JP4941167B2 - 燃料電池の制御装置 - Google Patents

燃料電池の制御装置 Download PDF

Info

Publication number
JP4941167B2
JP4941167B2 JP2007211084A JP2007211084A JP4941167B2 JP 4941167 B2 JP4941167 B2 JP 4941167B2 JP 2007211084 A JP2007211084 A JP 2007211084A JP 2007211084 A JP2007211084 A JP 2007211084A JP 4941167 B2 JP4941167 B2 JP 4941167B2
Authority
JP
Japan
Prior art keywords
fuel cell
current
polymer electrolyte
power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007211084A
Other languages
English (en)
Other versions
JP2007324140A (ja
Inventor
虎彦 佐々木
稔 加藤
修 米田
次郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007211084A priority Critical patent/JP4941167B2/ja
Publication of JP2007324140A publication Critical patent/JP2007324140A/ja
Application granted granted Critical
Publication of JP4941167B2 publication Critical patent/JP4941167B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、水素と酸素との電気化学的な反応によって電力を得る燃料電池の制御装置に関するものである。
燃料電池は、水素と酸素との電気化学的な反応によって電力を得るものである。この燃料電池は、熱エネルギや運動エネルギの過程を経ない発電装置であるために高い発電効率を期待できるとともに、窒素酸化物などの排出が少なく、騒音や振動も小さいので環境性がよい、などの利点がある。このような燃料電池は、例えば、商用電源が停電した時のバックアップ電源として用いられている。燃料電池をバックアップ電源として用いる停電電源システムの一例が、特許文献1に記載されている。
この特許文献1には電気回路が記載されており、その電気回路には、交流電源と交流負荷との間に開閉スイッチが設けられている。また、交流電源と開閉スイッチとの間に、検出器を介して燃料電池が接続されている。さらに、交流負荷と開閉電源との間には、双方向電力変換装置が配置されている。この双方向電力変換装置に対して、燃料電池および電力蓄積装置が接続されている。この燃料電池と電力蓄積装置とが並列に配置されている。さらに、燃料電池と双方向電力変換装置との間には、ダイオードが設けられている。さらにまた、開閉スイッチおよび双方向電力変換装置を制御する制御部が設けられている。
上記特許文献1においては、交流電源の停電などの故障が検出器により検出されると、開閉スイッチが開かれるとともに、双方向電力変換装置がインバータとして動作する。また、電力蓄積装置が放電し、その放電電圧が、双方向電力変換装置で交流電圧に変換された後、交流負荷に供給される。さらに、燃料電池に対する運転信号が発生して、燃料電池が起動される。燃料電池の起動に要する一定時間が経過した後、燃料電池から直流電圧が出力される。燃料電池の出力電圧は、電力蓄積装置の電圧よりも高く設定される。
特開2000−341881号公報
ところで、燃料電池は、電解質を移動する水素と酸素とが反応して、起電力を生じるものであるが、その発電抵抗は、各種の条件により異なる。例えば、燃料電池の一種である固体高分子型燃料電池においては、電解質の湿潤状態により導電性が変化するため、水分を供給して電解質の内部抵抗を低下させる必要がある。しかしながら、長時間に亘って発電をおこなうことなく、固体高分子型燃料電池が放置された場合は、電解質に水分が補給されないために、その湿度が低下する。すると、電解質の内部抵抗が増加するとともに、固体高分子型燃料電池を構成する各単セルの内部抵抗差も大きくなる。
このような状態において、固体高分子型燃料電池を起動し、かつ、大電流を出力させようとした場合は、その出力電圧を充分に確保できなくなり、起動不良が発生する問題があった。また、大電流を出力させようとした場合、セルによっては異常電流が流れて、固体高分子型燃料電池が破損する可能性もあった。なお、固体高分子型燃料電池以外の種類の燃料電池においても、温度などの条件により発電抵抗が変化する。しかしながら、上記特許文献1においては、燃料電池の起動時における目標電力をどのように設定するかについては認識されておらず、この点で改善の余地があった。
この発明は、燃料電池の出力性能に基づいて発生する不具合を、未然に回避することのできる燃料電池の制御装置を提供する。
上記目的を達成するため請求項1の発明は、水素と酸素との反応によって電力を発生する燃料電池の制御装置において、燃料電池で発電を開始する起動時の発電抵抗を交流インピーダンス法により判断し、かつ、判断された発電抵抗に基づいて、発電する電流の目標値を制御し、電圧の低下を回避する目標電力設定手段を有し、前記目標電力設定手段は、発電抵抗に基づいて前記燃料電池の電流の目標値を制御するにあたり、相互に並列に配置される複数の出力制御器の起動時期を各々制御することにより前記燃料電池の電流を制御する機能を、更に有していることを特徴とするものである。
請求項2の発明は、水素と酸素との反応によって電力を発生する燃料電池の制御装置において、燃料電池で発電を開始する起動時の発電抵抗を温度により判断し、かつ、判断された発電抵抗に基づいて、発電する電流の目標値を制御し、電圧の低下を回避する目標電力設定手段を有し、前記目標電力設定手段は、発電抵抗に基づいて前記燃料電池の電流の目標値を制御するにあたり、相互に並列に配置される複数の出力制御器の起動時期を各々制御することにより前記燃料電池の電流を制御する機能を、更に有していることを特徴とするものである。
請求項1の発明によれば、燃料電池で発電を開始する起動時の発電抵抗を交流インピーダンス法により判断し、発電抵抗に基づいて燃料電池の目標電流が設定されて電圧の低下を回避する。したがって、燃料電池の起動時に、燃料電池の出力特性が不安定な状態で“大電流が出力され、かつ、電圧が低下すること”が回避される。また、並列に配置された複数の出力制御器の起動時期を各々異ならせることにより、燃料電池の電流を制御できる。したがって、暗電流の発生を回避できる。
請求項2の発明によれば、燃料電池で発電を開始する起動時の発電抵抗を温度により判断し、かつ、発電抵抗に基づいて、発電する電流の目標値を制御し、電圧の低下を回避する。したがって、燃料電池の起動時に、燃料電池の出力特性が不安定な状態で“大電流が出力され、かつ、電圧が低下すること”が回避される。また、並列に配置された複数の出力制御器の起動時期を各々異ならせることにより、燃料電池の電流を制御できる。したがって、暗電流の発生を回避できる。
つぎに、この発明を図に示す具体例に基づいて説明する。図2は、無停電電源システムA1を示す模式図である。無停電電源システムA1は、負荷である通信機1と、通信機1に電力を供給する商用電源2および燃料電池3およびバックアップ電池4とを有する。この具体例では、燃料電池3として、固体高分子型燃料電池を用いた場合について説明する。以下、燃料電池3を固体高分子型燃料電池3と記す。
固体高分子型燃料電池3と通信機1とを接続する電気回路には、固体高分子型燃料電池3の電力(言い換えれば電気エネルギ)を制御するコントローラ5が設けられているとともに、コントローラ5を制御するDC−DCコンバータ6が設けられている。固体高分子型燃料電池3の単セルは、電解質(言い換えれば、プロトン導電体)7と、電解質7の両側に配置されたアノード(陰極、燃料極)8と、カソード(陽極、空気極)9とを有している。なお、図2においては、便宜上、単セルが示されているが実用上は、複数のセルを直列または並列に配置して使用される。
なお、アノード8およびカソード9は、撥水性のある粒子および触媒粒子からなる多孔質層に、集電体を密着させて構成されている。さらに、アノード8側には、水素流路(図示せず)が接続される。一方、カソード9側には、空気流路(図示せず)が接続される。さらに、カソード9側には端子10が設けられ、アノード8側には端子11が設けられている。
このように構成された固体高分子型燃料電池3に対して、DC−DCコンバータ6が接続されている。DC−DCコンバータ6は、スイッチング素子12とトランス13とコンバータ制御回路14とトランジスタ15,16とを有する。スイッチング素子12には端子17,18が形成されており、端子10と端子17とが接続され、端子11と端子18とが接続されている。コンバータ制御回路14は、PWM制御機能を備えており、コンバータ制御回路14からは、スイッチング素子12のオン・オフを制御する駆動信号が出力される。
前記バックアップ電池4と固体高分子型燃料電池3とは相互に並列に配置されている。また商用電源2と通信機1との間の電気回路には、整流器(レクチ)19が設けられている。また、前記コントローラ5は、演算処理装置(CPU9)および記憶装置(RAM,ROM)および入出力インタフェースを備えた電子制御装置である。コントローラ5には、固体高分子型燃料電池3の発電抵抗、具体的には、電解質7を移動する水素イオンの移動抵抗に基づいて、固体高分子型燃料電池3の目標電力を設定するためのデータが記憶されている。
このコントローラ5には、固体高分子型燃料電池3の出力電圧を検知する電圧検知センサ20の信号、固体高分子型燃料電池3の出力電流を検知する電流検知センサ21の信号、DC−DCコンバータ6の出力電流(DC/DC電流)を検知する電流検知センサ22の信号、バックアップ電池4の出力電流を検知する電流検知センサ23の信号、DC−DCコンバータ6の出力電圧を検知する電圧検知センサ24の信号、商用電源2の故障・異常・停電などを検知する不具合検知センサ25の信号などが入力される。これに対して、コントローラ5からは、DC−DCコンバータ6を制御する信号、バックアップ電池4の電力を制御する信号などが出力される。
つぎに、無停電電源システムA1の制御を説明する。まず、商用電源2が正常である場合は、商用電源2の電力がレクチ19により整流されて、通信機1に供給される。これに対して、商用電源2から通信機1に供給される電力が低下した場合、例えば、停電状態となった場合には、バックアップ電池4の電力が通信機1に供給されるとともに、固体高分子型燃料電池3による発電がおこなわれる。
具体的には、空気流路に空気が供給され、かつ、水素流路に水素が供給され、かつ、DC−DCコンバータ6のスイッチング素子12がオン・オフされる。すると、アノード8の表面において水素が反応して水素イオンと電子となり、水素イオンが電解質7の内部を移動してカソード9に向かう。カソード9では、前記水素イオンと、電気回路を流れてきた電子と、酸素とが反応を起こして水を生成する。このような電気化学的な作用により、起電力が得られる。ここで、固高分子型燃料電池3の電力、すなわち、電流および電圧は、スイッチング素子12のデューティ比、すなわちオンの割合により調整することができる。
固体高分子型燃料電池3の出力電流はDC−DCコンバータ6に供給されるとともに、その電力の電圧がDC−DCコンバータ6で変圧(降圧)された後、通信機1に供給される。なお、固体高分子型燃料電池3では、電解質7の内部を移動する水素イオンの移動抵抗の上昇を抑制するために、水素ガスおよび空気に水分を含ませて供給し、固体高分子型燃料電池3を加湿している。
このようにして固体高分子型燃料電池3を起動させる場合において、その電力の制御方法の一例を、図1に示すフローチャートに基づいて説明する。まず、固体高分子型燃料電池3の出力電圧の目標値、言い換えれば初期電圧が指示される(ステップS1)。この初期電圧は、バックアップ電池4の電圧以下に設定される。
このステップS1についで、“固体高分子型燃料電池3の出力電圧が定格未満であるか否か”が判断される(ステップS2)。このステップS2で肯定的に判断された場合は固体高分子型燃料電池3の出力電流を計測するとともに(ステップS3)、固体高分子型燃料電池3の出力電流と目標電流とが比較される(ステップS4)。目標電流は、例えば、固体高分子型燃料電池3の放置時間に基づいて設定することができる。固体高分子型燃料電池3の放置時間とは、前回、固体高分子型燃料電池3による発電を終了してから、今回、固体高分子型燃料電池3による発電を開始するまでの経過時間、言い換えれば、非発電時間を意味している。目標電流の設定方法の一例を、図3のマップに基づいて説明する。図3のマップにおいては、横軸に時間が示され、縦軸に目標電流が示されている。
図3には、放置時間が1週間である場合の目標電流と、放置時間が1ヶ月である場合の目標電流と、放置時間が6ヶ月である場合の目標電流とが例示されている。図3のマップに示すように、異なる放置時間毎に、異なる目標電流が設定される。具体的には、固体高分子型燃料電池3の起動開始点からの経過時間が所定範囲内にある場合は、同じ時刻であっても、放置時間が長いほど、目標電流が低く(小さく、または少なく)なるように、各目標電流同士の対応が設定されている。
このように、放置時間が長いほど目標電流が低く設定される理由を説明する。固体高分子型燃料電池3は、電解質7の湿度によって水素イオンの移動抵抗が変動する特性を備えている。具体的には、電解質7の湿度が低下するほど、内部抵抗が増大し、かつ、各セルの内部抵抗差も大きくなる。そして、電解質7の湿度が低下している状態で、固体高分子型燃料電池3から大電流を出力させようとすると、電圧が急低下し、かつ、起動不可能となる可能性もある。また、セルによっては、固体高分子型燃料電池3から大電流を出力させようとすると、異常電流になり、破損の原因となる。
上記のように、電解質7の湿度が低下する要因の一つとして、固体高分子型燃料電池3の放置時間が挙げられる。それは、前述のように水素ガスおよび空気に水分を含ませて固体高分子型燃料電池3に供給する方法を採用した場合、固体高分子型燃料電池3による発電が停止されると、固体高分子型燃料電池3に対して水分が供給されなくなるからである。つまり、放置時間が長いほど電解質7の湿度が低下しやすくなる。そこで、この具体例では、放置時間が長いほど目標電流を低く設定している。
前記ステップS4において、固体高分子型燃料電池3の出力電流が目標電流未満であると判断された場合は、固体高分子型燃料電池3の出力電圧を上昇するように、DC−DCコンバータ6が制御され(ステップS5)、ステップS2に戻る。これに対してステップS4において、固体高分子型燃料電池3の出力電流が目標電流を越えていると判断された場合は、固体高分子型燃料電池3の出力電圧を低下させるように、DC−DCコンバータ6が制御され(ステップS6)、ステップS2に戻る。
以上のように、この具体例においては、固体高分子型燃料電池3の放置時間に基づいて、電解質7の湿度を推定し、その推定結果に基づいて、固体高分子型燃料電池3の起動時における目標電流値を、図3のマップを用いて制御している。したがって、固体高分子型燃料電池3の起動時において、固体高分子型燃料電池3の出力特性が不安定な状態で大電流が出力されることを回避でき、固体高分子型燃料電池3の電圧の低下による起動不良を未然に防止できる。また、固体高分子型燃料電池3から大電流が出力されてセルが破損すること、を未然に防止できる。
図4は、他の無停電電源システムA1を示す概念図である。図4において、図2の構成と同様部分については、図2と同じ符号を付してその説明を省略する。図4においては、DC−DCコンバータを複数有するDC−DCコンバータユニット(アッシー)30が設けられている。具体的には、マスターコンバータ6aおよび複数のスレーブコンバータ6b,6cを有している。マスターコンバータは1個であるが、スレーブコンバータは1個でも2個以上でもよい。
また、各コンバータ6a,6b,6cは、各コンバータ6a,6b,6cに設けられた端子17が固体高分子型燃料電池3の端子10に接続され、各コンバータ6a,6b,6cに設けられた端子18が固体高分子型燃料電池3の端子11に接続されている。また、各コンバータ6a,6b,6cに設けられた端子32が通信機1に接続され、各コンバータ6a,6b,6cに設けられた端子33が接地されている。このようにして、各コンバータ6a,6b,6cが相互に並列に配置されている。そして、コントローラ5から各コンバータ6a,6b,6cに対して、スイッチング素子(図示せず)のオン・オフを制御する信号が出力される。なお、商用電源2または固体高分子型燃料電池3の電力が、各FC補機負荷31およびコントローラ5にも供給される。
この図4に示す無停電電源システムA1においても、商用電源2が正常である場合は、商用電源2の電力が通信機1に供給される。つぎに、図4に示す無停電電源システムA1において、商用電源2から通信機1に供給する電力が低下した場合の制御例を、図5のフローチャートに基づいて説明する。商用電源2が停電状態となった場合は、マスターコンバータ6aのみを起動させて、固体高分子型燃料電池3の発電を開始する(ステップS11)。つまり、スレーブコンバータ6b,6cは起動されず、マスターコンバータ6aの機能により、固体高分子型燃料電池3の電力が制御される。このステップS11についでステップS12に進む。ステップS12の内容は、図1のステップS1と同じである。ステップS12についでステップS13に進む。このステップS13の内容は、図1のステップS2と同じである。
ステップS13で肯定的に判断された場合は、ステップS14に進む。ステップS14の内容は、図1のステップS3の内容と同じである。ステップS14についでステップS15に進む。ステップS15の内容は、図1のステップS4の内容と同じである。ステップS15で、固体高分子型燃料電池3の出力電流が目標電流未満であると判断された場合は、DC−DCコンバータユニット30の出力電流が、スレーブコンバータを起動させるための目標値以上であるか否かが判断される(ステップS16)。
このステップS16で肯定的に判断された場合は、複数のスレーブコンバータのうちの少なくとも1個を起動させるとともに(ステップS17)、固体高分子型燃料電池3の出力電圧を上昇させる制御をおこない(ステップS18)、ステップS13に戻る。なお、ステップS16で否定判断された場合も、ステップS18に進む。
一方、前記ステップS15で、固体高分子型燃料電池3の出力電流が目標電流を越えていると判断された場合は、固体高分子型燃料電池3の出力電圧を低下させるように、DC−DCコンバータユニット30を制御し(ステップS19)、ステップS13に戻る。なお、前記ステップS13で否定判断された場合は、この制御ルーチンを終了する。
なお、スレーブコンバータが複数ある場合は、ステップS17において、全てのスレーブコンバータを同時期に起動させる制御、または、複数のスレーブコンバータを、各々異なる時期に起動させる(言い換えれば、順次起動させる)制御のいずれかを選択することができる。
以上のように、この具体例においても、図3のマップを用いて、固体高分子型燃料電池3の放置時間に基づいて、電解質3の湿度を推定し、その推定結果に基づいて、固体高分子型燃料電池3の起動時における目標電流を設定している。したがって、固体高分子型燃料電池3の起動時において、固体高分子型燃料電池3の出力特性が不安定な状態で大電流が出力されることを回避でき、固体高分子型燃料電池3の電圧の低下を未然に防止できる。また、固体高分子型燃料電池3で大電流が出力されてセルが破損すること、を未然に防止できる。
また、固体高分子型燃料電池3の定格出力が大電力(例えば15kw)の場合は、その出力を徐々に高めようとして、DC−DCコンバータユニットのスイッチング素子のデューティ比を最も少ない値に制御したとしても、ある程度の電力が流れる(暗電流)。しかしながら、この具体例のように、マスターコンバータを起動させ、その後にスレーブコンバータを起動させる制御をおこなえば、このような不具合を回避できる。また、マスターコンバータおよびスレーブコンバータが、この発明の“複数の出力制御器”に相当する。
ここで、上記の具体例と、燃料電池の放置時間に関わりなく燃料電池の目標電流を設定した場合の比較例との相違例を、図6に基づいて説明する。図6において、具体例における電圧が太い実線で示され、具体例における電流が細い実線で示され、目標電流が破線、比較例における電圧が一点鎖線で示され、比較例における電流が二点鎖線で示されている。なお、破線は、細い実線の陰に隠れており、確認は困難である。この図6からわかるように、経時的な電流の増加程度(増加勾配、増加率)は、具体例の電流の方が比較例の電流よりも少なく制御されており、経時的な電圧の低下程度(低下勾配、低下率)は、具体例の電圧の方が比較例の電流よりも少なく(小さく)なる。
なお、上記具体例においては、放置時間に基づいて電解質の湿度を推定しているが、電解質の湿度を湿度センサにより直接検知し、その検知結果に基づいて燃料電池の電力を制御することも可能である。さらに、電解質におけるイオンの移動抵抗を判断する方法としては、電解質の湿度に関連する物理量の他に、直接、内部抵抗を測定する方法(例えば、交流インピーダンス法)などが挙げられる。
上記の説明では、燃料電池として固体高分子型燃料電池を例として説明したが、他の種類の燃料電池、例えば、アルカリ水溶液型燃料電池、リン酸水溶液型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池などに対しても、この具体例を適用できる。これらの燃料電池においては、例えば、温度変化に基づいて触媒の反応抵抗、電解質の電気抵抗などが異なるため、温度を検知して各種の燃料電池の発電抵抗を判断し、その判断結果に基づいて目標電流を設定することができる。
燃料電池の制御装置の制御例を説明するためのフローチャートである。 この発明の燃料電池の制御装置が適用されるシステムの概念図である。 図1および図5の制御例で用いられるマップである。 この発明の燃料電池の制御装置であり、複数の出力制御器を有するシステムの概念図である。 燃料電池の制御装置の他の制御例を示すフローチャートである。 具体例の制御をおこなった場合の燃料電池の電力と、比較例の制御をおこなった場合の燃料電池の電力とを比較する特性線図である。
符号の説明
A1…無停電電源システム、 2…商用電源、 3…固体高分子型燃料電池、 5…コントローラ、 6…DC−DCコンバータ、 6a…マスターコンバータ、 6b,6c…スレーブコンバータ、 30…DC−DCコンバータユニット、 7…電解質。

Claims (2)

  1. 水素と酸素との反応によって電力を発生する燃料電池の制御装置において、
    燃料電池で発電を開始する起動時の発電抵抗を交流インピーダンス法により判断し、かつ、判断された発電抵抗に基づいて、発電する電流の目標値を制御し、電圧の低下を回避する目標電力設定手段を有し、
    前記目標電力設定手段は、発電抵抗に基づいて前記燃料電池の電流の目標値を制御するにあたり、相互に並列に配置される複数の出力制御器の起動時期を各々制御することにより前記燃料電池の電流を制御する機能を、更に有していることを特徴とする燃料電池の制御装置。
  2. 水素と酸素との反応によって電力を発生する燃料電池の制御装置において、
    燃料電池で発電を開始する起動時の発電抵抗を温度により判断し、かつ、判断された発電抵抗に基づいて、発電する電流の目標値を制御し、電圧の低下を回避する目標電力設定手段を有し、
    前記目標電力設定手段は、発電抵抗に基づいて前記燃料電池の電流の目標値を制御するにあたり、相互に並列に配置される複数の出力制御器の起動時期を各々制御することにより前記燃料電池の電流を制御する機能を、更に有していることを特徴とする燃料電池の制御装置。
JP2007211084A 2007-08-13 2007-08-13 燃料電池の制御装置 Expired - Fee Related JP4941167B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211084A JP4941167B2 (ja) 2007-08-13 2007-08-13 燃料電池の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211084A JP4941167B2 (ja) 2007-08-13 2007-08-13 燃料電池の制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001375834A Division JP4055409B2 (ja) 2001-12-10 2001-12-10 燃料電池の制御装置

Publications (2)

Publication Number Publication Date
JP2007324140A JP2007324140A (ja) 2007-12-13
JP4941167B2 true JP4941167B2 (ja) 2012-05-30

Family

ID=38856715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211084A Expired - Fee Related JP4941167B2 (ja) 2007-08-13 2007-08-13 燃料電池の制御装置

Country Status (1)

Country Link
JP (1) JP4941167B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497953B2 (en) 2013-01-31 2019-12-03 Panasonic Intellectual Property Management Co., Ltd. Fuel cell activation apparatus, fuel cell activation method, and fuel cell activation system
WO2017077711A1 (ja) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 燃料電池システム及びその集合体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601166B2 (ja) * 1996-02-23 2004-12-15 トヨタ自動車株式会社 燃料電池システム
JPH09289038A (ja) * 1996-04-24 1997-11-04 Asahi Chem Ind Co Ltd 高分子固体電解質及びそれを用いた電池
JPH1017700A (ja) * 1996-07-03 1998-01-20 Asahi Chem Ind Co Ltd 固体電解質用ポリマーシートとその製造方法
JP4284805B2 (ja) * 2000-01-28 2009-06-24 株式会社カネカ 燃料電池用膜及びそれを使用した燃料電池

Also Published As

Publication number Publication date
JP2007324140A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
KR100973761B1 (ko) 연료 전지 시스템
US10249894B2 (en) Fuel cell system
JP5783324B2 (ja) 燃料電池システム
JP4320686B2 (ja) 燃料電池システムおよびその電流制限方法
JP4424419B2 (ja) 燃料電池システム
JPWO2018020675A1 (ja) 車両システム
US9985446B2 (en) Vehicle electric power supply control system and vehicle
WO2014171291A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
KR100641127B1 (ko) 계통 연계형 연료전지 시스템의 전원공급 제어장치 및 방법
JP4055409B2 (ja) 燃料電池の制御装置
JP2008027842A (ja) 燃料電池装置、その制御装置、制御方法及びプログラム
US20160347200A1 (en) Fuel Cell Vehicle
KR20070039359A (ko) 연료 전지 제어 방법 및 연료 전지 시스템
JP2010040285A (ja) 燃料電池システム、燃料電池の運転方法、および燃料電池自動車
JP4941167B2 (ja) 燃料電池の制御装置
KR100664090B1 (ko) 계통 연계형 연료전지 시스템의 전원공급 제어장치 및 방법
JP6812767B2 (ja) 燃料電池装置
JP2006196221A (ja) 燃料電池システム
JP4879428B2 (ja) 燃料電池発電装置
JP2010244980A (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP4831063B2 (ja) 燃料電池システム
JP2010218953A (ja) 燃料電池システム
JP2008004431A (ja) 燃料電池システム
US10069159B2 (en) Fuel cell system
JP5370726B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees