JP4929441B2 - Underwater detector - Google Patents

Underwater detector Download PDF

Info

Publication number
JP4929441B2
JP4929441B2 JP2007107560A JP2007107560A JP4929441B2 JP 4929441 B2 JP4929441 B2 JP 4929441B2 JP 2007107560 A JP2007107560 A JP 2007107560A JP 2007107560 A JP2007107560 A JP 2007107560A JP 4929441 B2 JP4929441 B2 JP 4929441B2
Authority
JP
Japan
Prior art keywords
signal
fish
information
underwater detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007107560A
Other languages
Japanese (ja)
Other versions
JP2008267834A (en
Inventor
行雄 松尾
靖 西森
友成 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Fisheries Research Agency
Original Assignee
Furuno Electric Co Ltd
Fisheries Research Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd, Fisheries Research Agency filed Critical Furuno Electric Co Ltd
Priority to JP2007107560A priority Critical patent/JP4929441B2/en
Publication of JP2008267834A publication Critical patent/JP2008267834A/en
Application granted granted Critical
Publication of JP4929441B2 publication Critical patent/JP4929441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、魚からの反射信号に基づいて魚体長や魚種を判別する水中探知装置に関するものである。 The present invention relates to an underwater detection device for discriminating fish length and fish type based on a reflection signal from a fish.

海中の資源量を調査するために、従来から音響手法を利用した計量魚群探知機が用いられている(特許文献1)。この計量魚群探知機では、送受波器から送波された超音波の音圧レベルと、魚で反射して帰来する反射波の音圧レベルとの比、すなわち反射強度TS(Target Strength)を求め、得られた反射強度TSから魚の体長を計算している。
特開平02−262082号公報
In order to investigate the amount of resources in the sea, a measuring fish finder using an acoustic technique has been conventionally used (Patent Document 1). This measuring fish finder obtains the ratio of the sound pressure level of the ultrasonic wave transmitted from the transducer and the sound pressure level of the reflected wave reflected by the fish, that is, the reflection strength TS (Target Strength). The body length of the fish is calculated from the obtained reflection intensity TS.
Japanese Patent Laid-Open No. 02-262082

魚で反射して帰来する反射波の音圧レベルは主にウキブクロ、体表、骨格などからの反射だと考えられている。しかし、ウキブクロ、体表、骨格などは魚種に依存して部位の位置関係や形態が異なっている。
そのため、反射強度TSと魚体長の相関がすべての魚種において同じであるとは言い難く、魚からの反射強度TSのみを用いて正確な魚体長や魚種を判別することは困難である。
It is thought that the sound pressure level of the reflected wave that comes back from the fish is mainly reflected from the surface of the body, body surface, and skeleton. However, the locational relationship and form of the parts of the Japanese blackhead, body surface, and skeleton differ depending on the fish species.
Therefore, it is difficult to say that the correlation between the reflection intensity TS and the fish body length is the same for all fish species, and it is difficult to determine the exact fish body length and fish species using only the reflection intensity TS from the fish.

本発明は、かかる課題に鑑みてなされたものであり、魚体長や魚種をより正確に判別するための新たな魚体長、魚種判別手法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a new fish body length and fish species discrimination method for more accurately discriminating fish body length and fish species.

前記課題を解決するために、本発明は、所定のパルス幅をもった音波を送信する送信部と、送信信号に対する物標からの反射波を受信し、受信信号の包絡線を検出する受信部と、前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、前記単体魚からの反射信号の時間変化から、所定の信号レベル以上で連続する反射信号の波形情報を取得し、該波形情報に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする。 In order to solve the above-described problems, the present invention provides a transmission unit that transmits a sound wave having a predetermined pulse width, and a reception unit that receives a reflected wave from a target with respect to the transmission signal and detects an envelope of the reception signal And an extraction unit for extracting a reflection signal from a single fish from a reception signal output from the reception unit, and a waveform of the reflection signal continuous at a predetermined signal level or more from a temporal change of the reflection signal from the single fish An information generation unit that acquires information and generates information on the extracted single fish based on the waveform information is provided.

前記波形情報としては、例えば、所定の信号レベル以上の値を前記反射信号の信号レベルが維持する維持時間や、所定の信号レベル以上の値を前記反射信号の信号レベルが維持する期間に発生する前記反射信号のピーク数があり、これらの情報を用いて情報生成部が、魚に関する情報を生成する。 The waveform information is generated, for example, in a maintenance time during which the signal level of the reflected signal maintains a value equal to or higher than a predetermined signal level, or a period during which the signal level of the reflected signal maintains a value higher than a predetermined signal level There is a peak number of the reflected signal, and the information generation unit generates information on the fish using these pieces of information.

また、前記魚に関する情報とは、例えば、魚体長情報、魚種情報、魚の姿勢情報である。そして、情報生成部で魚の姿勢情報が生成される場合には、魚体長情報や魚種情報の生成に用いる最適な単体魚からの反射信号を該魚の姿勢情報に基づいて選択することも可能である。 Moreover, the information regarding the said fish is fish body length information, fish species information, and fish posture information, for example. When the posture information of the fish is generated by the information generation unit, it is possible to select an optimum reflection signal from a single fish used for generating fish body length information and fish type information based on the posture information of the fish. is there.

また、本発明は、情報生成部の前段にLPFを設けて、単体魚からの反射信号をなまらせるようにしてもよい。これにより、単体魚からの反射信号の包絡線が2つまたは3つに割れている場合であっても、情報生成部は、所定の信号レベル以上で連続する単体魚からの反射信号を精度よく検出することができ、より正確な魚に関する情報を生成することが可能になる。 Further, according to the present invention, an LPF may be provided in front of the information generation unit so that a reflection signal from a single fish is smoothed. As a result, even when the envelope of the reflected signal from a single fish is broken into two or three, the information generator accurately reflects the reflected signal from a single fish that is continuous at a predetermined signal level or higher. It is possible to detect and to generate more accurate information about the fish.

また、所定の信号レベルは、例えば、単体魚からの反射信号の信号レベルの最大値で反射信号の信号レベルを規格化し、該規格化された反射信号の信号レベルの最大値を1/N(N>1)した値である。なお、反射信号の信号レベルの最大値での規格化は必須要件ではなく、規格化を行わないで所定の信号レベルを算出するようにしてもよい。 The predetermined signal level is, for example, the standardized signal level of the reflected signal with the maximum signal level of the reflected signal from a single fish, and the maximum signal level of the normalized reflected signal is 1 / N ( N> 1). Note that normalization with the maximum value of the signal level of the reflected signal is not an essential requirement, and a predetermined signal level may be calculated without normalization.

また、本発明は、所定のパルス幅をもった音波を送信する送信部と、送信信号に対する物標からの反射波を受信し、受信信号の包絡線を検出する受信部と、前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、前記単体魚からの反射信号の時間的な連続性に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする。 Further, the present invention includes a transmission unit for transmitting sound waves having a predetermined pulse width, a receiver for receiving a reflected wave from a target to the transmission signal, detects the envelope of the received signal, from the reception unit An extraction unit that extracts a reflection signal from a single fish from an output reception signal; and an information generation unit that generates information about the extracted single fish based on temporal continuity of the reflection signal from the single fish; It is characterized by providing.

また、本発明は、所定のパルス幅をもった音波を送信する送信部と、送信信号に対する単体魚からの反射波を受信し、受信信号の包絡線を検出する受信部と、前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、前記単体魚からの反射信号のピーク数に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする。
Further, the present invention includes a transmission unit for transmitting sound waves having a predetermined pulse width, a receiving unit that receives a reflected wave from the single fish to the transmission signal, detects the envelope of the received signal, from the reception unit An extraction unit that extracts a reflection signal from a single fish from an output reception signal, and an information generation unit that generates information about the extracted single fish based on the number of peaks of the reflection signal from the single fish It is characterized by.

本発明によれば、単体魚からの反射信号の時間的変化、つまり反射信号の波形情報に基づいて、魚体長情報や魚種情報などの魚に関する情報を生成するようにしたことにより、魚からの反射強度TSに基づく魚体長検出や魚種判別とは異なる、新たな手法による魚体長検出や魚種判別を行うことが可能になる。 According to the present invention, information on fish such as fish length information and fish type information is generated based on temporal changes in the reflected signal from a single fish, that is, on the waveform information of the reflected signal. This makes it possible to perform fish length detection and fish type discrimination by a new method different from fish length detection and fish type discrimination based on the reflection intensity TS.

(実施の形態1)
以下、本発明の実施の形態1による水中探知装置について図面を参照しながら説明する。
図1は、本発明の実施の形態1による水中探知装置の構成の一例を示すブロック図である。
図1において、本発明の実施の形態1による水中探知装置は、送受波器1と、送受切替部2と、送信部3と、検波部5を有する受信部4と、抽出部6と、情報生成部7と、描画処理部8と、表示部9とから構成される。
(Embodiment 1)
Hereinafter, an underwater detection device according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of the configuration of the underwater detection device according to Embodiment 1 of the present invention.
1, the underwater detection device according to Embodiment 1 of the present invention includes a transmitter / receiver 1, a transmission / reception switching unit 2, a transmission unit 3, a reception unit 4 having a detection unit 5, an extraction unit 6, and information. The generating unit 7, the drawing processing unit 8, and the display unit 9 are configured.

送受波器1は、送信部3からの送信電気信号を音波に変換して送波し、受波時には水中から帰来する超音波エコーを電気信号に変換するものである。送受切替部2は、送波時と受波時とで信号の通路を切り替える回路で、送波時には送信信号のみを通過させ、受波時には受信信号のみを通過させる。 The transmitter / receiver 1 converts a transmission electric signal from the transmission unit 3 into a sound wave and transmits the sound wave, and converts an ultrasonic echo returned from the water into an electric signal when receiving the wave. The transmission / reception switching unit 2 is a circuit that switches a signal path between transmission and reception. The transmission / reception switching unit 2 allows only a transmission signal to pass during transmission and allows only a reception signal to pass during reception.

送信部3は、所定のパルス幅をもった音波を発射するための電気信号発生部であり、生成した信号を送受波器1に供給する。また、受信部4は、送受波器1で変換された電気信号を受信して、所定周波数帯域の受信信号を取り出し、検波部5により受信信号の包絡線を検出する。 The transmission unit 3 is an electric signal generation unit for emitting a sound wave having a predetermined pulse width, and supplies the generated signal to the transmitter / receiver 1. The receiving unit 4 receives the electrical signal converted by the transducer 1, extracts a received signal in a predetermined frequency band, and detects an envelope of the received signal by the detecting unit 5.

抽出部6は、受信部4から出力される受信信号を用いて、単体魚からの反射信号を抽出する。単体魚の反射信号の検出手法は種々の手法が考案されており、例えば、物標からの反射波の幅と信号レベルに基づいて単体魚か魚群かを検出する手法が一般的である。 The extraction unit 6 extracts a reflection signal from a single fish using the reception signal output from the reception unit 4. Various techniques have been devised for detecting the reflected signal of a single fish. For example, a technique for detecting whether a single fish or a school of fish based on the width and signal level of a reflected wave from a target is common.

情報生成部7は、単体魚からの反射信号のうち、所定の信号レベル以上で連続する反射信号の波形情報を取得し、該波形情報に基づいて魚に関する情報を生成する。ここで、魚に関する情報とは、例えば、魚体長情報、魚種情報、魚の姿勢情報など、抽出した単体魚に関する種々の情報を含む。なお、ここで魚体長とは魚体の大きさに関する情報であり、具体的には、尾叉長、魚体高、魚体幅のうちの何れか、或いはこれらの複数の情報を意味する。 The information generation unit 7 acquires waveform information of a reflected signal that is continuous at a predetermined signal level or higher among the reflected signals from a single fish, and generates information about the fish based on the waveform information. Here, the information related to fish includes various information related to the extracted single fish such as fish body length information, fish type information, and fish posture information. Here, the fish body length is information relating to the size of the fish body, and specifically means any one of the fork length, the fish body height, the fish body width, or a plurality of such information.

描画処理部8は、受信部4から出力された受信信号に基づいて海底や魚群などの水中情報を表すエコー映像を生成し、該生成したエコー映像とともに情報生成部7で生成された魚体長や魚種などの魚に関する情報を表示部9に描画する。 The drawing processing unit 8 generates an echo video representing underwater information such as the sea bottom and a school of fish based on the reception signal output from the reception unit 4, and the fish length generated by the information generation unit 7 along with the generated echo video Information on fish such as fish species is drawn on the display unit 9.

次に、情報生成部7について、図2〜図10を用いてさらに詳細に説明する。
情報生成部7は、計測部71と、計数部72と、情報処理部73とから構成される。なお、ここでは情報生成部7が計測部71と計数部72とを備えるものを例に挙げて説明するが、情報生成部7は、計測部71、計数部72の何れか一方のみを備えるものであってもよい。
Next, the information generation unit 7 will be described in more detail with reference to FIGS.
The information generation unit 7 includes a measurement unit 71, a counting unit 72, and an information processing unit 73. Here, the information generation unit 7 includes the measurement unit 71 and the counting unit 72 as an example, but the information generation unit 7 includes only one of the measurement unit 71 and the counting unit 72. It may be.

計測部71は、単体魚からの反射信号を入力とし、該反射信号の信号レベルが所定の信号レベル以上の値を維持する維持時間を計測する。計測部71が維持時間を計測するために用いる所定の信号レベルは、抽出部6から出力される反射信号毎に算出される。この所定の信号レベルは、反射信号の信号レベルの最大値で反射信号の信号レベルを規格化し、該規格化した反射信号の信号レベルの最大値を1/N(N>1)した値とするのが好ましく、Nの値は10以上の値がより好適である。なお、ここでは、規格化した反射信号の信号レベルの最大値から所定の信号レベルを算出する例を示したが、規格化を行わないで所定の信号レベルを算出してもよい。 The measurement unit 71 receives a reflection signal from a single fish and measures a maintenance time during which the signal level of the reflection signal maintains a value equal to or higher than a predetermined signal level. The predetermined signal level used by the measurement unit 71 to measure the maintenance time is calculated for each reflected signal output from the extraction unit 6. The predetermined signal level is a value obtained by normalizing the signal level of the reflected signal with the maximum value of the signal level of the reflected signal and 1 / N (N> 1) of the maximum value of the normalized signal level of the reflected signal. The value of N is more preferably 10 or more. Although an example in which the predetermined signal level is calculated from the maximum value of the standardized signal level of the reflected signal is shown here, the predetermined signal level may be calculated without performing normalization.

計数部72は、前述した計測部71と同様に単体魚からの反射信号を入力とし、該反射信号の信号レベルが所定の信号レベル以上の値を維持する期間に発生する当該反射信号のピーク数を計数する。計数部72がピーク数を計数するために用いる所定の信号レベルは、前述した計測部71と同様に算出される。なお、所定の信号レベルの算出に用いるNの値は、計測部71で用いたものと同じ値を用いてもよいし、異なる値を用いてもよい。 The counting unit 72 receives a reflection signal from a single fish as in the measurement unit 71 described above, and the number of peaks of the reflection signal generated during a period in which the signal level of the reflection signal maintains a value equal to or higher than a predetermined signal level. Count. The predetermined signal level used by the counting unit 72 to count the number of peaks is calculated in the same manner as the measuring unit 71 described above. Note that the value of N used to calculate the predetermined signal level may be the same value as that used in the measurement unit 71, or a different value.

情報処理部73は、予め採取しておいた統計データに基づいて、計測部71で検出した維持時間、計数部72で検出したピーク数から魚に関する情報を生成する。 The information processing unit 73 generates information about the fish from the maintenance time detected by the measurement unit 71 and the number of peaks detected by the counting unit 72 based on statistical data collected in advance.

図2は、単体魚に入射した超音波信号の反射の様子を示す模式図である。
一般に、魚からの反射波は、ウキブクロや体表や骨格などからの反射が主なものであると考えられている。そして、図2に示すように、単体魚の大きさに比して十分な分解能の超音波パルスを単体魚に対して入射した場合、ウキブクロや体表や骨格など複数の位置で比較的大きな反射波が生じると考えられる。
FIG. 2 is a schematic diagram showing a state of reflection of an ultrasonic signal incident on a single fish.
In general, it is considered that the reflected waves from fish are mainly reflected from the sea bass, the body surface, and the skeleton. As shown in FIG. 2, when an ultrasonic pulse with sufficient resolution compared to the size of a single fish is incident on the single fish, relatively large reflected waves are generated at a plurality of positions such as a Japanese black body, a body surface, and a skeleton. Is considered to occur.

この際、超音波信号の発信源からこれら複数の信号反射位置までの距離はそれぞれ相違するため、反射波は図2に示すように時間的に異なったタイミングで発生する。また、反射の対象となるウキブクロや体表や骨格などは、それぞれ、超音波信号の反射強度や反射断面積が異なるため、各信号反射位置で発生する反射波の信号レベルについてもそれぞれ異なったものになる。 At this time, since the distances from the ultrasonic signal transmission source to the plurality of signal reflection positions are different from each other, the reflected waves are generated at different timings as shown in FIG. In addition, since the reflection intensity and reflection cross-sectional area of the ultrasonic signal are different for the reflection target, body surface, skeleton, etc., the signal level of the reflected wave generated at each signal reflection position is also different. become.

そこで、本発明は、単体魚からの反射信号が、時間的に異なったタイミングを有し、且つそれぞれ異なった反射強度を有する複数の反射波の合成信号であると考え、単体魚からの反射信号の時間的変化、つまり反射信号の波形の情報を利用して、魚体長情報や魚種情報などの魚に関する情報を生成する。 Therefore, the present invention considers that the reflected signal from a single fish is a composite signal of a plurality of reflected waves having different timings and different reflection intensities, and the reflected signal from a single fish. Information on fish such as fish length information and fish type information is generated using the time variation of the signal, that is, the waveform information of the reflected signal.

以下、本発明の内容をさらに具体的に説明する。
図3は、水槽中に麻酔で固定された3種の単体魚から計測した反射信号とその包絡線を示す図である。
Hereinafter, the content of the present invention will be described more specifically.
FIG. 3 is a diagram showing reflected signals and their envelopes measured from three kinds of single fish fixed by anesthesia in a water tank.

図3の測定結果は、水深2mに水面と水平に固定されたアジ、タイ、サバに対して、水面と垂直な方向から超音波信号を照射した際の反射信号の測定結果であり、尾叉長、魚体高、魚体幅がそれぞれ異なる5つの固体からの反射波を魚種別に示したものである。左からアジ、タイ、サバの反射信号とその包絡線を示す。この実験では、送信信号としてハンドウイルカのクリックスを用いた。実験で用いたハンドウイルカのクリックスは、ピーク周波数が90kHz、パルス時間幅(ピークの半分の値)が約26μs、3dB帯域がそれぞれ22.5kHzである。 The measurement result of FIG. 3 is a measurement result of the reflected signal when an ultrasonic signal is irradiated from a direction perpendicular to the water surface to a horse mackerel, a tie, and a mackerel that are fixed horizontally to the water surface at a depth of 2 m. The reflected waves from five solids having different lengths, fish heights, and fish widths are shown for each fish type. From left to right, the reflection signals and envelopes of horse mackerel, tie, and mackerel are shown. In this experiment, hand dolphin clicks were used as transmission signals. The click of the bottlenose dolphin used in the experiment has a peak frequency of 90 kHz, a pulse time width (half the peak value) of about 26 μs, and a 3 dB bandwidth of 22.5 kHz.

図3に示すように、単体魚から得られる反射波は、ウキブクロや体表や骨格などで発生する複数の反射波の合成波として受信され、固体毎に異なる波形を有している。 As shown in FIG. 3, a reflected wave obtained from a single fish is received as a composite wave of a plurality of reflected waves generated on a sea bass, a body surface, a skeleton, etc., and has a different waveform for each solid.

図4は、単体魚からの反射信号の波形を、反射波の時間的連続性とピーク数に着目して分析した結果を示す図であり、本発明の実施の形態1による水中探知装置の計測部71が計測した維持時間と、計数部72が計数したピーク数を示す。
図4の各反射信号の包絡線を横切る直線は、計測部71及び計数部72が算出した所定の信号レベル(以下、適宜「閾値」と記載する。)であり、各反射信号の最大値を1/N(N>1)した値である。ここでは計測部71及び計数部72ともN=10として閾値を算出している。
FIG. 4 is a diagram showing the result of analyzing the waveform of the reflected signal from a single fish, focusing on the temporal continuity and the number of peaks of the reflected wave, and is measured by the underwater detection device according to the first embodiment of the present invention. The maintenance time measured by the unit 71 and the number of peaks counted by the counting unit 72 are shown.
A straight line crossing the envelope of each reflected signal in FIG. 4 is a predetermined signal level calculated by the measuring unit 71 and the counting unit 72 (hereinafter referred to as “threshold” as appropriate), and the maximum value of each reflected signal is represented by 1 / N (N> 1). Here, the threshold value is calculated with N = 10 in both the measuring unit 71 and the counting unit 72.

なお、図4に示す各反射信号の包絡線は水槽中に固定した単体魚から得られた反射信号であるため、単体魚からの反射信号しか含まれていない。そのため、包絡線が2つまたは3つに割れている場合であっても、便宜上、閾値を継続して超えていたものとして維持時間の計測及びピーク数の計数を行っている。この包絡線が割れることに対する対策については、後述する実施の形態2、及び実施の形態3で説明する。 In addition, since the envelope of each reflected signal shown in FIG. 4 is a reflected signal obtained from a single fish fixed in the aquarium, only the reflected signal from the single fish is included. Therefore, even if the envelope is broken into two or three, for the sake of convenience, the maintenance time is measured and the number of peaks is counted on the assumption that the threshold has been exceeded. A countermeasure against the cracking of the envelope will be described in Embodiment 2 and Embodiment 3 described later.

計測部71は、算出した閾値を用いて反射信号の信号レベルが所定の信号レベル以上の値を維持する維持時間を計測する。各反射信号の法絡線に記された2つの矢印が計測部71による計測開始時刻と終了時刻を示す。また、各包絡線の左上に記された数字は計測部71により計測された維持時間を示す。 The measurement unit 71 measures a maintenance time during which the signal level of the reflected signal is maintained at a value equal to or higher than a predetermined signal level using the calculated threshold value. Two arrows marked on the normal line of each reflected signal indicate the measurement start time and end time by the measurement unit 71. Further, the number written at the upper left of each envelope indicates the maintenance time measured by the measuring unit 71.

計測部71が計測した維持時間と尾叉長の関係及び維持時間と魚体高の関係を図5に示す。
図5(a)は維持時間と魚体高の関係を示す図である。図5(a)において縦軸は維持時間、横軸は魚体高であり、アジ、タイ、サバの魚種別にそれぞれ異なる固体から得られたデータの平均値をプロットした。
FIG. 5 shows the relationship between the maintenance time and the fork length measured by the measuring unit 71 and the relationship between the maintenance time and the fish height.
FIG. 5A shows the relationship between the maintenance time and the fish body height. In FIG. 5 (a), the vertical axis represents the maintenance time, and the horizontal axis represents the fish body height. The average values of data obtained from different solids for the horse mackerel, Thai, and mackerel fish types are plotted.

今回の実験結果では、図5(a)に示すように、計測部71で計測した維持時間と魚体高の関係はほぼ比例関係にあり、魚体高が大きくにつれて維持時間も長くなっている。これより、情報処理部73は、この維持時間と魚体高の相関に基づいて、魚の魚体高や魚種などの魚に関する情報を算出することができるといえる。つまり、情報処理部73は、維持時間と魚体高の相関を表す関数を予め保持しておき、計測部71から出力された維持時間を当該関数に入力することにより、抽出部6で抽出された単体魚の魚体高を算出することが可能である。なお、維持時間と魚体高の相関は比例関係に限られるものではない。 In this experimental result, as shown in FIG. 5A, the relationship between the maintenance time measured by the measuring unit 71 and the fish height is almost proportional, and the maintenance time becomes longer as the fish height increases. From this, it can be said that the information processing unit 73 can calculate information on the fish such as the fish height and the fish type based on the correlation between the maintenance time and the fish height. That is, the information processing unit 73 holds a function representing the correlation between the maintenance time and the fish height in advance, and the extraction time is extracted by inputting the maintenance time output from the measurement unit 71 into the function. It is possible to calculate the height of a single fish. The correlation between the maintenance time and the fish height is not limited to a proportional relationship.

また、図5(b)は維持時間と尾叉長の関係を示す図である。図5(b)において縦軸は維持時間、横軸は尾叉長であり、アジ、タイ、サバの魚種別にそれぞれ異なる固体から得られたデータの平均値をプロットした。 FIG. 5B shows the relationship between the maintenance time and the fork length. In FIG. 5B, the vertical axis is the maintenance time, and the horizontal axis is the fork length, and the average values of data obtained from different solids are plotted for horse mackerel, Thai, and mackerel fish types.

計測部71で計測した維持時間は、単体魚の縦方向の厚み、つまり魚体高を表しているものと考えられる。しかしながら、多くの魚の外形は略相似形であり、図5(b)にした結果をみても計測部71で計測した維持時間と尾叉長とはほぼ比例関係の相関がみられる。 The maintenance time measured by the measuring unit 71 is considered to represent the vertical thickness of a single fish, that is, the fish height. However, the outline of many fishes is substantially similar, and even if the result shown in FIG. 5B is seen, there is a substantially proportional correlation between the maintenance time measured by the measuring unit 71 and the fork length.

そのため、情報処理部73は、前述の魚体高を算出する場合と同様に、維持時間と尾叉長の相関を表す関数を予め保持しておき、計測部71から出力された維持時間を当該関数に入力することにより、抽出部6で抽出された単体魚の尾叉長を推定することも可能である。なお、維持時間と尾叉長の相関は比例関係に限られるものではない。 Therefore, the information processing unit 73 stores in advance a function representing the correlation between the maintenance time and the fork length, as in the case of calculating the fish height described above, and uses the maintenance time output from the measurement unit 71 as the function. It is also possible to estimate the fork length of a single fish extracted by the extraction unit 6. The correlation between the maintenance time and the fork length is not limited to a proportional relationship.

また、情報処理部73は、計測部71で計測した維持時間だけでなく、単体魚からの反射強度TSの情報も併せて用い、尾叉長や魚体高などの魚体長情報や魚種情報を生成するようにしてもよい。これにより、情報処理部73は、より多くの検証情報を用いて魚に関する情報を生成できるため、より正確な魚体長情報や魚種情報を得ることが可能になる。 Further, the information processing unit 73 uses not only the maintenance time measured by the measurement unit 71 but also the information of the reflection intensity TS from the single fish, and uses the fish length information such as the fork length and the fish body height and the fish type information. You may make it produce | generate. Thereby, since the information processing part 73 can produce | generate the information regarding fish using more verification information, it becomes possible to obtain more exact fish body length information and fish kind information.

次に、情報生成部7に設けられた計数部72は、算出した閾値を用いて反射信号の信号レベルが維持する期間に発生する反射信号のピーク数を計数する。図4の各反射信号の包絡線のピーク位置に引かれた縦線が反射信号のピーク位置を示し、計数部72は、このピークの数をカウントする。 Next, the counting unit 72 provided in the information generating unit 7 counts the number of peaks of the reflected signal generated during the period in which the signal level of the reflected signal is maintained using the calculated threshold value. The vertical line drawn to the peak position of the envelope of each reflected signal in FIG. 4 indicates the peak position of the reflected signal, and the counting unit 72 counts the number of peaks.

計数部72が計測したピーク数と尾叉長の関係、及びピーク数と魚体高の関係を図6に示す。
図6(a)はピーク数と魚体高の関係を示す図である。図6(a)において縦軸はピーク数、横軸は魚体高であり、アジ、タイ、サバの魚種別にそれぞれ異なる固体から得られたデータの平均値をプロットした。
FIG. 6 shows the relationship between the number of peaks measured by the counting unit 72 and the fork length, and the relationship between the number of peaks and the fish height.
FIG. 6A is a diagram showing the relationship between the number of peaks and the fish height. In FIG. 6 (a), the vertical axis represents the number of peaks and the horizontal axis represents the fish body height, and the average values of data obtained from different solids are plotted for horse mackerel, Thai, and mackerel fish types.

今回の実験結果では、図6(a)に示すように、計数部72で計数したピーク数と単体魚の魚体高の関係はほぼ比例関係にあり、魚体高が大きくにつれてピーク数も多くなっている。そのため、情報処理部73は、このピーク数と魚体高の相関に基づいて、魚の魚体高や魚種などの魚に関する情報を算出することができるといえる。つまり、情報処理部73は、ピーク数と魚体高の相関を表す関数を予め保持しておき、計数部72から出力されたピーク数を当該関数に入力することにより、抽出部6で抽出された単体魚の魚体高を算出することが可能である。なお、ピーク数と魚体高の相関は比例関係に限られるものではない。 In the present experimental results, as shown in FIG. 6A, the relationship between the number of peaks counted by the counting unit 72 and the height of a single fish is almost proportional, and the number of peaks increases as the height of the fish increases. . Therefore, it can be said that the information processing unit 73 can calculate information on the fish such as the fish height and the fish type based on the correlation between the peak number and the fish height. That is, the information processing unit 73 holds a function representing the correlation between the number of peaks and the fish height in advance, and the number of peaks output from the counting unit 72 is input to the function to be extracted by the extraction unit 6. It is possible to calculate the height of a single fish. The correlation between the number of peaks and the fish height is not limited to a proportional relationship.

また、図6(b)はピーク数と尾叉長の関係を示す図である。図6(b)において縦軸はピーク数、横軸は尾叉長であり、アジ、タイ、サバの魚種別にそれぞれ異なる固体から得られたデータの平均値をプロットした。 FIG. 6B shows the relationship between the number of peaks and the fork length. In FIG. 6 (b), the vertical axis represents the number of peaks and the horizontal axis represents the fork length, and the average values of data obtained from different solids are plotted for horse mackerel, Thai, and mackerel fish types.

計数部72で計数したピーク数は、図5(b)の場合と同様に、単体魚の縦方向の厚み、つまり魚体高を表しているものと考えられる。しかしながら、多くの魚の外形は略相似形であり、図6(b)にした結果をみても計数部72で計数したピーク数と尾叉長とはほぼ比例関係の相関がみられる。 The number of peaks counted by the counting unit 72 is considered to represent the vertical thickness of a single fish, that is, the height of the fish body, as in the case of FIG. However, the outer shape of many fishes is substantially similar, and even if the result shown in FIG. 6B is seen, there is a substantially proportional correlation between the number of peaks counted by the counting unit 72 and the fork length.

そのため、情報処理部73は、前述の魚体高を算出する場合と同様に、ピーク数と尾叉長の相関を表す関数を予め保持しておき、計数部72から出力されたピーク数を当該関数に入力することにより、抽出部6で抽出された単体魚の尾叉長を算出することも可能である。なお、ピーク数と尾叉長の相関は比例関係に限られるものではない。 Therefore, as in the case of calculating the above-described fish height, the information processing unit 73 holds a function representing the correlation between the peak number and the fork length in advance, and uses the peak number output from the counting unit 72 as the function. It is also possible to calculate the fork length of a single fish extracted by the extraction unit 6. The correlation between the number of peaks and the fork length is not limited to a proportional relationship.

また、情報処理部73は、計数部72で計数したピーク数だけでなく、計測部71で計測した維持時間や単体魚からの反射強度TSの情報を併せて用い、尾叉長や魚体高などの魚体長情報や魚種情報を生成するようにしてもよい。これにより、情報処理部73は、より多くの検証情報を用いて魚に関する情報の検証ができるため、より正確な魚体長検出や魚種判別を行うことが可能になる。 Further, the information processing unit 73 uses not only the number of peaks counted by the counting unit 72 but also information on the maintenance time measured by the measuring unit 71 and the reflection intensity TS from a single fish, and the fork length, the fish height, etc. The fish body length information and fish type information may be generated. Thereby, since the information processing part 73 can verify the information regarding fish using more verification information, it becomes possible to perform more accurate fish body length detection and fish kind discrimination | determination.

次に、単体魚からの反射信号と単体魚の姿勢角との関係を示す。
図7は、水槽中に麻酔で固定された単体魚の姿勢角を変化させて計測した反射信号とその包絡線を示す図である。
Next, the relationship between the reflection signal from a single fish and the posture angle of the single fish is shown.
FIG. 7 is a diagram showing a reflection signal and its envelope measured by changing the posture angle of a single fish fixed by anesthesia in a water tank.

図7に示す測定結果は、水槽中に麻酔で固定した単体魚の姿勢を−90度〜+90度まで10度刻みで変化させ、水面と垂直な方向から超音波信号を照射した際の反射信号の測定結果である。ここで背方向から垂直に音波が入射する場合を0度とし、頭方向から入射する場合をプラス、尾方向から入射する場合をマイナスとしている。なお、この実験で使用した送信信号は、図3で説明したものと同様のバンドウイルカのクリックスである。 The measurement results shown in FIG. 7 show the reflected signal when the posture of a single fish fixed by anesthesia in the water tank is changed in increments of 10 degrees from -90 degrees to +90 degrees and an ultrasonic signal is irradiated from the direction perpendicular to the water surface. It is a measurement result. Here, the case where the sound wave is incident vertically from the back direction is 0 degree, the case where the sound wave is incident from the head direction is plus, and the case where the sound wave is incident from the tail direction is minus. The transmission signal used in this experiment is a bottlenose dolphin clicks similar to that described in FIG.

図7に示すように、単体魚から得られる反射波は、ウキブクロや体表や骨格などで発生する複数の反射波の合成波として受信され、単体魚の姿勢毎に異なる波形を有している。 As shown in FIG. 7, a reflected wave obtained from a single fish is received as a composite wave of a plurality of reflected waves generated from a sea bass, a body surface, a skeleton, etc., and has a different waveform for each posture of the single fish.

図8は、本発明の実施の形態1による水中探知装置の計測部71が計測した維持時間と姿勢角の関係を示す図である。図8において、縦軸は維持時間、横軸は姿勢角である。
図8の点線で示すように、維持時間と姿勢角の関係は、姿勢角が0度に近づくほど、維持時間が短くなる傾向がみられる。
FIG. 8 is a diagram showing the relationship between the maintenance time and the posture angle measured by the measurement unit 71 of the underwater detection device according to Embodiment 1 of the present invention. In FIG. 8, the vertical axis represents the maintenance time, and the horizontal axis represents the posture angle.
As shown by the dotted line in FIG. 8, the relationship between the maintenance time and the posture angle tends to be shortened as the posture angle approaches 0 degrees.

図9は、本発明の実施の形態1による水中探知装置の計数部72が計数したピーク数と姿勢角の関係を示す図である。図9において、縦軸はピーク数、横軸は姿勢角である。
図9の点線で示すように、ピーク数と姿勢角の関係は、姿勢角が0度に近づくほど、ピーク数が少なくなる傾向がみられる。
FIG. 9 is a diagram showing the relationship between the number of peaks counted by the counting unit 72 of the underwater detection device according to Embodiment 1 of the present invention and the attitude angle. In FIG. 9, the vertical axis represents the number of peaks, and the horizontal axis represents the posture angle.
As shown by the dotted line in FIG. 9, the relationship between the number of peaks and the posture angle tends to decrease as the posture angle approaches 0 degrees.

図10は、単体魚からの反射信号の最大信号レベルと姿勢角の関係を示す図である。図10において、縦軸は最大信号レベル、横軸は姿勢角である。
図10の点線で示すように、最大信号レベルと姿勢角の関係は、姿勢角が0度に近づくほど、信号レベルが大きくなる傾向がみられる。なお、単体魚からの反射信号の最大レベルの検出は、前述した計測部71及び計数部72と並列に、反射信号の最大レベルを検出する検出部を設けることにより実現可能である。
FIG. 10 is a diagram showing the relationship between the maximum signal level of the reflected signal from a single fish and the posture angle. In FIG. 10, the vertical axis represents the maximum signal level, and the horizontal axis represents the posture angle.
As shown by the dotted line in FIG. 10, the relationship between the maximum signal level and the posture angle tends to increase as the posture angle approaches 0 degrees. The detection of the maximum level of the reflection signal from a single fish can be realized by providing a detection unit for detecting the maximum level of the reflection signal in parallel with the measurement unit 71 and the counting unit 72 described above.

以上、図8から図10で示したように、単体魚から得られる反射信号の波形情報と単体魚の姿勢については相関があり、情報処理部73は、単体魚から得られる反射信号から検出した維持時間やピーク数や反射信号の最大信号レベルなどの波形情報に基づいて、魚の姿勢を算出することができる。つまり、情報処理部73は、維持時間やピーク数や反射信号の最大信号レベルなどの情報と単体魚の姿勢との関係を示す情報を予め保持しておき、計側部71、計数部72などの単体魚からの反射信号の波形情報を生成する構成要素からの出力情報に基づいて、抽出部6で抽出された単体魚の姿勢を推定することが可能である。 As described above, as shown in FIGS. 8 to 10, there is a correlation between the waveform information of the reflected signal obtained from the single fish and the posture of the single fish, and the information processing unit 73 maintains the detection detected from the reflected signal obtained from the single fish. The posture of the fish can be calculated based on waveform information such as time, the number of peaks, and the maximum signal level of the reflected signal. That is, the information processing unit 73 stores in advance information indicating the relationship between the information such as the maintenance time, the number of peaks, the maximum signal level of the reflected signal, and the posture of the single fish, Based on the output information from the component that generates the waveform information of the reflected signal from the single fish, the posture of the single fish extracted by the extraction unit 6 can be estimated.

また、情報生成部7は、情報処理部73で生成した魚の姿勢情報に基づいて、魚体長情報や魚種情報を生成するための反射信号を選択することが可能になる。これにより、情報処理部73は、魚体長情報や魚種情報の生成に最適な反射信号を用いて魚体長情報や魚種情報を生成することができるため、安定した結果を得ることが可能になる。なお、このような反射信号の選択処理は、同一の単体魚から複数の反射信号が得られるような場合に特に好適である。 In addition, the information generation unit 7 can select a reflection signal for generating fish length information and fish type information based on the posture information of the fish generated by the information processing unit 73. Thereby, since the information processing part 73 can produce | generate fish body length information and fish type information using the optimal reflection signal for the production | generation of fish body length information or fish type information, it becomes possible to obtain the stable result. Become. Such a reflection signal selection process is particularly suitable when a plurality of reflection signals are obtained from the same single fish.

また、情報生成部7は、情報処理部73で生成した魚の姿勢情報を用いて、魚の進行方向を推定したり、算出した魚体長情報や魚種情報の信頼度を算出したりすることも可能である。 Moreover, the information generation part 7 can also estimate the advancing direction of a fish using the posture information of the fish produced | generated by the information processing part 73, and can calculate the reliability of the calculated fish body length information and fish kind information. It is.

(実施の形態2)
次に、本発明の実施の形態2による水中探知装置について説明する。
本発明の実施の形態2による水中探知装置では、単体魚からの反射信号の包絡線が2つまたは3つに割れている場合であっても、維持時間の計測及びピーク数の計数をより精度よく行うことができる手法について説明する。
(Embodiment 2)
Next, an underwater detection device according to Embodiment 2 of the present invention will be described.
In the underwater detection device according to Embodiment 2 of the present invention, even when the envelope of the reflected signal from a single fish is broken into two or three, the measurement of the maintenance time and the counting of the number of peaks are more accurate. A technique that can be performed well will be described.

図11は、本発明の実施の形態2による水中探知装置の構成の一例を示すブロック図である。
本発明の実施の形態2による水中探知装置は、送受波器1と、送受切替部2と、送信部3と、検波部5を有する受信部4と、抽出部6と、情報生成部7と、描画処理部8と、表示部9と、LPF(ローパスフィルタ)10とから構成される。なお、図1を用いて前述した本発明の実施の形態1による水中探知装置と同様の構成要素については同一の符号を付し、ここでは説明を省略する。
FIG. 11 is a block diagram showing an example of the configuration of the underwater detection device according to the second embodiment of the present invention.
The underwater detection device according to Embodiment 2 of the present invention includes a transducer 1, a transmission / reception switching unit 2, a transmission unit 3, a reception unit 4 having a detection unit 5, an extraction unit 6, and an information generation unit 7. , A drawing processing unit 8, a display unit 9, and an LPF (low-pass filter) 10. In addition, the same code | symbol is attached | subjected about the component similar to the underwater detection apparatus by Embodiment 1 of this invention mentioned above using FIG. 1, and description is abbreviate | omitted here.

LPF10は、情報生成部7の前段に設けられ、少なくとも入力信号をなまらせる役割を果たす。LPF10に用いる関数としては、例えば、ハニング窓やガウス窓が考えられる。なお、図11ではLPF10を抽出部6の後段に設けた例を示しているが、LPF10を抽出部6の前段に設けるようにしてもよい。 The LPF 10 is provided in the preceding stage of the information generation unit 7 and plays a role of smoothing at least an input signal. As a function used for the LPF 10, for example, a Hanning window or a Gauss window can be considered. Although FIG. 11 shows an example in which the LPF 10 is provided in the subsequent stage of the extraction unit 6, the LPF 10 may be provided in the previous stage of the extraction unit 6.

図12は、窓長が50μsのハニング窓を用いて、単体魚からの反射信号に対して畳み込みを行いLPF処理した結果である。
図12(a)がローパスフィルタ処理後の包絡線を示し、図12(b)がローパスフィルタ処理に用いたハニング窓を示す。
FIG. 12 shows the result of LPF processing by convolution of the reflected signal from a single fish using a Hanning window with a window length of 50 μs.
FIG. 12A shows an envelope after low-pass filter processing, and FIG. 12B shows a Hanning window used for low-pass filter processing.

図12(a)に示すように、単体魚からの反射信号に対してLPF処理することにより、2つまたは3つに割れていた包絡線がなまり、1つの連続する包絡線となる。これにより、単体魚からの反射信号の包絡線が2つまたは3つに割れている場合であっても、計測部71による維持時間の計測及び計数部72によるピーク数の計数をより精度よく行うことができ、情報処理部73は、より正確な魚体長情報や魚種情報などの魚に関する情報を生成することが可能になる。 As shown in FIG. 12 (a), by subjecting the reflected signal from a single fish to LPF processing, the envelopes that have been broken into two or three are rounded to form one continuous envelope. Thereby, even when the envelope of the reflected signal from a single fish is broken into two or three, the measurement of the maintenance time by the measuring unit 71 and the counting of the number of peaks by the counting unit 72 are performed more accurately. Therefore, the information processing unit 73 can generate more accurate information about fish such as fish length information and fish type information.

(実施の形態3)
次に、本発明の実施の形態3による水中探知装置について説明する。
本発明の実施の形態3による水中探知装置では、本発明の実施の形態2による水中探知装置と異なる対処策を説明する。
(Embodiment 3)
Next, an underwater detection device according to Embodiment 3 of the present invention will be described.
In the underwater detection device according to the third embodiment of the present invention, a countermeasure different from the underwater detection device according to the second embodiment of the present invention will be described.

単体魚からの反射信号の包絡線が2つまたは3つに割れている場合、図11、図12を用いて説明したようなLPFを用いる手法の他、予め決められた時間幅の中にある反射信号を単体魚から反射信号とみなして、計測部71による維持時間の計測及び計数部72によるピーク数の計数を行うようにしてもよい。なお、水中探知装置の構成については、計測部71及び計数部72の処理内容を除き、前述した実施の形態1による水中探知装置と同じであるため、ここでは説明を省略する。 When the envelope of the reflection signal from a single fish is broken into two or three, it is within a predetermined time width in addition to the method using the LPF as described with reference to FIGS. The reflection signal may be regarded as a reflection signal from a single fish, and the measurement of the maintenance time by the measurement unit 71 and the counting of the number of peaks by the counting unit 72 may be performed. The configuration of the underwater detection device is the same as that of the underwater detection device according to the first embodiment described above except for the processing contents of the measurement unit 71 and the counting unit 72, and thus description thereof is omitted here.

つまり、計測部71は、単体魚から得られる反射信号の時間幅を予め決め保持しておく。この時間幅は、例えば単体魚の反射信号を統計処理して算出する。そして、計測部71は、単体魚からの反射信号の信号レベルの最大レベルを当該時間幅の中心とし、当該時間幅内の所定の信号レベル以上の反射信号を検出する。計測部71は、信号レベル以上の反射信号が得られた最初の点から最後の点までの時間を計測し、これを維持時間として出力する。これにより、単体魚からの反射信号の包絡線が2つまたは3つに割れている場合であっても、計測部71は維持時間を精度よく計測することができる。 That is, the measuring unit 71 determines and holds in advance the time width of the reflected signal obtained from a single fish. This time width is calculated, for example, by statistically processing the reflection signal of a single fish. And the measurement part 71 detects the reflected signal more than the predetermined | prescribed signal level within the said time width by making the maximum level of the signal level of the reflected signal from a single fish into the center of the said time width. The measuring unit 71 measures the time from the first point to the last point where a reflected signal equal to or higher than the signal level is obtained, and outputs this as the maintenance time. Thereby, even if it is a case where the envelope of the reflected signal from a single fish is broken into two or three, the measuring unit 71 can accurately measure the maintenance time.

また、計数部72においても、計測部71と同様に、単体魚から得られる反射信号の時間幅を予め決め保持しておく。この時間幅は、例えば単体魚の反射信号を統計処理して算出する。そして、計数部72は、単体魚からの反射信号の信号レベルの最大レベルを当該時間幅の中心とし、当該時間幅内に発生する反射信号のピークのうち、所定の信号レベル以上のピークの数を計数する。これにより、単体魚からの反射信号の包絡線が2つまたは3つに割れている場合であっても、計数部72はピーク数を精度よく計数することができる。 In the counting unit 72 as well, as with the measuring unit 71, the time width of the reflected signal obtained from a single fish is determined and held in advance. This time width is calculated, for example, by statistically processing the reflection signal of a single fish. Then, the counting unit 72 sets the maximum level of the signal level of the reflected signal from the single fish as the center of the time width, and the number of peaks equal to or higher than the predetermined signal level among the peaks of the reflected signal generated within the time width. Count. Thereby, even if the envelope of the reflected signal from a single fish is broken into two or three, the counting unit 72 can count the number of peaks with high accuracy.

以上より、情報処理部73は、計測部71によって計測された維持時間や計数部72によって計数されたピーク数を用いて、より正確に魚体長情報や魚種情報などの魚に関する情報を生成することが可能になる。 As described above, the information processing unit 73 uses the maintenance time measured by the measurement unit 71 and the number of peaks counted by the counting unit 72 to more accurately generate information about fish such as fish length information and fish type information. It becomes possible.

なお、本発明にかかる水中探知装置は、魚群探知機の他、ソナーなどの装置においても適用可能である。
また、本発明は、本発明の各実施の形態で説明した発明の本旨を逸しない範囲で自由に設計変更可能であり、本発明の各実施の形態で説明した内容に限定されるものではない。
The underwater detection device according to the present invention can be applied to devices such as a sonar in addition to a fish finder.
In addition, the present invention can be freely modified within the scope of the present invention described in each embodiment of the present invention, and is not limited to the contents described in each embodiment of the present invention. .

本発明の実施の形態1による水中探知装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the underwater detection apparatus by Embodiment 1 of this invention. 単体魚に入射した超音波信号の反射の様子を説明するための模式図Schematic diagram for explaining the state of reflection of an ultrasonic signal incident on a single fish 水槽中に麻酔で固定された3種の単体魚から計測した反射信号とその包絡線を示す図The figure which shows the reflection signal and its envelope which were measured from three kinds of single fish fixed by anesthesia in the aquarium 単体魚からの反射信号の波形を反射波の時間的連続性とピーク数に着目して分析した結果を示す図The figure which shows the result of analyzing the waveform of the reflected signal from a single fish focusing on the temporal continuity and the number of peaks of the reflected wave 本発明の実施の形態1による水中探知装置の計測部が計測した維持時間と尾叉長の関係、及び維持時間と魚体高の関係を示す図The figure which shows the relationship between the maintenance time and the fork length which the measurement part of the underwater detection apparatus by Embodiment 1 of this invention measured, and the relationship between a maintenance time and fish body height 本発明の実施の形態1による水中探知装置の計数部が計測したピーク数と尾叉長の関係、及びピーク数と魚体高の関係を示す図The figure which shows the relationship between the peak number and the fork length which the counting part of the underwater detection apparatus by Embodiment 1 of this invention measured, and the relationship between a peak number and fish body height 水槽中に麻酔で固定された単体魚の姿勢角度を変化させて計測した反射信号とその包絡線を示す図The figure which shows the reflected signal and the envelope which were measured by changing the posture angle of the single fish fixed by anesthesia in the aquarium 本発明の実施の形態1による水中探知装置の計測部が計測した維持時間と姿勢角の関係を示す図The figure which shows the relationship between the maintenance time which the measurement part of the underwater detection apparatus by Embodiment 1 of this invention measured, and a posture angle. 本発明の実施の形態1による水中探知装置の計数部が計数したピーク数と姿勢角の関係を示す図The figure which shows the relationship between the peak number which the counter of the underwater detection apparatus by Embodiment 1 of this invention counted, and attitude | position angle. 単体魚からの反射信号の最大信号レベルと姿勢角の関係を示す図The figure which shows the relation between the maximum signal level of the reflection signal from the single fish and the posture angle 本発明の実施の形態2による水中探知装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the underwater detection apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による水中探知装置のLPF処理を説明するための説明図Explanatory drawing for demonstrating the LPF process of the underwater detection apparatus by Embodiment 2 of this invention

符号の説明Explanation of symbols

1 送受波器
2 送受切替部
3 送信部
4 受信部
5 検波部
6 抽出部
7 情報生成部
8 描画処理部
9 表示部
10 LPF
DESCRIPTION OF SYMBOLS 1 Transmitter / receiver 2 Transmission / reception switching part 3 Transmission part 4 Reception part 5 Detection part 6 Extraction part 7 Information generation part 8 Drawing process part 9 Display part 10 LPF

Claims (11)

所定のパルス幅をもった音波を送信する送信部と、
送信信号に対する物標からの反射波の受信し、受信信号の包絡線を検出する受信部と、
前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、
前記単体魚からの反射信号の時間変化から、所定の信号レベル以上で連続する反射信号の波形情報を取得し、該波形情報に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする水中探知装置。
A transmitter for transmitting a sound wave having a predetermined pulse width ;
A reception unit that receives a reflected wave from a target with respect to a transmission signal and detects an envelope of the reception signal ;
An extraction unit that extracts a reflection signal from a single fish from the reception signal output from the reception unit;
An information generation unit that acquires waveform information of a reflected signal that is continuous at a predetermined signal level or more from a time change of the reflected signal from the single fish, and generates information about the extracted single fish based on the waveform information; An underwater detection device comprising:
請求項1に記載の水中探知装置において、
前記波形情報として、前記所定の信号レベル以上の値を前記反射信号の信号レベルが維持する維持時間を含み、
前記情報生成部は、前記維持時間に基づいて、前記単体魚に関する情報を生成することを特徴とする水中探知装置。
The underwater detection device according to claim 1,
The waveform information includes a maintenance time during which the signal level of the reflected signal maintains a value equal to or higher than the predetermined signal level,
The underwater detection device, wherein the information generation unit generates information on the single fish based on the maintenance time.
請求項1に記載の水中探知装置において、
前記波形情報として、前記所定の信号レベル以上の値を前記反射信号の信号レベルが維持する期間に発生する前記反射信号のピーク数を含み、
前記情報生成部は、前記ピーク数に基づいて、前記単体魚に関する情報を生成することを特徴とする水中探知装置。
The underwater detection device according to claim 1,
As the waveform information, including the number of peaks of the reflected signal generated during a period in which the signal level of the reflected signal maintains a value equal to or higher than the predetermined signal level,
The underwater detection device, wherein the information generation unit generates information on the single fish based on the number of peaks.
請求項1に記載の水中探知装置において、
前記波形情報として、前記所定の信号レベル以上の値を前記反射信号の信号レベルが維持する維持時間と、前記所定の信号レベル以上の値を前記反射信号の信号レベルが維持する期間に発生する前記反射信号のピーク数を含み、
前記情報生成部は、前記維持時間及び前記ピーク数から、前記単体魚に関する情報を生成することを特徴とする水中探知装置。
The underwater detection device according to claim 1,
The waveform information is generated in a maintenance time during which the signal level of the reflected signal maintains a value equal to or higher than the predetermined signal level, and a period during which the signal level of the reflected signal maintains a value higher than the predetermined signal level. Including the number of peaks in the reflected signal,
The underwater detection device, wherein the information generation unit generates information on the single fish from the maintenance time and the number of peaks.
請求項2から請求項4の何れかに記載の水中探知装置において、
前記単体魚に関する情報は、魚体長情報、魚種情報、魚の姿勢情報のうちの,少なくとも1つであることを特徴とする水中探知装置。
In the underwater detection device according to any one of claims 2 to 4,
The underwater detection device characterized in that the information on the single fish is at least one of fish length information, fish species information, and fish posture information.
請求項5に記載の水中探知装置において、
前記情報生成部は、前記魚の姿勢情報に基づいて、前記魚体長情報または前記魚種情報の生成に用いる単体魚からの反射信号を選択することを特徴とする水中探知装置。
The underwater detection device according to claim 5,
The underwater detection device, wherein the information generation unit selects a reflection signal from a single fish used for generation of the fish body length information or the fish species information based on the posture information of the fish.
請求項1から6の何れかに記載の水中探知装置において、
前記情報生成部の前段にLPFを設け、
前記情報生成部は、前記LPFから出力された信号を用いて魚に関する情報を生成することを特徴とする水中探知装置。
In the underwater detection apparatus in any one of Claim 1 to 6,
An LPF is provided in front of the information generator,
The underwater detection device, wherein the information generation unit generates information about fish using a signal output from the LPF.
請求項1から7の何れかに記載の水中探知装置において、
前記所定の信号レベルは、前記反射信号の信号レベルの最大値を1/N(N>1)した値であることを特徴とする水中探知装置
In the underwater detection apparatus in any one of Claim 1 to 7,
The underwater detection device, wherein the predetermined signal level is a value obtained by multiplying a maximum value of the signal level of the reflected signal by 1 / N (N> 1).
請求項1から7の何れかに記載の水中探知装置において、
前記所定の信号レベルは、反射信号の信号レベルの最大値で反射信号の信号レベルを規格化し、該規格化された反射信号の信号レベルの最大値を1/N(N>1)した値であることを特徴とする水中探知装置
In the underwater detection apparatus in any one of Claim 1 to 7,
The predetermined signal level is a value obtained by standardizing the signal level of the reflected signal with the maximum value of the signal level of the reflected signal and 1 / N (N> 1) of the maximum value of the normalized signal level of the reflected signal. Underwater detector characterized by being
所定のパルス幅をもった音波を送信する送信部と、
送信信号に対する物標からの反射波を受信し、受信信号の包絡線を検出する受信部と、
前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、
前記単体魚からの反射信号の時間的な連続性に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする水中探知装置。
A transmitter for transmitting a sound wave having a predetermined pulse width ;
A receiving unit that receives a reflected wave from a target with respect to a transmission signal and detects an envelope of the reception signal ;
An extraction unit that extracts a reflection signal from a single fish from the reception signal output from the reception unit;
An underwater detection device comprising: an information generation unit configured to generate information on the extracted single fish based on the temporal continuity of the reflection signal from the single fish.
所定のパルス幅をもった音波を送信する送信部と、
送信信号に対する物標からの反射波を受信し、受信信号の包絡線を検出する受信部と、
前記受信部から出力される受信信号から、単体魚からの反射信号を抽出する抽出部と、
前記単体魚からの反射信号のピーク数に基づいて、抽出した単体魚に関する情報を生成する情報生成部とを備えることを特徴とする水中探知装置。
A transmitter for transmitting a sound wave having a predetermined pulse width ;
A receiving unit that receives a reflected wave from a target with respect to a transmission signal and detects an envelope of the reception signal ;
An extraction unit that extracts a reflection signal from a single fish from the reception signal output from the reception unit;
An underwater detection device comprising: an information generation unit configured to generate information on the extracted single fish based on the number of peaks of the reflection signal from the single fish.
JP2007107560A 2007-04-16 2007-04-16 Underwater detector Active JP4929441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107560A JP4929441B2 (en) 2007-04-16 2007-04-16 Underwater detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107560A JP4929441B2 (en) 2007-04-16 2007-04-16 Underwater detector

Publications (2)

Publication Number Publication Date
JP2008267834A JP2008267834A (en) 2008-11-06
JP4929441B2 true JP4929441B2 (en) 2012-05-09

Family

ID=40047553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107560A Active JP4929441B2 (en) 2007-04-16 2007-04-16 Underwater detector

Country Status (1)

Country Link
JP (1) JP4929441B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252578B2 (en) * 2009-08-31 2013-07-31 学校法人東北学院 Underwater detection device and fish species discrimination method
JP5778414B2 (en) * 2010-12-06 2015-09-16 古野電気株式会社 Target detection apparatus and target detection method
JP5812397B2 (en) * 2011-06-22 2015-11-11 古野電気株式会社 Underwater detection device, underwater detection method, and underwater detection program
JP5991826B2 (en) * 2012-02-24 2016-09-14 古野電気株式会社 Underwater detection device and program
JP6014382B2 (en) 2012-06-20 2016-10-25 古野電気株式会社 Underwater detection device, underwater display system, program, and underwater display method
JP2014077703A (en) * 2012-10-10 2014-05-01 Furuno Electric Co Ltd Fish species discrimination device, signal processing device, underwater detector, fish species discrimination method and program
JP6319737B2 (en) * 2013-10-31 2018-05-09 学校法人東北学院 Length classification device, underwater detection device, and body length classification method
JP6347660B2 (en) * 2014-04-25 2018-06-27 古野電気株式会社 Fish finder, single fish detection method, and single fish detection program
JP2015165245A (en) * 2015-05-18 2015-09-17 古野電気株式会社 Apparatus and method for target detection
JP6666116B2 (en) * 2015-10-29 2020-03-13 古野電気株式会社 Underwater detector
JP7159340B2 (en) * 2018-10-29 2022-10-24 古野電気株式会社 Target measuring device and target measuring method
JP7444852B2 (en) 2019-03-26 2024-03-06 古野電気株式会社 Target measurement device and target measurement method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269176A (en) * 1985-09-21 1987-03-30 Mitsubishi Electric Corp Radio wave oscillating device
JP2553480B2 (en) * 1992-10-26 1996-11-13 株式会社カイジョー Single fish discrimination circuit for fish finder
JPH08105970A (en) * 1994-10-04 1996-04-23 Japan Radio Co Ltd Fish sign measuring device
JP4771597B2 (en) * 2001-01-16 2011-09-14 古野電気株式会社 Underwater detector

Also Published As

Publication number Publication date
JP2008267834A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4929441B2 (en) Underwater detector
US9268022B2 (en) Underwater detection device and underwater detecting method
CN101846743B (en) For the method and system of the transducer primitive fault detect of phased array supersonic instrument
US20140060196A1 (en) Ultrasonic testing apparatus
CN103462643B (en) Shear wave speed measurement method, device and system
JP4475982B2 (en) Weighing fish finder and fish length measuring method
JP5252578B2 (en) Underwater detection device and fish species discrimination method
US20070110291A1 (en) Image processing system and method for editing contours of a target object using multiple sectional images
JP2009265009A (en) Ultrasonic measuring device
JP6441735B2 (en) Underwater detector
JP5812397B2 (en) Underwater detection device, underwater detection method, and underwater detection program
JP5507267B2 (en) Method and apparatus for calculating thickness of damping material
CN104814759A (en) Ultrasonic measurement apparatus and ultrasonic measurement method
JP6589619B2 (en) Ultrasonic diagnostic equipment
CA2908682A1 (en) Conical ultrasonic probe
WO2004111674A2 (en) Estimation of background noise and its effect on sonar range estimation
JP2014077703A (en) Fish species discrimination device, signal processing device, underwater detector, fish species discrimination method and program
WO2005006009A2 (en) Noise adaptive sonar signal processor
JP5991826B2 (en) Underwater detection device and program
JP6024413B2 (en) measuring device
JP6347660B2 (en) Fish finder, single fish detection method, and single fish detection program
JPH03248082A (en) Sea bottom detector
KR101550706B1 (en) Thickness meter using ultrasonic wave and thickness measuring method of the same
JP6463653B2 (en) Ultrasonic flaw detector and ultrasonic probe moving distance detection method
JP5023206B2 (en) Underwater detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Ref document number: 4929441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250