafter, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
In the electrolyte separation apparatus and separation method of the present invention, the electrolyte is separated by creating a concentration difference of the electrolyte (salt) between the stock solution side and the dialysate side. Since the mosaic charged membrane used in the present invention has many ion-permeable channels built in the membrane, even if the electrolyte concentration is several hundred ppm or less, if there is a difference in electrolyte concentration between the stock solution side and the dialysate side, It has the feature that dialysis of electrolyte is possible. Therefore, an excellent desalting effect is exhibited not only when the concentration of the electrolyte in the stock solution is high, but also in the case of a stock solution (raw water) having a low electrolyte concentration of 1% by mass or less.

本発明において用いるモザイク荷電膜は、本出願人により既に提案された膜であり、例えば、特許第2681852号公報、特許第2895705号公報、特許第3012153号公報、特許第3016406号公報、特許第3156955号公報、特許第3234426号公報、特許第3236754号公報、特許第3453056号公報、特許第3453067号公報、特許第3626650号公報に記載されたモザイク荷電膜は、何れも本発明の装置において使用することができる。   The mosaic charged film used in the present invention is a film already proposed by the present applicant. For example, Japanese Patent No. 2618852, Japanese Patent No. 2895705, Japanese Patent No. 3012153, Japanese Patent No. 3016406, Japanese Patent No. 3156955. No. 3,234,426, No. 3,236,754, No. 3,453,056, No. 3,453,067, and No. 3,626,650 are all used in the apparatus of the present invention. be able to.

本発明の分離装置は、原液室および透析液室がイオン透過膜を挟んで一組のあるいは交互に配列した透析槽からなり、該透析槽が好ましくは少なくとも2カ所に交流電極を備えていることを特徴としており、本発明の分離方法は、該装置を使用して原水(塩水)、透析液および/またはに交流電場を印加することが特徴である。   The separation device of the present invention comprises a dialysis tank in which a stock solution chamber and a dialysis solution chamber are arranged in pairs or alternately with an ion-permeable membrane interposed therebetween, and the dialysis tank preferably has AC electrodes at at least two locations. The separation method of the present invention is characterized in that an alternating electric field is applied to raw water (salt water), dialysate and / or using the apparatus.

本発明の分離装置の構成の一例を図1を参照して説明する。該装置は、原液室および透析液室がイオン透過膜として配置されたモザイク荷電膜を挟んで交互に配列設置され、原液室に被処理液(原液)が流入および処理液(脱塩水)が排出する流路を、透析液室に透析水が流入および塩水が排出する流路を設置し、所定の電圧および周波数の交流電場を印加して、原液室に流入させた被処理液中の溶存イオンを透析液室に透過させる装置である。この際、被処理液および透析水の流れの短絡を防ぐために原液室および透析液室の間にメッシュ状物を挟むことが望ましい。イオン透過膜として配置されたモザイク荷電膜は、少なくとも一部が架橋した粒状重合体であるカチオン性重合体、アニオン性重合体およびマトリックスからなり、織布状支持体で強化された膜である。   An example of the configuration of the separation apparatus of the present invention will be described with reference to FIG. The device is alternately arranged with a mosaic charged membrane in which the stock solution chamber and dialysate chamber are arranged as an ion permeable membrane. The treated solution (stock solution) flows into the stock solution chamber and the treated solution (desalted water) is discharged. Dissolved ions in the liquid to be treated that flow into the stock solution chamber by installing a flow channel for dialysate inflow and salt water discharge into the dialysate chamber and applying an alternating electric field of a predetermined voltage and frequency. Is a device that permeates the dialysate chamber. At this time, it is desirable to sandwich a mesh-like material between the stock solution chamber and the dialysate chamber in order to prevent a short circuit between the liquid to be treated and the dialysate. The mosaic charged membrane disposed as an ion permeable membrane is a membrane made of a cationic polymer, an anionic polymer and a matrix, which are at least partially crosslinked granular polymers, and reinforced with a woven support.

印加する交流電場として、電圧は0.01V/cmから1kV/cmの範囲、さらに好ましくは0.1V/cmから100V/cmの範囲である。周波数は10Hzから10MHzの範囲、さらに好ましくは100Hzから1MHzの範囲である。   As an alternating electric field to be applied, the voltage is in the range of 0.01 V / cm to 1 kV / cm, more preferably in the range of 0.1 V / cm to 100 V / cm. The frequency is in the range of 10 Hz to 10 MHz, more preferably in the range of 100 Hz to 1 MHz.

また、交流電極は、イオン透過膜を挟んで一組のあるいは交互に配列した原液室および透析液室に好ましくは少なくとも2カ所に設置する。また、透析水として純水を使用する場合、電気抵抗が大きくなり発熱しやすくなるため、原液室および透析液室の最外側に交流電極室を設置し、該電極室に電解質液を導入して交流電場を印加することが望ましい。   In addition, the AC electrodes are preferably installed in at least two locations in the stock solution chamber and the dialysate chamber, which are arranged in pairs or alternately with the ion-permeable membrane interposed therebetween. In addition, when pure water is used as dialysis water, electrical resistance increases and heat is easily generated. Therefore, an AC electrode chamber is installed on the outermost side of the stock solution chamber and the dialysis solution chamber, and an electrolyte solution is introduced into the electrode chamber. It is desirable to apply an alternating electric field.

上記の交流電極を備えた分離装置を使用して、原液、透析液および/または膜に交流電場を印加することにより、膜近傍におけるイオン(塩)の大きな濃度勾配を緩和させ、イオンを膜表面まで速やかに移動させることを可能とする。また、カルシウムイオン、アルミニウムイオン、硫酸イオン、リン酸イオンなどの多価イオンは、ナトリウムイオン、塩素イオンなどの一価イオンに比べて、膜を透過する際に受ける膜の固定電荷からの電気的束縛が大きいため、その透過速度は小さい。本発明においては、原液、透析液および/または膜に交流電場を印加して膜の固定電荷とイオン間との結合を振動させることにより、イオンの膜の固定電荷からの電気的束縛を弱め、イオンの透過が速やかに行われるため、原液室の膜表面から透析液室への一価イオンばかりでなく、多価イオンの透過も促進され、脱塩効率の向上が可能となる。   By applying an alternating electric field to the undiluted solution, dialysate and / or membrane using the separation device equipped with the above-mentioned alternating current electrode, the large concentration gradient of ions (salts) in the vicinity of the membrane is alleviated, and the ions are transferred to the membrane surface. It is possible to move quickly. In addition, polyvalent ions such as calcium ions, aluminum ions, sulfate ions, and phosphate ions are more electrically connected to monovalent ions such as sodium ions and chloride ions from the fixed charges of the membrane that are received when passing through the membrane. The permeation rate is small because of the large constraints. In the present invention, by applying an alternating electric field to the stock solution, dialysate and / or the membrane to vibrate the bond between the fixed charge of the membrane and the ions, the electrical binding from the fixed charge of the ion membrane is weakened, Since the permeation of ions is performed quickly, permeation of not only monovalent ions from the membrane surface of the stock solution chamber to the dialysate chamber but also multivalent ions is promoted, and desalting efficiency can be improved.

また、交流電極を備え、モザイク荷電膜を挟んだ一組の原液室および透析液室からなる本発明の分離装置を使用し、原液室を加圧する圧透析法においても、加圧によるイオンの透過に加え、交流電場の印加によるイオンの透過効果が一層促進される。   Also, in the pressure dialysis method in which the separation chamber of the present invention comprising an AC electrode and a pair of undiluted solution chamber and dialysis solution chamber sandwiching a mosaic charged membrane is used to pressurize the undiluted solution chamber, ion permeation by pressurization In addition, the ion transmission effect by application of an alternating electric field is further promoted.

本発明の脱塩装置は、化学工業、電子・電気工業、発酵工業、食品工業、生物工業、医薬品工業などの産業における脱塩や、海水の脱塩に適し、具体的にはタンパク質、アミノ酸などの脱塩、染料、顔料、界面活性剤などの脱塩、従来、電気透析において発熱による目的物質の変質、イオン吸着による膜汚染などにより適用できなかった分野における脱塩などの幅広い用途に適用できる。   The desalting apparatus of the present invention is suitable for desalting in industries such as the chemical industry, the electronics / electric industry, the fermentation industry, the food industry, the biological industry, the pharmaceutical industry, and the desalination of seawater, specifically, proteins, amino acids, etc. It can be applied to a wide range of applications such as desalination of dyes, pigments, surfactants, etc., and desalting in fields where electrodialysis has not been applied due to alteration of target substances due to heat generation and membrane contamination due to ion adsorption. .

また、本発明の交流電極を備えた分離装置は、イオン透過膜としてアニオン交換膜を使用することによって、酸などの回収、またはイオン透過膜としてカチオン交換膜を使用することによってアミンなどの回収にも有用である。   The separation apparatus equipped with an AC electrode of the present invention can recover an acid or the like by using an anion exchange membrane as an ion permeable membrane, or an amine or the like by using a cation exchange membrane as an ion permeable membrane. Is also useful.

次に参考例、実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、文中の「部」および「%」は特に断りのない限り質量基準である。
参考例1(ポリマーA:カチオン性粒状重合体の合成)
・4−ビニルピリジン 20.0部
・ジビニルベンゼン 2.0部
・2,2−アゾビス(2−アミジノプロパン)ジハイドロクロリド
0.4部
・水 1,000部
Next, the present invention will be described more specifically with reference to reference examples, examples and comparative examples. In the text, “part” and “%” are based on mass unless otherwise specified.
Reference Example 1 (Polymer A: Synthesis of Cationic Granular Polymer)
・ 2-vinylpyridine 20.0 parts ・ Divinylbenzene 2.0 parts ・ 2,2-azobis (2-amidinopropane) dihydrochloride
0.4 parts, 1,000 parts of water

上記成分をフラスコに仕込み、窒素気流下、80℃で8時間重合した。重合生成物を凍結乾燥して、内部が架橋した粒状重合体を得た。該粒状重合体の平均粒子径は走査型電子顕微鏡で測定したところ約350nmであった。   The above components were charged into a flask and polymerized at 80 ° C. for 8 hours under a nitrogen stream. The polymerization product was freeze-dried to obtain a granular polymer having an internally crosslinked structure. The average particle size of the granular polymer was about 350 nm as measured with a scanning electron microscope.

参考例2(ポリマーB:アニオン性粒状重合体の合成)
・スチレン 41.6部
・アクリロニトリル 7.1部
・ヒドロキシエチルメタクリレート 8.1部
・ジビニルベンゼン 8.7部
・過硫酸カリウム 0.5部
・水 1,000部
Reference Example 2 (Polymer B: Synthesis of Anionic Granular Polymer)
-Styrene 41.6 parts-Acrylonitrile 7.1 parts-Hydroxyethyl methacrylate 8.1 parts-Divinylbenzene 8.7 parts-Potassium persulfate 0.5 parts-Water 1,000 parts

上記成分をフラスコに仕込み、窒素気流下、80℃で8時間重合した。得られた重合体の平均粒子径は約180nmであった。上記粒状重合体を濾過により分離し、乾燥後粉砕して粒状重合体を得た。この粒状重合体100部を、650部の98%濃硫酸に徐々に添加し、50℃で24時間、次いで80℃で3時間撹拌した。その後、冷却し、反応混合液を大量の氷水に投入した。炭酸ナトリウムで中和した後、濾過して粒状重合体を分離し、十分水洗した。得られた粒状重合体は、赤外線吸収スペクトルおよびイオンクロマトグラフィーなどの分析によって、芳香環にほぼ1個のスルホン酸基が導入されていることが確認できた。この粒状重合体の平均粒子径は約240nmであった。   The above components were charged into a flask and polymerized at 80 ° C. for 8 hours under a nitrogen stream. The average particle diameter of the obtained polymer was about 180 nm. The granular polymer was separated by filtration, dried and pulverized to obtain a granular polymer. 100 parts of this granular polymer was gradually added to 650 parts of 98% concentrated sulfuric acid and stirred at 50 ° C. for 24 hours and then at 80 ° C. for 3 hours. Then, it cooled and thrown the reaction liquid mixture into a lot of ice water. After neutralizing with sodium carbonate, the particulate polymer was separated by filtration and washed thoroughly with water. The obtained granular polymer was confirmed to have almost one sulfonic acid group introduced into the aromatic ring by analysis such as infrared absorption spectrum and ion chromatography. The average particle diameter of this granular polymer was about 240 nm.

参考例3(モザイク荷電膜作製)
ポリマーA2.0部をN−メチル−2−ピロリドン8.0部に分散させた。この分散液とポリスルホン樹脂の10%N−メチル−2−ピロリドン溶液66.7部とを1時間混合し、さらに、この分散液とポリマーB4.7部とN−メチル−2−ピロリドン18.7部とからなる分散液を混合し、脱泡処理して塗布液を調製した。該塗布液をポリプロピレン樹脂コート離型紙上にナイフコーターで塗布し、ポリエステル織布を圧着し、熱風乾燥した。次いでヨードメタン雰囲気中に室温で12時間放置後、水洗および風乾してモザイク荷電膜を作製した。上記の方法で作製されたモザイク荷電膜は、約210μmの膜厚で、かつ均一な厚みを有していた。
Reference Example 3 (Mosaic charged film production)
2.0 parts of polymer A was dispersed in 8.0 parts of N-methyl-2-pyrrolidone. This dispersion was mixed with 66.7 parts of a 10% N-methyl-2-pyrrolidone solution of polysulfone resin for 1 hour. Further, 4.7 parts of this dispersion, polymer B, and 18.7 N-methyl-2-pyrrolidone were mixed. The coating liquid was prepared by mixing the liquid dispersion consisting of the parts and defoaming. The coating solution was applied onto a polypropylene resin-coated release paper with a knife coater, a polyester woven fabric was pressure-bonded, and dried with hot air. Next, after leaving it in an iodomethane atmosphere at room temperature for 12 hours, it was washed with water and air-dried to prepare a mosaic charged film. The mosaic charged film produced by the above method had a thickness of about 210 μm and a uniform thickness.

参考例4
参考例3で得られたモザイク荷電膜(膜面積135cm2)を19枚、間隔が2mmで、原液室と透析液室を交互に形成するように配置した。このように構成された原液室および透析液室を備え、両端に交流電極室を備えた分離装置を使用して、原液として1.0mol/Lの塩化ナトリウム水溶液(電気伝導度58.3ms/cm)1000ml、透析液として脱イオン水を使用して、流速1L/分、電極間距離5cm、電圧10V、周波数100Hzの条件で、原液の濃度が0.01mol/L(電気伝導度1.10ms/cm)になるまで、原液の脱塩精製処理を行い、結果を表1にまとめた。その際、原液は循環し、透析液は1パスで塩水として回収した。
Reference example 4
19 mosaic charged membranes (membrane area 135 cm 2 ) obtained in Reference Example 3 were arranged at intervals of 2 mm so as to alternately form a stock solution chamber and a dialysate chamber. Using a separation apparatus having a stock solution chamber and a dialysate chamber configured as described above and having an AC electrode chamber at both ends, a 1.0 mol / L sodium chloride aqueous solution (electric conductivity 58.3 ms / cm) was used as a stock solution. ) The concentration of the stock solution was 0.01 mol / L (electric conductivity 1.10 ms / min) under the conditions of 1000 ml, deionized water as dialysate, flow rate 1 L / min, distance between electrodes 5 cm, voltage 10 V, frequency 100 Hz. The stock solution was desalted and purified until it reached cm), and the results are summarized in Table 1. At that time, the stock solution was circulated and the dialysate was recovered as salt water in one pass.

比較例1
交流電極を備えず、モザイク荷電膜を挟んだ原液室および透析液室からなる分離装置を使用した以外は、参考例4と同様に原液の分離処理を行い、結果を表1にまとめた。表1によれば、参考例4の塩化ナトリウムの透過速度は、交流電場を印加することによって比較例1の1.07倍大きくなった。
Comparative Example 1
The separation of the stock solution was performed in the same manner as in Reference Example 4 except that a separation apparatus consisting of a stock solution chamber and a dialysate chamber sandwiching a mosaic charged membrane was used, and the results were summarized in Table 1. According to Table 1, the permeation rate of sodium chloride in Reference Example 4 was increased 1.07 times that of Comparative Example 1 by applying an alternating electric field.

実施例2
参考例4の塩化ナトリウム水溶液の代わりに1.0mol/Lの塩化カルシウム水溶液(電気伝導度120.3ms/cm)を使用した以外は参考例4と同様の方法で、原液の濃度が0.01mol/L(電気伝導度2.18ms/cm)になるまで、原液の分離精製処理を行い、結果を表1にまとめた。
Example 2
In a similar manner, except for using the aqueous solution of calcium chloride 1.0 mol / L in place of aqueous sodium chloride solution of Reference Example 4 (electric conductivity 120.3ms / cm) as in Reference Example 4, the concentration of the stock solution 0.01mol The stock solution was separated and purified until / L (electric conductivity 2.18 ms / cm), and the results are summarized in Table 1.

比較例2
交流電極を備えず、モザイク荷電膜を挟んだ原液室および透析液室からなる分離装置を使用した以外は実施例2と同様に原液の分離処理を行い、結果を表1にまとめた。表1によれば、実施例2の塩化カルシウムの透過速度は交流電場を印加することによって比較例2の1.45倍大きくなり、さらに、塩化カルシウムの透過速度は塩化ナトリウムと同程度の大きさになった。
Comparative Example 2
The separation of the stock solution was carried out in the same manner as in Example 2 except that a separation apparatus comprising a stock solution chamber and a dialysate chamber sandwiching a mosaic charged membrane was used without providing an AC electrode, and the results are summarized in Table 1. According to Table 1, the permeation rate of calcium chloride of Example 2 is 1.45 times greater than that of Comparative Example 2 by applying an alternating electric field, and the permeation rate of calcium chloride is as large as sodium chloride. Became.

実施例3
参考例4の塩化ナトリウム水溶液の代わりに1.0mol/Lの塩化アルミニウム水溶液(電気伝導度117.2ms/cm)を使用した以外は参考例4と同様の方法で、原液の濃度が0.01mol/L(電気伝導度3.16ms/cm)になるまで原液の分離精製処理を行い、結果を表1にまとめた。
Example 3
In a similar manner, except for using the aluminum chloride aqueous solution 1.0 mol / L in place of aqueous sodium chloride solution of Reference Example 4 (electric conductivity 117.2ms / cm) as in Reference Example 4, the concentration of the stock solution 0.01mol The stock solution was separated and purified until / L (electric conductivity 3.16 ms / cm), and the results are summarized in Table 1.

比較例3
交流電極を備えず、モザイク荷電膜を挟んだ原液室および透析液室からなる分離装置を使用した以外は実施例3と同様に原液の分離処理を行い、結果を表1にまとめた。表1によれば、実施例3の塩化アルミニウムの透過速度は交流電場を印加することによって比較例3の1.78倍大きくなった。
Comparative Example 3
The separation of the stock solution was performed in the same manner as in Example 3 except that a separation apparatus comprising a stock solution chamber and a dialysate chamber with no mosaic electrode sandwiched between them was used, and the results are summarized in Table 1. According to Table 1, the permeation rate of aluminum chloride of Example 3 was 1.78 times greater than that of Comparative Example 3 by applying an alternating electric field.

以上のように、交流電場を印加することによる電解質の透過速度への影響は、金属カチオンの価数が大きくなるとともに透過促進効果が顕著になった。   As described above, the effect on the permeation rate of the electrolyte by applying an AC electric field has a remarkable permeation promoting effect as the valence of the metal cation increases.

Figure 0004944536
Figure 0004944536

原液室および透析液室が、イオン透過膜として配置されたモザイク荷電膜を挟んで配列した透析槽からなり、該透析槽が交流電極を備えた本発明の分離装置を使用し、該装置に交流電流を印加するため、膜近傍におけるイオンの大きな濃度勾配を緩和させ、イオンを膜表面まで速やかに移動させることを可能とし、さらに原液室の膜表面から透析液室へのイオンの移動を促進させ、一価イオンからなる電解質ばかりでなく多価イオンからなる電解質においても効率よく分離することができる。   The stock solution chamber and the dialysate chamber are composed of a dialysis tank arranged with a mosaic charged membrane arranged as an ion permeable membrane, and the dialysis tank is equipped with an AC electrode. Since current is applied, a large concentration gradient of ions near the membrane can be relaxed, allowing ions to move quickly to the membrane surface, and further facilitating the movement of ions from the membrane surface of the stock chamber to the dialysate chamber. In addition, not only an electrolyte composed of monovalent ions but also an electrolyte composed of multivalent ions can be efficiently separated.

従って、本発明の分離装置は、化学工業、電子・電気工業、発酵工業、食品工業、生物工業、医薬品工業などの産業における脱塩や、海水の脱塩に適し、具体的にはタンパク質、アミノ酸などの脱塩、染料、顔料、界面活性剤などの脱塩、従来、電気透析において発熱による目的物質の変質、イオン吸着による膜汚染などにより適用できなかった分野における脱塩などの幅広い用途に適用できる。   Therefore, the separation apparatus of the present invention is suitable for desalting in industries such as the chemical industry, electronics / electric industry, fermentation industry, food industry, biological industry, and pharmaceutical industry, and desalting seawater, specifically, proteins, amino acids. Applying to a wide range of applications such as desalting of dyes, pigments, surfactants, etc., and desalting in fields where electrodialysis has not been applied due to alteration of target substances due to heat generation, membrane contamination due to ion adsorption, etc. it can.

本発明の分離装置を説明する図。The figure explaining the separation apparatus of this invention.

Claims (4)

多価イオンを含む電解質と非電解質とを含有する電解質溶液から前記電解質を分離するために用いられる電解質の分離装置であって、
原液室と透析液室とがイオン透過膜を挟んで配列した透析槽からなり、
前記透析槽の最外側に、その内部に電解質液が導入される交流電極を有する交流電極室を備えていることを特徴とする電解質の分離装置。
An apparatus for separating an electrolyte used for separating the electrolyte from an electrolyte solution containing an electrolyte containing multivalent ions and a non-electrolyte,
It consists of a dialysis tank in which the stock solution chamber and the dialysate chamber are arranged with an ion-permeable membrane in between,
An electrolyte separation apparatus comprising an AC electrode chamber having an AC electrode into which an electrolyte solution is introduced in the outermost side of the dialysis tank.
前記イオン透過膜が、少なくとも一部が架橋した粒状重合体であるカチオン性重合体、アニオン性重合体およびマトリックスからなるモザイク荷電膜である請求項1に記載の電解質の分離装置。   2. The electrolyte separator according to claim 1, wherein the ion permeable membrane is a mosaic charged membrane comprising a cationic polymer, an anionic polymer, and a matrix which are at least partially crosslinked granular polymers. 請求項1又は2に記載の電解質の分離装置を使用して、多価イオンを含む電解質と非電解質とを含有する電解質溶液から前記電解質を分離するに際し、
前記電解質溶液を前記原液室に流入させるとともに、透析液としての脱イオン水を前記透析液室に流入させ、
前記交流電極室内の前記電解質液を通じて、前記電解質溶液、前記透析液および/または前記イオン透過膜に交流電場を印加することを特徴とする電解質の分離方法。
When separating the electrolyte from an electrolyte solution containing an electrolyte containing multivalent ions and a non-electrolyte using the electrolyte separator according to claim 1 or 2,
The electrolyte solution is allowed to flow into the stock solution chamber, and deionized water as a dialysate is allowed to flow into the dialysate chamber,
A method for separating an electrolyte, comprising applying an AC electric field to the electrolyte solution, the dialysate and / or the ion permeable membrane through the electrolyte solution in the AC electrode chamber.
前記原液室を加圧して前記電解質を分離する請求項3に記載の電解質の分離方法。   The method for separating an electrolyte according to claim 3, wherein the stock solution chamber is pressurized to separate the electrolyte.
JP2006216138A 2006-08-08 2006-08-08 Electrolyte separation apparatus and electrolyte separation method Expired - Fee Related JP4944536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216138A JP4944536B2 (en) 2006-08-08 2006-08-08 Electrolyte separation apparatus and electrolyte separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216138A JP4944536B2 (en) 2006-08-08 2006-08-08 Electrolyte separation apparatus and electrolyte separation method

Publications (2)

Publication Number Publication Date
JP2008036563A JP2008036563A (en) 2008-02-21
JP4944536B2 true JP4944536B2 (en) 2012-06-06

Family

ID=39172182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216138A Expired - Fee Related JP4944536B2 (en) 2006-08-08 2006-08-08 Electrolyte separation apparatus and electrolyte separation method

Country Status (1)

Country Link
JP (1) JP4944536B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531267B2 (en) * 2009-04-13 2014-06-25 国立大学法人山口大学 Ion exchange membrane and method for producing the same
JP5711503B2 (en) * 2010-11-08 2015-04-30 拓夫 川原 Method and apparatus for regenerating electroless nickel plating solution
KR101840920B1 (en) 2016-01-27 2018-03-21 영남대학교 산학협력단 Method of producing ultra-pure water using alternative electric field and apparatus thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161500A (en) * 1985-01-11 1986-07-22 三菱重工業株式会社 Electrolytic decontamination waste liquor treating method
JP3453067B2 (en) * 1998-02-25 2003-10-06 大日精化工業株式会社 Charged mosaic film, method of using charged mosaic film, and apparatus provided with charged mosaic film
JP2000229226A (en) * 1999-02-08 2000-08-22 Japan Organo Co Ltd Membrane separator for liquid
JP4679773B2 (en) * 2001-09-28 2011-04-27 ピジョン株式会社 Method for producing fibroblast active deep water
JP4145721B2 (en) * 2003-05-30 2008-09-03 ピジョン株式会社 Method and apparatus for separating electrolyte and non-electrolyte in deep ocean water

Also Published As

Publication number Publication date
JP2008036563A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP3781773B2 (en) Improvement of electrodialysis including packed cell electrodialysis (electrodeionization)
Xu Ion exchange membranes: State of their development and perspective
CA2844708C (en) Resilient cation exchange membranes
EP0251511A1 (en) Bipolar membranes and method of making same
US6183648B1 (en) Process for purification of organic sulfonates and novel product
JP2002535128A (en) Electrodeionizer and electrodeionization method
WO1998055538A1 (en) Bipolar membranes with fluid distribution passages
EP2234703A2 (en) Apparatus and system for deionization
EP1106241A1 (en) Electro-regenerating type apparatus for producing deionized water
US20110132762A1 (en) Nanoengineered field induced charge separation membranes manufacture thereof
WO2006062176A1 (en) Electric deionized liquid production apparatus and process for producing deionized liquid
JP2001113280A (en) Electro-deionizing apparatus
JP4944536B2 (en) Electrolyte separation apparatus and electrolyte separation method
JPH10258289A (en) Apparatus for producing deionized water
JP2004167291A (en) Electric deionization apparatus
Majewska-Nowak Treatment of organic dye solutions by electrodialysis
IE920802A1 (en) A supported, mechanically stable bipolar membrane for¹electrodialysis
Srivastava et al. BaCO3 nanoparticles embedded retentive and cation selective membrane for separation/recovery of Mg2+ from natural water sources
KR20160120132A (en) Flow capacitive deionization electrode and manufacturing method of module
JP2002001345A (en) Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
Strathmann Electrodialytic membrane processes and their practical application
AU2019237168A1 (en) Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
JP2006021193A (en) Ion exchange composite membrane and electrodialyser
WO2001012292A1 (en) Electrodeionization substrate, and device for electrodeionization treatment
JP2001225078A (en) Electric regeneration type deionized water making apparatus and deionized water making method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees