JP4913272B2 - Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same - Google Patents

Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same Download PDF

Info

Publication number
JP4913272B2
JP4913272B2 JP37368399A JP37368399A JP4913272B2 JP 4913272 B2 JP4913272 B2 JP 4913272B2 JP 37368399 A JP37368399 A JP 37368399A JP 37368399 A JP37368399 A JP 37368399A JP 4913272 B2 JP4913272 B2 JP 4913272B2
Authority
JP
Japan
Prior art keywords
residue
group
benzyl
oligosaccharide
acylglycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37368399A
Other languages
Japanese (ja)
Other versions
JP2000256385A (en
Inventor
祐二 松崎
洋祐 安田
聡 宮内
純一 女屋
祐輔 堀
明 多和田
秀雄 望月
真已 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP37368399A priority Critical patent/JP4913272B2/en
Publication of JP2000256385A publication Critical patent/JP2000256385A/en
Application granted granted Critical
Publication of JP4913272B2 publication Critical patent/JP4913272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オリゴ糖の製造方法に関する。また本発明は、新規オリゴ糖およびそれを含む医薬組成物に関する。
【0002】
【従来の技術】
ケラタン硫酸は、N−アセチルグルコサミン残基の6位がO−硫酸化されたN−アセチルラクトサミンを基本構造とするグリコサミノグリカンである。この分解物であるケラタン硫酸オリゴ糖には、薬理作用のあるものがあることが報告されている(例えば、国際公開パンフレット第WO96/16973号参照)。
【0003】
ケラタン硫酸に由来する二糖の構造としては図1に示すものが可能性として考えられるが、薬理作用を有する他のケラタン硫酸オリゴ糖の検索は、還元末端にガラクトース残基を有する二糖(GlcNAcβ1→3Gal(式中、Galはガラクトースを、GlcNはグルコサミンを、Acはアセチル基を示す))であって、ケラタン硫酸と同様に硫酸基を有するケラタン硫酸オリゴ糖を得ることが困難であることから制限されている。例えば、ケラタン硫酸を公知のエンド−β−ガラクトシダーゼで処理しても、還元末端にガラクトース残基を有する二糖(GlcNAcβ1→3Gal)を、硫酸基を保持したまま得ることは困難であった。
【0004】
【発明が解決しようとする課題】
本発明の第1の目的は、還元末端にガラクトース残基を有するケラタン硫酸二糖を容易に製造できる方法を提供することである。
【0005】
また、本発明の第2の目的は、薬理作用を有する新規なオリゴ糖を提供し、これを医薬として提供することである。
【0006】
【課題を解決するための手段】
本発明者らは、グルコサミン中のヒドロキシル基およびアミノ基とガラクトース中のヒドロキシル基とを特定の様式で保護することにより、グリコシド結合反応によって、還元末端にガラクトース残基を有する二糖が得られることを見い出した。また、特定の位置のヒドロキシル基が硫酸化された二糖が優れた薬理活性を有することを見い出した。これらの知見に基づき、本発明は完成された。
【0007】
すなわち、本発明は、下記一般式(1)で示される単糖と、下記一般式(2)で示される単糖とをグリコシド結合反応させる工程を少なくとも含む、下記一般式(3)で示されるオリゴ糖の製造方法(以下、本発明製造方法ともいう)を提供する。
【0008】
【化16】

Figure 0004913272
(式中、R1およびR2はそれぞれ独立してアラルキル基を示し、R3はアシル基又はシリル基を示し、R4はアミノ基保護基を示し、R5は脱離基を示す。)
【0009】
【化17】
Figure 0004913272
(式中、R6およびR8はそれぞれ独立してアラルキル基を示し、R7はアシル基又はシリル基を示し、R9はアラルキル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。)
【0010】
【化18】
Figure 0004913272
(式中、R10およびR11はそれぞれ独立して水素原子または−SO3M(Mはプロトン又は1価のカチオンを示す。)を示し、Acはアセチル基を示す。また、R12は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。)
【0011】
本発明製造方法において、R10およびR11の少なくとも一方が−SO3M(Mはプロトン又は1価のカチオンを示す。)であり、上記一般式(1)で示される単糖と、上記一般式(2)で示される単糖とをグリコシド結合反応させる工程の後に、R3およびR7の少なくとも一方を水素原子に置換し、次いで当該水素原子を−SO3Mに置換する工程が含まれることが好ましい。
【0012】
本発明製造方法の好ましい態様においては、上記一般式(1)〜(3)が、それぞれ下記式(4)〜(6)で示される。
【0013】
【化19】
Figure 0004913272
(式中、Bnはベンジル基を、R13はアセチル基又はレブリノイル基を、Phthはフタロイル基を、Xはハロゲン原子を示す。)
【0014】
【化20】
Figure 0004913272
(式中、Bnはベンジル基を、R14はベンジル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。Pivはピバロイル基を示す。)
【0015】
【化21】
Figure 0004913272
(式中、Acはアセチル基を、Mはプロトン又は1価のカチオンを示す。また、R15は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。)
【0016】
本発明製造方法の別の好ましい態様においては、上記一般式(1)〜(3)が、それぞれ下記式(7)〜(9)で示される。
【0017】
【化22】
Figure 0004913272
(式中、Bnはベンジル基を、Levはレブリノイル基を、Phthはフタロイル基を、Xはハロゲン原子を示す。)
【0018】
【化23】
Figure 0004913272
(式中、Bn、R14及びZは前記と同義である。また、Phはフェニル基を、Meはメチル基を示す。)
【0019】
【化24】
Figure 0004913272
(式中、R15及びZは前記と同義である。また、Acはアセチル基を、Mはプロトン又は1価のカチオンを示す。)
【0020】
本発明製造方法のさらに別の好ましい態様においては、上記一般式(1)〜(3)が、それぞれ下記式(10)〜(12)で示される。
【0021】
【化25】
Figure 0004913272
(式中、Bnはベンジル基を、Levはレブリノイル基を、Phthはフタロイル基を、Xはハロゲン原子を示す。)
【0022】
【化26】
Figure 0004913272
(式中、Bn、R14及びZは前記と同義である。また、Phはフェニル基を、Meはメチル基を示す。)
【0023】
【化27】
Figure 0004913272
(式中、R15及びZは前記と同義である。また、Acはアセチル基を、Mはプロトン又は1価のカチオンを示す。)
【0024】
また、本発明は、下記一般式(13)で示されるオリゴ糖(以下、本発明オリゴ糖ともいう)を提供する。
【0025】
【化28】
Figure 0004913272
(式中、R16およびR17はそれぞれ独立して水素原子又は−SO3M(Mはプロトン又は1価のカチオンを示す)を示し、Acはアセチル基を示す。またR18は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。ただし、R16およびR17がいずれも水素原子であり、かつZが酸素原子でR18が水素原子又はコレスタニル基であるもの、並びにR16が−SO3M(Mはプロトン又は1価のカチオンを示す)でありかつZが酸素原子でR17とR18がいずれも水素原子であるものを除く。)
【0026】
本発明オリゴ糖の好ましい態様は、R16およびR17がいずれも−SO3M(Mはプロトン又は1価のカチオンを示す)である。
【0027】
また、本発明オリゴ糖の別の好ましい態様は、R16が水素原子であり、かつR17が−SO3M(Mはプロトン又は1価のカチオンを示す)である。
【0028】
本発明オリゴ糖において、好ましくは、R18が水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、O−アルキルグリセロール残基又はコレスタニル基であり、かつZが酸素原子である。
【0029】
本発明はさらに、下記一般式(13)で示される本発明オリゴ糖又はその薬学的に許容される塩を有効成分とする医薬(以下、本発明医薬ともいう)を提供する。
【0030】
【化29】
Figure 0004913272
(式中、R16およびR17はそれぞれ独立して水素原子又は−SO3M(Mはプロトン又は1価のカチオンを示す)を示し、Acはアセチル基を示す。またR18は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。ただし、R16およびR17がいずれも水素原子であり、かつZが酸素原子でR18が水素原子又はコレスタニル基であるものを除く。)
【0031】
特に、R16が−SO3Mであり、かつR17が水素原子又は−SO3M(Mはプロトン又は1価のカチオンを示す)を示す本発明オリゴ糖またはその薬学的に許容される塩は、抗アレルギー剤として、R16およびR17が−SO3M(Mはプロトン又は1価のカチオンを示す)を示す本発明オリゴ糖またはその薬学的に許容される塩は、抗炎症剤として有用である。
【0032】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
まず、本明細書および図面において共通して用いた略号を、その意味(以下の略号に付した括弧内の記載)と共に以下に示す。
【0033】
Ac(アセチル基)
Bn(ベンジル基)
Phth(フタロイル基)
Piv(ピバロイル基)
Lev(レブリノイル基)
Ph(フェニル基)
Me(メチル基)
All(アリル(allyl)基)
MP(パラメトキシフェニル基)
M(プロトン又は1価のカチオン)
X(ハロゲン原子)
【0034】
<1>本発明製造方法
本発明製造方法は、一般式(3)で示されるオリゴ糖の製造方法であり、一般式(1)で示される単糖と一般式(2)で示される単糖とをグリコシド結合反応させる工程を少なくとも含むことを特徴とする。
【0035】
一般式(1)〜(3)における置換基は以下のとおりである。
1、R2、R6およびR8は、それぞれ独立して、アラルキル基を示し、アラルキル基の例としては、ベンジル基、p−メトキシベンジル基、フェネチル基、3−フェニルプロピル基、p−ニトロベンジル基、o−ニトロベンジル基、p−ハロベンジル基、p−シアノベンジル基、ジフェニルメチル基、トリフェニルメチル基(トリチル基)、αもしくはβ−ナフチルメチル基、α−ナフチルジフェニルメチル基などが挙げられる。R1、R2、R6およびR8は、好ましくはベンジル基である。
【0036】
3およびR7は、それぞれ独立して、アシル基又はシリル基を示す。アシル基としては、アセチル基、ピバロイル基、レブリノイル基、ベンゾイル基、クロロアセチル基、ジクロロアセチル基、トリフルオロアセチル基、メトキシアセチル基、プロピオニル基、n−ブチリル基、(E)−2−メチルブテノイル基、イソブチリル基、ペンタノイル基、o−(ジブロモメチル)ベンゾイル基、o−(メトキシカルボニル)ベンゾイル基、p−フェニルベンゾイル基、2,4,6−トリメチルベンゾイル基、p−トルオイル基、p−アニソイル基、p−クロロベンゾイル基、p−ニトロベンゾイル基、α−ナフトイル基などが挙げられる。シリル基としては、トリメチルシリル基、トリエチルシリル基、ジメチルイソプロピリシリル基、イソプロピルジメチルシリル基、メチルジ−t−ブチルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリイソプロピルシリル基、テトライソプロピルジシロキサニル基などが挙げられる。
【0037】
3およびR7は、好ましくは、それぞれアシル基であるか、又はR3がアシル基でありかつR7がシリル基である。アシル基としてはアセチル基、ピバロイル基、レブリノイル基が好ましく、シリル基としてはt−ブチルジフェニルシリル基が好ましい。
【0038】
4は、アミノ基保護基を示し、アミノ基保護基の例としては、フタロイル基、アセチル基、アリルオキシカルボニル基などが挙げられる。好ましくはフタロイル基である。
【0039】
5は、脱離基を示す。ここで脱離基とは、一般式(1)で示される単糖と一般式(2)で示される単糖とをグリコシド結合反応させる条件で脱離する基を意味する。脱離基の例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、イミド基、メチルチオ基、フェニルチオ基などが挙げられるが、ハロゲン原子が好ましく、特にフッ素原子であることが好ましい。
【0040】
なお式(4)、(7)および(10)中のXは、脱離基のなかでも好ましいハロゲン原子である。このXは、上記と同様にフッ素原子であることが好ましい。
【0041】
9は、アラルキル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基、又はペプチド残基を示す。ここで、残基とはその化合物の結合に関与する原子又は原子群をその化合物から除いた残りの部分を意味する。
【0042】
アラルキル基の例、および好ましいアラルキル基については、前記と同様である。
【0043】
6−O−硫酸化N−アセチルグルコサミン残基は、通常には、4位の水酸基が除かれた残基である。
【0044】
アルキル基としては、炭素数1〜23のものが例示され、炭素数8〜14のものが好ましい。
【0045】
グリセロール残基は、通常には、いずれかの水酸基が除かれた残基である。
【0046】
O−アルキルグリセロール残基も特に限定されないが、通常にはいずれかの水酸基が除かれた残基であり、ジ−O−アルキルグリセロール残基が好ましく、2,3−ジ−O−アルキルグリセロール残基が好ましい。ここでいう「アルキル」としては、炭素数1〜23のものが例示され、炭素数8〜14のものが好ましい。
【0047】
O−アシルグリセロール残基も特に限定されないが、通常にはいずれかの水酸基が除かれた残基であり、ジ−O−アシルグリセロール残基が好ましく、2,3−ジ−O−アシルグリセロール残基が好ましい。ここでいう「アシル」としては、炭素数1〜23のものが例示され、炭素数8〜14のものが好ましい。
【0048】
コレステロール残基は、通常には、シクロペンタフェナントレン環のC−3の水酸基が除かれた残基である。
【0049】
セラミド残基は、通常には、1位の水酸基が除かれた残基である。セラミド中のN−アシル基の炭素数は通常には1〜28であり、炭素数14〜23のものが好ましい。
【0050】
リン脂質残基としては、グリセロリン脂質(ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール等)残基や、スフィンゴリン脂質(スフィンゴミエリン等)残基が挙げられる。
【0051】
ビオチン残基は、通常には、カルボキシル基が除かれた残基である。
【0052】
ペプチド残基は、通常には、アミノ基及びカルボキシル基のいずれかが除かれた残基である。
【0053】
Zは酸素原子または−NHCO−を示す。−NHCO−の窒素原子及び酸素原子は、いずれがR9側となってもよい。
【0054】
なお、R9がアラルキル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基又はリン脂質残基である場合には、Zは酸素原子であることが好ましい。
【0055】
また、R9がビオチン残基またはペプチド残基である場合には、Zは−NHCO−であることが好ましい。
【0056】
10およびR11は、それぞれ独立して、水素原子又は−SO3Mを示す。
【0057】
12は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基、又はペプチド残基を示す。これらの基及び残基はR9について記載したのと同様である。
【0058】
なお、R12が水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基又はリン脂質残基である場合には、Zは酸素原子であることが好ましい。
【0059】
また、R12がビオチン残基またはペプチド残基である場合には、Zは−NHCO−であることが好ましい。
【0060】
グリコシド結合反応させる条件は、用いる脱離基に合わせて適宜選択される。例えば、脱離基としてフッ素原子を選択した場合には、−70〜60℃で5分〜50時間という条件が挙げられる。溶媒は、特に限定されず、1,2−ジクロロエタンなどを使用できる。
【0061】
アラルキル基、アシル基又はシリル基およびアミノ基保護基は、脱離基が脱離する条件で、遊離しないものが選択される。これらの基は、同一の基となってもよい。
【0062】
一般式(2)の単糖の製造方法としては、図2に概略を示したような方法が挙げられる。すなわち、化合物2から化合物9までの合成は、ガラクトース(化合物1)から伊藤らの報告している合成経路(Agric. Biol. Chem., 50, 3227(1986))に従って行うことができる。化合物10から化合物14までの合成は、以下の合成経路に従って行うことができる。トリクロロアセトイミド基からベンジル基への置き換え(化合物10)、脱アセチル化(化合物11)、ベンジル化(化合物12)、脱アリル化(化合物13)、ピバロイル化(化合物14)。これらの工程の条件は、当業者が適宜設定することができる。
【0063】
一般式(1)の単糖の製造方法としては、図3に概略を示したような方法が挙げられる。すなわち、化合物16から化合物20までの合成は、グルコサミン(化合物15)から仲野らの報告している合成経路(Tetrahedron Lett., 31, 1597(1990))に従って行うことができる。化合物21から化合物24までの合成は、以下の合成経路に従って行うことができる。4位および6位の間のベンジリデン基の開環(化合物21)、アセチル化(化合物22)、脱メトキシフェニル化(化合物23)、フッ素化(化合物24)。これらの工程の条件は、当業者が適宜設定することができる。
【0064】
一般式(1)の単糖と一般式(2)の単糖とをグリコシド結合反応させた後、アラルキル基およびアシル基又はシリル基を除去し、アミノ基保護基をアセチル基に置き換えることで、一般式(3)のオリゴ糖を得る。グリコシド結合反応、およびこのような基の除去および置換は公知の方法によって行うことができる(例えば、Synthesis, 384 (1989)等)。これらの具体例は、後述の実施例において詳述する。
【0065】
一般式(3)において、R10およびR11の少なくとも一方が−SO3Mを示す場合には、上記一般式(1)で示される単糖と、上記一般式(2)で示される単糖とをグリコシド結合反応させる工程の後に、R3およびR7(アシル基又はシリル基)の少なくとも一方を選択的に除去して水素原子で置換し(これによりヒドロキシル基が生じる)、次いで当該水素原子を−SO3Mに置換する(硫酸化)。
【0066】
アシル基又はシリル基の選択的な除去(および水素原子への置換)は、アシル基又はシリル基を、アラルキル基およびアミノ基保護基に対して適切に選択することによって行うことができる。このような組み合わせとしては、アラルキル基としてベンジル基、アミノ基保護基としてフタロイル基、アシル基又はシリル基としてアセチル基又はピバロイル基の組み合わせ等が挙げられる。硫酸化の方法も特に限定されず、公知の方法を用いることができる。これらの具体例は、後述の実施例において詳述する。
【0067】
具体的には、図4に概略を示したような方法によって一般式(3)のオリゴ糖を得ることができる。すなわち、アセチル基およびピバロイル基の除去(および水素原子への置換)ならびにフタロイル基のアセチル基への置換(化合物26)、硫酸化(化合物27)、脱ベンジル化(化合物28)である。これらの工程の条件は、当業者が適宜設定することができる。
【0068】
10およびR11のいずれか一方が−SO3Mを示す場合には、R3およびR7のアシル基又はシリル基のいずれか一方を選択的に除去できるように選択する。例えば、R3としてレブリノイル基(式(7)又は(10)の単糖)、R7としてt−ブチルジフェニルシリル基(式(8)又は(11)の単糖)を選択する。レブリノイル基を選択的に除去(および水素原子に置換)してから硫酸化を行い、次いでその他のヒドロキシル基の保護基を除去することで、グルコサミン残基の6位のヒドロキシル基のみが硫酸化されたオリゴ糖(式(9)のオリゴ糖)を得ることができ、t−ブチルジフェニルシリル基を選択的に除去(および水素原子に置換)してから硫酸化を行い、次いでその他のヒドロキシル基の保護基を除去することで、ガラクトース残基の6位のヒドロキシル基のみが硫酸化されたオリゴ糖(式(12)のオリゴ糖)を得ることができる。
【0069】
アシル基又はシリル基の選択的な除去(および水素原子への置換)、これにより生じるヒドロキシル基の硫酸化、アラルキル基の除去、および、アミノ基保護基のアセチル基への置換は、公知の方法によって行うことができる。
【0070】
一般式(1)の単糖と一般式(2)の単糖とをグリコシド結合反応等させて一般式(3)のオリゴ糖を得る方法の、他の例を図5〜図7に示す。
【0071】
図5は、一般式(2)中のR9がO−アルキルグリセロール残基(2,3-ジ-O-テトラデシル-sn-グリセロール残基)の例であり、図6は、一般式(2)中のR9がアルキル基(オクチル基)の例であり、図7は、一般式(2)中のR9がコレスタニル基の例である。これらはいずれも上記と同様の方法で行うことができる。R9が他の基の場合も同様の方法で行うことができる。
【0072】
得られる硫酸化されたオリゴ糖は塩となっていてもよく(すなわち該オリゴ糖中のMが1価のカチオンであってもよく)、塩となっていなくてもよい(すなわち該オリゴ糖中のMがプロトンであってもよい)。塩としては、後述の<3>本発明医薬の説明中に例示したものを挙げることができるが、アルカリ金属塩が好ましく、ナトリウム塩がより好ましい。また該オリゴ糖は電離した状態であってもよい。
【0073】
本発明製造方法によれば、上記のオリゴ糖を収率よく、かつ少ない工程で製造することができる。
【0074】
<2>本発明オリゴ糖
本発明オリゴ糖は、一般式(13)で表されるオリゴ糖である。
一般式(13)における置換基は以下のとおりである。
【0075】
16およびR17はそれぞれ独立して水素原子又は−SO3Mを示す(ただし、R16およびR17がいずれも水素原子であり、かつZが酸素原子でR18が水素原子又はコレスタニル基であるもの、並びにR16が−SO3MでありかつZが酸素原子でR17とR18がいずれも水素原子であるものを除く)。
【0076】
またR18は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示すが、水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、O−アルキルグリセロール残基又はコレスタニル基が好ましい。これらの基及び残基はR9について記載したのと同様である。一般式(13)においてR18が水素原子の場合、R18により構成されるヒドロキシル基はβ位にあってもα位にあってもよい。またR18が6−O−硫酸化N−アセチルグルコサミン残基の場合、そのグリコシド結合はβ−グリコシド結合であることが好ましく、β−1,4グリコシド結合であることがより好ましい。R18が他の基又は残基の場合はβグリコシド結合であることが好ましい。また、Zは酸素原子又は−NHCO−を示す。R18がビオチン残基又はペプチド残基である場合には、Zは−NHCO−であることが好ましく、R18がそれ以外の基である場合には、Zは酸素原子であることが好ましい。
【0077】
本発明オリゴ糖は塩となっていてもよく(すなわち該オリゴ糖中のMが1価のカチオンであってもよく)、塩となっていなくてもよい(すなわち該オリゴ糖中のMがプロトンであってもよい)。塩としては、後述の<3>本発明医薬の説明中に例示したものを挙げることができるが、アルカリ金属塩が好ましく、ナトリウム塩がより好ましい。また該オリゴ糖は電離した状態であってもよい。
【0078】
18が水素原子である本発明オリゴ糖は、上記本発明製造方法によって得ることができる。また、図5〜7に示すように、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を保持する単糖を他の単糖と結合させたり、R18が水素原子である本発明オリゴ糖と、グリセロール、コレステロール、セラミド、ビオチン又はペプチドとを公知のグリコシル化法により結合させたりすることによって、R18が水素原子以外の本発明オリゴ糖を得ることができる。
【0079】
またR18が6−O−硫酸化N−アセチルグルコサミン残基である本発明オリゴ糖は、例えば公知のケラタン硫酸オリゴ糖に酸加水分解や酵素処理等の処理を施すことによって製造することができる。例えば公知のケラタン硫酸オリゴ糖であるNeuAc〜Galβ1-4GlcNAc(6S)β1-3Gal(6S)β1-4GlcNAc(6S)(式中、Galはガラクトース残基を、GlcNAcはN−アセチルグルコサミン残基を、NeuAcはN−アセチルノイラミン酸残基を、6Sは6-O-硫酸エステルをそれぞれ表す。また〜はα2,3結合又はα2,6結合を表す;WO96/16973参照)を、0.2N程度の強酸と共にインキュベートすることによりN−アセチルノイラミン酸(シアル酸)残基を除去し、次いでラクターゼ(β−ガラクトシダーゼ)と共にインキュベートすることによってガラクトース残基を除去することにより製造することができる。詳細は後述の実施例において詳述する。
【0080】
本発明オリゴ糖又はその薬学的に許容される塩は、薬理作用を有し、医薬として使用できる。
【0081】
<3>本発明医薬
本発明医薬は、本発明オリゴ糖又はその薬学的に許容される塩を有効成分とする。
【0082】
薬学的に許容される塩とは、例えば、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩、カルシウム塩等のアルカリ土類金属塩、アンモニウム塩等の無機塩基との塩、又はジエタノールアミン塩、シクロヘキシルアミン塩、アミノ酸塩等の有機塩基との塩のうち、薬学的に許容されるものであるが、これらに限定されるものではない。
【0083】
本発明医薬は特に抗アレルギー剤として利用できる。抗アレルギー剤として利用する場合、本発明オリゴ糖のN−アセチルグルコサミン残基の6位のヒドロキシル基が硫酸化されている(すなわち一般式(13)におけるR16が−SO3Mである)ことが好ましく、ガラクトース残基の6位のヒドロキシル基およびN−アセチルグルコサミン残基の6位のヒドロキシル基の両方が硫酸化されている(すなわち一般式(13)におけるR16およびR17がいずれも−SO3Mである)ことがより好ましい。
【0084】
本発明の抗アレルギー剤は、アレルギーが関与するあらゆる疾患に対して有効であり、具体的には、気管支喘息、アレルギ−性間質性肺炎、アレルギ−性鼻炎、アレルギ−性結膜炎、アトピ−性皮膚炎などの予防または治療を目的として適用することができる。
【0085】
また、本発明オリゴ糖のガラクトース残基の6位のヒドロキシル基およびN−アセチルグルコサミン残基の6位のヒドロキシル基の両方が硫酸化されている場合、本発明医薬は特に抗炎症剤として利用できる。
【0086】
本発明の抗炎症剤は、炎症が関与するあらゆる疾患に対して有効であり、具体的には、慢性関節リウマチ、全身性エリテマトーデス、変形性脊椎症、変形性関節症、腰痛症、手術後及び外傷後の炎症及び腫張の緩解、肩甲関節周囲炎、顎関節症、腱腱鞘炎、腱周囲炎、上腕骨顆炎(テニス肘)、筋肉痛、角結膜炎などの治療を目的として適用することができる。本発明の抗炎症剤は、その有効成分の作用により、これらの疾患に対して、鎮痛、消炎、解熱等の抗炎症作用を有する。
【0087】
なお本発明医薬は、純然とした治療目的のみならず、疾患の予防、維持(悪化防止)、軽減(症状の改善)等を目的として適用することができる。
【0088】
本発明においては、対象となる疾患の性質や進行状況、投与方法などに応じて、任意の剤形を適宜選択することができる。
【0089】
すなわち、本発明医薬は注射(静脈内、筋肉内、皮下、皮内、腹腔内等)、経口、経皮、吸入などにより投与することができ、これらの投与方法に応じて適宜製剤化することができる。選択し得る剤形も特に限定されず、例えば注射剤(溶液、懸濁液、乳濁液、用時溶解用固形剤等)、錠剤、カプセル剤、顆粒剤、散剤、液剤、リポ化剤、軟膏剤、ゲル剤、外用散剤、スプレー剤、吸入散剤等から広く選択することができる。また、これらの製剤調製にあたり、慣用の賦形剤、安定化剤、結合剤、滑沢剤、乳化剤、浸透圧調整剤、pH調整剤、その他着色剤、崩壊剤等、通常医薬に用いられる成分を使用することができる。
【0090】
本発明医薬中の有効成分であるケラタン硫酸オリゴ糖の配合量ならびに本発明医薬の投与量は、その製剤の投与方法、投与形態、使用目的、患者の具体的症状、患者の体重等に応じて個別的に決定されるべき事項であり、特に限定はされない。
【0091】
アレルギ−性疾患では、気道や肺にあるIgE抗体をもった感作肥満細胞から抗原に誘導されて化学伝達物質が遊離される。化学伝達物質にはヒスタミンや好酸球走化性因子、SRS−Aなどがある。これらにより喘息では、呼吸困難、咳、発作が起き、また肺疾患では出血性肺炎、浮腫、間質性肺炎、血管炎などの症状がみられる。まれに肉芽腫もみられ、この疾患は後に肺線維症になることが多い。アレルギ−性疾患に対しては抗ヒスタミン剤やステロイド剤、抗アレルギ−剤(化学伝達物質遊離抑制薬)による治療が行われている。しかし、副作用として抗ヒスタミン剤では、脱力感、倦怠感、頭痛、嘔吐、頭重感、食欲不振等が報告されている。気管支喘息においては、抗コリン作用により気道分泌が抑制され、喀痰の喀出を困難とするため、軽症例を除いては使用されない。また緑内障、排尿困難の者にも禁忌である。一方、ステロイド剤の主たる作用は抗炎症作用と考えられ、通常アレルギ−疾患の治療には大量・連続投与が必要である。ステロイド剤は重篤な副作用があるため、一般的な治療方法でコントロ−ルできない場合に用いるのが原則とされている。また抗アレルギ−薬は、肝障害、出血性膀胱炎、胃腸障害を起こすこともあるので、定期的な検査を必要とする。
【0092】
このように特にアレルギ−疾患の領域では、より副作用の少ない有効な治療法が求められているが、本発明医薬によれば、このような治療法を提供することができる。
【0093】
なお、本発明医薬(本発明の抗アレルギー剤及び本発明の抗炎症剤を含む)において、一般式(13)における好ましいR18及びZは前記と同様である。
【0094】
【実施例】
以下に本発明を、実施例により具体的に説明する。しかしながら、これらにより本発明の技術的範囲が限定されるべきものではない。なお、実施例における溶媒の混合液の比率は、特記しない限り、容量比である。
【0095】
【実施例1】
O-(2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル)-(1→3)-O-6-O-スルホ-β-D-ガラクトピラノース二ナトリウム塩の合成図2〜4に概略を示す手順によりO-(2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル)-(1→3)-O-6-O-スルホ-β-D-ガラクトピラノース二ナトリウム塩を合成した。なお、以下の実施例における各合成段階で共通して用いた方法は、以下の通りである。シリカゲルカラムクロマトグラフィーは、Kiesegel 60(MERCK)を用いて行った。薄層クロマトグラフィーは HPTLC-Fertigplatten Kieselgel 60 F254 (MERCK)を使用した。1H-NMR スペクトルおよび13C-NMR スペクトルは、JNM-EX-400(日本電子株式会社製)を用いて測定した。測定溶媒 CDCl3, CD3ODにおいてはテトラメチルシランを、またD2Oにおいてはt-ブタノールを内部標準とした。
【0096】
(1)化合物2から化合物14の合成
ガラクトースシントン2−9は、ガラクトース(化合物1)から伊藤らの報告している合成経路(Agric. Biol. Chem., 50, 3227(1986))に従い合成を行った。化合物10〜14の合成は以下のようにして行った。
なお、以下、物質名の後の番号は、図2〜4における化合物の番号を示す。
【0097】
(a) ベンジル2,4-ジ-O-アセチル-3,6-ジ-O-アリル-β-D-ガラクトピラノシド(benzyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside)10
窒素ガス雰囲気下、事前に乾燥したモレキュラーシーブス4A(30.0 g)の入った反応容器にベンジルアルコール(18.4 ml, 178.8 mmol)および化合物9(2,4-ジ-O-アセチル-3,6-ジ-O-アリル-D-ガラクトピラノシルトリクロロアセトイミデート(2,4-di-O-acetyl-3,6-di-O-allyl-D-galactopyranosyl trichloroacetimidate);21.84 g, 44.67 mmol)を加えた後、氷冷下で15分間撹拌した。反応混合物に氷冷下でトリメチルシリルトリフルオロメタンスルホネート(1.7 ml, 8.93 mmol)を加えた後、同温で4時間撹拌した。反応液を酢酸エチルで希釈し、氷冷下、トリエチルアミンを加え中和後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=6:1)にて精製し、化合物10(18.6
g, 96%)を得た。
【0098】
Rf: 0.51 (トルエン:酢酸エチル=3:1)
C23H30O8 MW: 434.47
400 MHz 1H-NMR (CDCl3,TMS) δ:
2.037(s, 3H, OAc) 2.146(s, 3H, OAc) 4.445(d, 1H, J=7.8 Hz, H-1) 5.461(d, 1H, J=2.9 Hz, H-4) 5.715-5.914(m, 2H, CH2=CH x2) 7.200-7.400(m, 5H, aromatic)
【0099】
(b) ベンジル3,6-ジ-O-アリル-β-D-ガラクトピラノシド(benzyl 3,6-di-O-allyl-β-D-galactopyranoside)11
化合物10(10.84 g, 24.9 mmol)のメタノール溶液(30 ml)にナトリウムメトキシド(134 mg, 2.5 mmol)を加え窒素ガス雰囲気下室温で48時間撹拌した。反応混合物を酢酸にて中和後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)にて精製し、化合物11(6.8 g, 78%)を得た。
【0100】
Rf: 0.27 (トルエン:酢酸エチル=2:1)
C19H26O6 MW: 350.40
【0101】
(c) ベンジル3,6-ジ-O-アリル-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(benzyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside)12
窒素ガス雰囲気および氷冷下、60%水素化ナトリウム(3.8 g, 95.5 mmol)、化合物11(6.7 g, 19.1 mmol)およびDMF20 mlの混合物にベンジルブロミド(11.4 ml, 95.5 mmol)を加え18時間撹拌した。反応混合物に氷冷下でメタノールを加え1時間撹拌後、減圧下溶媒を留去した。残渣をジエチルエーテルにて希釈後、水、飽和食塩水にて順次洗浄し、硫酸マグネシウムにて乾燥後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=10:1〜9:1)にて精製し、化合物12(9.1 g, 90%)を得た。
【0102】
Rf: 0.27 (トルエン:酢酸エチル=10:1)
C33H38O6 MW: 530.63
400 MHz 1H-NMR (CDCl3,TMS) δ:
3.424(dd, 1H, J=2.9,9.8 Hz, H-3) 3.829(dd, 1H, J=7.8,9.8 Hz, H-2) 3.861(d, 1H, J=2.9 Hz, H-4) 4.453(d, 1H, J=7.8 Hz, H-1) 5.805-5.984(m, 2H, CH2=CH x2) 7.200-7.450(m, 15H, aromatic)
【0103】
(d) ベンジル2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(benzyl 2,4-di-O-benzyl-β-D-galactopyranoside)13
水素ガス雰囲気下、活性化されたイリジウムコンプレックス[Ir(CoD)(PMePh2)2PF6(287 mg, 0.34 mmol)のテトラヒドロフラン溶液(60 ml)に室温で化合物12(8.9 g, 16.7 mmol)のテトラヒドロフラン溶液(80 ml)を加え7時間撹拌した。次いで、水(100 ml)およびヨウ素(8.5 g, 67.1 mmol)を加え15時間撹拌した。反応混合物を酢酸エチルにて希釈後、飽和チオ硫酸ナトリウム溶液、飽和重曹水、飽和食塩水にて順次洗浄し、硫酸マグネシウムにて乾燥後、溶媒を減圧下留去した。得られた残渣を再結晶(エタノール−ジクロロメタン−ジエチルエーテル)し、化合物13(7.4 g, 97%)を得た。
【0104】
Rf: 0.34 (n-ヘキサン:酢酸エチル=1:1)
C27H30O6 MW: 450.51
【0105】
(e) ベンジル2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(benzyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)14
窒素ガス雰囲気下、0℃で、化合物13(7.3 g, 16.2 mmol)のピリジン溶液(50 ml)にピバロイルクロリド(4.2 ml, 35.7 mmol)を加え70分間撹拌した。反応液にメタノールを加え40分間撹拌した後に減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=6:1)にて精製し、化合物14(7.81 g, 90%)を得た。
【0106】
Rf: 0.45 (トルエン:酢酸エチル=6:1)
C32H38O7 MW: 534.62
400 MHz 1H-NMR (CDCl3,TMS) δ:
1.202(s, 9H, OPiv) 2.326(bs, 1H, OH) 3.628-3.708(m, 3H, H-2, H-3 and H-5)3.786(d, 1H, J=3.9 Hz, H-4) 4.142(dd, 1H, J=6.4,10.7 Hz, H-6) 4.352(dd, 1H, J=6.8,11.2 Hz, H-6') 4.448(d, 1H, J=7.3 Hz, H-1) 6.650-7.150(m, 15H, aromatic)
【0107】
(2)化合物16から化合物24の合成
グルコサミンシントン16−20は、グルコサミン(化合物15)から仲野らの報告している合成経路(Tetrahedron Lett., 31, 1597(1990))に従い合成を行った。化合物21〜24の合成は以下のようにして行った。
【0108】
(f) p-メトキシフェニル3,4-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシド(p-methoxyphenyl 3,4-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside)21
窒素ガス雰囲気下、事前に乾燥したモレキュラーシーブス4A(60.0 g)の入った反応容器にボラン-トリメチルアミンコンプレックス(75.0 g, 1028 mmol)、化合物20(21.0 g, 35.4 mmol)のジクロロメタン溶液(200 ml)、および、ジエチルエーテル(80 ml)を加え15分間撹拌した。反応容器を0℃に冷却し、無水塩化アルミニウム(20.0 g, 150 mmol)を少量ずつ1.5時間で加え、0℃で2.5時間撹拌した。反応混合物をセライトで濾過し、濾液を酢酸エチルで希釈後、1N硫酸水溶液、水、飽和重曹水、飽和食塩水にて順次洗浄し、硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)にて精製し、化合物21(14.5 g, 69%)を得た。
【0109】
Rf: 0.40 (トルエン:酢酸エチル=3:1)
C35H33N1O8 MW: 595.62
400 MHz 1H-NMR (CDCl3+CD3OD,TMS) δ:
3.620-3.662(m, 1H, H-5) 3.706(s, 3H, OMe) 3.783-3.849(m, 2H, H-4 and H-6) 3.939(dd, 1H, J=2.4,12.2 Hz, H-6') 4.351(dd, 1H, J=8.3,10.7 Hz, H-2) 4.435(dd, 1H, J=8.3,10.7 Hz, H-3) 5.693(d, 1H, J=8.3 Hz, H-1) 6.650-7.900(m, 18H, aromatic)
【0110】
(g) p-メトキシフェニル6-O-アセチル-3,4-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシド(p-methoxyphenyl 6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside)22
窒素ガス雰囲気下、化合物21(10.5 g, 17.6 mmol)のピリジン溶液(200 ml)に無水酢酸(200 ml)およびDMAP(触媒量)を加え20時間撹拌した。反応液にエタノールを加え20分間撹拌した後に減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)にて精製し、化合物22(9.6 g, 85%)を得た。
【0111】
Rf: 0.51 (トルエン:酢酸エチル=4:1)
C37H35N1O9 MW: 637.66
400 MHz 1H-NMR (CDCl3,TMS) δ:
2.062(s, 3H, OAc) 3.680(s, 3H, OMe) 3.759-3.817(m, 2H, H-4 and H-5) 4.296(dd, 1H, J=4.4, 12.2 Hz, H-6) 5.631(d, 1H, J=7.8 Hz, H-1) 6.650-7.900(m, 18H, aromatic)
【0112】
(h) 6-O-アセチル-3,4-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-D-グルコピラノース(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimido-D-glucopyranose)23
化合物22(9.0 g, 14.1 mmol)をアセトニトリル:水 (4:1; 400 ml)に溶解し、硝酸第二セリウムアンモニウム(20.1 g, 36.7 mmol)を加え室温下、40分間激しく撹拌した。反応混合物を酢酸エチルにて希釈し、水、飽和重曹水、飽和食塩水にて順次洗浄後、硫酸マグネシウムにて乾燥し減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=2.5:1)にて精製し、化合物23(6.1 g, 81%)を得た。
【0113】
Rf: 0.23 (トルエン:酢酸エチル=2:1)
C30H29N1O8 MW: 531.54
400 MHz 1H-NMR (CDCl3+D2O,TMS) δ:
2.074(s, 3H, OAc) 3.680(t, 3H, J=9.3 Hz, H-4) 3.739-3.772(m, 1H, H-5) 4.100(dd, 1H, J=8.8,10.8 Hz, H-2) 4.240(dd, 1H, J=3.9,11.2 Hz, H-6) 5.386(d, 1H, J=8.3 Hz, H-1) 6.650-7.900(m, 14H, aromatic)
【0114】
(i) 6-O-アセチル-3,4-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシルフルオライド(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl fluoride)24
窒素ガス雰囲気下、化合物23(5.95 g, 11.2 mmol)の1,2−ジクロロエタン溶液(50 ml)に氷冷下で、ジエチルアミノサルファートリフルオリド(5.8 ml, 43.9 mmol)を加え2時間撹拌した。反応混合物を酢酸エチルにて希釈し、飽和重曹水、飽和食塩水にて順次洗浄後、硫酸マグネシウムにて乾燥し溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)にて精製し、化合物24(5.9 g, 99%)を得た。
【0115】
Rf: 0.68 (トルエン:酢酸エチル=2:1)
C30H28N1O7F1 MW: 533.53
400 MHz 1H-NMR (CDCl3,TMS) δ:
2.097(s, 3H, OAc) 3.859(dd, 1H, J=8.3,9.8 Hz, H-4) 3.800-3.840(m, 1H, H-5) 5.810(d, 0.5H, J=7.8 Hz, H-1β) 5.943(d, 0.5H, J=7.8 Hz, H-1β) 6.800-7.800(m, 14H, aromatic)
【0116】
(3)化合物14および化合物24からの化合物28の合成
化合物25〜28の合成は以下のように行った。
【0117】
(j) ベンジルO-(6-O-アセチル-3,4-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシル)-(1→3)-O-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(benzyl O-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→3)-O-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)25
窒素ガス雰囲気下、事前に乾燥したモレキュラーシーブス4A(20.0 g)の入った反応容器にシルバートリフレート(7.23 g, 28.2 mmol)、ハフノセンジクロリド(5.4 g, 14.1 mmol)および1,2−ジクロロエタン(20 ml)を加えた後、氷冷下20分間撹拌した。反応容器を-23℃に冷却し、化合物24(5.8 g, 10.8 mmol)および化合物14(5.4 g, 10.0 mmol)の1,2−ジクロロエタン溶液(45 ml)を加え、-23℃で1.5時間撹拌した。反応液を酢酸エチルで希釈し氷冷下、トリエチルアミンを加え20分間撹拌した後にセライトで濾過した。濾液を酢酸エチルで希釈し、飽和重曹水、飽和食塩水にて順次洗浄後、硫酸マグネシウムにて乾燥し減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=9:1)にて精製後、再結晶を行い化合物25(9.3 g, 82%)を得た。
【0118】
Rf: 0.39 (トルエン:酢酸エチル=8:1)
C62H65N1O14 MW: 1048.15
400 MHz 1H-NMR (CDCl3,TMS) δ:
1.173(s, 9H, OPiv) 1.986(s, 3H, OAc) 3.859(bd, 1H, J=2.5 Hz, H-4) 4.063(dd, 1H, J=5.9,11.2 Hz) 5.454(d, 1H, J=8.3 Hz, H-1) 6.800-7.800(m, 24H, aromatic)
【0119】
(k) ベンジルO-(2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル)-(1→3)-O-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(benzyl O-(2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-2,4-di-O-benzyl-β-D-galactopyranoside)26
化合物25(8.0 g, 7.6 mmol)の1-ブタノール溶液(200 ml)に、エチレンジアミン(170 ml)を加え98℃にて46時間撹拌した。反応混合物の溶媒を減圧下留去し、残渣にトルエンおよびメタノールを加え減圧下溶媒を留去した。残渣をピリジン(200 ml)に溶解しDMAP(触媒量)と無水酢酸(150 ml)を加え室温で2日間撹拌した。反応混合物の溶媒を留去し、トルエンおよびエタノールにて共沸を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)にて精製し、2成分の混合物(6.84 g)を得た。さらにこの混合物のメタノール溶液 (100 ml)にナトリウムメトキシド(769 mg, 14.3 mmol)を加え窒素ガス雰囲気下室温で60時間撹拌した。アンバーリスト15で中和し濾過後、濾液を減圧下溶媒留去した。得られた残渣を再結晶(ジクロロメタン−イソプロピルエーテル)し化合物26(6.0 g, 94%)を得た。
【0120】
Rf: 0.33 (トルエン:酢酸エチル=1:3)
C49H55N1O11 MW: 833.94
400 MHz 1H-NMR (CDCl3+CD3OD,TMS) δ:
1.557(s, 3H, NAc) 4.438(d, 1H, J=7.3 Hz, H-1) 4.784(d, 1H, J=8.3 Hz, H-1) 7.200-7.450(m, 20H, aromatic)
100 MHz 13C-NMR (CDCl3+CD3OD,TMS) δ:22.92(Me-CO) 61.44,61.64(C-6 x2) 101.73(C-1),102.60(C-1) 170.29(Me-CO)
【0121】
(l) ベンジルO-(2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル)-(1→3)-O-2,4-ジ-O-ベンジル-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩(benzyl O-(2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1→3)-O-2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt)27
窒素ガス雰囲気下、化合物26(212.5 mg, 0.255 mmol)とサルファートリオキシドトリエチルアミンコンプレックス(184.7 mg, 1.02 mmol)の混合物をDMF(1.0 ml)に溶解し、50℃で1時間撹拌した。反応液をそのままセファデックス LH-20(クロロホルム:メタノール=1:1)にて精製し、糖画分を濃縮した。得られた残渣をメタノール(4 ml)に溶解後、Dowex 50(Na+, 4 g)を加え12時間撹拌し、対カチオンをナトリウムに変換した。更に得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=4:1)にて精製した後に、シリカゲルを除く目的でセファデックス LH-20(クロロホルム:メタノール=1:1)にて精製し、化合物27(252 mg, 95%)を得た。
【0122】
Rf: 0.53 (クロロホルム:メタノール=3:1)
C49H53N1O17S2Na2 MW: 1038.03
400 MHz 1H-NMR (CDCl3+CD3OD,TMS) δ:
1.621(s, 3H, NAc) 7.200-7.450(m, 20H, aromatic)
100 MHz 13C-NMR (CDCl3+CD3OD,TMS) δ:
22.14(Me-CO) 66.25,66.61(C-6 x2) 102.04(C-1 x2) 170.98(Me-CO)
【0123】
(m) O-(2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル)-(1→3)-O-6-O-スルホ-β-D-ガラクトピラノース二ナトリウム塩(O-(2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1→3)-O-6-O-sulfo-β-D-galactopyranose disodium salt)28
化合物27(236.8 mg,0.228 mmol)のメタノール−水 (2:1, 6 ml)溶液に、20%水酸化パラジウム炭素(268 mg)を加え、反応系内を水素で置換し室温で17時間撹拌した。反応混合物をセライトで濾過し、残渣を水にて洗浄後、濾液と洗浄液を併せて減圧下溶媒を留去した。得られた残渣をセファデックスG−25(水)にて精製し、化合物28(131 mg, 98%)を得た。
【0124】
Rf: 0.28 (1-ブタノール:エタノール:水=2:2:1)
C14H23N1O17S2Na2 MW: 587.44
400 MHz1H-NMR (D2O, t-BuOH, at 50℃) δ:
2.029(s, 3H, NAc) 4.580(d, 0.55H, J=8.3 Hz, H-1aβ) 4.727(d, 0.55H, J=8.3 Hz, H-1bβ) 4.742(d, 0.45H, J=8.3 Hz, H-1bα) 5.232(d, 0.45H, J=3.4 Hz, H-1aα)
100 MHz 13C-NMR (D2O, t-BuOH, at 50℃) δ:
25.04(Me-CO) 69.81(C-6 b) 70.70(C-6 aβ) 70.94(C-6 aα) 95.21(C-1aα) 99.21(C-1aβ) 105.39(C-1b) 177.74(Me-CO)
【0125】
【実施例2】
O-(2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル)-(1→3)-O-(6-O-スルホ-β-D-ガラクトピラノシル)-(1→4)-O-2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノース三ナトリウム塩(以下、G4L4のナトリウム塩という)の製造
NeuAc〜Galβ1-4GlcNAc(6S)β1-3Gal(6S)β1-4GlcNAc(6S)(式中、Galはガラクトース残基を、GlcNAcはN−アセチルグルコサミン残基を、NeuAcはN−アセチルノイラミン酸残基を、6Sは6-O-硫酸エステルをそれぞれ表す。また〜はα2,3結合又はα2,6結合を表す;WO96/16973参照)1gを0.1 M 硫酸 10 mlに溶解させ、50℃で22時間保温することによりN−アセチルノイラミン酸残基(シアル酸残基)を切断した。反応後の溶液に1 M NaOHを少量加えてpH5に調整した後、0.5 M 酢酸ナトリウム緩衝液pH4.5を1ml、20%アジ化ナトリウムを25μl加えた。ラクターゼ(ケイアイ化成製) 5000 Uを加えて37℃で22時間保温することによりガラクトース残基を切断した。反応溶液を蒸留水で5倍希釈し、1 M NaClで平衡化したムロマックカラム(室町化学工業)(2.5×24 cm)にアプライした。1 M NaCl(500ml)から2.5 M NaCl(500ml)の塩濃度勾配をカラムに負荷し、溶出液を5mlづつ分取した。溶出画分をキャピラリー電気泳動で分析し、G4L4の溶出位置を確認した。G4L4を含む画分を集めてロータリーエバポレーターで約10 mlに濃縮した。濃縮溶液を蒸留水で平衡化したセルロファインGCL25sfカラム(生化学工業)(3×60 cm)にアプライし、蒸留水で溶出した。10 mlづつ分取した溶出画分をキャピラリー電気泳動で分析し、G4L4の溶出位置を確認した。G4L4を含む画分を集めてロータリーエバポレーターで約20 mlに濃縮した。分子量カット10000の限外ろ過膜でろ過してエンドトキシンを除去した後、凍結乾燥して最終サンプルとした。
【0126】
最終サンプルはキャピラリー電気泳動で単一ピークを示した。ヘキソース含量と硫酸含量の測定をおこなった結果、理論値1に対して各0.84、0.91の値を得た。
【0127】
また、最終サンプルを下記条件で高速液体クロマトグラフィーにかけた結果、保持時間16.4分に単一ピークを示した。
【0128】
カラム:YMC-Pack PolyamineII (4.6×250 mm)((株)ワイエムシイ製)
カラム温度:35℃
溶出液:150 mMリン酸二水素ナトリウム
流速:1 ml/分
測定波長:210 nm
サンプル:10 mg/mlG4L4(最終サンプル)
【0129】
また、最終サンプルのNMR測定の結果を以下に示す。
【0130】
400 MHz 1H-NMR(D2O, t-BuOH, at 22.9℃) δ:
2.024(s, 3H, NAc) 2.030(s, 3H, NAc) 4.526(d, 1H, J1,2=7.8 Hz, H-1b) 4.699(d, 1H, J1,2=8.8 Hz, H-1c) 4.729(d, 0.4H, J1,2=7.8 Hz, H-1aβ) 5.211(d, 0.6H, J1,2=2.5 Hz, H-1aα)
100 MHz 13C-NMR(D2O, t-BuOH, at 26.0℃) δ:
24.74(NHCOCH3), 25.05(NHCOCH3), 69.62(C-6a or b or c), 69.77(C-6b or c or a), 70.57(C-6c or a or b), 93.31(C-1aα), 97.82(C-1aβ), 105.80(C-1b or c), 105.91(C-1c or b)
【0131】
【実施例3】
2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール二ナトリウム塩の合成
図5に概略を示す手順により、2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール二ナトリウム塩を合成した。
物質名の後の番号は、図5における化合物の番号を示す。
【0132】
(a) 2,4-ジ-O-アセチル-3,6-ジ-O-アリル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ- O-テトラデシル-sn-グリセロール(2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)3
2,3-ジ- O-テトラデシル-sn-グリセロール(500 mg, 1.03 mmol)、シクロペンタジエンハフノニウムダイクロライド(782 mg, 2.68 mmol)、シルバートリフレート(1.06 g, 5.36 mmol)、モレキュラーシーブ4A(1.8 g)を1,2-ジクロロエタン(3.0 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-15℃に冷却し 化合物1(536 mg, 1.55 mmol)を加え2.5時間攪拌した。反応液をトリエチルアミンを加え中和し、酢酸エチル(AcOEt)で希釈後、セライトでろ過し、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=10:1)にて精製し、化合物3(716.7 mg, 85.8%)を得た。
【0133】
Rf 0.58(トルエン:AcOEt=6:1)
C47H85O10 MW : 810.179
1H-NMR (CDCl3) δ:
5.887 (m, 1H, Allyl), 5.816 (m, 1H, Allyl), 5.500 (d, 1H, J = 2.4Hz, H-4), 5.108 (dd, 1H, J = 8.3, 9.9Hz, H-2), 4.474 (d, 1H, J = 8.3Hz, H-1), 2.165, 2.015 (2s, 6H, 2Ac), 0.912 (t, 6H, J = 6.3Hz, 2CH3)
【0134】
(b) 3,6-ジ-O-アリル-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール(3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)5
化合物3(430 mg, 0.531 mmol)をメタノールとテトラヒドロフランとの混合液(1:1、4 mL)に溶解し、1 N水酸化ナトリウム溶液(0.8 mL)を加え室温で1日間攪拌後、その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=5:2)にて精製し、化合物4(377.9 mg, 98.0%)を得た。
[Rf 0.43(トルエン:AcOEt=2:1)]
【0135】
続いて、化合物4(778 mg, 1.072 mmol)を、N,N-ジメチルホルムアミド(3 ml)に溶解し、アルゴンガス気流下-15℃で、水素化ナトリウム(308 mg, 6.99 mmol)を加え攪拌した。続いてベンジルブロマイド(0.84 ml, 6.99 mmol)を加え、徐々に室温にしながら3時間攪拌した。反応液にメタノールを加え中和し、酢酸エチルで希釈後、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:AcOEt=12:1)にて精製し、化合物5(864 mg, 89%)を得た。
【0136】
Rf 0.67(ヘキサン:AcOEt=6:1)
C57H93O8 MW : 906.354
1H-NMR (CDCl3) δ:
5.845 (m, 1H, Allyl), 5.771 (m, 1H, Allyl), 4.859 (d, 1H, J = 11.7 Hz, Bn), 4.816 (d, 1H, J = 10.8 Hz, Bn), 4.665 (d, 1H, J = 10.7 Hz, Bn), 4.572 (d, 1H, J = 11.7 Hz, Bn), 4.272 (d, 1H, J = 7.3 Hz, H-1), 3.773 (d, 1H, J = 2.5 Hz, H-4), 3.660 (dd, 1H, J = 7.8, 9.8 Hz, H-2), 0.801 (t, 6H, J = 6.4 Hz, 2CH3).
【0137】
(c) 2,4-ジ-O-ベンジル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール(2,4-di-O-benzyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)6
イリジウムコンプレックス (1,5-シクロオクタジエンビス(メチルジフェニルホスフィン)イリジウムヘキサフルオロホスフェート) (112 mg, 0.096 mmol)をテトラヒドロフラン(5 mL)に懸濁し、H2気流下攪拌し活性化させた。その溶液に化合物5(864 mg, 0.95 mmol)をテトラヒドロフラン(5 mL)に溶解させて加え、アルゴンガス気流下室温で2時間攪拌後、ヨウ素(484 mg)、水(24.7 mL)、テトラヒドロフラン(15 mL)を加えさらに2時間室温で攪拌した。反応液をクロロホルムで希釈後、飽和チオ硫酸ナトリウム溶液、飽和重曹水、飽和食塩水で順次洗浄した。クロロホルム層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:EtOAc=5:2) にて精製し、化合物6(686.6 mg, 87.1%)を得た。
【0138】
Rf 0.32(トルエン:AcOEt=2:1)
C51H85O8 MW: 826.225
1H-NMR (CDCl3) δ:
4.991 (d, 1H, J = 11.2 Hz, Bn), 4.834 (d, 1H, J = 11.7 Hz, Bn), 4.658 (d, 2H, J = 11.2 Hz, 2Bn), 4.385 (d, 1H, J = 7.3 Hz, H-1), 3.778 (d, 1H, J = 2.4 Hz, H-4), 0.881 (t, 6H, J = 6.8 Hz, 2CH3)
【0139】
(d) 2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ- O-テトラデシル-sn-グリセロール(2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl-(1→1)-2,3-di- O-tetradecyl-sn-glycerol)7
化合物6(687 mg, 0.831 mmol)をピリジン(12 mL)を加え溶解させ、その溶液にピバロイルクロライド(130μL, 1.08 mmol)を加え-5℃にて1時間攪拌後、さらにピバロイルクロライド(130μL, 1.08 mmol)を加え-5℃にて1時間攪拌した。反応液を、酢酸エチルで希釈後、セライトでろ過し、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=10:1)にて精製し、化合物7(716.6 mg, 94.7%)を得た。
【0140】
Rf 0.57(トルエン:AcOEt=6:1)
C56H93O9 MW : 910.342
1H-NMR (CDCl3) δ:
4.991 (d, 1H, J = 11.7 Hz, Bn), 4.855 (d, 1H, J = 11.7 Hz, Bn), 4.650 (d, 1H, J = 11.2 Hz, Bn), 4.646 (d, 1H, J = 11.7 Hz, Bn), 4.365 (d, 1H, J = 7.3 Hz, H-1), 4.302 (dd, 1H, J = 6.8, 11.8 Hz, H-6), 4.109 (dd, 1H, J = 6.4, 11.2 Hz, H-6'), 3.775 (d, 1H, J = 2.4 Hz, H-4), 1.179 (s, 9H, piv), 0.879 (t, 6H, J = 6.8 Hz, 2CH3)
【0141】
(e) 3-O-アセチル-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール(3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)8
化合物7(10.8 mg, 11.9μmol)をピリジン(1 mL)を加え溶解させ、その溶液に無水酢酸(0.5 mL)を加え室温で1時間攪拌した。溶媒をトルエンで共沸後、残渣をセファデックスLH-20(CHCl3:MeOH=1:2)にて精製し、化合物8(11.3 mg, qu.)を得た。
【0142】
Rf 0.46(トルエン:AcOEt=8:1)
C58H95O10 MW : 952.379
1H-NMR (CDCl3) δ:
4.900 (dd, 1H, J = 3.4, 10.3 Hz, H-3), 4.882 (d, 1H, J = 11.7 Hz, Bn), 4.634 (d, 2H, J = 12.2 Hz, 2Bn), 4.543 (d, 1H, J = 11.2 Hz, Bn), 4.437 (d, 1H, J = 7.3 Hz, H-1), 4.299 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.087 (dd, 1H, J = 6.8, 11.2 Hz, H-6'), 3.850 (d, 1H, J = 2.9 Hz, H-4), 3.765 (dd, 1H, J = 7.8, 10.3 Hz, H-2), 1.926 (s, 3H, Ac), 1.188 (s, 9H, piv), 0.881 (t, 6H, J = 6.8 Hz, 2CH3)
【0143】
(f) 3,4-ジ-O-ベンジル-2-デオキシ-6-O-レブロイル-2-フタルイミド-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール(3,4-di-O-benzyl-2-deoxy-6-O-levloyl-2-phtalimido-β-D-gulcopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)9
化合物7(685 mg, 0.752 mmol)、シクロペンタジエンハフノニウムダイクロライド(571 mg, 1.96 mmol)、シルバートリフレート(771 g, 3.91 mmol)、モレキュラーシーブ4A(2.5 g)を1,2-ジクロロエタン(10 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-15℃に冷却し化合物2(563 mg, 0.98 mmol)を加え1時間攪拌した。反応液をトリエチルアミンを加え中和し、酢酸エチルで希釈後、セライトでろ過し、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=9:1)にて精製し、化合物9(1.01 g, 91.5%)を得た。
【0144】
Rf 0.44(トルエン:AcOEt=6:1)
C89H124O17N MW : 1479.949
1H-NMR (CDCl3) δ:
5.461 (d, 1H, J = 8.3 Hz, H-1b), 4.941 (d, 1H, J = 11.2 Hz, Bn), 4.874 (d, 1H, J = 10.7 Hz, Bn), 4.789 (d, 1H, J = 11.7 Hz, Bn), 4.648 (d, 1H, J = 11.2 Hz, Bn), 4.536 (d, 1H, J = 11.7 Hz, Bn), 4.460 (d, 1H, J = 11.7 Hz, Bn), 4.414 (d, 2H, J = 11.7 Hz, 2Bn), 4.223 (d, 1H, J = 7.8 Hz, H-1a), 3.897 (d, 1H, J = 3.2 Hz, H-4a), 2.130 (s, 3H, CH3), 1.153 (s, 9H, piv), 0.881 (t, 6H, J = 6.6 Hz, 2CH3)
【0145】
(g) 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール(2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-gulcopyranosyl-(1→3)-2,4-di-O-benzyl-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol)10
化合物9(977.4 mg, 0.667 mmol)をエタノール(33.5 mL)に懸濁し、ヒドラジン水和物(3.35 mL)を加え、110℃で18時間攪拌した。溶媒を留去し、得られたアミノ体をピリジン (6.0 mL)に溶解し、無水酢酸(5.0 mL)を加え室温で17時間攪拌後、溶媒を留去した。残渣をメタノールとテトラヒドロフランとの混合液(1:1、20.0 mL)に溶解し、ナトリウムメトキシド(108 mg, 2.0 mmol)を加え、60℃で1時間攪拌した。その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:アセトン:CHCl3=5:2:1)にて精製し、さらにセファデックスLH-20(CHCl3:MeOH=2:3)による精製を行い、化合物10(756 mg, 94.8%)を得た。
【0146】
Rf 0.18(トルエン:アセトン:CHCl3=6:2:1)
C73H110O13N MW : 1209.666
1H-NMR (CDCl3) δ:
4.823 (d, 1H, J = 8.3 Hz, H-1b), 4.354 (d, 1H, J = 6.8 Hz, H-1a), 1.497 (s, 3H, NHAc), 0.881 (t, 6H, J = 6.4 Hz, 2CH3)
13C-NMR (CDCl3+CD3OD) δ:
173.06 (Me-CO), 105.51, 104.01 (C-1x2), 62.80, 62.51 (C-6x2)
【0147】
(h) 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-スルホ-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール二ナトリウム塩(2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-gulcopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol disodium salt)11
化合物10(200 mg, 0.165 mmol)をN,N-ジメチルホルムアミド(1.5 mL)に溶解し、(C2H5)3NSO3(300 mg, 1.65 mmol)を加え、50℃で0.5時間攪拌した。その反応液を直接セファデックスLH-20(CHCl3:MeOH=2:3)にて精製した。その溶媒をある程度留去し、残渣に水(2.0 mL)及びDowex-50 (Na+)タイプを加え、一昼夜攪拌し、セライトでろ過後、ろ液を留去した。残渣をDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=5:10:3)にて精製し、化合物11(215 mg, 92.2%)を得た。
【0148】
Rf 0.38(CHCl3:MeOH=6:1)
C73H108O19NS2Na2 MW : 1413.74
1H-NMR (CDCl3+CD3OD) δ:
4.403 (d, 1H, J = 7.8 Hz, H-1a), 1.593 (s, 3H, NHAc), 0.889 (t, 6H, J = 6.4 Hz, 2CH3)
13C-NMR (CDCl3+CD3OD) δ:
172.93 (Me-CO), 105.24, 104.01 (C-1x2), 68.13, 68.00 (C-6x2)
【0149】
(i) 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシル-(1→1)-2,3-ジ-O-テトラデシル-sn-グリセロール二ナトリウム塩(2-acetamido-2-deoxy-6-O-sulfo-β-D-gulcopyranosyl-(1→3)-6-O-sulfo-β-D-galactopyranosyl-(1→1)-2,3-di-O-tetradecyl-sn-glycerol disodium salt)12
化合物11(200 mg, 0.141 mmol)をメタノールと水との混合液(3:1、15 mL)に溶解し、水酸化パラジウム-カーボン(200 mg)を加え、水素ガスで置換し室温で4時間接触還元を行った。反応液をセライトでろ過し、ろ液を留去した。残渣をセファデックスLH-20(CHCl3:MeOH:H2O=5:10:3)のカラムにて精製した。さらにDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=1:3:1)による精製を行い、最後にセファデックスLH-20 (CHCl3:MeOH:H2O=5:10:3)による再カラム精製を行い、化合物12(119.6 mg, 80.5%)を得た。
【0150】
Rf 0.52(CHCl3:MeOH:H2O=12:8:1)
C45H84O19NS2Na2 MW : 1053.24
1H-NMR (DMSO+D2O)δ:
4.666 (d, 1H, J = 8.3 Hz, H-1b), 4.162 (d, 1H, J = 7.3 Hz, H-1a), 4.067 (b.dd, 1H, H-6b), 4.006-3.924 (b.dd, 1H, H-6a), 1.882 (s, 3H, NHAc), 0.861 (t, 6H, J = 6.8 Hz, 2CH3)
13C-NMR (DMSO+D2O)δ:
171.32 (Me-CO), 103.49, 102.37 (C-1x2), 65.91, 65.85 (C-6x2)
【0151】
【実施例4】
オクチル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩の合成
図6に概略を示す手順により、オクチル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩を合成した。
物質名の後の番号は、図6における化合物の番号を示す。
【0152】
(a) オクチル 2,4-ジ-O-アセチル-3,6-ジ-O-アリル-β-D-ガラクトピラノシド(octyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside)13
オクタノール(300 mg, 2.30 mmol)、シクロペンタジエンハフノニウムダイクロライド(1.75 g, 5.99 mmol)、シルバートリフレート(2.36 g, 12.0 mmol)、モレキュラーシーブ4A(2.3 g)を1,2-ジクロロエタン(5.0 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-15℃に冷却し化合物1(1.2 g, 3.47 mmol)を加え2.5時間攪拌した。反応液をトリエチルアミンを加えて中和し、酢酸エチルで希釈後、セライトでろ過し飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=10:1)にて精製し、化合物13(0.8 g, 76%)を得た。
【0153】
Figure 0004913272
C24H40O8 MW : 456.572
1H-NMR (CDCl3) δ:
5.855 (m, 1H, Allyl), 5.784 (m, 1H, Allyl), 5.472 (d, 1H, J = 3.4 Hz, H-4), 5.086 (dd, 1H, J = 7.8, 9.8 Hz, H-2), 4.394 (d, 1H, J = 7.8 Hz, H-1), 2.125, 2.066 (2s, 6H, 2Ac), 0.879 (t, 3H, J = 6.8 Hz, CH3)
【0154】
(b) オクチル 3,6-ジ-O-アリル-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(octyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside)15
化合物13 (0.8 g, 1.75 mmol)をメタノールとテトラヒドロフランとの混合液(1:1、5 mL)に溶解し、1N-水酸化ナトリウム溶液(1.0 mL)を加え室温で1日間攪拌後、その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=5:2)にて精製し、化合物14(585 g, 89.7%)を得た。
[Rf 0.32(トルエン:AcOEt=2:1)]
【0155】
続いて、化合物14(585 mg, 1.57 mmol)、N,N-ジメチルホルムアミド(3 ml)に溶解し、アルゴンガス気流下-15℃で、水素化ナトリウム(451 mg, 10.2 mmol)を加え攪拌した。続いてベンジルブロマイド(1.22 ml, 10.2 mmol)を加え、徐々に室温にしながら3時間攪拌した。反応液にメタノールを加え中和し、酢酸エチルで希釈後、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:AcOEt=15:1)にて精製し、化合物15(811 mg, 93.5%)を得た。
【0156】
Rf 0.79(ヘキサン:AcOEt=6:1)
C34H48O6 MW : 552.747
1H-NMR (CDCl3) δ:
5.947 (m, 1H, Allyl), 5.849 (m, 1H, Allyl), 4.959 (d, 1H, J = 11.7 Hz, Bn), 4.915 (d, 1H, J = 10.7 Hz, Bn), 4.765 (d, 1H, J = 10.7 Hz, Bn), 4.660 (d, 1H, J = 11.7 Hz, Bn), 4.346 (d, 1H, J = 7.6 Hz, H-1), 0.887 (t, 3H, J = 6.4 Hz, CH3)
【0157】
(c) オクチル 2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(octyl 2,4-di-O-benzyl-β-D-galactopyranoside)16
イリジウムコンプレックス (1,5-シクロオクタジエンビス(メチルジフェニルホスフィン)イリジウムヘキサフルオロホスフェート) (172 mg, 0.15 mmol) をテトラヒドロフラン(5 mL)に懸濁し、H2気流下攪拌し活性化させた。その溶液に化合物15(811 mg, 1.47 mmol)をテトラヒドロフラン(5 mL)に溶解させて加え、アルゴンガス気流下室温で1時間攪拌後、ヨウ素(745 mg)、水(38 mL)及びテトラヒドロフラン(15 mL)を加えさらに1時間室温で攪拌した。反応液をクロロホルムで希釈後、飽和チオ硫酸ナトリウム溶液、飽和重曹水、飽和食塩水で順次洗浄した。クロロホルム層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:EtOAc=5:2) にて精製し、化合物16を(589 mg, 82.1%)得た。
【0158】
Rf 0.35(トルエン:AcOEt=2:1)
C28H40O6 MW : 472.618
1H-NMR (CDCl3) δ:
5.000 (d, 1H, J = 11.7 Hz, Bn), 4.843 (d, 1H, J = 11.7 Hz, Bn), 4.674 (d, 1H, J = 11.7 Hz, Bn), 4.662 (d, 1H, J = 11.7 Hz, Bn), 4.360 (d, 1H, J = 7.3 Hz, H-1), 3.776 (d, 1H, J = 2.0 Hz, H-4), 0.868 (t, 3H, J = 6.8 Hz, CH3)
【0159】
(d) オクチル 2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(octyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)17
化合物16(569 mg, 1.20 mmol)をピリジン(17 mL)を加えて溶解させ、その溶液にピバロイルクロライド(188μL, 1.57 mmol)を加え-5℃にて1時間攪拌後、さらにピバロイルクロライド(188μL, 1.57mmol)を加え-5℃にて1時間攪拌した。反応液を、酢酸エチルで希釈後、セライトでろ過し飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=10:1)にて精製し、化合物17(648 mg, 96.7%)を得た。
【0160】
Rf 0.56(トルエン:AcOEt=6:1)
C33H48O7 MW : 556.735
1H-NMR (CDCl3) δ:
4.986 (d, 1H, J = 11.2 Hz, Bn), 4.838 (d, 1H, J = 11.7 Hz, Bn), 4.664 (d, 1H, J = 11.7 Hz, Bn), 4.653 (d, 1H, J = 11.7 Hz, Bn), 4.332 (d, 1H, J = 7.3 Hz, H-1), 4.316 (dd, 1H, J = 6.8, 11.7 Hz, H-6), 4.113 (dd, 1H, J = 6.7, 11.0 Hz, H-6'), 3.772 (d, 1H, J = 2.4 Hz, H-4), 1.180 (s, 9H, piv), 0.867 (t, 3H, J = 6.8 Hz, CH3)
【0161】
(e) オクチル 3-O-アセチル-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(octyl 3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)18
化合物17(10 mg, 18.0μmol)をピリジン(1 mL)を加えて溶解させ、その溶液に無水酢酸(0.5 mL)を加え室温で2時間攪拌した。溶媒をトルエンで共沸後、残渣をセファデックスLH-20(CHCl3:MeOH=1:2)にて精製し、化合物18(11 mg, qu.)を得た。
【0162】
Rf 0.58(トルエン:AcOEt=8:1)
C35H50O8 MW : 598.772
1H-NMR (CDCl3) δ:
4.903 (dd, 1H, J = 3.2, 10.0 Hz, H-3), 4.883 (d, 1H, J = 11.7 Hz, Bn), 4.645 (d, 1H, J = 11.7 Hz, Bn), 4.638 (d, 1H, J = 11.7 Hz, Bn), 4.545 (d, 1H, J = 11.2 Hz, Bn), 4.405 (d, 1H, J = 7.3 Hz, H-1), 4.311 (dd, 1H, J = 6.8, 10.8 Hz, H-6), 4.087 (dd, 1H, J = 6.8, 10.7 Hz, H-6'), 3.847 (d, 1H, J = 2.9 Hz, H-4), 3.769 (dd, 1H, J = 7.8, 10.3 Hz, H-2), 1.937 (s, 3H, Ac), 1.188 (s, 9H, piv), 0.870 (t, 3H, J = 6.8 Hz, CH3)
【0163】
(f) オクチル 3,4-ジ-O-ベンジル-2-デオキシ-6-O-レブロイル-2-フタルイミド-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(octyl 3,4-di-O-benzyl-2-deoxy-6-O-levloyl-2-phtalimido-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)19
化合物17(624 mg, 1.12 mmol)、シクロペンタジエンハフノニウムダイクロライド(850 mg, 2.91 mmol)、シルバートリフレート(1.15 g, 5.82 mmol)、モレキュラーシーブ4A(3.2 g)を1,2-ジクロロエタン(10 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-15℃に冷却し 化合物2(838 mg, 1.46 mmol)を加え1時間攪拌した。反応液をトリエチルアミンを加え中和し、酢酸エチルで希釈後、セライトでろ過し飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=10:1)にて精製し、化合物19(1.03 g, 82.9%)を得た。
【0164】
Rf 0.47(トルエン:AcOEt=6:1)
C66H79O15N MW : 1126.342
1H-NMR (CDCl3) δ:
5.475 (d, 1H, J = 8.3 Hz, H-1b), 4.189 (d, 1H, J = 7.8 Hz, H-1a), 3.874 (d, 1H, J = 2.4 Hz, H-4a), 2.133 (s, 3H, CH3), 1.153 (s, 9H, piv), 0.826 (t, 3H, J = 7.1 Hz, CH3)
【0165】
(g) オクチル 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-β-D-galactopyranoside)20
化合物19(1.0 g, 0.899 mmol)をエタノール(45 mL)に懸濁し、ヒドラジン水和物(4.5 mL)を加え、110℃で18時間攪拌した。溶媒を留去し、得られたアミノ体をピリジン (5.0 mL)に溶解し、無水酢酸(4.0 mL)を加え室温で17時間攪拌後、溶媒を留去した。残渣をメタノールとテトラヒドロフランとの混合液(1:1、20.0 mL)に溶解し、ナトリウムメトキシド(146 mg, 2.7 mmol)を加え、60℃で1時間攪拌した。その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:アセトン=2.3:1)にて精製し、さらにセファデックスLH-20(CHCl3:MeOH=2:3)による精製を行い、化合物20(739 mg, 96%)を得た。
【0166】
Rf 0.49(トルエン:アセトン=3:2)
C50H65O11N MW : 856.06
1H-NMR (CDCl3) δ:
4.840 (d, 1H, J = 8.3 Hz, H-1b), 4.329 (d, 1H, J = 6.8 Hz, H-1a), 1.515 (s, 3H, NHAc), 0.848 (t, 3H, J = 6.8 Hz, CH3)
13C-NMR (CDCl3+CD3OD) δ:
173.17 (Me-CO), 105.32, 104.01 (C-1x2), 62.82, 62.55 (C-6x2)
【0167】
(h) オクチル 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩(octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt)21
化合物20(150 mg, 0.175 mmol)をN,N-ジメチルホルムアミド(1.5 mL)に溶解し、(C2H5)3NSO3(319 mg, 1.75 mmol)を加え、50℃で0.5時間攪拌した。その反応液を直接セファデックスLH-20(CHCl3:MeOH=2:3)にて精製した。溶出液の溶媒をある程度留去し、残渣に水(2.0 mL)、Dowex-50 (Na+)タイプを加え、一昼夜攪拌し、セライトでろ過後、ろ液を留去した。残渣をDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=5:10:3)にて精製し、化合物21(185 mg, 99.6%)を得た。
【0168】
Rf 0.23(CHCl3:MeOH=6:1)
C50H63O17NS2Na2 MW : 1060.134
1H-NMR (CDCl3+CD3OD) δ:
4.382 (d, 1H, J = 7.3 Hz, H-1a), 1.634 (s, 3H, NHAc), 0.854 (t, 3H, J = 6.8 Hz, CH3)
13C-NMR (CDCl3+CD3OD) δ:
173.03 (Me-CO), 105.10, 103.99 (C-1x2), 68.18 (C-6x2)
【0169】
(i) オクチル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩(octyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl-(1→3)-6-O-sulfo-β-D-galactopyranoside disodium salt)22
化合物21(170 mg, 0.160 mmol)をメタノールと水との混合液(3:1、15 mL)に溶解し、水酸化パラジウム-カーボン(180 mg)を加え、水素ガスで置換し室温で4時間接触還元を行った。反応液をセライトでろ過し、ろ液を留去した。残渣をセファデックスLH-20 (CHCl3:MeOH:H2O=5:10:3)のカラムにて精製した。さらにDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=1:3:1)による精製を行い、最後にセファデックスLH-20 (CHCl3:MeOH:H2O=5:10:3)による再カラム精製を行い、化合物22(101.4 mg, 90.6%)を得た。
【0170】
Rf 0.30(CHCl3:MeOH:H2O=12:6:1)
C22H39O17NS2Na2 MW : 699.636
1H-NMR (DMSO+D2O)δ:
4.655 (d, 1H, J = 8.3 Hz, H-1b), 4.136 (d, 1H, J = 7.8 Hz, H-1a), 4.053 (dd, 1H, J = 2.0, 11.7 Hz, H-6b), 3.956-3.851 (b.dd, 1H, H-6a), 1.869 (s, 3H, NHAc), 0.861 (t, 3H, J = 7.1 Hz, CH3)
13C-NMR (DMSO+D2O)δ:
171.19 (Me-CO), 102.98, 102.30 (C-1x2), 66.09, 65.87 (C-6x2)
【0171】
【実施例5】
コレスタニル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩、およびコレスタニル 2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→3)-β-D-ガラクトピラノシドの合成
図7に概略を示す手順により、コレスタニル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩、およびコレスタニル 2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→3)-β-D-ガラクトピラノシドを合成した。
物質名の後の番号は、図7における化合物の番号を示す。
【0172】
(a) コレスタニル 2,4-ジ-O-アセチル-3,6-ジ-O-アリル-β-D-ガラクトピラノシド(cholestanyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside)23
コレスタノール(700 mg, 1.80 mmol)、シクロペンタジエンハフノニウムダイクロライド(1.37 g, 4.68 mmol)、シルバートリフレート(1.85 g, 9.37 mmol)、モレキュラーシーブ4A(2.7 g)を1,2-ジクロロエタン(7.0 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-10℃に冷却し、化合物1(936 mg, 2.70 mmol)を加え2.5時間攪拌した。反応液を、トリエチルアミンを加えて中和し、酢酸エチルで希釈後、セライトでろ過し、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=10:1)にて精製し、化合物23(970 mg, 75.3%)を得た。
【0173】
Rf 0.57(トルエン:AcOEt=6:1)
C43H70O8 MW : 715.018
1H-NMR (CDCl3) δ:
5.880 (m, 1H, Allyl), 5.802 (m, 1H, Allyl), 5.480 (d, 1H, J = 3.4 Hz, H-4), 5.072 (dd, 1H, J = 8.3, 10.3 Hz, H-2), 4.510 (d, 1H, J = 8.3 Hz, H-1), 2.150, 2.095 (2s, 6H, 2Ac), 0.922 (d, 3H, J = 6.4 Hz, CH3), 0.890 (d, 3H, J = 6.8 Hz, CH3), 0.885 (d, 3H, J = 6.4 Hz, CH3), 0.800, 0.667 (2s, 6H, 2CH3)
【0174】
(b) コレスタニル 3,6-ジ-O-アリル-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(cholestanyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside)25
化合物23(0.98 g, 1.37 mmol)をメタノールとテトラヒドロフランとの混合液 (1:1、10 mL)に溶解し、1 N 水酸化ナトリウム溶液(1.0 mL)を加え室温で1日間攪拌後、さらにナトリウムメトキサイド (74 mg, 1.37 mmol) を加え室温で2時間攪拌した。その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=5:2)にて精製し、化合物24(0.83 g, 96%)を得た。
[Rf 0.33(トルエン:AcOEt=2:1)]
【0175】
続いて、化合物24(838 mg, 1.32 mmol)を、N,N-ジメチルホルムアミド(8 ml)に溶解し、アルゴンガス気流下0℃で、水素化ナトリウム(378 mg, 8.58 mmol)を加え攪拌した。続いてベンジルブロマイド(1.02 ml, 8.58 mmol)を加え、徐々に室温にしながら3時間攪拌した。さらに水素化ナトリウム(378 mg, 8.58 mmol)及びベンジルブロマイド(1.02 ml, 8.58 mmol)を加え、18時間攪拌した。反応液にメタノールを加え中和し、酢酸エチルで希釈後、飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:AcOEt=13:1)にて精製し、化合物25(0.94 g, 88.1%)を得た。
【0176】
Rf 0.72(ヘキサン:AcOEt=6:1)
C53H78O6 MW : 811.193
1H-NMR (CDCl3) δ:
5.935 (m, 1H, Allyl), 5.836 (m, 1H, Allyl), 4.931 (d, 1H, J = 11.7 Hz, Bn), 4.903 (d, 1H, J = 10.7 Hz, Bn), 4.739 (d, 1H, J = 10.7 Hz, Bn), 4.639 (d, 1H, J = 11.7 Hz, Bn), 4.438 (d, 1H, J = 7.8 Hz, H-1), 3.829 (d, 1H, J = 2.9 Hz, H-4), 3.719 (dd, 1H, J = 7.8, 9.8 Hz, H-2), 3.397 (dd, 1H, J = 2.9, 9.8 Hz, H-3), 0.893 (d, 3H, J = 6.4 Hz, CH3), 0.862 (d, 3H, J = 6.8 Hz, CH3), 0.858 (d, 3H, J = 6.4 Hz, CH3), 0.799, 0.641 (2s, 6H, 2CH3)
【0177】
(c) コレスタニル 2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(cholestanyl 2,4-di-O-benzyl-β-D-galactopyranoside)26
イリジウムコンプレックス (1,5-シクロオクタジエンビス(メチルジフェニルホスフィン)イリジウムヘキサフルオロホスフェート) (136 mg, 0.12 mmol) をテトラヒドロフラン(5 mL)に懸濁し、H2気流下攪拌し活性化させた。その溶液に、化合物25(940 mg, 1.16 mmol)をテトラヒドロフラン(5 mL)に溶解させて加え、アルゴンガス気流下室温で1時間攪拌後、ヨウ素(588 mg)、水(30 mL)及びテトラヒドロフラン(15 mL)を加えさらに1.5時間室温で攪拌した。反応液をクロロホルムで希釈後、飽和チオ硫酸ナトリウム溶液、飽和重曹水、飽和食塩水で順次洗浄した。クロロホルム層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:アセトン=6:1)にて精製し、化合物26を(748 mg, 88.2%)得た。
【0178】
Rf 0.49(トルエン:アセトン=4:1)
C47H70O6 MW : 731.064
1H-NMR (CDCl3) δ:
5.006 (d, 1H, J = 11.2 Hz, Bn), 4.823 (d, 1H, J = 11.2 Hz, Bn), 4.678 (d, 1H, J = 10.7 Hz, Bn), 4.650 (d, 1H, J = 11.7 Hz, Bn), 4.476 (d, 1H, J = 6.8 Hz, H-1)
【0179】
(d) コレスタニル 2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(cholestanyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)27
化合物26(647 mg, 0.885 mmol)をピリジン(13 mL)に溶解させ、その溶液にピバロイルクロライド(138μL, 1.15 mmol)を加え-5℃から0℃にて0.5時間攪拌後、さらにピバロイルクロライド(138μL, 1.15 mmol)を加え-5℃から0℃にて1時間攪拌した。反応液を、酢酸エチルで希釈後、セライトでろ過し飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (トルエン:AcOEt=10:1)にて精製し、化合物27(663 mg, 91.9%)を得た。
【0180】
Rf 0.56(トルエン:AcOEt=6:1)
C52H78O7 MW : 815.181
1H-NMR (CDCl3) δ:
4.993 (d, 1H, J = 11.7 Hz, Bn), 4.821 (d, 1H, J = 11.2 Hz, Bn), 4.667 (d, 1H, J = 11.2 Hz, Bn), 4.642 (d, 1H, J = 11.7 Hz, Bn), 4.450 (d, 1H, J = 7.3 Hz, H-1), 4.293 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.083 (dd, 1H, J = 6.3, 10.8 Hz, H-6'), 3.746 (d, 1H, J = 2.0 Hz, H-4), 1.176 (s, 9H, piv)
【0181】
(e) コレスタニル 3-O-アセチル-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(cholestanyl 3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)28
化合物27(10 mg, 12.3μmol)をピリジン(1 mL)に溶解させ、その溶液に無水酢酸(0.5 mL)を加え室温で1時間攪拌した。溶媒をトルエンで共沸後、残渣をセファデックスLH-20(CHCl3:MeOH=1:2)にて精製し、化合物28(9 mg, 85.4%)を得た。
【0182】
Rf 0.65(トルエン:AcOEt=8:1)
C54H80O8 MW : 857.218
1H-NMR (CDCl3) δ:
4.889 (dd, 1H, J = 2.7, 10.5 Hz, H-3), 4.885 (d, 1H, J = 11.2 Hz, Bn), 4.647 (d, 1H, J = 11.7 Hz, Bn), 4.625 (d, 1H, J = 11.2 Hz, Bn), 4.533 (d, 1H, J = 11.7 Hz, Bn), 4.518 (d, 1H, J = 7.3 Hz, H-1), 4.289 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.061 (dd, 1H, J = 6.3, 11.2 Hz, H-6'), 3.766 (d, 1H, J = 2.4 Hz, H-4), 3.753 (dd, 1H, J = 7.3, 10.3 Hz, H-2), 1.924 (s, 3H, Ac), 1.185 (s, 9H, piv)
【0183】
(f) コレスタニル 3,4-ジ-O-ベンジル-2-デオキシ-6-O-レブロイル-2-フタルイミド-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-ピバロイル-β-D-ガラクトピラノシド(cholestanyl 3,4-di-O-benzyl-2-deoxy-6-O-levloyl-2-phtalimido-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside)29
化合物27(737 mg, 0.904 mmol)、シクロペンタジエンハフノニウムダイクロライド(686 mg, 2.35 mmol)、シルバートリフレート(927 mg, 4.70 mmol)及びモレキュラーシーブ4A(2.5 g)を1,2-ジクロロエタン(10 ml)に懸濁し、アルゴンガス気流下室温で攪拌後、-15℃に冷却し 化合物2(676.5 mg, 1.18 mmol)を加え1時間攪拌した。反応液を、トリエチルアミンを加えて中和し、酢酸エチルで希釈後、セライトでろ過し飽和重曹水、飽和食塩水で順次洗浄した。酢酸エチル層を硫酸マグネシウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:AcOEt=10:1)にて精製し、化合物29(982.1 mg, 79.3%)を得た。
【0184】
Rf 0.58(トルエン:AcOEt=6:1)
0.07(ヘキサン:AcOEt=6:1)
C85H109O15N MW : 1384.788
1H-NMR (CDCl3) δ:
5.475 (d, 1H, J = 8.3 Hz, H-1b), 4.453 (d, 1H, J = 7.8 Hz, H-1a), 3.852 (d, 1H, J = 2.9 Hz, H-4a), 2.133 (s, 3H, CH3), 1.146 (s, 9H, piv)
【0185】
(g) コレスタニル 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-β-D-ガラクトピラノシド(cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-β-D-galactopyranoside)30
化合物29(668 mg, 0.488 mmol)をエタノール(24.5 mL)に懸濁し、ヒドラジン水和物(2.45 mL)を加え、110℃で18時間攪拌した。溶媒を留去し、得られたアミノ体をピリジン (5.0 mL)に溶解し、無水酢酸(4.0 mL)を加え室温で17時間攪拌後、溶媒を留去した。残渣をメタノールとテトラヒドロフランとの混合液(1:1、10.0 mL)に溶解し、ナトリウムメトキシド(78.8 mg, 1.46 mmol)を加え、60℃で1時間攪拌した。その反応液をアンバーリスト15E (H+)タイプで中和し、セライトでろ過後、ろ液を留去した。残渣をシリカゲルカラムクロマトグラフィー(トルエン:アセトン=3:1)にて精製し、さらにセファデックスLH-20(CHCl3:MeOH=2:3)による精製を行い、化合物30(534.2 mg, 99.6%)を得た。
【0186】
Rf 0.34(トルエン:アセトン=3:1)
C69H95O11N MW : 1114.506
1H-NMR (CDCl3) δ:
5.044 (d, 1H, J = 12.2 Hz, NH), 4.875 (d, 1H, J = 11.2 Hz, Bn), 4.851 (d, 1H, J = 7.8 Hz, H-1b), 4.809 (d, 1H, J = 11.2 Hz, Bn), 4.740 (d, 1H, J = 11.7 Hz, Bn), 4.696 (d, 1H, J = 11.7 Hz, Bn), 4.672 (d, 1H, J = 12.2 Hz, Bn), 4.642 (d, 1H, J = 10.7 Hz, Bn), 4.571 (d, 1H, J = 11.2 Hz, Bn), 4.562 (d, 1H, J = 12.2 Hz, Bn), 4.439 (d, 1H, J = 6.4 Hz, H-1a), 1.524 (s, 3H, NHAc), 0.892 (d, 3H, J = 6.3 Hz, CH3), 0.860 (d, 3H, J = 6.8 Hz, CH3), 0.856 (d, 3H, J = 6.8 Hz, CH3), 0.760, 0.635 (2s, 6H, 2CH3)
13C-NMR (CDCl3+CD3OD) δ:
173.00 (Me-CO), 103.79, 103.06 (C-1x2), 62.77, 62.40 (C-6x2)
【0187】
(h) コレスタニル 2-アセトアミド-3,4-ジ-O-ベンジル-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-2,4-ジ-O-ベンジル-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩(cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl-(1→3)-2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt)31
化合物30(150 mg, 0.136 mmol)をN,N-ジメチルホルムアミド(1.5 mL)に溶解し、(C2H5)3NSO3(247 mg, 1.36 mmol)を加え、50℃で0.5時間攪拌した。その反応液を直接セファデックスLH-20(CHCl3:MeOH=2:3)にて精製した。溶出液の溶媒をある程度留去し、残渣に水(2.0 mL)、Dowex-50 (Na+)タイプを加え、一昼夜攪拌し、セライトでろ過後、ろ液を留去した。残渣をDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=5:10:3)にて精製し、化合物31(175 mg, 97.3%)を得た。
【0188】
Rf 0.22(CHCl3:MeOH=8:1)
C69H93O17NS2Na2 MW : 1318.58
1H-NMR (CD3OD) δ:
4.523 (d, 1H, J = 7.3 Hz, H-1a), 4.384 (dd, 1H, J = 2.0, 10.8 Hz, H-6b), 4.290 (dd, 1H, J = 4.4, 10.7 Hz, H-6a), 1.645 (s, 3H, NHAc), 0.910 (d, 3H, J = 6.8 Hz, CH3), 0.873 (d, 3H, J = 6.4 Hz, CH3), 0.868 (d, 3H, J = 6.8 Hz, CH3), 0.730, 0.658 (2s, 6H, 2CH3)
13C-NMR (CDCl3+CD3OD) δ:
102.97, 102.55 (C-1x2), 68.47, 67.22 (C-6x2)
【0189】
(i) コレスタニル 2-アセトアミド-2-デオキシ-6-O-スルホ-β-D-グルコピラノシル-(1→3)-6-O-スルホ-β-D-ガラクトピラノシド二ナトリウム塩(cholestanyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl-(1→3)-6-O-sulfo-β-D-galactopyranoside disodium salt)32
化合物31(170 mg, 0.129 mmol)をメタノールと水との混合液(3:1、15 mL)に溶解し、水酸化パラジウム-カーボン(180 mg)を加え、水素ガスで置換し室温で4時間接触還元を行った。反応液をセライトでろ過し、ろ液を留去した。残渣をセファデックスLH-20 (CHCl3:MeOH:H2O=5:10:3)のカラムにて精製した。さらにDowex-50 (Na+)タイプのカラム(CHCl3:MeOH:H2O=1:3:1)による精製を行い、最後にセファデックスLH-20 (CHCl3:MeOH:H2O=5:10:3)による再カラム精製を行い、化合物32(109.4 mg, 88.6%)を得た。
【0190】
Rf 0.47(CHCl3:MeOH:H2O=12:8:1)
C41H69O17NS2Na2 MW : 958.08
1H-NMR (CDCl3) δ:
4.727 (d, 1H, J = 7.8 Hz, H-1b), 4.310 (d, 1H, J = 7.8 Hz, H-1a), 4.093 (b.dd, 1H, H-6b), 4.010-3.924 (b.dd, 1H, H-6a), 1.926 (s, 3H, NHAc), 0.945 (d, 3H, J = 6.4 Hz, CH3), 0.909 (d, 3H, J = 6.4 Hz, CH3), 0.905 (d, 3H, J = 6.8 Hz, CH3), 0.827, 0.689 (2s, 6H, 2CH3)
13C-NMR (DMSO+D2O)δ:
170.88 (Me-CO), 102.21, 100.73 (C-1x2), 65.85, 65.65 (C-6x2)
【0191】
(j) コレスタニル 2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→3)-β-D-ガラクトピラノシド(cholestanyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→3)-β-D-galactopyranoside)33
化合物30(230 mg, 0.209 mmol)をメタノールと水と酢酸エチルとの混合液(4:1:1、25 mL)に溶解し、水酸化パラジウム-カーボン(230 mg)を加え、水素ガスで置換し室温で20時間接触還元を行った。反応液をセライトでろ過し、ろ液を留去した。残渣をセファデックスLH-20 (CHCl3:MeOH=1:1)のカラムにて精製し、化合物33(126.1 mg, 81.5%)を得た。
【0192】
Rf 0.51(CHCl3:MeOH=3:1)
C41H71O11N MW : 754.008
1H-NMR (C5D5N+D2O)δ:
5.383 (d, 1H, J = 8.3 Hz, H-1b), 4.825 (d, 1H, J = 7.3 Hz, H-1a), 2.059 (s, 3H, NHAc)
【0193】
【実施例6】
安全性試験および薬効薬理試験
本実施例においてはケラタン硫酸オリゴ糖として、L4のナトリウム塩、2つのL4がβ1−3結合により結合したケラタン硫酸4糖(L4L4)のナトリウム塩、K4のナトリウム塩(実施例1の化合物28)、K2のナトリウム塩、及びG4L4のナトリウム塩を使用した(略号により示すオリゴ糖の構造については図8参照)。L4およびL4L4は、国際公開パンフレット第WO96/16973号に記載の方法により得た。
【0194】
なおK2のナトリウム塩は、以下の方法により得た。
牛角膜由来のケラタン硫酸10gを120mlの0.1Mトリス塩酸緩衝液(pH 7.5)に溶解した。この液にシュードモナス(Pseudomonas sp.)由来ケラタナーゼ(生化学工業株式会社製)を1,000ユニット加えて37℃で50時間分解を行った。反応終了後、1.3倍量のエタノールを加えて攪拌し、室温で一晩放置した。翌日、遠心分離(10,000rpm、20分)により上清と沈殿を分離し、上清を減圧濃縮し、濃縮液を凍結乾燥して、乾燥物9gを得た。得られた凍結乾燥物を少量の蒸留水に溶解し、セルロファインGCL−90m(チッソ株式会社製)(4.5cmx125cm)を用い、食塩濃度0.2M液を溶出溶媒としてゲルクロマトグラフィーを行い、K2を含む画分を分取した。得られたK2画分を減圧濃縮し、セルロファインGCL−25m(チッソ株式会社製)(4.0cmx120cm)を用い蒸留水を溶出溶媒とし、ゲル濾過クロマトグラフィーにより脱塩し、凍結乾燥した。
【0195】
このK2を含む画分を少量の蒸留水に溶解し、予め蒸留水で平衡化したムロマック 1x4(200-400)(室町化学工業(株)製)(2.0cmx32cm)を用い、溶出溶媒に食塩を用い、食塩濃度を直線的に0から2Mに上昇させ、さらに精製したK2画分を分離溶出させた。得られたK2画分を減圧濃縮後、セルロファインGCL−25m(4.0cmx120cm)を用いたゲル濾過クロマトグラフィーにより脱塩し、凍結乾燥し、K2の乾燥物を1.9gを得た。
【0196】
(1)安全性試験
1.マウスを用いた単回投与毒性試験
正常マウス(1群5匹)にK4またはG4L4を2,000mg/kgの用量で単回静脈内投与し、14日間一般症状を観察した。
【0197】
雌雄各群に死亡例は認められなかった。K4またはG4L4投与により雌雄の全例に投与直後から麻痺性歩行がみられたが、投与後約3分には全例が正常に回復した。体重では投与翌日に雄の投与群に軽微な体重減少がみられたが、その後は全例とも順調な体重増加を示した。剖検では全例ともK4またはG4L4投与に起因した異常は認められなかった。以上の結果から、K4およびG4L4の単回静脈内投与における最小死亡用量は2,000mg/kg以上であると考えられる。従って、K4およびG4L4の単回静脈内投与におけるLD50値は、雌雄ともに2,000mg/kgを超えるものである。
【0198】
2.モルモットを用いた抗原性試験
モルモットの背部皮下にK4またはG4L4を単独、あるいは免疫補助剤であるフロイント完全アジュバント(FCA)との乳化物を3回注射して感作した。最終感作から12日後にK4またはG4L4を静脈内投与して能動的全身性アナフィラキシー反応を惹起した。また、陽性対照として卵白アルブミン(OVA)についても同様に試験した。
【0199】
以上の結果を投与量とともに表1に示した。K4またはG4L4で惹起したモルモットにアナフィラキシー反応は認められなかった。また試験系の陽性対照である卵白アルブミンではアナフィラキシー反応が認められた。以上の結果より、K4およびG4L4はモルモットにおける能動的全身性アナフィラキシー反応を誘発しないと考えられる。
【0200】
【表1】
Figure 0004913272
【0201】
(2)薬効薬理試験
1.Ca-イオノフォアーで誘発される血管透過性亢進に対する効果の検討
エーテル麻酔下でラットの背部を剃毛後、2%DMSOに溶解したCa-イオノフォアー(A23187、和光純薬)溶液(10μg/ml)0.1mlを皮内の1カ所に投与した。陰性対照(control)として2%DMSO溶液0.1mlを皮内の1カ所に投与した。被験物質は、Ca-イオノフォアー溶液に溶解し、その0.1mlを皮内の数カ所に投与した。直後に0.5%エバンスブルー1mlを静脈内投与し、その30分後にエーテル麻酔下で放血致死した。皮膚を剥離し、エバンスブルー漏出部位をトレパンで打ち抜き、これを色素漏出量の測定に供した。色素漏出量は Katayamaらの方法(Microbiol. Immunol., 22, 89-101 (1978))に従って行った。すなわち採取した皮膚に1NKOHを加えて一晩加水分解し、その後0.6NH3PO4含有アセトン溶液(5:13の割合で混合)を加えて中和し遠心分離後、上清の吸光度(620nm)から色素漏出量を求めた。
【0202】
L4、L4L4、K4およびK2を被験物質としたときの結果を図9に示す。またL4およびG4L4を被験物質としたときの結果を図10に示す。
【0203】
L4L4、K4およびK2は用量依存的に血管透過性の亢進を抑制し、それぞれ2.5〜10mg/部位(site)、0.63〜5mg/site、1.25〜5mg/siteの濃度で有意な抑制効果を示した。抑制効果はK4が最も強く、次いでK2、L4L4の順であった。また、G4L4も血管透過性亢進の有意な抑制効果を示した。一方、L4は本モデルにおいて血管透過性の亢進をほとんど抑制しなかった。この結果から、K4、K2、L4L4およびG4L4は、血管透過性の亢進を抑制することにより抗アレルギー作用を発揮することが示唆される。特に、K4は優れた作用を発揮することが示唆される。
【0204】
本試験において、L4L4、K4、K2およびG4L4がCa-イオノフォアーによる血管透過性の亢進を有意に抑制したことから、その活性発現にはK2構造が重要で、さらにK4構造ではその作用が増すことが示唆された。またL4は抑制効果を示さなかったことから、本モデルではL4構造はあまり重要でないことが示唆された。一方、L4L4は2つのL4構造がβ-(1-3)結合したものだが、K4構造を有しているため本モデルにおいて抑制効果が認められたものと推察された。L4L4、K4、K2およびG4L4は膜安定化によるCa2+の細胞内への流入、もしくは脱顆粒化を阻害したことにより、または肥満細胞から分泌されたヒスタミン等を抑制したことにより、血管透過性の亢進を抑制することが示唆された。
【0205】
2.FMLP(N-ホルミル-Met-Leu-Phe)刺激によるモルモット好中球O2 -産生に対する効果の検討
生理食塩液に溶解したグリコーゲンの0.2%水溶液を高圧蒸気滅菌後、ハートレー系雌性モルモットの腹腔内に20ml投与した。16時間後脱血死させ、ヘパリン10U/mlを含む生理食塩液20mlを腹腔内に注入し、腹腔浸出液を回収した。回収液を卓上遠心機を用いて1000rpmで10分間遠心分離し、沈査に精製水を加えて30秒間溶血させ、2倍濃度のハンクス液で等張にもどし、1000rpmで10分間遠心分離した。沈査をハンクス液に再懸濁し、遠心分離の操作を2回繰り返し好中球を得た。採取したモルモット好中球をハンクス液に懸濁し、血球測定装置(Sysmex K-2000)を用いて白血球数を測定し、ハンクス液で2×106個/mlに希釈したものを細胞浮遊液として実験に用いた。
【0206】
細胞浮遊液1mlと既知濃度の被験物質の溶液10μl(対照(control)としては、ケラタン硫酸オリゴ糖を加えないものを用いた)とを混和し、37℃で1時間プレインキュベートした後、1.6mMのチトクロームC液50μlおよび0.1mMのFMLP100μlを順次加え混和した。これを37℃で10分間インキュベートし、氷冷して反応を停止し、3000rpmで5分間遠心分離後、上清の吸光度を波長550nmで測定した。なお上記の操作はインキュベートを除いて全て氷冷下で行った。
【0207】
L4、L4L4、K4およびK2を被験物質としたときの結果を図11に示す。またL4およびG4L4を被験物質としたときの結果を図12に示す。
【0208】
L4L4、K4およびG4L4は、0.01〜1mg/mlの濃度で、FMLP刺激による好中球からのO2 -産生(O2 - generation)を顕著に抑制した。1mg/mlでの抑制率は、それぞれ対照に対して50.6%、44.7%および57.1%であった。L4とK2ではO2 -産生抑制効果はほとんど認められなかった。この結果から、L4L4、K4およびG4L4は、好中球の活性酸素の産生を抑制することにより、抗炎症作用を発揮することが示唆される。
【0209】
本試験において、L4とK4は電荷、組成式および構成糖が等しいにもかかわらず、K4で抑制効果が認められ、さらにL4L4が抑制効果を示すのに対して構成糖であるL4では活性は認められなかった。L4L4、K4およびG4L4がFMLP刺激によるモルモット好中球O2 -産生を有意に抑制したことから、その活性発現にはK4構造が重要であることが示唆された。またK2は抑制効果を示さなかったことから、本モデルでは硫酸化の程度が重要であることが示唆された。K4構造を有するL4L4、K4およびG4L4はGTP結合蛋白質あるいはホスホリパーゼC等の刺激伝達系を阻害しているか、あるいはFMLPレセプターに直接拮抗して作用を発現している可能性が示唆された。
【0210】
【発明の効果】
本発明によれば、還元末端にガラクトース残基を有するケラタン硫酸オリゴ糖を効率よく製造することができる。特に、ガラクトース残基及び/又はN−アセチルグルコサミン残基の6位のヒドロキシル基が硫酸化されたケラタン硫酸オリゴ糖を提供できる。還元末端に、6位のヒドロキシル基が硫酸化されたガラクトース残基を有するケラタン硫酸オリゴ糖等は、優れた薬理効果を有し、安全で有効な新規医薬組成物を提供できる。
【図面の簡単な説明】
【図1】ケラタン硫酸の構造から予想されるケラタン硫酸二糖の構造を示す。
【図2】本発明のオリゴ糖の製造における出発材料の製造方法の一例の概略を示す。
【図3】本発明のオリゴ糖の製造における出発材料の製造方法の一例の概略を示す。
【図4】本発明のオリゴ糖の製造方法の一例の概略を示す。
【図5】本発明のオリゴ糖の製造方法の一例の概略を示す。
【図6】本発明のオリゴ糖の製造方法の一例の概略を示す。
【図7】本発明のオリゴ糖の製造方法の一例の概略を示す。
【図8】ケラタン硫酸オリゴ糖の構造を示す。
【図9】ケラタン硫酸オリゴ糖の血管透過性亢進に対する効果を示す。
【図10】ケラタン硫酸オリゴ糖の血管透過性亢進に対する効果を示す。
【図11】ケラタン硫酸オリゴ糖の好中球O2 -産生に対する効果を示す。
【図12】ケラタン硫酸オリゴ糖の好中球O2 -産生に対する効果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an oligosaccharide. The present invention also relates to a novel oligosaccharide and a pharmaceutical composition containing the same.
[0002]
[Prior art]
Keratan sulfate is a glycosaminoglycan having a basic structure of N-acetyllactosamine in which the 6-position of an N-acetylglucosamine residue is O-sulfated. It has been reported that some of these keratan sulfate oligosaccharides, which are decomposed products, have a pharmacological action (see, for example, International Publication Pamphlet No. WO96 / 16973).
[0003]
The structure of the disaccharide derived from keratan sulfate is considered to be the one shown in FIG. 1, but the search for other keratin sulfate oligosaccharides having a pharmacological action is disaccharide (GlcNAcβ1) having a galactose residue at the reducing end. → 3Gal (where Gal is galactose, GlcN is glucosamine, and Ac is an acetyl group)), and it is difficult to obtain a keratan sulfate oligosaccharide having a sulfate group like keratan sulfate. Limited. For example, even when keratan sulfate was treated with a known endo-β-galactosidase, it was difficult to obtain a disaccharide having a galactose residue at the reducing end (GlcNAcβ1 → 3Gal) while retaining the sulfate group.
[0004]
[Problems to be solved by the invention]
The first object of the present invention is to provide a method capable of easily producing a keratan sulfate disaccharide having a galactose residue at the reducing end.
[0005]
The second object of the present invention is to provide a novel oligosaccharide having a pharmacological action and to provide it as a medicine.
[0006]
[Means for Solving the Problems]
The present inventors obtain a disaccharide having a galactose residue at the reducing end by glycoside bond reaction by protecting the hydroxyl group and amino group in glucosamine and the hydroxyl group in galactose in a specific manner. I found out. Moreover, it discovered that the disaccharide by which the hydroxyl group of the specific position was sulfated had the outstanding pharmacological activity. Based on these findings, the present invention has been completed.
[0007]
That is, the present invention is represented by the following general formula (3), which includes at least a step of subjecting a monosaccharide represented by the following general formula (1) and a monosaccharide represented by the following general formula (2) to glycoside bond reaction. An oligosaccharide production method (hereinafter also referred to as the production method of the present invention) is provided.
[0008]
Embedded image
Figure 0004913272
(Wherein R1And R2Each independently represents an aralkyl group, RThreeRepresents an acyl group or a silyl group, RFourRepresents an amino protecting group, RFiveRepresents a leaving group. )
[0009]
Embedded image
Figure 0004913272
(Wherein R6And R8Each independently represents an aralkyl group, R7Represents an acyl group or a silyl group, R9Is an aralkyl group, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. )
[0010]
Embedded image
Figure 0004913272
(Wherein RTenAnd R11Each independently represents a hydrogen atom or -SOThreeM represents M (M represents a proton or a monovalent cation), and Ac represents an acetyl group. R12Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. )
[0011]
In the production method of the present invention, RTenAnd R11At least one of -SOThreeM (M represents a proton or a monovalent cation), and after the step of reacting the monosaccharide represented by the general formula (1) and the monosaccharide represented by the general formula (2) with a glycosidic bond , RThreeAnd R7At least one of them is replaced by a hydrogen atom, and then the hydrogen atom is -SOThreeIt is preferable that the process of substituting for M is included.
[0012]
In a preferred embodiment of the production method of the present invention, the general formulas (1) to (3) are represented by the following formulas (4) to (6), respectively.
[0013]
Embedded image
Figure 0004913272
(In the formula, Bn represents a benzyl group, R13Represents an acetyl group or a levulinoyl group, Phth represents a phthaloyl group, and X represents a halogen atom. )
[0014]
Embedded image
Figure 0004913272
(In the formula, Bn represents a benzyl group, R14Are benzyl group, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. Piv represents a pivaloyl group. )
[0015]
Embedded image
Figure 0004913272
(In the formula, Ac represents an acetyl group, M represents a proton or a monovalent cation.15Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. )
[0016]
In another preferred embodiment of the production method of the present invention, the general formulas (1) to (3) are represented by the following formulas (7) to (9), respectively.
[0017]
Embedded image
Figure 0004913272
(In the formula, Bn represents a benzyl group, Lev represents a levulinoyl group, Phth represents a phthaloyl group, and X represents a halogen atom.)
[0018]
Embedded image
Figure 0004913272
(Where Bn, R14And Z are as defined above. Ph represents a phenyl group, and Me represents a methyl group. )
[0019]
Embedded image
Figure 0004913272
(Wherein R15And Z are as defined above. Ac represents an acetyl group, and M represents a proton or a monovalent cation. )
[0020]
In still another preferred embodiment of the production method of the present invention, the general formulas (1) to (3) are represented by the following formulas (10) to (12), respectively.
[0021]
Embedded image
Figure 0004913272
(In the formula, Bn represents a benzyl group, Lev represents a levulinoyl group, Phth represents a phthaloyl group, and X represents a halogen atom.)
[0022]
Embedded image
Figure 0004913272
(Where Bn, R14And Z are as defined above. Ph represents a phenyl group, and Me represents a methyl group. )
[0023]
Embedded image
Figure 0004913272
(Wherein R15And Z are as defined above. Ac represents an acetyl group, and M represents a proton or a monovalent cation. )
[0024]
The present invention also provides an oligosaccharide represented by the following general formula (13) (hereinafter also referred to as the present oligosaccharide).
[0025]
Embedded image
Figure 0004913272
(Wherein R16And R17Each independently represents a hydrogen atom or -SOThreeM represents M (M represents a proton or a monovalent cation), and Ac represents an acetyl group. Also R18Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. However, R16And R17Are both hydrogen atoms, Z is an oxygen atom and R18Is a hydrogen atom or a cholestanyl group, and R16-SOThreeM (M represents a proton or a monovalent cation) and Z is an oxygen atom and R17And R18Except where is a hydrogen atom. )
[0026]
A preferred embodiment of the oligosaccharide of the present invention is R16And R17Are all -SOThreeM (M represents a proton or a monovalent cation).
[0027]
Another preferred embodiment of the oligosaccharide of the present invention is R16Is a hydrogen atom and R17-SOThreeM (M represents a proton or a monovalent cation).
[0028]
In the oligosaccharide of the present invention, preferably R18Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, O-alkylglycerol residue or cholestanyl group, and Z is an oxygen atom.
[0029]
The present invention further provides a medicament (hereinafter also referred to as the present medicament) comprising the oligosaccharide of the present invention represented by the following general formula (13) or a pharmaceutically acceptable salt thereof as an active ingredient.
[0030]
Embedded image
Figure 0004913272
(Wherein R16And R17Each independently represents a hydrogen atom or -SOThreeM represents M (M represents a proton or a monovalent cation), and Ac represents an acetyl group. Also R18Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, biotin residue or peptide residue is shown. Z represents an oxygen atom or -NHCO-. However, R16And R17Are both hydrogen atoms, Z is an oxygen atom and R18Except that is hydrogen atom or cholestanyl group. )
[0031]
In particular, R16-SOThreeM and R17Is a hydrogen atom or -SOThreeThe oligosaccharide of the present invention showing M (M represents a proton or a monovalent cation) or a pharmaceutically acceptable salt thereof is used as an antiallergic agent.16And R17-SOThreeThe oligosaccharide of the present invention or a pharmaceutically acceptable salt thereof showing M (M represents a proton or a monovalent cation) is useful as an anti-inflammatory agent.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
First, abbreviations commonly used in this specification and the drawings are shown below together with their meanings (description in parentheses attached to the following abbreviations).
[0033]
Ac (acetyl group)
Bn (benzyl group)
Phth (phthaloyl group)
Piv (pivaloyl group)
Lev (levulinoyl group)
Ph (phenyl group)
Me (methyl group)
All (allyl group)
MP (paramethoxyphenyl group)
M (proton or monovalent cation)
X (halogen atom)
[0034]
<1> Production method of the present invention
The production method of the present invention is a method for producing an oligosaccharide represented by the general formula (3), wherein the monosaccharide represented by the general formula (1) and the monosaccharide represented by the general formula (2) are subjected to a glycosidic bond reaction. It is characterized by including at least.
[0035]
The substituents in the general formulas (1) to (3) are as follows.
R1, R2, R6And R8Each independently represents an aralkyl group, and examples of the aralkyl group include benzyl group, p-methoxybenzyl group, phenethyl group, 3-phenylpropyl group, p-nitrobenzyl group, o-nitrobenzyl group, p -Halobenzyl group, p-cyanobenzyl group, diphenylmethyl group, triphenylmethyl group (trityl group), α or β-naphthylmethyl group, α-naphthyldiphenylmethyl group and the like can be mentioned. R1, R2, R6And R8Is preferably a benzyl group.
[0036]
RThreeAnd R7Each independently represents an acyl group or a silyl group. As the acyl group, acetyl group, pivaloyl group, levulinoyl group, benzoyl group, chloroacetyl group, dichloroacetyl group, trifluoroacetyl group, methoxyacetyl group, propionyl group, n-butyryl group, (E) -2-methylbutenoyl group , Isobutyryl group, pentanoyl group, o- (dibromomethyl) benzoyl group, o- (methoxycarbonyl) benzoyl group, p-phenylbenzoyl group, 2,4,6-trimethylbenzoyl group, p-toluoyl group, p-anisoyl group , P-chlorobenzoyl group, p-nitrobenzoyl group, α-naphthoyl group and the like. Examples of the silyl group include trimethylsilyl group, triethylsilyl group, dimethylisopropylpropylsilyl group, isopropyldimethylsilyl group, methyldi-t-butylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, triisopropylsilyl group, tetra Examples thereof include isopropyldisiloxanyl group.
[0037]
RThreeAnd R7Are preferably each an acyl group or RThreeIs an acyl group and R7Is a silyl group. The acyl group is preferably an acetyl group, a pivaloyl group, or a levulinoyl group, and the silyl group is preferably a t-butyldiphenylsilyl group.
[0038]
RFourRepresents an amino group protecting group, and examples of the amino group protecting group include a phthaloyl group, an acetyl group, and an allyloxycarbonyl group. A phthaloyl group is preferable.
[0039]
RFiveRepresents a leaving group. Here, the leaving group means a group capable of leaving under a condition in which a monosaccharide represented by the general formula (1) and a monosaccharide represented by the general formula (2) undergo a glycosidic bond reaction. Examples of the leaving group include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, etc.), an imide group, a methylthio group, a phenylthio group, and the like. A halogen atom is preferable, and a fluorine atom is particularly preferable.
[0040]
X in the formulas (4), (7) and (10) is a preferred halogen atom among the leaving groups. X is preferably a fluorine atom as described above.
[0041]
R9Are an aralkyl group, a 6-O-sulfated N-acetylglucosamine residue, an alkyl group, a glycerol residue, an O-alkylglycerol residue, an O-acylglycerol residue, a cholesterol residue, a cholestanyl group, a ceramide residue, A phospholipid residue, a biotin residue, or a peptide residue is shown. Here, the residue means a remaining part obtained by removing an atom or a group of atoms involved in binding of the compound from the compound.
[0042]
Examples of the aralkyl group and preferred aralkyl groups are the same as described above.
[0043]
The 6-O-sulfated N-acetylglucosamine residue is usually a residue from which the hydroxyl group at position 4 has been removed.
[0044]
As an alkyl group, a C1-C23 thing is illustrated and a C8-C14 thing is preferable.
[0045]
The glycerol residue is usually a residue from which any hydroxyl group is removed.
[0046]
The O-alkylglycerol residue is not particularly limited, but is usually a residue from which any hydroxyl group is removed, and a di-O-alkylglycerol residue is preferred, and a 2,3-di-O-alkylglycerol residue is preferred. Groups are preferred. Examples of the “alkyl” herein include those having 1 to 23 carbon atoms, and those having 8 to 14 carbon atoms are preferable.
[0047]
The O-acylglycerol residue is not particularly limited, but is usually a residue from which any hydroxyl group is removed, and a di-O-acylglycerol residue is preferred, and a 2,3-di-O-acylglycerol residue is preferred. Groups are preferred. Examples of the “acyl” herein include those having 1 to 23 carbon atoms, and those having 8 to 14 carbon atoms are preferable.
[0048]
The cholesterol residue is usually a residue obtained by removing the C-3 hydroxyl group of the cyclopentaphenanthrene ring.
[0049]
The ceramide residue is usually a residue from which the hydroxyl group at position 1 has been removed. The N-acyl group in the ceramide usually has 1 to 28 carbon atoms, and preferably has 14 to 23 carbon atoms.
[0050]
Examples of phospholipid residues include glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, etc.) residues and sphingophospholipid (sphingomyelin, etc.) residues.
[0051]
The biotin residue is usually a residue from which a carboxyl group has been removed.
[0052]
Peptide residues are usually residues from which either an amino group or a carboxyl group has been removed.
[0053]
Z represents an oxygen atom or —NHCO—. Which of —NHCO— nitrogen atom and oxygen atom is R9It may be a side.
[0054]
R9Is an aralkyl group, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue or phosphorus In the case of a lipid residue, Z is preferably an oxygen atom.
[0055]
R9When is a biotin residue or a peptide residue, Z is preferably —NHCO—.
[0056]
RTenAnd R11Each independently represents a hydrogen atom or -SOThreeM is shown.
[0057]
R12Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus Indicates a lipid residue, biotin residue, or peptide residue. These groups and residues are R9Is the same as described above.
[0058]
R12Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue or phosphorus In the case of a lipid residue, Z is preferably an oxygen atom.
[0059]
R12When is a biotin residue or a peptide residue, Z is preferably —NHCO—.
[0060]
The conditions for the glycosidic bond reaction are appropriately selected according to the leaving group to be used. For example, when a fluorine atom is selected as the leaving group, the condition of −70 to 60 ° C. for 5 minutes to 50 hours can be mentioned. The solvent is not particularly limited, and 1,2-dichloroethane or the like can be used.
[0061]
As the aralkyl group, acyl group or silyl group, and amino group-protecting group, those that are not liberated under the condition that the leaving group is eliminated are selected. These groups may be the same group.
[0062]
Examples of the method for producing the monosaccharide of the general formula (2) include a method as schematically shown in FIG. That is, the synthesis from compound 2 to compound 9 can be performed according to the synthesis route reported by Ito et al. (Agric. Biol. Chem., 50, 3227 (1986)) from galactose (compound 1). Synthesis from Compound 10 to Compound 14 can be performed according to the following synthesis route. Replacement of trichloroacetimide group with benzyl group (compound 10), deacetylation (compound 11), benzylation (compound 12), deallylation (compound 13), pivaloylation (compound 14). Those skilled in the art can appropriately set the conditions for these steps.
[0063]
Examples of the method for producing the monosaccharide of the general formula (1) include a method as schematically shown in FIG. That is, the synthesis from compound 16 to compound 20 can be performed according to the synthesis route (Tetrahedron Lett., 31, 1597 (1990)) reported by Nakano et al. From glucosamine (compound 15). The synthesis from Compound 21 to Compound 24 can be performed according to the following synthesis route. Ring opening of the benzylidene group between the 4- and 6-positions (compound 21), acetylation (compound 22), demethoxyphenylation (compound 23), fluorination (compound 24). Those skilled in the art can appropriately set the conditions for these steps.
[0064]
After the glycoside bond reaction between the monosaccharide of the general formula (1) and the monosaccharide of the general formula (2), the aralkyl group and the acyl group or silyl group are removed, and the amino group protecting group is replaced with an acetyl group. An oligosaccharide of general formula (3) is obtained. Glycoside binding reactions, and removal and substitution of such groups can be performed by known methods (eg, Synthesis, 384 (1989), etc.). Specific examples thereof will be described in detail in Examples described later.
[0065]
In general formula (3), RTenAnd R11At least one of -SOThreeIn the case of indicating M, after the step of reacting the monosaccharide represented by the general formula (1) and the monosaccharide represented by the general formula (2) with a glycoside bond, RThreeAnd R7At least one of (acyl group or silyl group) is selectively removed and replaced with a hydrogen atom (this produces a hydroxyl group), and then the hydrogen atom is —SO 2ThreeReplace with M (sulfation).
[0066]
The selective removal of the acyl group or silyl group (and substitution with a hydrogen atom) can be carried out by appropriately selecting the acyl group or silyl group with respect to the aralkyl group and the amino group protecting group. Examples of such a combination include a combination of a benzyl group as an aralkyl group, a phthaloyl group as an amino group protecting group, an acetyl group or a pivaloyl group as an acyl group or a silyl group. The method of sulfation is not particularly limited, and a known method can be used. Specific examples thereof will be described in detail in Examples described later.
[0067]
Specifically, the oligosaccharide of the general formula (3) can be obtained by the method as schematically shown in FIG. That is, removal of an acetyl group and a pivaloyl group (and substitution with a hydrogen atom), substitution of a phthaloyl group with an acetyl group (compound 26), sulfation (compound 27), and debenzylation (compound 28). Those skilled in the art can appropriately set the conditions for these steps.
[0068]
RTenAnd R11Either of them is -SOThreeWhen M is indicated, RThreeAnd R7The acyl group is selected so that either one of the acyl group and the silyl group can be selectively removed. For example, RThreeAs levulinoyl group (monosaccharide of formula (7) or (10)), R7T-butyldiphenylsilyl group (monosaccharide of formula (8) or (11)) is selected as By selectively removing (and replacing with a hydrogen atom) the levulinoyl group, sulfation is performed, and then the other hydroxyl group protecting groups are removed, so that only the hydroxyl group at the 6-position of the glucosamine residue is sulfated. The oligosaccharide (oligosaccharide of formula (9)) can be obtained, t-butyldiphenylsilyl group is selectively removed (and replaced with a hydrogen atom), sulfation is performed, and then other hydroxyl groups of By removing the protecting group, an oligosaccharide (oligosaccharide of formula (12)) in which only the hydroxyl group at the 6-position of the galactose residue is sulfated can be obtained.
[0069]
Selective removal of an acyl group or silyl group (and substitution with a hydrogen atom), sulfation of the resulting hydroxyl group, removal of an aralkyl group, and substitution of an amino group protecting group with an acetyl group are known methods. Can be done by.
[0070]
Other examples of the method for obtaining the oligosaccharide of the general formula (3) by subjecting the monosaccharide of the general formula (1) and the monosaccharide of the general formula (2) to a glycoside bond reaction and the like are shown in FIGS.
[0071]
FIG. 5 shows R in the general formula (2).9Is an example of an O-alkylglycerol residue (2,3-di-O-tetradecyl-sn-glycerol residue), and FIG. 6 shows R in general formula (2).9Is an example of an alkyl group (octyl group), and FIG. 7 shows R in general formula (2).9Is an example of a cholestanyl group. Any of these can be performed in the same manner as described above. R9In the case of other groups, the same method can be used.
[0072]
The resulting sulfated oligosaccharide may be a salt (that is, M in the oligosaccharide may be a monovalent cation) or may not be a salt (that is, in the oligosaccharide). M may be a proton). Examples of the salt include those exemplified in the description of <3> the pharmaceutical of the present invention described later, but an alkali metal salt is preferable, and a sodium salt is more preferable. The oligosaccharide may be in an ionized state.
[0073]
According to the production method of the present invention, the above-mentioned oligosaccharide can be produced in a high yield and with few steps.
[0074]
<2> The oligosaccharide of the present invention
The oligosaccharide of the present invention is an oligosaccharide represented by the general formula (13).
The substituents in the general formula (13) are as follows.
[0075]
R16And R17Each independently represents a hydrogen atom or -SOThreeM (however, R16And R17Are both hydrogen atoms, Z is an oxygen atom and R18Is a hydrogen atom or a cholestanyl group, and R16-SOThreeM and Z is an oxygen atom and R17And R18Except those in which all are hydrogen atoms).
[0076]
Also R18Is a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phosphorus A lipid residue, a biotin residue or a peptide residue is shown, and a hydrogen atom, 6-O-sulfated N-acetylglucosamine residue, alkyl group, O-alkylglycerol residue or cholestanyl group is preferable. These groups and residues are R9Is the same as described above. In general formula (13), R18R is a hydrogen atom, R18May be in the β-position or in the α-position. Also R18Is a 6-O-sulfated N-acetylglucosamine residue, the glycoside bond is preferably a β-glycoside bond, more preferably a β-1,4 glycoside bond. R18When is other group or residue, it is preferably a β glycoside bond. Z represents an oxygen atom or -NHCO-. R18Is preferably a biotin residue or a peptide residue, Z is preferably —NHCO— and R18When is a group other than that, Z is preferably an oxygen atom.
[0077]
The oligosaccharide of the present invention may be a salt (that is, M in the oligosaccharide may be a monovalent cation) or may not be a salt (that is, M in the oligosaccharide is a proton). May be). Examples of the salt include those exemplified in the description of <3> the pharmaceutical of the present invention described later, but an alkali metal salt is preferable, and a sodium salt is more preferable. The oligosaccharide may be in an ionized state.
[0078]
R18The oligosaccharide of the present invention in which is a hydrogen atom can be obtained by the production method of the present invention. In addition, as shown in FIGS. 5 to 7, an alkyl group, a glycerol residue, an O-alkylglycerol residue, an O-acylglycerol residue, a cholesterol residue, a cholestanyl group, a ceramide residue, a phospholipid residue, a biotin residue A monosaccharide carrying a group or peptide residue can be combined with other monosaccharides, or R18By binding the oligosaccharide of the present invention in which is a hydrogen atom and glycerol, cholesterol, ceramide, biotin or a peptide by a known glycosylation method, R18Thus, the oligosaccharide of the present invention other than a hydrogen atom can be obtained.
[0079]
Also R18The oligosaccharide of the present invention in which is a 6-O-sulfated N-acetylglucosamine residue can be produced, for example, by subjecting a known keratan sulfate oligosaccharide to treatment such as acid hydrolysis or enzyme treatment. For example, the known keratan sulfate oligosaccharides NeuAc to Galβ1-4GlcNAc (6S) β1-3Gal (6S) β1-4GlcNAc (6S) (wherein Gal represents a galactose residue, GlcNAc represents an N-acetylglucosamine residue, NeuAc represents an N-acetylneuraminic acid residue, 6S represents a 6-O-sulfate, and ~ represents an α2,3 bond or α2,6 bond (see WO96 / 16973)) of about 0.2N. It can be prepared by removing N-acetylneuraminic acid (sialic acid) residues by incubating with a strong acid and then removing galactose residues by incubating with lactase (β-galactosidase). Details will be described in detail in Examples described later.
[0080]
The oligosaccharide of the present invention or a pharmaceutically acceptable salt thereof has a pharmacological action and can be used as a medicine.
[0081]
<3> Pharmaceutical of the present invention
The medicament of the present invention comprises the oligosaccharide of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient.
[0082]
Pharmaceutically acceptable salts include, for example, alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth metal salts such as calcium salt, salts with inorganic bases such as ammonium salt, or diethanolamine salt, Among salts with organic bases such as cyclohexylamine salt and amino acid salt, pharmaceutically acceptable salts are not limited thereto.
[0083]
The medicament of the present invention can be used particularly as an antiallergic agent. When used as an antiallergic agent, the hydroxyl group at the 6-position of the N-acetylglucosamine residue of the oligosaccharide of the present invention is sulfated (ie, R in the general formula (13)).16-SOThreeIt is preferable that both the hydroxyl group at the 6-position of the galactose residue and the hydroxyl group at the 6-position of the N-acetylglucosamine residue are sulfated (ie, R in the general formula (13)).16And R17Are all -SOThreeM).
[0084]
The antiallergic agent of the present invention is effective for all diseases in which allergy is involved, specifically bronchial asthma, allergic interstitial pneumonia, allergic rhinitis, allergic conjunctivitis, atopic It can be applied for the purpose of preventing or treating dermatitis.
[0085]
In addition, when both the hydroxyl group at the 6-position of the galactose residue and the hydroxyl group at the 6-position of the N-acetylglucosamine residue of the oligosaccharide of the present invention are sulfated, the medicament of the present invention can be used as an anti-inflammatory agent. .
[0086]
The anti-inflammatory agent of the present invention is effective for all diseases related to inflammation, specifically rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, osteoarthritis, low back pain, postoperative and Applicable for the treatment of post-traumatic inflammation and swelling, scapuloarthritis, temporomandibular disorders, tendon tenosynovitis, peritonitis, condylar humerus (tennis elbow), muscle pain, keratoconjunctivitis, etc. Can do. The anti-inflammatory agent of the present invention has anti-inflammatory effects such as analgesic, anti-inflammatory, antipyretic and the like against these diseases by the action of its active ingredients.
[0087]
The pharmaceutical of the present invention can be applied not only for pure therapeutic purposes but also for the purpose of prevention, maintenance (prevention of deterioration), reduction (improvement of symptoms) and the like.
[0088]
In the present invention, any dosage form can be appropriately selected depending on the nature and progress of the target disease, the administration method, and the like.
[0089]
That is, the medicament of the present invention can be administered by injection (intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal, etc.), oral, transdermal, inhalation, etc., and should be formulated appropriately according to these administration methods. Can do. The dosage form that can be selected is not particularly limited. For example, injections (solutions, suspensions, emulsions, solid preparations for use), tablets, capsules, granules, powders, liquids, lipolytic agents, It can be widely selected from ointments, gels, powders for external use, sprays, inhalation powders and the like. In addition, in preparing these preparations, conventional excipients, stabilizers, binders, lubricants, emulsifiers, osmotic pressure adjusting agents, pH adjusting agents, other colorants, disintegrating agents, etc. Can be used.
[0090]
The compounding amount of the keratan sulfate oligosaccharide, which is an active ingredient in the medicament of the present invention, and the dose of the medicament of the present invention depend on the administration method, dosage form, purpose of use, specific symptoms of the patient, patient weight, etc. These are matters to be determined individually and are not particularly limited.
[0091]
In allergic diseases, antigens are induced from sensitized mast cells with IgE antibodies in the airways and lungs to release chemical mediators. Chemical mediators include histamine, eosinophil chemotactic factor, and SRS-A. As a result, dyspnea, cough, and seizures occur in asthma, and symptoms such as hemorrhagic pneumonia, edema, interstitial pneumonia, and vasculitis are observed in lung diseases. Rarely, granulomas are present, and the disease often later becomes pulmonary fibrosis. Allergic diseases are treated with antihistamines, steroids, and antiallergic agents (chemical transmitter release inhibitors). However, as side effects, weakness, malaise, headache, vomiting, head feeling, loss of appetite, etc. have been reported with antihistamines. In bronchial asthma, airway secretion is suppressed by anticholinergic action, making it difficult to produce sputum, so it is not used except in light cases. It is also contraindicated for those with glaucoma and difficulty urinating. On the other hand, the main action of steroids is considered to be an anti-inflammatory action, and usually large doses and continuous administration are required for the treatment of allergic diseases. Since steroids have serious side effects, they are generally used when they cannot be controlled by general treatment methods. Antiallergic drugs can also cause liver damage, hemorrhagic cystitis, and gastrointestinal disorders, requiring regular testing.
[0092]
As described above, particularly in the area of allergic diseases, an effective treatment method with fewer side effects is required. According to the medicament of the present invention, such a treatment method can be provided.
[0093]
In the medicament of the present invention (including the antiallergic agent of the present invention and the antiinflammatory agent of the present invention), preferred R in the general formula (13)18And Z are the same as described above.
[0094]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. However, the technical scope of the present invention should not be limited by these. The ratio of the solvent mixture in the examples is a volume ratio unless otherwise specified.
[0095]
[Example 1]
Synthesis diagram of O- (2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O-6-O-sulfo-β-D-galactopyranose disodium salt O- (2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O-6-O-sulfo-β-D by the procedure outlined in 2-4 -Galactopyranose disodium salt was synthesized. In addition, the method used in common at each synthesis step in the following examples is as follows. Silica gel column chromatography was performed using Kiesegel 60 (MERCK). Thin layer chromatography is performed using HPTLC-Fertigplatten Kieselgel 60 F254(MERCK) was used.1H-NMR spectrum and13The C-NMR spectrum was measured using JNM-EX-400 (manufactured by JEOL Ltd.). Measuring solvent CDClThree, CDThreeIn OD, tetramethylsilane and D2In O, t-butanol was used as an internal standard.
[0096]
(1) Synthesis of Compound 14 from Compound 2
Galactose synthon 2-9 was synthesized from galactose (compound 1) according to the synthesis route reported by Ito et al. (Agric. Biol. Chem., 50, 3227 (1986)). The synthesis | combination of the compounds 10-14 was performed as follows.
Hereinafter, the number after the substance name indicates the compound number in FIGS.
[0097]
(a) benzyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside (benzyl 2,4-di-O-acetyl-3,6-di- O-allyl-β-D-galactopyranoside) 10
In a nitrogen gas atmosphere, a reaction vessel containing molecular sieves 4A (30.0 g) previously dried was charged with benzyl alcohol (18.4 ml, 178.8 mmol) and compound 9 (2,4-di-O-acetyl-3,6-di-). -O-allyl-D-galactopyranosyl trichloroacetimidate (21.84 g, 44.67 mmol) After that, the mixture was stirred for 15 minutes under ice cooling. Trimethylsilyl trifluoromethanesulfonate (1.7 ml, 8.93 mmol) was added to the reaction mixture under ice cooling, followed by stirring at the same temperature for 4 hours. The reaction mixture was diluted with ethyl acetate, neutralized by adding triethylamine under ice-cooling, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: ethyl acetate = 6: 1) to give compound 10 (18.6
g, 96%).
[0098]
Rf: 0.51 (toluene: ethyl acetate = 3: 1)
Ctwenty threeH30O8                 MW: 434.47
400 MHz1H-NMR (CDClThree, TMS) δ:
2.037 (s, 3H, OAc) 2.146 (s, 3H, OAc) 4.445 (d, 1H, J = 7.8 Hz, H-1) 5.461 (d, 1H, J = 2.9 Hz, H-4) 5.715-5.914 ( m, 2H, CH2= CHx2) 7.200-7.400 (m, 5H, aromatic)
[0099]
(b) benzyl 3,6-di-O-allyl-β-D-galactopyranoside 11
Sodium methoxide (134 mg, 2.5 mmol) was added to a methanol solution (30 ml) of compound 10 (10.84 g, 24.9 mmol), and the mixture was stirred at room temperature for 48 hours under a nitrogen gas atmosphere. The reaction mixture was neutralized with acetic acid, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain Compound 11 (6.8 g, 78%).
[0100]
Rf: 0.27 (toluene: ethyl acetate = 2: 1)
C19H26O6                 MW: 350.40
[0101]
(c) Benzyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside (benzyl 3,6-di-O-allyl-2,4-di- O-benzyl-β-D-galactopyranoside) 12
Under a nitrogen gas atmosphere and ice cooling, benzyl bromide (11.4 ml, 95.5 mmol) was added to a mixture of 60% sodium hydride (3.8 g, 95.5 mmol), compound 11 (6.7 g, 19.1 mmol) and DMF 20 ml and stirred for 18 hours. did. Methanol was added to the reaction mixture under ice-cooling and stirred for 1 hour, and then the solvent was distilled off under reduced pressure. The residue was diluted with diethyl ether, washed successively with water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 10: 1 to 9: 1) to obtain Compound 12 (9.1 g, 90%).
[0102]
Rf: 0.27 (toluene: ethyl acetate = 10: 1)
C33H38O6                 MW: 530.63
400 MHz1H-NMR (CDClThree, TMS) δ:
3.424 (dd, 1H, J = 2.9,9.8 Hz, H-3) 3.829 (dd, 1H, J = 7.8,9.8 Hz, H-2) 3.861 (d, 1H, J = 2.9 Hz, H-4) 4.453 (d, 1H, J = 7.8 Hz, H-1) 5.805-5.984 (m, 2H, CH2= CHx2) 7.200-7.450 (m, 15H, aromatic)
[0103]
(d) benzyl 2,4-di-O-benzyl-β-D-galactopyranoside (benzyl 2,4-di-O-benzyl-β-D-galactopyranoside) 13
Activated iridium complex [Ir (CoD) (PMePh2)2PF6To a tetrahydrofuran solution (60 ml) of (287 mg, 0.34 mmol), a tetrahydrofuran solution (80 ml) of compound 12 (8.9 g, 16.7 mmol) was added at room temperature and stirred for 7 hours. Then, water (100 ml) and iodine (8.5 g, 67.1 mmol) were added and stirred for 15 hours. The reaction mixture was diluted with ethyl acetate, washed successively with saturated sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate, and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was recrystallized (ethanol-dichloromethane-diethyl ether) to obtain Compound 13 (7.4 g, 97%).
[0104]
Rf: 0.34 (n-hexane: ethyl acetate = 1: 1)
C27H30O6                 MW: 450.51
[0105]
(e) benzyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (benzyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D- galactopyranoside) 14
Under a nitrogen gas atmosphere, pivaloyl chloride (4.2 ml, 35.7 mmol) was added to a pyridine solution (50 ml) of compound 13 (7.3 g, 16.2 mmol) at 0 ° C. and stirred for 70 minutes. Methanol was added to the reaction mixture, and the mixture was stirred for 40 minutes. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (toluene: ethyl acetate = 6: 1) to obtain Compound 14 (7.81 g, 90%). Obtained.
[0106]
Rf: 0.45 (toluene: ethyl acetate = 6: 1)
C32H38O7                 MW: 534.62
400 MHz1H-NMR (CDClThree, TMS) δ:
1.202 (s, 9H, OPiv) 2.326 (bs, 1H, OH) 3.628-3.708 (m, 3H, H-2, H-3 and H-5) 3.786 (d, 1H, J = 3.9 Hz, H-4 ) 4.142 (dd, 1H, J = 6.4, 10.7 Hz, H-6) 4.352 (dd, 1H, J = 6.8,11.2 Hz, H-6 ') 4.448 (d, 1H, J = 7.3 Hz, H-1) ) 6.650-7.150 (m, 15H, aromatic)
[0107]
(2) Synthesis of Compound 24 from Compound 16
Glucosamine synthon 16-20 was synthesized from glucosamine (compound 15) according to the synthesis route reported by Nakano et al. (Tetrahedron Lett., 31, 1597 (1990)). The synthesis | combination of the compounds 21-24 was performed as follows.
[0108]
(f) p-methoxyphenyl 3,4-di-O-benzyl-2-deoxy-2-phthalimide-β-D-glucopyranoside (p-methoxyphenyl 3,4-di-O-benzyl-2-deoxy-2- phthalimido-β-D-glucopyranoside) 21
Under a nitrogen gas atmosphere, a borane-trimethylamine complex (75.0 g, 1028 mmol) and a solution of compound 20 (21.0 g, 35.4 mmol) in dichloromethane (200 ml) were placed in a reaction vessel containing molecular sieves 4A (60.0 g) previously dried. And diethyl ether (80 ml) was added and stirred for 15 minutes. The reaction vessel was cooled to 0 ° C., anhydrous aluminum chloride (20.0 g, 150 mmol) was added in small portions over 1.5 hours, and the mixture was stirred at 0 ° C. for 2.5 hours. The reaction mixture was filtered through celite, and the filtrate was diluted with ethyl acetate, washed successively with 1N aqueous sulfuric acid solution, water, saturated aqueous sodium hydrogen carbonate, and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain Compound 21 (14.5 g, 69%).
[0109]
Rf: 0.40 (toluene: ethyl acetate = 3: 1)
C35H33N1O8             MW: 595.62
400 MHz1H-NMR (CDClThree+ CDThreeOD, TMS) δ:
3.620-3.662 (m, 1H, H-5) 3.706 (s, 3H, OMe) 3.783-3.849 (m, 2H, H-4 and H-6) 3.939 (dd, 1H, J = 2.4, 12.2 Hz, H -6 ') 4.351 (dd, 1H, J = 8.3,10.7 Hz, H-2) 4.435 (dd, 1H, J = 8.3,10.7 Hz, H-3) 5.693 (d, 1H, J = 8.3 Hz, H -1) 6.650-7.900 (m, 18H, aromatic)
[0110]
(g) p-methoxyphenyl 6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimide-β-D-glucopyranoside (p-methoxyphenyl 6-O-acetyl-3,4- di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside) 22
Under a nitrogen gas atmosphere, acetic anhydride (200 ml) and DMAP (catalytic amount) were added to a pyridine solution (200 ml) of compound 21 (10.5 g, 17.6 mmol), and the mixture was stirred for 20 hours. Ethanol was added to the reaction mixture, and the mixture was stirred for 20 minutes. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain Compound 22 (9.6 g, 85%). Obtained.
[0111]
Rf: 0.51 (toluene: ethyl acetate = 4: 1)
C37H35N1O9             MW: 637.66
400 MHz1H-NMR (CDClThree, TMS) δ:
2.062 (s, 3H, OAc) 3.680 (s, 3H, OMe) 3.759-3.817 (m, 2H, H-4 and H-5) 4.296 (dd, 1H, J = 4.4, 12.2 Hz, H-6) 5.631 (d, 1H, J = 7.8 Hz, H-1) 6.650-7.900 (m, 18H, aromatic)
[0112]
(h) 6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimide-D-glucopyranose (6-O-acetyl-3,4-di-O-benzyl-2- deoxy-2-phthalimido-D-glucopyranose) 23
Compound 22 (9.0 g, 14.1 mmol) was dissolved in acetonitrile: water (4: 1; 400 ml), ceric ammonium nitrate (20.1 g, 36.7 mmol) was added, and the mixture was vigorously stirred at room temperature for 40 minutes. The reaction mixture was diluted with ethyl acetate, washed successively with water, saturated aqueous sodium hydrogen carbonate, and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: ethyl acetate = 2.5: 1) to obtain Compound 23 (6.1 g, 81%).
[0113]
Rf: 0.23 (toluene: ethyl acetate = 2: 1)
C30H29N1O8             MW: 531.54
400 MHz1H-NMR (CDClThree+ D2O, TMS) δ:
2.074 (s, 3H, OAc) 3.680 (t, 3H, J = 9.3 Hz, H-4) 3.739-3.772 (m, 1H, H-5) 4.100 (dd, 1H, J = 8.8,10.8 Hz, H- 2) 4.240 (dd, 1H, J = 3.9,11.2 Hz, H-6) 5.386 (d, 1H, J = 8.3 Hz, H-1) 6.650-7.900 (m, 14H, aromatic)
[0114]
(i) 6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimide-β-D-glucopyranosyl fluoride (6-O-acetyl-3,4-di- O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl fluoride) 24
Under a nitrogen gas atmosphere, diethylaminosulfur trifluoride (5.8 ml, 43.9 mmol) was added to a 1,2-dichloroethane solution (50 ml) of compound 23 (5.95 g, 11.2 mmol) under ice cooling, and the mixture was stirred for 2 hours. The reaction mixture was diluted with ethyl acetate, washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain Compound 24 (5.9 g, 99%).
[0115]
Rf: 0.68 (toluene: ethyl acetate = 2: 1)
C30H28N1O7F1             MW: 533.53
400 MHz1H-NMR (CDClThree, TMS) δ:
2.097 (s, 3H, OAc) 3.859 (dd, 1H, J = 8.3,9.8 Hz, H-4) 3.800-3.840 (m, 1H, H-5) 5.810 (d, 0.5H, J = 7.8 Hz, H -1β) 5.943 (d, 0.5H, J = 7.8 Hz, H-1β) 6.800-7.800 (m, 14H, aromatic)
[0116]
(3) Synthesis of Compound 28 from Compound 14 and Compound 24
The synthesis | combination of the compounds 25-28 was performed as follows.
[0117]
(j) Benzyl O- (6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimide-β-D-glucopyranosyl)-(1 → 3) -O-2,4- Di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (benzyl O- (6-O-acetyl-3,4-di-O-benzyl-2-deoxy-2-phthalimido-β -D-glucopyranosyl)-(1 → 3) -O-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside) 25
Under a nitrogen gas atmosphere, silver triflate (7.23 g, 28.2 mmol), hafnocene dichloride (5.4 g, 14.1 mmol) and 1,2-dichloroethane were placed in a reaction vessel containing molecular sieves 4A (20.0 g) previously dried. (20 ml) was added, followed by stirring for 20 minutes under ice cooling. The reaction vessel was cooled to -23 ° C, and a 1,2-dichloroethane solution (45 ml) of compound 24 (5.8 g, 10.8 mmol) and compound 14 (5.4 g, 10.0 mmol) was added, followed by stirring at -23 ° C for 1.5 hours. did. The reaction mixture was diluted with ethyl acetate, triethylamine was added under ice-cooling, the mixture was stirred for 20 min, and filtered through celite. The filtrate was diluted with ethyl acetate, washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: ethyl acetate = 9: 1) and recrystallized to obtain Compound 25 (9.3 g, 82%).
[0118]
Rf: 0.39 (toluene: ethyl acetate = 8: 1)
C62H65N1O14              MW: 1048.15
400 MHz1H-NMR (CDClThree, TMS) δ:
1.173 (s, 9H, OPiv) 1.986 (s, 3H, OAc) 3.859 (bd, 1H, J = 2.5 Hz, H-4) 4.063 (dd, 1H, J = 5.9, 11.2 Hz) 5.454 (d, 1H, J = 8.3 Hz, H-1) 6.800-7.800 (m, 24H, aromatic)
[0119]
(k) Benzyl O- (2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1 → 3) -O-2,4-di-O-benzyl- β-D-galactopyranoside (benzyl O- (2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1 → 3) -O-2,4- di-O-benzyl-β-D-galactopyranoside) 26
Ethylenediamine (170 ml) was added to a 1-butanol solution (200 ml) of compound 25 (8.0 g, 7.6 mmol), and the mixture was stirred at 98 ° C. for 46 hours. The solvent of the reaction mixture was distilled off under reduced pressure, toluene and methanol were added to the residue, and the solvent was distilled off under reduced pressure. The residue was dissolved in pyridine (200 ml), DMAP (catalytic amount) and acetic anhydride (150 ml) were added, and the mixture was stirred at room temperature for 2 days. The solvent of the reaction mixture was distilled off and azeotroped with toluene and ethanol. The obtained residue was purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain a mixture of two components (6.84 g). Further, sodium methoxide (769 mg, 14.3 mmol) was added to a methanol solution (100 ml) of this mixture, followed by stirring at room temperature for 60 hours in a nitrogen gas atmosphere. After neutralization with Amberlyst 15 and filtration, the filtrate was evaporated under reduced pressure. The obtained residue was recrystallized (dichloromethane-isopropyl ether) to obtain Compound 26 (6.0 g, 94%).
[0120]
Rf: 0.33 (toluene: ethyl acetate = 1: 3)
C49H55N1O11              MW: 833.94
400 MHz1H-NMR (CDClThree+ CDThreeOD, TMS) δ:
1.557 (s, 3H, NAc) 4.438 (d, 1H, J = 7.3 Hz, H-1) 4.784 (d, 1H, J = 8.3 Hz, H-1) 7.200-7.450 (m, 20H, aromatic)
100 MHz13C-NMR (CDClThree+ CDThreeOD, TMS) δ: 22.92 (Me-CO) 61.44, 61.64 (C-6 x2) 101.73 (C-1), 102.60 (C-1) 170.29 (Me-CO)
[0121]
(l) Benzyl O- (2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O-2,4- Di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt (benzyl O- (2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O- sulfo-β-D-glucopyranosyl)-(1 → 3) -O-2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt) 27
Under a nitrogen gas atmosphere, a mixture of compound 26 (212.5 mg, 0.255 mmol) and sulfur trioxide triethylamine complex (184.7 mg, 1.02 mmol) was dissolved in DMF (1.0 ml) and stirred at 50 ° C. for 1 hour. The reaction solution was directly purified by Sephadex LH-20 (chloroform: methanol = 1: 1), and the sugar fraction was concentrated. The obtained residue was dissolved in methanol (4 ml), and then Dowex 50 (Na+, 4 g) was added and stirred for 12 hours to convert the counter cation to sodium. Further, the obtained residue was purified by silica gel column chromatography (chloroform: methanol = 4: 1) and then purified by Sephadex LH-20 (chloroform: methanol = 1: 1) for the purpose of removing silica gel. 27 (252 mg, 95%) was obtained.
[0122]
Rf: 0.53 (chloroform: methanol = 3: 1)
C49H53N1O17S2Na2            MW: 1038.03
400 MHz1H-NMR (CDClThree+ CDThreeOD, TMS) δ:
1.621 (s, 3H, NAc) 7.200-7.450 (m, 20H, aromatic)
100 MHz13C-NMR (CDClThree+ CDThreeOD, TMS) δ:
22.14 (Me-CO) 66.25, 66.61 (C-6 x2) 102.04 (C-1 x2) 170.98 (Me-CO)
[0123]
(m) O- (2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O-6-O-sulfo-β-D-galactopyranose disodium salt (O- (2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O-6-O-sulfo-β-D-galactopyranose disodium salt) 28
20% palladium hydroxide on carbon (268 mg) was added to a solution of compound 27 (236.8 mg, 0.228 mmol) in methanol-water (2: 1, 6 ml), the reaction system was replaced with hydrogen, and the mixture was stirred at room temperature for 17 hours. did. The reaction mixture was filtered through celite, the residue was washed with water, the filtrate and the washing solution were combined, and the solvent was evaporated under reduced pressure. The obtained residue was purified with Sephadex G-25 (water) to obtain Compound 28 (131 mg, 98%).
[0124]
Rf: 0.28 (1-butanol: ethanol: water = 2: 2: 1)
C14Htwenty threeN1O17S2Na2            MW: 587.44
400 MHz1H-NMR (D2O, t-BuOH, at 50 ° C) δ:
2.029 (s, 3H, NAc) 4.580 (d, 0.55H, J = 8.3 Hz, H-1aβ) 4.727 (d, 0.55H, J = 8.3 Hz, H-1bβ) 4.742 (d, 0.45H, J = 8.3 Hz, H-1bα) 5.232 (d, 0.45H, J = 3.4 Hz, H-1aα)
100 MHz13C-NMR (D2O, t-BuOH, at 50 ° C) δ:
25.04 (Me-CO) 69.81 (C-6 b) 70.70 (C-6 aβ) 70.94 (C-6 aα) 95.21 (C-1aα) 99.21 (C-1aβ) 105.39 (C-1b) 177.74 (Me-CO)
[0125]
[Example 2]
O- (2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl)-(1 → 3) -O- (6-O-sulfo-β-D-galactopyranosyl)-( 1 → 4) Production of -O-2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranose trisodium salt (hereinafter referred to as G4L4 sodium salt)
NeuAc to Galβ1-4GlcNAc (6S) β1-3Gal (6S) β1-4GlcNAc (6S) (where Gal is galactose residue, GlcNAc is N-acetylglucosamine residue, NeuAc is N-acetylneuraminic acid residue 6S represents 6-O-sulfate ester, and ~ represents an α2,3 bond or an α2,6 bond; see WO96 / 16973) 1 g is dissolved in 10 ml of 0.1 M sulfuric acid and 22 at 50 ° C. The N-acetylneuraminic acid residue (sialic acid residue) was cleaved by incubating for a period of time. After adjusting the pH to 5 by adding a small amount of 1 M NaOH to the solution after the reaction, 1 ml of 0.5 M sodium acetate buffer pH 4.5 and 25 μl of 20% sodium azide were added. Galactose residues were cleaved by adding lactase (manufactured by Keiai Kasei) 5000 U and incubating at 37 ° C. for 22 hours. The reaction solution was diluted 5-fold with distilled water and applied to a Muromac column (Muromachi Chemical Industries) (2.5 × 24 cm) equilibrated with 1 M NaCl. A salt concentration gradient from 1 M NaCl (500 ml) to 2.5 M NaCl (500 ml) was loaded onto the column, and the eluate was collected in 5 ml portions. The elution fraction was analyzed by capillary electrophoresis, and the elution position of G4L4 was confirmed. Fractions containing G4L4 were collected and concentrated to about 10 ml on a rotary evaporator. The concentrated solution was applied to a Cellulofine GCL25sf column (Seikagaku Corporation) (3 × 60 cm) equilibrated with distilled water and eluted with distilled water. The elution fractions collected every 10 ml were analyzed by capillary electrophoresis, and the elution position of G4L4 was confirmed. Fractions containing G4L4 were collected and concentrated to about 20 ml on a rotary evaporator. Endotoxin was removed by filtration through an ultrafiltration membrane with a molecular weight cut of 10,000, and then lyophilized to obtain the final sample.
[0126]
The final sample showed a single peak on capillary electrophoresis. As a result of measuring hexose content and sulfuric acid content, 0.84 and 0.91 were obtained for theoretical value 1, respectively.
[0127]
Further, as a result of subjecting the final sample to high performance liquid chromatography under the following conditions, a single peak was observed at a retention time of 16.4 minutes.
[0128]
Column: YMC-Pack PolyamineII (4.6 × 250 mm) (manufactured by YMC Co., Ltd.)
Column temperature: 35 ° C
Eluent: 150 mM sodium dihydrogen phosphate
Flow rate: 1 ml / min
Measurement wavelength: 210 nm
Sample: 10 mg / ml G4L4 (final sample)
[0129]
The results of NMR measurement of the final sample are shown below.
[0130]
400 MHz1H-NMR (D2O, t-BuOH, at 22.9 ° C) δ:
2.024 (s, 3H, NAc) 2.030 (s, 3H, NAc) 4.526 (d, 1H, J1,2= 7.8 Hz, H-1b) 4.699 (d, 1H, J1,2= 8.8 Hz, H-1c) 4.729 (d, 0.4H, J1,2= 7.8 Hz, H-1aβ) 5.211 (d, 0.6H, J1,2= 2.5 Hz, H-1aα)
100 MHz13C-NMR (D2O, t-BuOH, at 26.0 ° C) δ:
24.74 (NHCOCHThree), 25.05 (NHCOCHThree), 69.62 (C-6a or b or c), 69.77 (C-6b or c or a), 70.57 (C-6c or a or b), 93.31 (C-1aα), 97.82 (C-1aβ), 105.80 (C-1b or c), 105.91 (C-1c or b)
[0131]
[Example 3]
2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranosyl- (1 → 1) -2,3 Of 2-di-O-tetradecyl-sn-glycerol disodium salt
According to the procedure outlined in FIG. 5, 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranosyl- (1 → 1) -2,3-Di-O-tetradecyl-sn-glycerol disodium salt was synthesized.
The number after the substance name indicates the number of the compound in FIG.
[0132]
(a) 2,4-Di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn- Glycerol (2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol) 3
2,3-di-O-tetradecyl-sn-glycerol (500 mg, 1.03 mmol), cyclopentadiene hafnonium dichloride (782 mg, 2.68 mmol), silver triflate (1.06 g, 5.36 mmol), molecular sieve 4A (1.8 g) was suspended in 1,2-dichloroethane (3.0 ml), stirred at room temperature under an argon gas stream, cooled to −15 ° C., compound 1 (536 mg, 1.55 mmol) was added, and the mixture was stirred for 2.5 hours. The reaction mixture was neutralized with triethylamine, diluted with ethyl acetate (AcOEt), filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 3 (716.7 mg, 85.8%).
[0133]
Rf 0.58 (Toluene: AcOEt = 6: 1)
C47H85OTen     MW: 810.179
1H-NMR (CDClThree) δ:
5.887 (m, 1H, Allyl), 5.816 (m, 1H, Allyl), 5.500 (d, 1H, J = 2.4Hz, H-4), 5.108 (dd, 1H, J = 8.3, 9.9Hz, H-2 ), 4.474 (d, 1H, J = 8.3Hz, H-1), 2.165, 2.015 (2s, 6H, 2Ac), 0.912 (t, 6H, J = 6.3Hz, 2CHThree)
[0134]
(b) 3,6-Di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn- Glycerol (3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol) 5
Compound 3 (430 mg, 0.531 mmol) was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 4 mL), 1 N sodium hydroxide solution (0.8 mL) was added, and the mixture was stirred at room temperature for 1 day. Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was purified by silica gel column chromatography (toluene: AcOEt = 5: 2) to obtain Compound 4 (377.9 mg, 98.0%).
[Rf 0.43 (toluene: AcOEt = 2: 1)]
[0135]
Subsequently, Compound 4 (778 mg, 1.072 mmol) was dissolved in N, N-dimethylformamide (3 ml), and sodium hydride (308 mg, 6.99 mmol) was added and stirred at −15 ° C. under an argon gas stream. did. Subsequently, benzyl bromide (0.84 ml, 6.99 mmol) was added, and the mixture was stirred for 3 hours while gradually warming to room temperature. The reaction solution was neutralized with methanol, diluted with ethyl acetate, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 12: 1) to obtain Compound 5 (864 mg, 89%).
[0136]
Rf 0.67 (hexane: AcOEt = 6: 1)
C57H93O8    MW: 906.354
1H-NMR (CDClThree) δ:
5.845 (m, 1H, Allyl), 5.771 (m, 1H, Allyl), 4.859 (d, 1H, J = 11.7 Hz, Bn), 4.816 (d, 1H, J = 10.8 Hz, Bn), 4.665 (d, 1H, J = 10.7 Hz, Bn), 4.572 (d, 1H, J = 11.7 Hz, Bn), 4.272 (d, 1H, J = 7.3 Hz, H-1), 3.773 (d, 1H, J = 2.5 Hz , H-4), 3.660 (dd, 1H, J = 7.8, 9.8 Hz, H-2), 0.801 (t, 6H, J = 6.4 Hz, 2CHThree).
[0137]
(c) 2,4-Di-O-benzyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol (2,4-di-O- benzyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol) 6
Iridium complex (1,5-cyclooctadienebis (methyldiphenylphosphine) iridium hexafluorophosphate) (112 mg, 0.096 mmol) was suspended in tetrahydrofuran (5 mL), and H2The mixture was stirred and activated under a stream of air. Compound 5 (864 mg, 0.95 mmol) was dissolved in tetrahydrofuran (5 mL) and added to the solution. After stirring for 2 hours at room temperature under a stream of argon gas, iodine (484 mg), water (24.7 mL), tetrahydrofuran (15 mL) was added, and the mixture was further stirred at room temperature for 2 hours. The reaction solution was diluted with chloroform, and washed successively with saturated sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate, and saturated brine. The chloroform layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (toluene: EtOAc = 5: 2) to give compound 6 (686.6 mg, 87.1%). .
[0138]
Rf 0.32 (toluene: AcOEt = 2: 1)
C51H85O8    MW: 826.225
1H-NMR (CDClThree) δ:
4.991 (d, 1H, J = 11.2 Hz, Bn), 4.834 (d, 1H, J = 11.7 Hz, Bn), 4.658 (d, 2H, J = 11.2 Hz, 2Bn), 4.385 (d, 1H, J = 7.3 Hz, H-1), 3.778 (d, 1H, J = 2.4 Hz, H-4), 0.881 (t, 6H, J = 6.8 Hz, 2CHThree)
[0139]
(d) 2,4-Di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol (2, 4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol) 7
Compound 6 (687 mg, 0.831 mmol) is dissolved by adding pyridine (12 mL), and pivaloyl chloride (130 μL, 1.08 mmol) is added to the solution, followed by stirring at -5 ° C. for 1 hour, and further pivaloyl chloride. (130 μL, 1.08 mmol) was added, and the mixture was stirred at −5 ° C. for 1 hour. The reaction mixture was diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 7 (716.6 mg, 94.7%).
[0140]
Rf 0.57 (Toluene: AcOEt = 6: 1)
C56H93O9    MW: 910.342
1H-NMR (CDClThree) δ:
4.991 (d, 1H, J = 11.7 Hz, Bn), 4.855 (d, 1H, J = 11.7 Hz, Bn), 4.650 (d, 1H, J = 11.2 Hz, Bn), 4.646 (d, 1H, J = 11.7 Hz, Bn), 4.365 (d, 1H, J = 7.3 Hz, H-1), 4.302 (dd, 1H, J = 6.8, 11.8 Hz, H-6), 4.109 (dd, 1H, J = 6.4, 11.2 Hz, H-6 '), 3.775 (d, 1H, J = 2.4 Hz, H-4), 1.179 (s, 9H, piv), 0.879 (t, 6H, J = 6.8 Hz, 2CHThree)
[0141]
(e) 3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl- sn-glycerol (3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn- glycerol) 8
Compound 7 (10.8 mg, 11.9 μmol) was dissolved by adding pyridine (1 mL), acetic anhydride (0.5 mL) was added to the solution, and the mixture was stirred at room temperature for 1 hour. After azeotroping the solvent with toluene, the residue was separated by Sephadex LH-20 (CHClThree: MeOH = 1: 2) to obtain Compound 8 (11.3 mg, qu.).
[0142]
Rf 0.46 (Toluene: AcOEt = 8: 1)
C58H95OTen     MW: 952.379
1H-NMR (CDClThree) δ:
4.900 (dd, 1H, J = 3.4, 10.3 Hz, H-3), 4.882 (d, 1H, J = 11.7 Hz, Bn), 4.634 (d, 2H, J = 12.2 Hz, 2Bn), 4.543 (d, 1H, J = 11.2 Hz, Bn), 4.437 (d, 1H, J = 7.3 Hz, H-1), 4.299 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.087 (dd, 1H, J = 6.8, 11.2 Hz, H-6 '), 3.850 (d, 1H, J = 2.9 Hz, H-4), 3.765 (dd, 1H, J = 7.8, 10.3 Hz, H-2), 1.926 (s , 3H, Ac), 1.188 (s, 9H, piv), 0.881 (t, 6H, J = 6.8 Hz, 2CHThree)
[0143]
(f) 3,4-Di-O-benzyl-2-deoxy-6-O-levroyl-2-phthalimide-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-6 -O-Pivaloyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol (3,4-di-O-benzyl-2-deoxy-6- O-levloyl-2-phtalimido-β-D-gulcopyranosyl- (1 → 3) -2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl- (1 → 1) -2, 3-di-O-tetradecyl-sn-glycerol) 9
Compound 7 (685 mg, 0.752 mmol), cyclopentadiene hafnonium dichloride (571 mg, 1.96 mmol), silver triflate (771 g, 3.91 mmol), molecular sieve 4A (2.5 g) in 1,2-dichloroethane ( 10 ml), stirred at room temperature under an argon gas stream, cooled to −15 ° C., added with compound 2 (563 mg, 0.98 mmol), and stirred for 1 hour. The reaction mixture was neutralized with triethylamine, diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 9: 1) to obtain Compound 9 (1.01 g, 91.5%).
[0144]
Rf 0.44 (Toluene: AcOEt = 6: 1)
C89H124O17N MW: 1479.949
1H-NMR (CDClThree) δ:
5.461 (d, 1H, J = 8.3 Hz, H-1b), 4.941 (d, 1H, J = 11.2 Hz, Bn), 4.874 (d, 1H, J = 10.7 Hz, Bn), 4.789 (d, 1H, J = 11.7 Hz, Bn), 4.648 (d, 1H, J = 11.2 Hz, Bn), 4.536 (d, 1H, J = 11.7 Hz, Bn), 4.460 (d, 1H, J = 11.7 Hz, Bn), 4.414 (d, 2H, J = 11.7 Hz, 2Bn), 4.223 (d, 1H, J = 7.8 Hz, H-1a), 3.897 (d, 1H, J = 3.2 Hz, H-4a), 2.130 (s, 3H, CHThree), 1.153 (s, 9H, piv), 0.881 (t, 6H, J = 6.6 Hz, 2CHThree)
[0145]
(g) 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-β-D-galactopyrano Syl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol (2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-gulcopyranosyl- (1 → 3 ) -2,4-di-O-benzyl-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol) 10
Compound 9 (977.4 mg, 0.667 mmol) was suspended in ethanol (33.5 mL), hydrazine hydrate (3.35 mL) was added, and the mixture was stirred at 110 ° C. for 18 hours. The solvent was distilled off, and the resulting amino compound was dissolved in pyridine (6.0 mL), acetic anhydride (5.0 mL) was added and the mixture was stirred at room temperature for 17 hours, and then the solvent was evaporated. The residue was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 20.0 mL), sodium methoxide (108 mg, 2.0 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hr. The reaction solution was added to Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was subjected to silica gel column chromatography (toluene: acetone: CHClThree= 5: 2: 1), and Sephadex LH-20 (CHClThree: MeOH = 2: 3) to obtain Compound 10 (756 mg, 94.8%).
[0146]
Rf 0.18 (toluene: acetone: CHClThree= 6: 2: 1)
C73H110O13N MW: 1209.666
1H-NMR (CDClThree) δ:
4.823 (d, 1H, J = 8.3 Hz, H-1b), 4.354 (d, 1H, J = 6.8 Hz, H-1a), 1.497 (s, 3H, NHAc), 0.881 (t, 6H, J = 6.4 Hz, 2CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
173.06 (Me-CO), 105.51, 104.01 (C-1x2), 62.80, 62.51 (C-6x2)
[0147]
(h) 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-6 -O-sulfo-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol disodium salt (2-acetamido-3,4-di-O-benzyl -2-deoxy-6-O-sulfo-β-D-gulcopyranosyl- (1 → 3) -2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol disodium salt) 11
Compound 10 (200 mg, 0.165 mmol) was dissolved in N, N-dimethylformamide (1.5 mL) and (C2HFive)ThreeNSOThree(300 mg, 1.65 mmol) was added, and the mixture was stirred at 50 ° C. for 0.5 hr. The reaction solution was directly added to Sephadex LH-20 (CHClThree: MeOH = 2: 3). The solvent was distilled off to some extent, and water (2.0 mL) and Dowex-50 (Na+) Type was added, stirred for a whole day and night, filtered through Celite, and the filtrate was distilled off. The residue was added to Dowex-50 (Na+) Type column (CHClThree: MeOH: H2Purification at O = 5: 10: 3) gave Compound 11 (215 mg, 92.2%).
[0148]
Rf 0.38 (CHClThree: MeOH = 6: 1)
C73H108O19NS2Na2    MW: 1413.74
1H-NMR (CDClThree+ CDThreeOD) δ:
4.403 (d, 1H, J = 7.8 Hz, H-1a), 1.593 (s, 3H, NHAc), 0.889 (t, 6H, J = 6.4 Hz, 2CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
172.93 (Me-CO), 105.24, 104.01 (C-1x2), 68.13, 68.00 (C-6x2)
[0149]
(i) 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranosyl- (1 → 1)- 2,3-di-O-tetradecyl-sn-glycerol disodium salt (2-acetamido-2-deoxy-6-O-sulfo-β-D-gulcopyranosyl- (1 → 3) -6-O-sulfo-β -D-galactopyranosyl- (1 → 1) -2,3-di-O-tetradecyl-sn-glycerol disodium salt) 12
Compound 11 (200 mg, 0.141 mmol) is dissolved in a mixture of methanol and water (3: 1, 15 mL), palladium hydroxide-carbon (200 mg) is added, and the mixture is replaced with hydrogen gas for 4 hours at room temperature. Catalytic reduction was performed. The reaction solution was filtered through celite, and the filtrate was distilled off. The residue was separated by Sephadex LH-20 (CHClThree: MeOH: H2It refine | purified in the column of O = 5: 10: 3). Dowex-50 (Na+) Type column (CHClThree: MeOH: H2O = 1: 3: 1) and finally Sephadex LH-20 (CHClThree: MeOH: H2Re-column purification with O = 5: 10: 3) was performed to obtain Compound 12 (119.6 mg, 80.5%).
[0150]
Rf 0.52 (CHClThree: MeOH: H2(O = 12: 8: 1)
C45H84O19NS2Na2    MW: 1053.24
1H-NMR (DMSO + D2O) δ:
4.666 (d, 1H, J = 8.3 Hz, H-1b), 4.162 (d, 1H, J = 7.3 Hz, H-1a), 4.067 (b.dd, 1H, H-6b), 4.006-3.924 (b .dd, 1H, H-6a), 1.882 (s, 3H, NHAc), 0.861 (t, 6H, J = 6.8 Hz, 2CHThree)
13C-NMR (DMSO + D2O) δ:
171.32 (Me-CO), 103.49, 102.37 (C-1x2), 65.91, 65.85 (C-6x2)
[0151]
[Example 4]
Synthesis of octyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt
According to the procedure outlined in FIG. 6, octyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside The disodium salt was synthesized.
The number after the substance name indicates the compound number in FIG.
[0152]
(a) Octyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside (octyl 2,4-di-O-acetyl-3,6-di- O-allyl-β-D-galactopyranoside) 13
Octanol (300 mg, 2.30 mmol), cyclopentadiene hafnonium dichloride (1.75 g, 5.99 mmol), silver triflate (2.36 g, 12.0 mmol), molecular sieve 4A (2.3 g) in 1,2-dichloroethane (5.0 The mixture was suspended at room temperature under an argon gas stream, cooled to −15 ° C., compound 1 (1.2 g, 3.47 mmol) was added, and the mixture was stirred for 2.5 hours. The reaction mixture was neutralized with triethylamine, diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 13 (0.8 g, 76%).
[0153]
Figure 0004913272
Ctwenty fourH40O8    MW: 456.572
1H-NMR (CDClThree) δ:
5.855 (m, 1H, Allyl), 5.784 (m, 1H, Allyl), 5.472 (d, 1H, J = 3.4 Hz, H-4), 5.086 (dd, 1H, J = 7.8, 9.8 Hz, H-2 ), 4.394 (d, 1H, J = 7.8 Hz, H-1), 2.125, 2.066 (2s, 6H, 2Ac), 0.879 (t, 3H, J = 6.8 Hz, CHThree)
[0154]
(b) Octyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside (octyl 3,6-di-O-allyl-2,4-di- O-benzyl-β-D-galactopyranoside) 15
Compound 13 (0.8 g, 1.75 mmol) was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 5 mL), 1N-sodium hydroxide solution (1.0 mL) was added, and the mixture was stirred at room temperature for 1 day. Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was purified by silica gel column chromatography (toluene: AcOEt = 5: 2) to obtain Compound 14 (585 g, 89.7%).
[Rf 0.32 (toluene: AcOEt = 2: 1)]
[0155]
Subsequently, compound 14 (585 mg, 1.57 mmol) and N, N-dimethylformamide (3 ml) were dissolved, and sodium hydride (451 mg, 10.2 mmol) was added and stirred at −15 ° C. under an argon gas stream. . Subsequently, benzyl bromide (1.22 ml, 10.2 mmol) was added and stirred for 3 hours while gradually warming to room temperature. The reaction solution was neutralized with methanol, diluted with ethyl acetate, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 15: 1) to obtain Compound 15 (811 mg, 93.5%).
[0156]
Rf 0.79 (Hexane: AcOEt = 6: 1)
C34H48O6    MW: 552.747
1H-NMR (CDClThree) δ:
5.947 (m, 1H, Allyl), 5.849 (m, 1H, Allyl), 4.959 (d, 1H, J = 11.7 Hz, Bn), 4.915 (d, 1H, J = 10.7 Hz, Bn), 4.765 (d, 1H, J = 10.7 Hz, Bn), 4.660 (d, 1H, J = 11.7 Hz, Bn), 4.346 (d, 1H, J = 7.6 Hz, H-1), 0.887 (t, 3H, J = 6.4 Hz , CHThree)
[0157]
(c) Octyl 2,4-di-O-benzyl-β-D-galactopyranoside 16
Iridium complex (1,5-cyclooctadienebis (methyldiphenylphosphine) iridium hexafluorophosphate) (172 mg, 0.15 mmol) was suspended in tetrahydrofuran (5 mL), and H2The mixture was stirred and activated under a stream of air. Compound 15 (811 mg, 1.47 mmol) was dissolved in tetrahydrofuran (5 mL) and added to the solution. After stirring for 1 hour at room temperature under an argon gas stream, iodine (745 mg), water (38 mL), and tetrahydrofuran (15 mL) was added, and the mixture was further stirred at room temperature for 1 hour. The reaction solution was diluted with chloroform, and washed successively with saturated sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate, and saturated brine. The chloroform layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (toluene: EtOAc = 5: 2) to obtain Compound 16 (589 mg, 82.1%). .
[0158]
Rf 0.35 (toluene: AcOEt = 2: 1)
C28H40O6    MW: 472.618
1H-NMR (CDClThree) δ:
5.000 (d, 1H, J = 11.7 Hz, Bn), 4.843 (d, 1H, J = 11.7 Hz, Bn), 4.674 (d, 1H, J = 11.7 Hz, Bn), 4.662 (d, 1H, J = 11.7 Hz, Bn), 4.360 (d, 1H, J = 7.3 Hz, H-1), 3.776 (d, 1H, J = 2.0 Hz, H-4), 0.868 (t, 3H, J = 6.8 Hz, CHThree)
[0159]
(d) Octyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (octyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D- galactopyranoside) 17
Compound 16 (569 mg, 1.20 mmol) was dissolved by adding pyridine (17 mL), and pivaloyl chloride (188 μL, 1.57 mmol) was added to the solution, followed by stirring at −5 ° C. for 1 hour, and further pivaloyl. Chloride (188 μL, 1.57 mmol) was added and stirred at −5 ° C. for 1 hour. The reaction mixture was diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 17 (648 mg, 96.7%).
[0160]
Rf 0.56 (Toluene: AcOEt = 6: 1)
C33H48O7    MW: 556.735
1H-NMR (CDClThree) δ:
4.986 (d, 1H, J = 11.2 Hz, Bn), 4.838 (d, 1H, J = 11.7 Hz, Bn), 4.664 (d, 1H, J = 11.7 Hz, Bn), 4.653 (d, 1H, J = 11.7 Hz, Bn), 4.332 (d, 1H, J = 7.3 Hz, H-1), 4.316 (dd, 1H, J = 6.8, 11.7 Hz, H-6), 4.113 (dd, 1H, J = 6.7, 11.0 Hz, H-6 '), 3.772 (d, 1H, J = 2.4 Hz, H-4), 1.180 (s, 9H, piv), 0.867 (t, 3H, J = 6.8 Hz, CHThree)
[0161]
(e) Octyl 3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (octyl 3-O-acetyl-2,4-di-O- benzyl-6-O-pivaloyl-β-D-galactopyranoside) 18
Compound 17 (10 mg, 18.0 μmol) was dissolved by adding pyridine (1 mL), acetic anhydride (0.5 mL) was added to the solution, and the mixture was stirred at room temperature for 2 hours. After azeotroping the solvent with toluene, the residue was separated by Sephadex LH-20 (CHClThree: MeOH = 1: 2) to obtain Compound 18 (11 mg, qu.).
[0162]
Rf 0.58 (Toluene: AcOEt = 8: 1)
C35H50O8    MW: 598.772
1H-NMR (CDClThree) δ:
4.903 (dd, 1H, J = 3.2, 10.0 Hz, H-3), 4.883 (d, 1H, J = 11.7 Hz, Bn), 4.645 (d, 1H, J = 11.7 Hz, Bn), 4.638 (d, 1H, J = 11.7 Hz, Bn), 4.545 (d, 1H, J = 11.2 Hz, Bn), 4.405 (d, 1H, J = 7.3 Hz, H-1), 4.311 (dd, 1H, J = 6.8, 10.8 Hz, H-6), 4.087 (dd, 1H, J = 6.8, 10.7 Hz, H-6 '), 3.847 (d, 1H, J = 2.9 Hz, H-4), 3.769 (dd, 1H, J = 7.8, 10.3 Hz, H-2), 1.937 (s, 3H, Ac), 1.188 (s, 9H, piv), 0.870 (t, 3H, J = 6.8 Hz, CHThree)
[0163]
(f) Octyl 3,4-di-O-benzyl-2-deoxy-6-O-levroyl-2-phthalimide-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl- 6-O-Pivaloyl-β-D-galactopyranoside (octyl 3,4-di-O-benzyl-2-deoxy-6-O-levloyl-2-phtalimido-β-D-glucopyranosyl- (1 → 3 ) -2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside) 19
Compound 17 (624 mg, 1.12 mmol), cyclopentadiene hafnonium dichloride (850 mg, 2.91 mmol), silver triflate (1.15 g, 5.82 mmol), molecular sieve 4A (3.2 g) in 1,2-dichloroethane ( 10 ml), stirred at room temperature under a stream of argon gas, cooled to −15 ° C., added with compound 2 (838 mg, 1.46 mmol), and stirred for 1 hour. The reaction mixture was neutralized with triethylamine, diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 19 (1.03 g, 82.9%).
[0164]
Rf 0.47 (Toluene: AcOEt = 6: 1)
C66H79O15N MW: 1126.342
1H-NMR (CDClThree) δ:
5.475 (d, 1H, J = 8.3 Hz, H-1b), 4.189 (d, 1H, J = 7.8 Hz, H-1a), 3.874 (d, 1H, J = 2.4 Hz, H-4a), 2.133 ( s, 3H, CHThree), 1.153 (s, 9H, piv), 0.826 (t, 3H, J = 7.1 Hz, CHThree)
[0165]
(g) Octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-β-D-galactopila Noside (octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-β-D-galactopyranoside) 20
Compound 19 (1.0 g, 0.899 mmol) was suspended in ethanol (45 mL), hydrazine hydrate (4.5 mL) was added, and the mixture was stirred at 110 ° C. for 18 hours. The solvent was distilled off, and the resulting amino compound was dissolved in pyridine (5.0 mL), acetic anhydride (4.0 mL) was added, and the mixture was stirred at room temperature for 17 hours. The residue was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 20.0 mL), sodium methoxide (146 mg, 2.7 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hr. The reaction solution was added to Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was purified by silica gel column chromatography (toluene: acetone = 2.3: 1), and Sephadex LH-20 (CHClThree: MeOH = 2: 3) to obtain compound 20 (739 mg, 96%).
[0166]
Rf 0.49 (toluene: acetone = 3: 2)
C50H65O11N MW: 856.06
1H-NMR (CDClThree) δ:
4.840 (d, 1H, J = 8.3 Hz, H-1b), 4.329 (d, 1H, J = 6.8 Hz, H-1a), 1.515 (s, 3H, NHAc), 0.848 (t, 3H, J = 6.8 Hz, CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
173.17 (Me-CO), 105.32, 104.01 (C-1x2), 62.82, 62.55 (C-6x2)
[0167]
(h) Octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl- 6-O-sulfo-β-D-galactopyranoside disodium salt (octyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- ( 1 → 3) -2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt) 21
Compound 20 (150 mg, 0.175 mmol) was dissolved in N, N-dimethylformamide (1.5 mL) and (C2HFive)ThreeNSOThree(319 mg, 1.75 mmol) was added, and the mixture was stirred at 50 ° C. for 0.5 hr. The reaction solution was directly added to Sephadex LH-20 (CHClThree: MeOH = 2: 3). The solvent of the eluate is distilled off to some extent, and water (2.0 mL), Dowex-50 (Na+) Type was added, stirred for a whole day and night, filtered through Celite, and the filtrate was distilled off. The residue was added to Dowex-50 (Na+) Type column (CHClThree: MeOH: H2Purification at O = 5: 10: 3) gave Compound 21 (185 mg, 99.6%).
[0168]
Rf 0.23 (CHClThree: MeOH = 6: 1)
C50H63O17NS2Na2    MW: 1060.134
1H-NMR (CDClThree+ CDThreeOD) δ:
4.382 (d, 1H, J = 7.3 Hz, H-1a), 1.634 (s, 3H, NHAc), 0.854 (t, 3H, J = 6.8 Hz, CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
173.03 (Me-CO), 105.10, 103.99 (C-1x2), 68.18 (C-6x2)
[0169]
(i) Octyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt (octyl 2 -acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt) 22
Compound 21 (170 mg, 0.160 mmol) was dissolved in a mixture of methanol and water (3: 1, 15 mL), palladium hydroxide-carbon (180 mg) was added, and the mixture was replaced with hydrogen gas. Catalytic reduction was performed. The reaction solution was filtered through celite, and the filtrate was distilled off. The residue was separated by Sephadex LH-20 (CHClThree: MeOH: H2It refine | purified in the column of O = 5: 10: 3). Dowex-50 (Na+) Type column (CHClThree: MeOH: H2O = 1: 3: 1) and finally Sephadex LH-20 (CHClThree: MeOH: H2Re-column purification with O = 5: 10: 3) was performed to obtain Compound 22 (101.4 mg, 90.6%).
[0170]
Rf 0.30 (CHClThree: MeOH: H2(O = 12: 6: 1)
Ctwenty twoH39O17NS2Na2    MW: 699.636
1H-NMR (DMSO + D2O) δ:
4.655 (d, 1H, J = 8.3 Hz, H-1b), 4.136 (d, 1H, J = 7.8 Hz, H-1a), 4.053 (dd, 1H, J = 2.0, 11.7 Hz, H-6b), 3.956-3.851 (b.dd, 1H, H-6a), 1.869 (s, 3H, NHAc), 0.861 (t, 3H, J = 7.1 Hz, CHThree)
13C-NMR (DMSO + D2O) δ:
171.19 (Me-CO), 102.98, 102.30 (C-1x2), 66.09, 65.87 (C-6x2)
[0171]
[Example 5]
Cholestanyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt, and cholestanyl 2-acetamide Synthesis of 2-deoxy-β-D-glucopyranosyl- (1 → 3) -β-D-galactopyranoside
According to the procedure outlined in FIG. 7, cholestanyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside The disodium salt and cholestanyl 2-acetamido-2-deoxy-β-D-glucopyranosyl- (1 → 3) -β-D-galactopyranoside were synthesized.
The number after the substance name indicates the number of the compound in FIG.
[0172]
(a) Cholestanyl 2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranoside (cholestanyl 2,4-di-O-acetyl-3,6-di- O-allyl-β-D-galactopyranoside) 23
Cholestanol (700 mg, 1.80 mmol), cyclopentadiene hafnonium dichloride (1.37 g, 4.68 mmol), silver triflate (1.85 g, 9.37 mmol), molecular sieve 4A (2.7 g) in 1,2-dichloroethane ( 7.0 ml) and stirred at room temperature under a stream of argon gas, cooled to −10 ° C., added with compound 1 (936 mg, 2.70 mmol), and stirred for 2.5 hours. The reaction solution was neutralized by adding triethylamine, diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 23 (970 mg, 75.3%).
[0173]
Rf 0.57 (Toluene: AcOEt = 6: 1)
C43H70O8    MW: 715.018
1H-NMR (CDClThree) δ:
5.880 (m, 1H, Allyl), 5.802 (m, 1H, Allyl), 5.480 (d, 1H, J = 3.4 Hz, H-4), 5.072 (dd, 1H, J = 8.3, 10.3 Hz, H-2 ), 4.510 (d, 1H, J = 8.3 Hz, H-1), 2.150, 2.095 (2s, 6H, 2Ac), 0.922 (d, 3H, J = 6.4 Hz, CHThree), 0.890 (d, 3H, J = 6.8 Hz, CHThree), 0.885 (d, 3H, J = 6.4 Hz, CHThree), 0.800, 0.667 (2s, 6H, 2CHThree)
[0174]
(b) Cholestanyl 3,6-di-O-allyl-2,4-di-O-benzyl-β-D-galactopyranoside (cholestanyl 3,6-di-O-allyl-2,4-di- O-benzyl-β-D-galactopyranoside) 25
Compound 23 (0.98 g, 1.37 mmol) was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 10 mL), 1 N sodium hydroxide solution (1.0 mL) was added, and the mixture was stirred at room temperature for 1 day. Metoxide (74 mg, 1.37 mmol) was added and stirred at room temperature for 2 hours. The reaction solution was added to Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was purified by silica gel column chromatography (toluene: AcOEt = 5: 2) to obtain Compound 24 (0.83 g, 96%).
[Rf 0.33 (toluene: AcOEt = 2: 1)]
[0175]
Subsequently, Compound 24 (838 mg, 1.32 mmol) was dissolved in N, N-dimethylformamide (8 ml), and sodium hydride (378 mg, 8.58 mmol) was added and stirred at 0 ° C. under an argon gas stream. . Subsequently, benzyl bromide (1.02 ml, 8.58 mmol) was added, and the mixture was stirred for 3 hours while gradually warming to room temperature. Further, sodium hydride (378 mg, 8.58 mmol) and benzyl bromide (1.02 ml, 8.58 mmol) were added and stirred for 18 hours. The reaction solution was neutralized with methanol, diluted with ethyl acetate, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane: AcOEt = 13: 1) to obtain Compound 25 (0.94 g, 88.1%).
[0176]
Rf 0.72 (Hexane: AcOEt = 6: 1)
C53H78O6    MW: 811.193
1H-NMR (CDClThree) δ:
5.935 (m, 1H, Allyl), 5.836 (m, 1H, Allyl), 4.931 (d, 1H, J = 11.7 Hz, Bn), 4.903 (d, 1H, J = 10.7 Hz, Bn), 4.739 (d, 1H, J = 10.7 Hz, Bn), 4.639 (d, 1H, J = 11.7 Hz, Bn), 4.438 (d, 1H, J = 7.8 Hz, H-1), 3.829 (d, 1H, J = 2.9 Hz , H-4), 3.719 (dd, 1H, J = 7.8, 9.8 Hz, H-2), 3.397 (dd, 1H, J = 2.9, 9.8 Hz, H-3), 0.893 (d, 3H, J = 6.4 Hz, CHThree), 0.862 (d, 3H, J = 6.8 Hz, CHThree), 0.858 (d, 3H, J = 6.4 Hz, CHThree), 0.799, 0.641 (2s, 6H, 2CHThree)
[0177]
(c) Cholestanyl 2,4-di-O-benzyl-β-D-galactopyranoside 26
Iridium complex (1,5-cyclooctadienebis (methyldiphenylphosphine) iridium hexafluorophosphate) (136 mg, 0.12 mmol) was suspended in tetrahydrofuran (5 mL), and H2The mixture was stirred and activated under a stream of air. Compound 25 (940 mg, 1.16 mmol) dissolved in tetrahydrofuran (5 mL) was added to the solution, stirred for 1 hour at room temperature under a stream of argon gas, iodine (588 mg), water (30 mL) and tetrahydrofuran ( 15 mL) was added and the mixture was further stirred at room temperature for 1.5 hours. The reaction solution was diluted with chloroform, and washed successively with saturated sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate, and saturated brine. The chloroform layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (toluene: acetone = 6: 1) to obtain Compound 26 (748 mg, 88.2%). .
[0178]
Rf 0.49 (toluene: acetone = 4: 1)
C47H70O6    MW: 731.064
1H-NMR (CDClThree) δ:
5.006 (d, 1H, J = 11.2 Hz, Bn), 4.823 (d, 1H, J = 11.2 Hz, Bn), 4.678 (d, 1H, J = 10.7 Hz, Bn), 4.650 (d, 1H, J = 11.7 Hz, Bn), 4.476 (d, 1H, J = 6.8 Hz, H-1)
[0179]
(d) Cholestanyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (cholestanyl 2,4-di-O-benzyl-6-O-pivaloyl-β-D- galactopyranoside) 27
Compound 26 (647 mg, 0.885 mmol) was dissolved in pyridine (13 mL), pivaloyl chloride (138 μL, 1.15 mmol) was added to the solution, and the mixture was stirred at -5 ° C. to 0 ° C. for 0.5 hour, and further pivalo Ilchloride (138 µL, 1.15 mmol) was added and stirred at -5 ° C to 0 ° C for 1 hour. The reaction mixture was diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 27 (663 mg, 91.9%).
[0180]
Rf 0.56 (Toluene: AcOEt = 6: 1)
C52H78O7    MW: 815.181
1H-NMR (CDClThree) δ:
4.993 (d, 1H, J = 11.7 Hz, Bn), 4.821 (d, 1H, J = 11.2 Hz, Bn), 4.667 (d, 1H, J = 11.2 Hz, Bn), 4.642 (d, 1H, J = 11.7 Hz, Bn), 4.450 (d, 1H, J = 7.3 Hz, H-1), 4.293 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.083 (dd, 1H, J = 6.3, 10.8 Hz, H-6 '), 3.746 (d, 1H, J = 2.0 Hz, H-4), 1.176 (s, 9H, piv)
[0181]
(e) Cholestanyl 3-O-acetyl-2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside (cholestanyl 3-O-acetyl-2,4-di-O- benzyl-6-O-pivaloyl-β-D-galactopyranoside) 28
Compound 27 (10 mg, 12.3 μmol) was dissolved in pyridine (1 mL), and acetic anhydride (0.5 mL) was added to the solution, followed by stirring at room temperature for 1 hour. After azeotroping the solvent with toluene, the residue was separated by Sephadex LH-20 (CHClThree: MeOH = 1: 2) to obtain Compound 28 (9 mg, 85.4%).
[0182]
Rf 0.65 (Toluene: AcOEt = 8: 1)
C54H80O8    MW: 857.218
1H-NMR (CDClThree) δ:
4.889 (dd, 1H, J = 2.7, 10.5 Hz, H-3), 4.885 (d, 1H, J = 11.2 Hz, Bn), 4.647 (d, 1H, J = 11.7 Hz, Bn), 4.625 (d, 1H, J = 11.2 Hz, Bn), 4.533 (d, 1H, J = 11.7 Hz, Bn), 4.518 (d, 1H, J = 7.3 Hz, H-1), 4.289 (dd, 1H, J = 6.8, 11.2 Hz, H-6), 4.061 (dd, 1H, J = 6.3, 11.2 Hz, H-6 '), 3.766 (d, 1H, J = 2.4 Hz, H-4), 3.753 (dd, 1H, J = 7.3, 10.3 Hz, H-2), 1.924 (s, 3H, Ac), 1.185 (s, 9H, piv)
[0183]
(f) Cholestanyl 3,4-di-O-benzyl-2-deoxy-6-O-levroyl-2-phthalimide-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl- 6-O-Pivaloyl-β-D-galactopyranoside (cholestanyl 3,4-di-O-benzyl-2-deoxy-6-O-levloyl-2-phtalimido-β-D-glucopyranosyl- (1 → 3 ) -2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranoside) 29
Compound 27 (737 mg, 0.904 mmol), cyclopentadiene hafnonium dichloride (686 mg, 2.35 mmol), silver triflate (927 mg, 4.70 mmol) and molecular sieve 4A (2.5 g) were added to 1,2-dichloroethane ( 10 ml), stirred at room temperature under an argon gas stream, cooled to −15 ° C., added with compound 2 (676.5 mg, 1.18 mmol), and stirred for 1 hour. The reaction solution was neutralized by adding triethylamine, diluted with ethyl acetate, filtered through celite, and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The ethyl acetate layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (toluene: AcOEt = 10: 1) to obtain Compound 29 (982.1 mg, 79.3%).
[0184]
Rf 0.58 (Toluene: AcOEt = 6: 1)
0.07 (hexane: AcOEt = 6: 1)
C85H109O15N MW: 1384.788
1H-NMR (CDClThree) δ:
5.475 (d, 1H, J = 8.3 Hz, H-1b), 4.453 (d, 1H, J = 7.8 Hz, H-1a), 3.852 (d, 1H, J = 2.9 Hz, H-4a), 2.133 ( s, 3H, CHThree), 1.146 (s, 9H, piv)
[0185]
(g) Cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-β-D-galactopila Noside (cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl-β-D-galactopyranoside) 30
Compound 29 (668 mg, 0.488 mmol) was suspended in ethanol (24.5 mL), hydrazine hydrate (2.45 mL) was added, and the mixture was stirred at 110 ° C. for 18 hours. The solvent was distilled off, and the resulting amino compound was dissolved in pyridine (5.0 mL), acetic anhydride (4.0 mL) was added, and the mixture was stirred at room temperature for 17 hours. The residue was dissolved in a mixture of methanol and tetrahydrofuran (1: 1, 10.0 mL), sodium methoxide (78.8 mg, 1.46 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hr. The reaction solution was added to Amberlyst 15E (H+) Type and neutralized with celite, and then the filtrate was distilled off. The residue was purified by silica gel column chromatography (toluene: acetone = 3: 1), and Sephadex LH-20 (CHClThree: MeOH = 2: 3) to obtain Compound 30 (534.2 mg, 99.6%).
[0186]
Rf 0.34 (toluene: acetone = 3: 1)
C69H95O11N MW: 1114.506
1H-NMR (CDClThree) δ:
5.044 (d, 1H, J = 12.2 Hz, NH), 4.875 (d, 1H, J = 11.2 Hz, Bn), 4.851 (d, 1H, J = 7.8 Hz, H-1b), 4.809 (d, 1H, J = 11.2 Hz, Bn), 4.740 (d, 1H, J = 11.7 Hz, Bn), 4.696 (d, 1H, J = 11.7 Hz, Bn), 4.672 (d, 1H, J = 12.2 Hz, Bn), 4.642 (d, 1H, J = 10.7 Hz, Bn), 4.571 (d, 1H, J = 11.2 Hz, Bn), 4.562 (d, 1H, J = 12.2 Hz, Bn), 4.439 (d, 1H, J = 6.4 Hz, H-1a), 1.524 (s, 3H, NHAc), 0.892 (d, 3H, J = 6.3 Hz, CHThree), 0.860 (d, 3H, J = 6.8 Hz, CHThree), 0.856 (d, 3H, J = 6.8 Hz, CHThree), 0.760, 0.635 (2s, 6H, 2CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
173.00 (Me-CO), 103.79, 103.06 (C-1x2), 62.77, 62.40 (C-6x2)
[0187]
(h) Cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -2,4-di-O-benzyl- 6-O-sulfo-β-D-galactopyranoside disodium salt (cholestanyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- ( 1 → 3) -2,4-di-O-benzyl-6-O-sulfo-β-D-galactopyranoside disodium salt) 31
Compound 30 (150 mg, 0.136 mmol) was dissolved in N, N-dimethylformamide (1.5 mL) and (C2HFive)ThreeNSOThree(247 mg, 1.36 mmol) was added, and the mixture was stirred at 50 ° C. for 0.5 hr. The reaction solution was directly added to Sephadex LH-20 (CHClThree: MeOH = 2: 3). The solvent of the eluate is distilled off to some extent, and water (2.0 mL), Dowex-50 (Na+) Type was added, stirred for a whole day and night, filtered through Celite, and the filtrate was distilled off. The residue was added to Dowex-50 (Na+) Type column (CHClThree: MeOH: H2Purification at O = 5: 10: 3) gave Compound 31 (175 mg, 97.3%).
[0188]
Rf 0.22 (CHClThree: MeOH = 8: 1)
C69H93O17NS2Na2    MW: 1318.58
1H-NMR (CDThreeOD) δ:
4.523 (d, 1H, J = 7.3 Hz, H-1a), 4.384 (dd, 1H, J = 2.0, 10.8 Hz, H-6b), 4.290 (dd, 1H, J = 4.4, 10.7 Hz, H-6a ), 1.645 (s, 3H, NHAc), 0.910 (d, 3H, J = 6.8 Hz, CHThree), 0.873 (d, 3H, J = 6.4 Hz, CHThree), 0.868 (d, 3H, J = 6.8 Hz, CHThree), 0.730, 0.658 (2s, 6H, 2CHThree)
13C-NMR (CDClThree+ CDThreeOD) δ:
102.97, 102.55 (C-1x2), 68.47, 67.22 (C-6x2)
[0189]
(i) Cholestanyl 2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt (cholestanyl 2 -acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranosyl- (1 → 3) -6-O-sulfo-β-D-galactopyranoside disodium salt) 32
Compound 31 (170 mg, 0.129 mmol) was dissolved in a mixture of methanol and water (3: 1, 15 mL), palladium hydroxide-carbon (180 mg) was added, and the mixture was replaced with hydrogen gas. Catalytic reduction was performed. The reaction solution was filtered through celite, and the filtrate was distilled off. The residue was separated by Sephadex LH-20 (CHClThree: MeOH: H2It refine | purified in the column of O = 5: 10: 3). Dowex-50 (Na+) Type column (CHClThree: MeOH: H2O = 1: 3: 1) and finally Sephadex LH-20 (CHClThree: MeOH: H2Re-column purification with O = 5: 10: 3) was performed to obtain Compound 32 (109.4 mg, 88.6%).
[0190]
Rf 0.47 (CHClThree: MeOH: H2(O = 12: 8: 1)
C41H69O17NS2Na2    MW: 958.08
1H-NMR (CDClThree) δ:
4.727 (d, 1H, J = 7.8 Hz, H-1b), 4.310 (d, 1H, J = 7.8 Hz, H-1a), 4.093 (b.dd, 1H, H-6b), 4.010-3.924 (b .dd, 1H, H-6a), 1.926 (s, 3H, NHAc), 0.945 (d, 3H, J = 6.4 Hz, CHThree), 0.909 (d, 3H, J = 6.4 Hz, CHThree), 0.905 (d, 3H, J = 6.8 Hz, CHThree), 0.827, 0.689 (2s, 6H, 2CHThree)
13C-NMR (DMSO + D2O) δ:
170.88 (Me-CO), 102.21, 100.73 (C-1x2), 65.85, 65.65 (C-6x2)
[0191]
(j) Cholestanyl 2-acetamido-2-deoxy-β-D-glucopyranosyl- (1 → 3) -β-D-galactopyranoside → 3) -β-D-galactopyranoside) 33
Dissolve compound 30 (230 mg, 0.209 mmol) in a mixture of methanol, water and ethyl acetate (4: 1: 1, 25 mL), add palladium hydroxide-carbon (230 mg), and replace with hydrogen gas. Then, catalytic reduction was performed at room temperature for 20 hours. The reaction solution was filtered through celite, and the filtrate was distilled off. The residue was separated by Sephadex LH-20 (CHClThree: MeOH = 1: 1) to obtain compound 33 (126.1 mg, 81.5%).
[0192]
Rf 0.51 (CHClThree: MeOH = 3: 1)
C41H71O11N MW: 754.008
1H-NMR (CFiveDFiveN + D2O) δ:
5.383 (d, 1H, J = 8.3 Hz, H-1b), 4.825 (d, 1H, J = 7.3 Hz, H-1a), 2.059 (s, 3H, NHAc)
[0193]
[Example 6]
Safety and pharmacological studies
In this example, as a keratan sulfate oligosaccharide, sodium salt of L4, sodium salt of keratan sulfate tetrasaccharide (L4L4) in which two L4s are linked by β1-3 bond, sodium salt of K4 (compound 28 of Example 1) , K2 sodium salt, and G4L4 sodium salt were used (see FIG. 8 for the oligosaccharide structures indicated by abbreviations). L4 and L4L4 were obtained by the method described in International Publication Pamphlet No. WO96 / 16973.
[0194]
The sodium salt of K2 was obtained by the following method.
10 g of keratan sulfate derived from bovine cornea was dissolved in 120 ml of 0.1 M Tris-HCl buffer (pH 7.5). To this solution, 1,000 units of Pseudomonas sp.-derived keratanase (manufactured by Seikagaku Corporation) was added and digested at 37 ° C. for 50 hours. After completion of the reaction, 1.3 times the amount of ethanol was added and stirred, and left at room temperature overnight. The next day, the supernatant and the precipitate were separated by centrifugation (10,000 rpm, 20 minutes), the supernatant was concentrated under reduced pressure, and the concentrated solution was lyophilized to obtain 9 g of a dried product. The obtained lyophilized product was dissolved in a small amount of distilled water, and gel chromatography was performed using Cellulofine GCL-90m (manufactured by Chisso Corporation) (4.5 cm x 125 cm) using a 0.2 M salt concentration solution as an elution solvent. Fractions containing were collected. The obtained K2 fraction was concentrated under reduced pressure, desalted by gel filtration chromatography using Cellulofine GCL-25m (manufactured by Chisso Corporation) (4.0 cm × 120 cm) with distilled water as an elution solvent, and freeze-dried.
[0195]
Dissolve the fraction containing K2 in a small amount of distilled water and equilibrate with distilled water in advance. Use Muromac 1x4 (200-400) (Muromachi Chemical Co., Ltd.) (2.0 cm x 32 cm), and add salt to the elution solvent. The salt concentration was linearly increased from 0 to 2M, and the further purified K2 fraction was separated and eluted. The obtained K2 fraction was concentrated under reduced pressure, desalted by gel filtration chromatography using Cellulofine GCL-25m (4.0 cm × 120 cm), and lyophilized to obtain 1.9 g of a dried product of K2.
[0196]
(1) Safety test
1. Single dose toxicity study in mice
Normal mice (5 mice per group) were administered a single intravenous dose of K4 or G4L4 at a dose of 2,000 mg / kg, and general symptoms were observed for 14 days.
[0197]
There were no deaths in either sex groups. Paralytic gait was observed in all male and female cases immediately after administration by K4 or G4L4 administration, but all cases recovered to normal approximately 3 minutes after administration. In terms of body weight, slight weight loss was observed in the male group on the day after administration, but thereafter all patients showed steady weight gain. At autopsy, no abnormalities due to K4 or G4L4 administration were observed in all cases. From the above results, it is considered that the minimum death dose in a single intravenous administration of K4 and G4L4 is 2,000 mg / kg or more. Thus, LD in a single intravenous dose of K4 and G4L450The value exceeds 2,000 mg / kg for both males and females.
[0198]
2. Antigenicity test using guinea pig
The guinea pig was sensitized by subcutaneous injection in the back of the guinea pig with three injections of K4 or G4L4 alone or an emulsion with Freund's complete adjuvant (FCA) as an immune adjuvant. 12 days after the final sensitization, K4 or G4L4 was intravenously administered to elicit an active systemic anaphylactic reaction. In addition, ovalbumin (OVA) was tested in the same manner as a positive control.
[0199]
The above results are shown in Table 1 together with the dose. No anaphylactic reaction was observed in guinea pigs induced with K4 or G4L4. An anaphylactic reaction was observed in ovalbumin, a positive control of the test system. From the above results, it is considered that K4 and G4L4 do not induce an active systemic anaphylactic reaction in guinea pigs.
[0200]
[Table 1]
Figure 0004913272
[0201]
(2) Medicinal pharmacology test
1. Examination of the effect on Ca-ionophore-induced hypervascular permeability
After shaving the back of the rat under ether anesthesia, 0.1 ml of a Ca-ionophore (A23187, Wako Pure Chemicals) solution (10 μg / ml) dissolved in 2% DMSO was administered to one site in the skin. As a negative control, 0.1 ml of 2% DMSO solution was administered to one site in the skin. The test substance was dissolved in a Ca-ionophore solution, and 0.1 ml thereof was administered to several sites in the skin. Immediately thereafter, 1 ml of 0.5% Evans blue was intravenously administered, and 30 minutes later, the blood was lethal under ether anesthesia. The skin was peeled off, and the Evans blue leakage site was punched out with trepan, and this was used for measurement of the amount of pigment leakage. The amount of dye leakage was determined according to the method of Katayama et al. (Microbiol. Immunol., 22, 89-101 (1978)). That is, 1 NKOH is added to the collected skin and hydrolyzed overnight, then 0.6 NHThreePOFourThe mixture was neutralized by adding an acetone solution (mixed at a ratio of 5:13), centrifuged, and the amount of dye leakage was determined from the absorbance (620 nm) of the supernatant.
[0202]
The results when L4, L4L4, K4 and K2 are used as test substances are shown in FIG. The results when L4 and G4L4 are used as test substances are shown in FIG.
[0203]
L4L4, K4, and K2 suppress vascular permeability enhancement in a dose-dependent manner, and are significant at concentrations of 2.5 to 10 mg / site, 0.63 to 5 mg / site, and 1.25 to 5 mg / site, respectively. The inhibitory effect was shown. The inhibitory effect was strongest for K4, followed by K2 and L4L4. G4L4 also showed a significant inhibitory effect on increased vascular permeability. On the other hand, L4 hardly suppressed the increase in vascular permeability in this model. From this result, it is suggested that K4, K2, L4L4 and G4L4 exert an antiallergic action by suppressing an increase in vascular permeability. In particular, it is suggested that K4 exhibits an excellent action.
[0204]
In this study, L4L4, K4, K2 and G4L4 significantly suppressed the increase in vascular permeability caused by Ca-ionophore, so that the K2 structure is important for the expression of its activity, and the action of the K4 structure may increase. It was suggested. In addition, L4 did not show an inhibitory effect, suggesting that the L4 structure is not very important in this model. On the other hand, although L4L4 is a β- (1-3) bond between two L4 structures, it was presumed that an inhibitory effect was observed in this model because it has a K4 structure. L4L4, K4, K2 and G4L4 are Ca stabilized by membrane stabilization2+It was suggested that the increase in vascular permeability was suppressed by inhibiting the inflow into cells or degranulation, or suppressing histamine secreted from mast cells.
[0205]
2. Guinea pig neutrophil O stimulated by FMLP (N-formyl-Met-Leu-Phe)2 -Examination of effects on production
A 0.2% aqueous solution of glycogen dissolved in physiological saline was sterilized by autoclaving, and 20 ml was administered intraperitoneally to a Hartley female guinea pig. After 16 hours, blood was killed and 20 ml of physiological saline containing 10 U / ml of heparin was injected into the peritoneal cavity, and the peritoneal exudate was collected. The collected liquid was centrifuged at 1000 rpm for 10 minutes using a tabletop centrifuge, purified water was added to the precipitate, hemolyzed for 30 seconds, returned to isotonicity with a double concentration Hanks solution, and centrifuged at 1000 rpm for 10 minutes. The precipitate was resuspended in Hanks' solution and the centrifugation operation was repeated twice to obtain neutrophils. The collected guinea pig neutrophils are suspended in Hank's solution, the white blood cell count is measured using a blood cell measurement device (Sysmex K-2000), and 2 × 10 with Hank's solution.6Those diluted to cells / ml were used as cell suspension in the experiment.
[0206]
1 ml of cell suspension and 10 μl of a test substance solution having a known concentration (mixed with no keratan sulfate oligosaccharide as a control) were mixed and preincubated for 1 hour at 37 ° C. 50 μl of 6 mM cytochrome C solution and 100 μl of 0.1 mM FMLP were sequentially added and mixed. This was incubated at 37 ° C. for 10 minutes, cooled with ice to stop the reaction, centrifuged at 3000 rpm for 5 minutes, and the absorbance of the supernatant was measured at a wavelength of 550 nm. All the above operations were performed under ice-cooling except for incubation.
[0207]
The results when L4, L4L4, K4 and K2 are used as test substances are shown in FIG. The results when L4 and G4L4 are used as test substances are shown in FIG.
[0208]
L4L4, K4 and G4L4 are OLPs from neutrophils stimulated by FMLP at concentrations of 0.01-1 mg / ml.2 -Production (O2 -generation) was significantly suppressed. The inhibition rate at 1 mg / ml was 50.6%, 44.7% and 57.1%, respectively, with respect to the control. O for L4 and K22 -The production inhibitory effect was hardly recognized. From this result, it is suggested that L4L4, K4 and G4L4 exert an anti-inflammatory action by suppressing the production of active oxygen in neutrophils.
[0209]
In this test, although L4 and K4 have the same charge, composition formula and constituent sugar, K4 has an inhibitory effect, and L4L4 shows an inhibitory effect, whereas L4 which is a constituent sugar shows activity. I couldn't. L4L4, K4 and G4L4 are FMLP-stimulated guinea pig neutrophils O2 -The production was significantly suppressed, suggesting that the K4 structure is important for the expression of its activity. Moreover, since K2 did not show an inhibitory effect, it was suggested that the degree of sulfation is important in this model. It was suggested that L4L4, K4 and G4L4 having the K4 structure may inhibit GTP-binding proteins or phospholipase C or other stimulus transmission systems, or may directly antagonize the FMLP receptor to express the action.
[0210]
【The invention's effect】
According to the present invention, a keratan sulfate oligosaccharide having a galactose residue at the reducing end can be efficiently produced. In particular, a keratan sulfate oligosaccharide in which the hydroxyl group at the 6-position of a galactose residue and / or an N-acetylglucosamine residue is sulfated can be provided. A keratan sulfate oligosaccharide having a galactose residue in which the hydroxyl group at the 6-position is sulfated at the reducing end has an excellent pharmacological effect and can provide a safe and effective novel pharmaceutical composition.
[Brief description of the drawings]
FIG. 1 shows the structure of keratan sulfate disaccharide predicted from the structure of keratan sulfate.
FIG. 2 shows an outline of an example of a method for producing a starting material in the production of the oligosaccharide of the present invention.
FIG. 3 shows an outline of an example of a method for producing a starting material in the production of the oligosaccharide of the present invention.
FIG. 4 shows an outline of an example of a method for producing an oligosaccharide of the present invention.
FIG. 5 shows an outline of an example of a method for producing an oligosaccharide of the present invention.
FIG. 6 shows an outline of an example of a method for producing an oligosaccharide of the present invention.
FIG. 7 shows an outline of an example of a method for producing an oligosaccharide of the present invention.
FIG. 8 shows the structure of keratan sulfate oligosaccharide.
FIG. 9 shows the effect of keratan sulfate oligosaccharide on enhanced vascular permeability.
FIG. 10 shows the effect of keratan sulfate oligosaccharide on enhanced vascular permeability.
FIG. 11. Keratan sulfate oligosaccharide neutrophil O2 -The effect on production is shown.
FIG. 12: Neutrophil O of keratan sulfate oligosaccharide2 -The effect on production is shown.

Claims (11)

下記一般式(1)で示される単糖と、下記一般式(2)で示される単糖とをグリコシド結合反応させる工程、並びにR3及びR7のそれぞれを水素原子に置換し、次いで当該水素原子を−SO3Mに置換する工程を含み、R3、R4及びR7の脱離が、R4の保護基の変換後に溶媒をアルカリ性にすることにより1工程で行われる、下記一般式(3)で示されるオリゴ糖の製造方法。
Figure 0004913272
(式中、R1およびR2はそれぞれ独立してアラルキル基を示し、R3はアシル基を示し、R4はアミノ基保護基を示し、R5は脱離基を示す。)
Figure 0004913272
(式中、R6およびR8はそれぞれ独立してアラルキル基を示し、R7はアシル基を示し、R9はアラルキル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。ここで、アラルキル基は、ベンジル基、p−メトキシベンジル基、フェネチル基、3−フェニルプロピル基、p−ニトロベンジル基、o−ニトロベンジル基、p−ハロベンジル基、p−シアノベンジル基、ジフェニルメチル基、トリフェニルメチル基(トリチル基)、αもしくはβ−ナフチルメチル基、またはα−ナフチルジフェニルメチル基であり、アルキル基は、炭素数1〜23であり、O−アルキルグリセロール残基は、ジ−O−アルキルグリセロール残基であり、O−アシルグリセロール残基は、ジ−O−アシルグリセロール残基であり、セラミド中のN−アシル基の炭素数は1〜28であり、リン脂質残基は、グリセロリン脂質残基またはスフィンゴリン脂質残基である。なお、R9がアラルキル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基又はリン脂質残基である場合には、Zは酸素原子であり、R9がビオチン残基またはペプチド残基である場合には、Zは−NHCO−である。)
Figure 0004913272
(式中、R10およびR11はそれぞれ独立して−SO3M(Mはプロトン又は1価のカチオンを示す。)を示し、Acはアセチル基を示す。また、R12は水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。ここで、アルキル基は、炭素数1〜23であり、O−アルキルグリセロール残基は、ジ−O−アルキルグリセロール残基であり、O−アシルグリセロール残基は、ジ−O−アシルグリセロール残基であり、セラミド中のN−アシル基の炭素数は1〜28であり、リン脂質残基は、グリセロリン脂質残基またはスフィンゴリン脂質残基である。なお、R12が水素原子、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基又はリン脂質残基である場合には、Zは酸素原子であり、R12がビオチン残基またはペプチド残基である場合には、Zは−NHCO−である。)
A step of reacting a monosaccharide represented by the following general formula (1) and a monosaccharide represented by the following general formula (2) with a glycosidic bond, and substituting each of R 3 and R 7 with a hydrogen atom; Comprising the step of substituting atoms with —SO 3 M, wherein the elimination of R 3 , R 4 and R 7 is carried out in one step by making the solvent alkaline after conversion of the protecting group of R 4 , A method for producing the oligosaccharide represented by (3).
Figure 0004913272
(In the formula, R 1 and R 2 each independently represent an aralkyl group, R 3 represents an acyl group, R 4 represents an amino protecting group, and R 5 represents a leaving group.)
Figure 0004913272
Wherein R 6 and R 8 each independently represent an aralkyl group, R 7 represents an acyl group, R 9 represents an aralkyl group, a 6-O-sulfated N-acetylglucosamine residue, an alkyl group, glycerol A residue, an O-alkylglycerol residue, an O-acylglycerol residue, a cholesterol residue, a cholestanyl group, a ceramide residue, a phospholipid residue, a biotin residue or a peptide residue, and Z is an oxygen atom or -NHCO-, where the aralkyl group is benzyl group, p-methoxybenzyl group, phenethyl group, 3-phenylpropyl group, p-nitrobenzyl group, o-nitrobenzyl group, p-halobenzyl group, p- Cyanobenzyl group, diphenylmethyl group, triphenylmethyl group (trityl group), α or β-naphthylmethyl group, or α-naphthyldiph An alkyl group having 1 to 23 carbon atoms, an O-alkylglycerol residue being a di-O-alkylglycerol residue, and an O-acylglycerol residue being a di-O-acylglycerol residue. The N-acyl group in the ceramide has 1 to 28 carbon atoms, and the phospholipid residue is a glycerophospholipid residue or a sphingophospholipid residue, wherein R 9 is an aralkyl group, 6 -O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue or phospholipid residue In some cases, Z is an oxygen atom, and when R 9 is a biotin residue or a peptide residue, Z is —NHCO—.)
Figure 0004913272
(Wherein R 10 and R 11 each independently represent —SO 3 M (M represents a proton or a monovalent cation), Ac represents an acetyl group, R 12 represents a hydrogen atom, 6 -O-sulfated N-acetylglucosamine residue, alkyl group, glycerol residue, O-alkylglycerol residue, O-acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue, phospholipid residue, biotin Z represents an oxygen atom or —NHCO—, wherein the alkyl group has 1 to 23 carbon atoms, and the O-alkylglycerol residue represents di-O-alkyl. Glycerol residue, O-acylglycerol residue is di-O-acylglycerol residue, N-acyl group in ceramide has 1 to 28 carbon atoms, phospholipid residue is Is a glycerophospholipid residue or sphingophospholipid residues. In addition, R 12 is a hydrogen atom, 6-O-sulfated N- acetylglucosamine residue, an alkyl group, glycerol residue, O- alkyl glycerol residue, O- Z is an oxygen atom when it is an acylglycerol residue, cholesterol residue, cholestanyl group, ceramide residue or phospholipid residue, and when R 12 is a biotin residue or a peptide residue, Z Is —NHCO—.
上記一般式(1)および(2)が、それぞれ下記式(4)および(5)で示されることを特徴とする、請求項1記載の製造方法。
Figure 0004913272
(式中、Bnはベンジル基を、R13はアセチル基又はレブリノイル基を、Phthはフタロイル基を、Xはハロゲン原子を示す。)
Figure 0004913272
(式中、Bnはベンジル基を、R14はベンジル基、6−O−硫酸化N−アセチルグルコサミン残基、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。Pivはピバロイル基を示す。)
The production method according to claim 1, wherein the general formulas (1) and (2) are represented by the following formulas (4) and (5), respectively.
Figure 0004913272
(In the formula, Bn represents a benzyl group, R 13 represents an acetyl group or a levulinoyl group, Phth represents a phthaloyl group, and X represents a halogen atom.)
Figure 0004913272
(Wherein, Bn is a benzyl group, R 14 is a benzyl group, 6-O-sulfated N- acetylglucosamine residue, an alkyl group, glycerol residue, O- alkyl glycerol residue, O- acylglycerol residue, A cholesterol residue, a cholestanyl group, a ceramide residue, a phospholipid residue, a biotin residue or a peptide residue, Z represents an oxygen atom or —NHCO—, and Piv represents a pivaloyl group.)
下記一般式(13)で示されるオリゴ糖。
Figure 0004913272
(式中、R16およびR17はそれぞれ独立して−SO3M(Mはプロトン又は1価のカチオンを示す)を示し、Acはアセチル基を示す。またR18は水素原子、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基、リン脂質残基、ビオチン残基又はペプチド残基を示す。また、Zは酸素原子又は−NHCO−を示す。ここで、アルキル基は、炭素数1〜23であり、O−アルキルグリセロール残基は、ジ−O−アルキルグリセロール残基であり、O−アシルグリセロール残基は、ジ−O−アシルグリセロール残基であり、セラミド中のN−アシル基の炭素数は1〜28であり、リン脂質残基は、グリセロリン脂質残基またはスフィンゴリン脂質残基である。なお、R18水素原子、アルキル基、グリセロール残基、O−アルキルグリセロール残基、O−アシルグリセロール残基、コレステロール残基、コレスタニル基、セラミド残基又はリン脂質残基である場合には、Zは酸素原子であり、R18がビオチン残基またはペプチド残基である場合には、Zは−NHCO−である。
An oligosaccharide represented by the following general formula (13).
Figure 0004913272
(Wherein R 16 and R 17 each independently represent —SO 3 M (M represents a proton or a monovalent cation), Ac represents an acetyl group, R 18 represents a hydrogen atom, an alkyl group, A glycerol residue, an O-alkylglycerol residue, an O-acylglycerol residue, a cholesterol residue, a cholestanyl group, a ceramide residue, a phospholipid residue, a biotin residue or a peptide residue, and Z is an oxygen atom Or -NHCO-, wherein the alkyl group has 1 to 23 carbon atoms, the O-alkylglycerol residue is a di-O-alkylglycerol residue, and the O-acylglycerol residue is di- -O-acylglycerol residue, N-acyl group in ceramide has 1 to 28 carbon atoms, phospholipid residue is glycerophospholipid residue or sphingophospholipid residue It. Incidentally, R 18 is a hydrogen atom, an alkyl group, glycerol residue, O- alkyl glycerol residue, O- acylglycerol residue, a cholesterol residue, cholestanyl group, when ceramide residue, or a phospholipid residue In the above, Z is an oxygen atom, and when R 18 is a biotin residue or a peptide residue, Z is —NHCO—.
Zは酸素原子である、請求項3に記載のオリゴ糖。The oligosaccharide according to claim 3, wherein Z is an oxygen atom. Zは酸素原子であり、R18は水素原子である、請求項3に記載のオリゴ糖。The oligosaccharide according to claim 3, wherein Z is an oxygen atom and R 18 is a hydrogen atom. Zは酸素原子であり、R18はアルキル基である、請求項3に記載のオリゴ糖。The oligosaccharide according to claim 3, wherein Z is an oxygen atom, and R 18 is an alkyl group. Zは酸素原子であり、R18はO−アルキルグリセロール残基である、請求項3に記載のオリゴ糖。The oligosaccharide according to claim 3, wherein Z is an oxygen atom and R 18 is an O-alkylglycerol residue. Zは酸素原子であり、R18はコレスタニル基である、請求項3に記載のオリゴ糖。The oligosaccharide according to claim 3, wherein Z is an oxygen atom and R 18 is a cholestanyl group. 請求項に記載のオリゴ糖又はその薬学的に許容される塩を有効成分とする医薬。A pharmaceutical comprising the oligosaccharide according to claim 5 or a pharmaceutically acceptable salt thereof as an active ingredient. 請求項に記載のオリゴ糖又はその薬学的に許容される塩を有効成分とする抗アレルギー剤。An antiallergic agent comprising the oligosaccharide according to claim 5 or a pharmaceutically acceptable salt thereof as an active ingredient. 下記一般式(13)で示されるオリゴ糖又はその薬学的に許容される塩を有効成分とする抗アレルギー剤。
Figure 0004913272
(式中、R16およびR17はそれぞれ独立して−SO3M(Mはプロトン又は1価のカチオンを示す)を示し、Acはアセチル基を示す。またR18は6−O−硫酸化N−アセチルグルコサミン残基を示す。また、Zは酸素原子を示す。
An antiallergic agent comprising an oligosaccharide represented by the following general formula (13) or a pharmaceutically acceptable salt thereof as an active ingredient.
Figure 0004913272
(Wherein R 16 and R 17 each independently represent —SO 3 M (M represents a proton or a monovalent cation), Ac represents an acetyl group, and R 18 represents 6-O-sulfation.) N-acetylglucosamine residue, and Z represents an oxygen atom.
JP37368399A 1999-01-07 1999-12-28 Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same Expired - Fee Related JP4913272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37368399A JP4913272B2 (en) 1999-01-07 1999-12-28 Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP201199 1999-01-07
JP11-2011 1999-01-07
JP1999002011 1999-01-07
JP37368399A JP4913272B2 (en) 1999-01-07 1999-12-28 Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same

Publications (2)

Publication Number Publication Date
JP2000256385A JP2000256385A (en) 2000-09-19
JP4913272B2 true JP4913272B2 (en) 2012-04-11

Family

ID=26335324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37368399A Expired - Fee Related JP4913272B2 (en) 1999-01-07 1999-12-28 Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same

Country Status (1)

Country Link
JP (1) JP4913272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05000407A (en) * 2002-07-08 2005-04-19 Corixa Corp Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor.
PT1778709E (en) 2004-08-05 2008-07-24 Ivax Drug Res Inst Ltd Polysulfated glycosides and salts thereof
JP2008195667A (en) * 2007-02-14 2008-08-28 Japan Science & Technology Agency 2-6 sialyl 6-sulfolactosamine sugar chain-containing compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687684A4 (en) * 1993-03-04 1998-03-04 Kanto Ishi Pharma Co Ltd Lewis-associated compound, process for producing the same, and anti-inflammatory
WO1995008553A1 (en) * 1993-09-22 1995-03-30 The Scripps Research Institute Synthesis of selectin ligands
AU704429B2 (en) * 1994-12-01 1999-04-22 Seikagaku Corporation Keratan sulfate oligosaccharide fraction and pharmaceutical containing the same
CA2261877C (en) * 1996-07-23 2009-04-07 Seikagaku Corporation Novel lactosamine oligosaccharide and method for producing the same

Also Published As

Publication number Publication date
JP2000256385A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
US5543403A (en) Sulfated glycosaminoglycanoid derivatives of the heparin and heparan sulfate type
US5326752A (en) Substituted lactose and lactosamine derivatives as cell adhesion inhibitors
EP0536969A2 (en) Anti-endotoxin compounds
JPH0566392B2 (en)
Petitou et al. A new, highly potent, heparin-like pentasaccharide fragment containing a glucose residue instead of a glucosamine
JP4364959B2 (en) Carbohydrate derivatives
PT91249B (en) PROCESS FOR THE PREPARATION OF SELECTIVELY O-ACILLATED GLYCOSAMINOGLYCANS
KR100324583B1 (en) 3-deoxy oligosaccharides, methods of preparing the compounds and pharmaceutical compositions containing the compounds
EP0165134B1 (en) Oligosaccharides, their preparation by synthesis and their biological use
Chen et al. Efficient synthesis of Idraparinux, the anticoagulant pentasaccharide
JP4676048B2 (en) Demyelinating disease treatment
JP4913272B2 (en) Method for producing oligosaccharide, novel oligosaccharide and pharmaceutical composition containing the same
Petitou et al. Introducing a C-interglycosidic bond in a biologically active pentasaccharide hardly affects its biological properties
US20100081708A1 (en) Anticoagulant compounds
WO2004007515A1 (en) Sulfotransferase inhibitors
US6562954B1 (en) Method for producing oligosaccharide, and novel oligosaccharide and pharmaceutical composition containing the same
EP1300411A1 (en) Novel disaccharides with anti-arthritic action
JPH0565517B2 (en)
EP2683746A1 (en) Oligosaccharide compounds
Kondo et al. Simple construction of Neu5Ac (α2-8) Neu5Ac and total synthesis of ganglioside GD3
JPH05178876A (en) Oligosaccharide derivative having antiinflammatory and antiallergic action
JP2007530713A (en) Method for producing oligoglycosaminoglycan, reducing end glucuronic acid type oligochondroitin sulfate, and pharmaceutical composition containing the same
EP4393912A1 (en) Bacterial capsular oligosaccharide derivative, preparation method therefor, pharmaceutical composition and use thereof
JP4456698B2 (en) Endotoxin shock inhibitor
US9556215B2 (en) Synthetic pentasaccharides having short half-life and high activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees