JP4908182B2 - Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor - Google Patents

Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor Download PDF

Info

Publication number
JP4908182B2
JP4908182B2 JP2006346283A JP2006346283A JP4908182B2 JP 4908182 B2 JP4908182 B2 JP 4908182B2 JP 2006346283 A JP2006346283 A JP 2006346283A JP 2006346283 A JP2006346283 A JP 2006346283A JP 4908182 B2 JP4908182 B2 JP 4908182B2
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
acid amplification
test sample
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006346283A
Other languages
Japanese (ja)
Other versions
JP2008157733A (en
Inventor
安義 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Chemical Co Ltd
Original Assignee
Eiken Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Chemical Co Ltd filed Critical Eiken Chemical Co Ltd
Priority to JP2006346283A priority Critical patent/JP4908182B2/en
Publication of JP2008157733A publication Critical patent/JP2008157733A/en
Application granted granted Critical
Publication of JP4908182B2 publication Critical patent/JP4908182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、核酸増幅の有無の判定方法、標的核酸の検出方法及びそれらに用いられる装置に関する。   The present invention relates to a method for determining the presence or absence of nucleic acid amplification, a method for detecting a target nucleic acid, and an apparatus used therefor.

被検試料の塩基配列を分析するための有用な方法として、特定の標的核酸を増幅する核酸増幅法が知られており、この方法は遺伝子疾患の診断等に不可欠な技術である。この核酸増幅法の技術を有効に利用するために、標的核酸の核酸増幅の有無を高感度で判定する方法が求められる。   As a useful method for analyzing the base sequence of a test sample, a nucleic acid amplification method for amplifying a specific target nucleic acid is known, and this method is an indispensable technique for diagnosis of genetic diseases and the like. In order to effectively use the technology of this nucleic acid amplification method, a method for determining the presence or absence of nucleic acid amplification of a target nucleic acid with high sensitivity is required.

核酸増幅の有無を判定する一般的な方法としては、核酸増幅反応を行った反応液にエチジウムブロマイド等の蛍光インターカレーターを加えたものを電気泳動した後、蛍光を観察する方法が挙げられる。また、核酸増幅反応が進行する際に生成するピロリン酸と金属イオンとの結合を指標として核酸増幅の有無を判定する方法がある(例えば、特許文献1参照)。更に、蛍光色素等の標識物質で標識したプライマー又はヌクレオチドを核酸増幅反応に用いて、核酸に取り込まれた標識物質を観察することにより核酸増幅の有無を判定する方法もある(例えば、特許文献2参照)。   As a general method for determining the presence or absence of nucleic acid amplification, there is a method of observing fluorescence after electrophoresis of a reaction solution obtained by performing a nucleic acid amplification reaction to which a fluorescent intercalator such as ethidium bromide is added. In addition, there is a method of determining the presence or absence of nucleic acid amplification using as an index the binding between pyrophosphate and metal ions generated when the nucleic acid amplification reaction proceeds (see, for example, Patent Document 1). Further, there is a method for determining the presence or absence of nucleic acid amplification by observing the labeling substance incorporated into the nucleic acid by using a primer or nucleotide labeled with a labeling substance such as a fluorescent dye in the nucleic acid amplification reaction (for example, Patent Document 2). reference).

一方、核酸増幅反応を行う際には、前処理としてタンパク質等の増幅阻害物質を試料から除去する必要があるが、その方法としては、クロロホルムとエタノールを用いる技術が挙げられる。また、核酸とタンパク質の電荷の違いに着目して、電気泳動により核酸を精製する方法もある(例えば、特許文献3参照)。   On the other hand, when performing a nucleic acid amplification reaction, it is necessary to remove an amplification inhibiting substance such as a protein from a sample as a pretreatment, and as a method therefor, a technique using chloroform and ethanol can be mentioned. Also, there is a method of purifying nucleic acid by electrophoresis focusing on the difference in charge between nucleic acid and protein (for example, see Patent Document 3).

また、グアニンは+0.9V(銀/塩化銀電極)付近での酸化による酸化電流が測定可能であり、酸化電流に基づいてグアニンの濃度を定量することにより被検溶液中に含まれるDNA量を推定する方法について報告されている(例えば、非特許文献1参照)。
特開2004−283161号公報 特開平9−187275号公報 特表2001−500966号公報 矢吹 総一、外3名、“核酸グアニンの酸化電流に基づいたDNAの定量”、[online]、2004年11月26日、第50回ポーラログラフィー及び電気分析化学討論会、[2006年11月13日検索]、インターネット〈URL : http://www.aist.go.jp/RRPDB/system/Koukai.Detail〉
Guanine can measure the oxidation current due to oxidation near +0.9 V (silver / silver chloride electrode). The amount of DNA contained in the test solution can be determined by quantifying the concentration of guanine based on the oxidation current. An estimation method has been reported (for example, see Non-Patent Document 1).
JP 2004-283161 A JP-A-9-187275 JP-T-2001-500966 Soichi Yabuki and three others, “Quantification of DNA based on oxidation current of nucleic acid guanine”, [online], November 26, 2004, 50th Polarography and Electroanalytical Chemistry Conference, [November 2006 Search on March 13], Internet <URL: http://www.aist.go.jp/RRPDB/system/Koukai.Detail>

しかし、従来の核酸増幅の有無の判定方法は、特別な設備が必要である等、経済性や効率の点で満足できるものではなかった。また、感度の点でもさらに改善が求められていた。   However, conventional methods for determining the presence or absence of nucleic acid amplification are not satisfactory in terms of economy and efficiency, such as requiring special equipment. In addition, further improvement has been demanded in terms of sensitivity.

例えば、蛍光インターカレーターを用いる方法においては、蛍光を観察するためのUVランプ及び暗室が必要であった。また、特許文献1記載の方法においては、反応液が微量である場合に判定が困難となる傾向があり、被検試料に着色物質、蛍光物質、不溶性物質等が含まれることにより判定結果に過誤が生じやすかった。更に、特許文献2記載の方法においては、核酸に取り込まれなかった被標識プライマー又はヌクレオチドを除去する必要があり、用いる被標識プライマー又はヌクレオチドが高価であった。   For example, in a method using a fluorescent intercalator, a UV lamp and a dark room for observing fluorescence are required. Further, in the method described in Patent Document 1, the determination tends to be difficult when the reaction solution is in a very small amount, and the determination result is erroneous because the test sample contains a colored substance, a fluorescent substance, an insoluble substance, or the like. It was easy to occur. Furthermore, in the method described in Patent Document 2, it is necessary to remove the labeled primer or nucleotide that was not incorporated into the nucleic acid, and the labeled primer or nucleotide used was expensive.

本発明は、上記事情に鑑みてなされたものであり、簡易な工程で高感度な判定結果を得ることが可能な核酸増幅の有無の判定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for determining the presence or absence of nucleic acid amplification capable of obtaining a highly sensitive determination result by a simple process.

本発明者は、上記課題を解決すべく鋭意検討を行った結果、核酸増幅反応を行う反応液の電気化学的特性が核酸増幅反応の進行に伴って大きく変化することを見出し、この知見に基づいて本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventor has found that the electrochemical characteristics of the reaction solution for performing the nucleic acid amplification reaction change greatly with the progress of the nucleic acid amplification reaction, and based on this finding. The present invention has been completed.

すなわち、本発明は、核酸増幅反応を行う反応液の電気化学的特性の変化に基づいて核酸増幅の有無を判定する、核酸増幅の有無の判定方法である。   That is, the present invention is a method for determining the presence or absence of nucleic acid amplification, in which the presence or absence of nucleic acid amplification is determined based on a change in electrochemical characteristics of a reaction solution for performing a nucleic acid amplification reaction.

本発明者らの知見によれば、核酸増幅反応の進行に伴ってグアニンが核酸鎖中に取り込まれたときに、電極におけるグアニンの酸化に由来する反応液の電気化学的特性が大きく変化する。したがって、電気化学的特性の変化が生じた場合には核酸増幅が進行したと判断され、電気化学的特性の変化が実質的に生じなければ核酸増幅が進行しなかったと判断される。すなわち、この方法によれば単に反応液の電気化学的測定を行うだけで容易に核酸増幅の有無を判定することが可能である。また、係る電気化学的特性の変化は不純物の影響を受け難く、高感度での判定結果を得ることが可能である。   According to the knowledge of the present inventors, when guanine is incorporated into the nucleic acid chain as the nucleic acid amplification reaction proceeds, the electrochemical characteristics of the reaction solution derived from the oxidation of guanine at the electrode are greatly changed. Therefore, it is determined that nucleic acid amplification has progressed when a change in electrochemical characteristics has occurred, and it has been determined that nucleic acid amplification has not progressed unless a change in electrochemical characteristics has occurred substantially. That is, according to this method, it is possible to easily determine the presence or absence of nucleic acid amplification simply by performing electrochemical measurement of the reaction solution. In addition, such a change in electrochemical characteristics is hardly affected by impurities, and a determination result with high sensitivity can be obtained.

核酸増幅反応を行う反応液に所定の電圧を印加したときの電流値の変化に基づいて核酸増幅の有無を判定してもよい。このような判定方法を用いることによって特に高感度な判定結果を容易に得ることができる。この場合、所定の電圧は、0.8〜1.2Vであることが好ましい。電圧が0.8Vより低いと核酸増幅反応の反応前後における電流の変化が小さくなる傾向があり、1.2Vより高いと核酸増幅反応の反応前後における電流の変化が小さくなる傾向がある。また、電流値の変化は、グアニンの酸化により生じる酸化電流に由来する電流値の低下であることが好ましい。グアニンが核酸鎖中に取り込まれると、グアニンの酸化により生じる酸化電流が減少するため、反応の進行に伴い、反応液の電流値は顕著に低下する。このような電流値の変化に基づいて核酸増幅の有無を判定することで、より一層高感度な判定結果を得ることが可能である。   The presence or absence of nucleic acid amplification may be determined based on a change in current value when a predetermined voltage is applied to a reaction solution for performing a nucleic acid amplification reaction. By using such a determination method, it is possible to easily obtain a determination result with particularly high sensitivity. In this case, the predetermined voltage is preferably 0.8 to 1.2V. If the voltage is lower than 0.8 V, the change in current before and after the reaction of the nucleic acid amplification reaction tends to be small, and if it is higher than 1.2 V, the change in current before and after the reaction of the nucleic acid amplification reaction tends to be small. Further, the change in the current value is preferably a decrease in the current value derived from the oxidation current caused by the oxidation of guanine. When guanine is incorporated into the nucleic acid chain, the oxidation current generated by the oxidation of guanine decreases, so that the current value of the reaction solution decreases significantly as the reaction proceeds. By determining the presence or absence of nucleic acid amplification based on such a change in current value, it is possible to obtain a more highly sensitive determination result.

別の側面において、本発明は被検試料中の標的核酸の検出方法に関する。本発明に係る検出方法は、被検試料から核酸を精製するステップと、精製した核酸を含む反応液中で標的核酸を増幅する核酸増幅反応を行い、上記核酸増幅の有無の判定方法を用いて上記反応液における標的核酸の核酸増幅の有無を判定するステップとを備える。本発明の検出方法を用いることによって、簡易な工程で高感度な検出結果を得ることができる。   In another aspect, the present invention relates to a method for detecting a target nucleic acid in a test sample. The detection method according to the present invention includes a step of purifying a nucleic acid from a test sample, a nucleic acid amplification reaction for amplifying a target nucleic acid in a reaction solution containing the purified nucleic acid, and using the above-described method for determining the presence or absence of nucleic acid amplification. Determining whether or not the target nucleic acid is amplified in the reaction solution. By using the detection method of the present invention, a highly sensitive detection result can be obtained with a simple process.

上記被検試料から核酸を精製するステップにおいて、核酸が回収槽内にプールされるように被検試料から核酸を精製してもよい。そして、本発明に係る検出方法は、回収槽内にプールされた核酸を回収槽に接続された反応槽内に導入するステップを更に備えていてもよい。この場合、核酸増幅の有無を判定するステップにおいて、回収槽に接続された反応槽内で核酸増幅反応を行うことが可能である。このような検出方法を用いることによって、外部からの物質の混入による検出過誤を抑制し、更に高感度な検出結果を得ることができる。   In the step of purifying nucleic acid from the test sample, the nucleic acid may be purified from the test sample so that the nucleic acid is pooled in the collection tank. The detection method according to the present invention may further include a step of introducing the nucleic acid pooled in the recovery tank into the reaction tank connected to the recovery tank. In this case, in the step of determining the presence or absence of nucleic acid amplification, the nucleic acid amplification reaction can be performed in a reaction tank connected to the recovery tank. By using such a detection method, it is possible to suppress a detection error due to mixing of a substance from the outside and obtain a detection result with higher sensitivity.

上記検出方法においては、電気泳動によって被検試料から核酸を精製することが好ましい。電気泳動法を用いることによって、容易に精度よく核酸を精製することができる。   In the above detection method, it is preferable to purify the nucleic acid from the test sample by electrophoresis. By using the electrophoresis method, the nucleic acid can be easily and accurately purified.

更に別の側面において、本発明は上記判定方法に用いられる反応装置に関する。本発明に係る反応装置は、核酸増幅反応を行う反応液が導入される反応槽と、当該反応槽内に挿入された電極とを有する。本発明の反応装置を用いることによって、簡易な工程で高感度な判定結果を得ることができる。   In still another aspect, the present invention relates to a reaction apparatus used for the determination method. The reaction apparatus according to the present invention includes a reaction vessel into which a reaction solution for performing a nucleic acid amplification reaction is introduced, and an electrode inserted into the reaction vessel. By using the reaction apparatus of the present invention, a highly sensitive determination result can be obtained with a simple process.

更に別の側面において、本発明は上記検出方法に用いられる検出装置に関する。本発明に係る検出装置は、上記反応装置と、当該反応装置の反応槽に接続された、被検試料から核酸を精製する精製装置とを備える。精製装置が上記反応槽に接続されていることによって、外部からの物質の混入による検出過誤を抑制し、高感度な検出結果を得ることができる。   In still another aspect, the present invention relates to a detection device used for the detection method. A detection apparatus according to the present invention includes the above-described reaction apparatus and a purification apparatus that purifies nucleic acid from a test sample connected to a reaction tank of the reaction apparatus. By connecting the refining device to the reaction vessel, it is possible to suppress a detection error due to mixing of substances from the outside and obtain a highly sensitive detection result.

上記精製装置は、電気泳動によって被検試料から核酸を精製する精製装置であることが好ましい。このような精製装置を用いることによって、容易に精度よく核酸を精製することができる。   The purification device is preferably a purification device that purifies nucleic acid from a test sample by electrophoresis. By using such a purification apparatus, the nucleic acid can be easily purified with high accuracy.

また、電気泳動によって核酸を精製する場合、上記精製装置が、陽極側電解槽と、上記反応槽に接続されており核酸がプールされる回収槽と、被検試料が保持される保持槽と、陰極側電解槽とを有し、これらがこの順に接続されていることが好ましい。このような精製装置を用いることによって、容易に精度よく核酸を精製することができ、精製した核酸を外部環境に曝さずに反応槽へ導入することができる。   Further, when purifying nucleic acid by electrophoresis, the purification apparatus comprises an anode-side electrolytic cell, a recovery tank connected to the reaction tank and pooling nucleic acid, a holding tank for holding a test sample, It has a cathode side electrolytic cell, and it is preferable that these are connected in this order. By using such a purification apparatus, the nucleic acid can be easily purified with high accuracy, and the purified nucleic acid can be introduced into the reaction tank without being exposed to the external environment.

本発明の方法によれば、核酸増幅の有無の判定において簡易な工程で高感度な判定結果を得ることができる。   According to the method of the present invention, a highly sensitive determination result can be obtained by a simple process in determining whether nucleic acid amplification is performed.

以下、本発明の好適な実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.

本実施形態に係る標的核酸の検出方法は、核酸が回収槽内にプールされるように被検試料から核酸を精製するステップと、回収槽内にプールされた核酸を回収槽に接続された反応槽内に導入するステップと、精製した核酸を含む反応液中で標的核酸を増幅する核酸増幅反応を反応槽内で行い、核酸増幅反応を行う反応液の電気化学的特性の変化に基づいて核酸増幅の有無を判定するステップとを備える。   The target nucleic acid detection method according to the present embodiment includes a step of purifying nucleic acid from a test sample so that the nucleic acid is pooled in the recovery tank, and a reaction in which the nucleic acid pooled in the recovery tank is connected to the recovery tank. The step of introducing into the tank and the nucleic acid amplification reaction for amplifying the target nucleic acid in the reaction liquid containing the purified nucleic acid are carried out in the reaction tank, and the nucleic acid is changed based on the change in the electrochemical characteristics of the reaction liquid for performing the nucleic acid amplification reaction. Determining whether or not there is amplification.

すなわち、核酸又はポリヌクレオチド鎖上の標的核酸を合成又は増幅し、合成反応又は増幅反応に伴い変化する反応液中の電流値(特に、酸化電流値)を測定することにより、核酸の合成又は増幅反応の進行を検出するものである。この方法は反応液の色調変化を捉える従来の技術とは異なり、反応の場が着色していても影響を受けることはない。また、被検試料からの核酸の抽出を電気的に行い、抽出された核酸をそのまま反応の場に導入することも可能であるため、被検試料を添加した後に外部と接触する機会を極力抑えることができ、外部からの混入により検出結果が偽陽性となるのを抑制することが可能となる。   That is, synthesis or amplification of a nucleic acid by synthesizing or amplifying a target nucleic acid on a nucleic acid or a polynucleotide chain, and measuring a current value (especially an oxidation current value) in a reaction solution that changes with the synthesis reaction or amplification reaction. The progress of the reaction is detected. This method is not affected even if the reaction field is colored, unlike the conventional technique which captures the color change of the reaction solution. In addition, it is possible to electrically extract nucleic acid from the test sample and introduce the extracted nucleic acid into the reaction field as it is, so that the opportunity to contact the outside after adding the test sample is minimized. It is possible to prevent the detection result from being false positive due to external contamination.

本実施形態に係る検出方法は、例えば、図1に示す検出装置を用いて行うことができる。図1に示す検出装置100は、核酸増幅反応を行う反応液が投入される反応槽11及び反応槽11内に挿入された電極12を有する反応装置10と、被検試料から核酸を精製する精製装置30とから構成される。精製装置30は、陽極側電解槽34と、核酸がプールされる回収槽31と、被検試料が保持される保持槽33と、陰極側電解槽35と、を有しており、これらがこの順で接続されている。そして、回収槽31と反応槽11とは、内容物の出入りが可能なように接続部50を介して接続されている。以下、図1の検出装置100を用いて標的核酸を検出する場合を例にして検出方法の実施形態について詳細に説明する。   The detection method according to the present embodiment can be performed using, for example, the detection apparatus shown in FIG. A detection apparatus 100 shown in FIG. 1 includes a reaction tank 11 into which a reaction solution for performing a nucleic acid amplification reaction is charged, a reaction apparatus 10 having an electrode 12 inserted into the reaction tank 11, and a purification for purifying nucleic acid from a test sample. The apparatus 30 is comprised. The purification apparatus 30 has an anode side electrolytic cell 34, a recovery tank 31 in which nucleic acids are pooled, a holding tank 33 in which a test sample is held, and a cathode side electrolytic cell 35. Connected in order. And the collection tank 31 and the reaction tank 11 are connected via the connection part 50 so that the contents can go in and out. Hereinafter, an embodiment of the detection method will be described in detail by taking as an example the case of detecting a target nucleic acid using the detection apparatus 100 of FIG.

精製装置30において、保持槽33内に保持された被検試料から核酸が精製され、精製された核酸が回収槽31内に一時的にプールされる。このとき、被検試料から核酸がある程度選択的に取り出される。   In the purification device 30, the nucleic acid is purified from the test sample held in the holding tank 33, and the purified nucleic acid is temporarily pooled in the collection tank 31. At this time, the nucleic acid is selectively extracted from the test sample to some extent.

陽極側電解槽34、陰極側電解槽35及び保持槽33内は、予め電解液で満たされている。電解液は、バッファー、支持電解質等を含む。保持槽33と回収槽31とは、多孔性濾過膜37を介して隔てられている。また、陽極側電解槽34には陽極41が、陰極側電解槽35には陰極42が、それぞれ挿入されている。   The anode side electrolytic cell 34, the cathode side electrolytic cell 35 and the holding tank 33 are filled with an electrolytic solution in advance. The electrolytic solution includes a buffer, a supporting electrolyte, and the like. The holding tank 33 and the collection tank 31 are separated by a porous filtration membrane 37. An anode 41 is inserted into the anode side electrolytic cell 34, and a cathode 42 is inserted into the cathode side electrolytic cell 35.

一般に、核酸はその分子内に多くの負電荷を有するため、陽極側への高い電気泳動移動度を示す。一方タンパク質の電荷は正電荷を誘起するアミノ基と負電荷を誘起するカルボキシル基の割合で決定され、その合計電荷は核酸より少ない。そのため、陽極41及び陰極42の間に所定の電圧(50V程度)を印加すると、移動度の高い核酸は移動度の低いタンパク質より先に多孔性濾過膜37を通過して回収槽31側に移動する。このような電気泳動を一定時間(2〜5分程度)行うことにより、回収槽31内に精製された核酸がプールされる。電気泳動法を利用する方法により、被検試料中の主たる不純物であるタンパク質の量が少ない状態となるように核酸を選択的に取り出すことが可能である。   In general, since nucleic acids have many negative charges in their molecules, they exhibit high electrophoretic mobility toward the anode side. On the other hand, the charge of a protein is determined by the ratio of an amino group that induces a positive charge and a carboxyl group that induces a negative charge, and the total charge is less than that of a nucleic acid. Therefore, when a predetermined voltage (about 50 V) is applied between the anode 41 and the cathode 42, the nucleic acid having high mobility passes through the porous filtration membrane 37 and moves to the collection tank 31 side before the protein having low mobility. To do. By performing such electrophoresis for a certain time (about 2 to 5 minutes), the purified nucleic acid is pooled in the collection tank 31. By a method using electrophoresis, nucleic acids can be selectively extracted so that the amount of protein, which is a main impurity in the test sample, is small.

回収槽31内にプールされた核酸は、接続部50を通って反応槽11内に導入される。例えば、接続部50内の流路を閉じた状態で電気泳動を行って回収槽31内に核酸をプールし、その後流路を開けることにより、精製された核酸を反応槽11に送ることができる。   The nucleic acid pooled in the collection tank 31 is introduced into the reaction tank 11 through the connection portion 50. For example, electrophoresis is performed in a state where the flow path in the connection part 50 is closed, the nucleic acid is pooled in the recovery tank 31, and then the flow path is opened to send the purified nucleic acid to the reaction tank 11. .

反応槽11内には、遺伝子増幅用の試薬が予め投入されている。この試薬は多孔質支持体のような不溶性担体に保持された状態で反応槽11内に投入されていてもよい。蛍光、濁度、吸光度等の光学的検出を用いた従来の方法の場合、多孔質支持体を用いた核酸増幅反応の進行を高精度で検出することは困難であり、特に着色物質、蛍光物質等が混入すると検出が著しく妨害される。これに対して、本実施形態によれば多孔質支持体を用いる場合であっても核酸増幅反応の進行を高精度で検出することが可能である。   In the reaction tank 11, a reagent for gene amplification is put in advance. This reagent may be put into the reaction tank 11 while being held on an insoluble carrier such as a porous support. In the case of the conventional method using optical detection such as fluorescence, turbidity, absorbance, etc., it is difficult to detect the progress of the nucleic acid amplification reaction using the porous support with high accuracy. Detection is significantly hindered by the contamination. On the other hand, according to this embodiment, it is possible to detect the progress of the nucleic acid amplification reaction with high accuracy even when a porous support is used.

反応槽11内に核酸を導入した後、必要に応じて、核酸増幅反応を行う前に電気化学的測定を行い、初期の電気化学的特性を確認する。電気化学的測定は、作用電極12a、参照電極12b及び対極12cからなる電極12を用いて行う。   After introducing the nucleic acid into the reaction tank 11, if necessary, before performing the nucleic acid amplification reaction, electrochemical measurement is performed to confirm initial electrochemical characteristics. The electrochemical measurement is performed using the electrode 12 including the working electrode 12a, the reference electrode 12b, and the counter electrode 12c.

反応液を加熱する加熱手段として反応槽11と接して設けられたラバーヒーター15に通電して反応液を所定の温度に加熱することにより、核酸増幅反応が進行する。核酸増幅反応の方法は特に限定されるものではないが、例えば、in vitroにおける核酸の増幅技術として現在最も一般的な方法であるPCR(Polymerase Chain Reaction)法の他、LAMP(Loop−Mediated Isothermal Amplification)法と呼ばれる増幅法(特許第3313358号公報等)、SDA(Strand Displacement Amplification)法(特公平7−114718号公報等)、NASBA(Nucleic Acid Sequence Based Amplification)法(特許第2650159号公報)を適用することができる。   The nucleic acid amplification reaction proceeds by energizing a rubber heater 15 provided in contact with the reaction vessel 11 as a heating means for heating the reaction solution to heat the reaction solution to a predetermined temperature. The method of the nucleic acid amplification reaction is not particularly limited. For example, in addition to the PCR (Polymerase Chain Reaction) method, which is currently the most common method for nucleic acid amplification in vitro, LAMP (Loop-Mediated Isolation Amplification) Amplification method (Patent No. 3313358, etc.), SDA (Strand Displacement Amplification) method (Japanese Patent Publication No. 7-114718, etc.), NASBA (Nucleic Acid Sequence Amplification) method (Patent No. 26509) Can be applied.

これら増幅反応の方法のうち、LAMP法は、増幅対象となる塩基配列の末端にループ構造を形成し、そこを起点としてポリメラーゼによる伸長反応が起きると同時に、ループ内の領域にハイブリダイズしたプライマーが、鎖置換反応により核酸鎖を伸長しながら先の伸長反応の産物を一本鎖に解離させていくというものである。生成した一本鎖核酸はその末端に自己相補性領域を持つため、末端にループを形成して新たな伸長反応が始まる。実際のLAMP法では等温で進行するため、上記反応は同時に並行して起こる。LAMP法の特徴としては、等温で進行する鎖置換型の反応であることの他に、増幅産物の量が非常に多いことが挙げられる。これは、ポリメラーゼが失活する原因である熱変性の操作が含まれていないことも一因である。この増幅産物の量が多いことから核酸増幅によるグアニンの酸化電流値の変化も大きく、本実施形態で適用するための核酸増幅反応の方法としては、LAMP法が特に好適である。   Among these amplification reaction methods, the LAMP method forms a loop structure at the end of the base sequence to be amplified, and at the same time, an extension reaction by polymerase occurs, and at the same time, primers hybridized to the region in the loop The product of the previous extension reaction is dissociated into a single strand while the nucleic acid strand is extended by a strand displacement reaction. Since the generated single-stranded nucleic acid has a self-complementary region at its end, a new extension reaction starts by forming a loop at the end. Since the actual LAMP method proceeds isothermally, the above reactions occur simultaneously in parallel. As a feature of the LAMP method, in addition to the strand displacement reaction that proceeds isothermally, the amount of amplification product is very large. This is partly due to the fact that the thermal denaturation operation, which causes the polymerase to be inactivated, is not included. Since the amount of this amplification product is large, the change in the oxidation current value of guanine due to nucleic acid amplification is also large, and the LAMP method is particularly suitable as a method for nucleic acid amplification reaction to be applied in this embodiment.

核酸増幅反応において核酸の合成のために使用する酵素は特に限定されるものではない。好適に用いられる酵素の例としては、E.coli DNAポリメラーゼ、Taq DNAポリメラーゼ、T4 DNAポリメラーゼ、逆転写酵素(Reverse Transcriptase)、SP6 RNAポリメラーゼ、T7 RNAポリメラーゼ、ターミナルデオキシヌクレオチジルトランスフェラーゼ、Poly(A)ポリメラーゼ、Bst DNAポリメラーゼ、Vent DNAポリメラーゼが挙げられる。各酵素の反応は、公知の任意の条件で行うことができる(T. Maniatis et al., Molecular cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989)。   The enzyme used for nucleic acid synthesis in the nucleic acid amplification reaction is not particularly limited. Examples of enzymes preferably used include E. coli. E. coli DNA polymerase, Taq DNA polymerase, T4 DNA polymerase, reverse transcriptase, SP6 RNA polymerase, T7 RNA polymerase, terminal deoxynucleotidyl transferase, Poly (A) polymerase, Bst DNA polymerase, Vent DNA polymerase . The reaction of each enzyme can be performed under any known conditions (T. Maniatis et al., Molecular cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Press, 1989).

核酸増幅反応を行う反応液の電気化学的特性の経時変化に基づいて、増幅反応の有無が判定される。被検試料中に標的核酸が含まれていた場合、核酸増幅反応によって増幅反応が進行して、反応液の電気化学的特性が大きく変化する。電気化学的特性としては、所定の電圧を印加したときの電流値若しくは抵抗値や、所定の電流を通電させたときの電圧値が挙げられる。例えば、反応液に所定の電圧(好ましくは0.8〜1.2V)を印加したときの電流値が核酸増幅反応の進行に伴って低下する。被検試料中に標的核酸が含まれていなかった場合、増幅反応は進行せず、電流値等の電気化学的特性は実質的に変化しない。そのため、電気化学的特性の変化の有無によって、増幅反応の有無を明確に判定することが可能である。具体的には、例えば、反応液に0.8〜1.2Vの範囲内で一定の電圧を印加したときの電流値の変化が、初期の電流値に対して±7%以内であれば、増幅反応は進行しなかったと判断することができる。この場合、電流値の変化とは、例えば、グアニンの酸化により生じる酸化電流に由来する電流値(酸化電流値)の低下である。   The presence or absence of an amplification reaction is determined based on the change over time in the electrochemical characteristics of the reaction solution in which the nucleic acid amplification reaction is performed. When the target nucleic acid is contained in the test sample, the amplification reaction proceeds by the nucleic acid amplification reaction, and the electrochemical characteristics of the reaction solution change greatly. The electrochemical characteristics include a current value or resistance value when a predetermined voltage is applied, and a voltage value when a predetermined current is applied. For example, the current value when a predetermined voltage (preferably 0.8 to 1.2 V) is applied to the reaction solution decreases as the nucleic acid amplification reaction proceeds. When the target nucleic acid is not contained in the test sample, the amplification reaction does not proceed and the electrochemical characteristics such as the current value are not substantially changed. Therefore, it is possible to clearly determine the presence or absence of an amplification reaction based on the presence or absence of a change in electrochemical characteristics. Specifically, for example, if the change in the current value when a constant voltage is applied to the reaction solution in the range of 0.8 to 1.2 V is within ± 7% with respect to the initial current value, It can be determined that the amplification reaction did not proceed. In this case, the change in the current value is, for example, a decrease in the current value (oxidation current value) derived from the oxidation current generated by the oxidation of guanine.

増幅反応の有無を判定するための電気化学的測定を行う際の測定モードは、増幅反応に伴う電気化学的特性の変化が確認可能なものであれば、特に制限されない。測定モードの具体例としては、リニアー・スイープ・ボルタンメトリー(LSV)法、ディファレンシャルパルスボルタンメトリー(DPV)法、クロノアンペロメトリー(CA)法が挙げられる。あるいは、定電圧測定や定電流測定も適用可能である。   The measurement mode for performing electrochemical measurement for determining the presence or absence of an amplification reaction is not particularly limited as long as the change in electrochemical characteristics accompanying the amplification reaction can be confirmed. Specific examples of the measurement mode include a linear sweep voltammetry (LSV) method, a differential pulse voltammetry (DPV) method, and a chronoamperometry (CA) method. Alternatively, constant voltage measurement or constant current measurement is also applicable.

検出装置100は基板上に形成された微小化学分析システム(μTAS)であってもよい。この場合、基板及び該基板上に形成された微小化学分析システムを、標的核酸の検出のためのマイクロデバイスとして適用することも可能である。このようなマイクロデバイスによれば、微量の被検試料であっても簡易且つ高精度に標的核酸を検出することが可能である。従来の検出方法の場合、微小化学分析システムによって行うことは極めて困難であるが、本実施形態は微小化学分析システムによる検出に適しているという利点も有する。   The detection apparatus 100 may be a microchemical analysis system (μTAS) formed on a substrate. In this case, the substrate and the microchemical analysis system formed on the substrate can also be applied as a microdevice for detecting a target nucleic acid. According to such a micro device, it is possible to detect a target nucleic acid simply and with high accuracy even with a small amount of test sample. In the case of the conventional detection method, it is extremely difficult to carry out using a microchemical analysis system, but this embodiment also has an advantage that it is suitable for detection by a microchemical analysis system.

以下、実施例により本発明について更に具体的に詳細に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these.

実施例1:dNTPの電気化学的特性評価
核酸増幅反応基質であるdNTP(デオキシリボクレオシド三リン酸)について電気化学的測定を行い、dNTPの電気化学的特性の評価を行った。
Example 1 Evaluation of Electrochemical Characteristics of dNTP Electrochemical measurements were performed on dNTP (deoxyribocleoside triphosphate), which is a nucleic acid amplification reaction substrate, to evaluate the electrochemical characteristics of dNTP.

(1)試料の調製
下記組成を有する試薬溶液を準備した。
Tris−HCl(pH8.8) 20mM
KCl 10mM
(NHSO 10mM
MgSO 8mM
Inner primer(FIP、BIP) 3.2μM
Outer primer(F3、B3) 0.8μM
Bst polymerase 8U/tube
(1) Preparation of sample A reagent solution having the following composition was prepared.
Tris-HCl (pH 8.8) 20 mM
KCl 10 mM
(NH 4 ) 2 SO 4 10 mM
MgSO 4 8 mM
Inner primer (FIP, BIP) 3.2 μM
Outer primer (F3, B3) 0.8 μM
Bst polymerase 8U / tube

Inner primer及びOuter primerの配列を以下に示す。
FIP TGTTCCTGATGCAGTGGGCAGCTTTAGTCTGCGGCGGTGTTCTG(配列番号1)
BIP TGCTGGGTCGGCACAGCCTGAAGCTGACCTGAAATACCTGGCCTG(配列番号2)
F3 TGCTTGTGGCCTCTCGTG(配列番号3)
B3 GGGTGTGTGAAGCTGTG(配列番号4)
The sequences of Inner primer and Outer primer are shown below.
FIP TGTTCCTGATGCAGTGGGCAGCTTTAGTCTGCGGCGGTGTTCTG (SEQ ID NO: 1)
BIP TGCTGGGTCGGCACAGCCTGAAGCTGACCTGAAATACCTGGCCTG (SEQ ID NO: 2)
F3 TGCTTGTGGCCTCTCGTG (SEQ ID NO: 3)
B3 GGGTGTGTGAAGCTGTG (SEQ ID NO: 4)

上記試薬溶液に核酸増幅反応基質であるdNTPを5.6mMとなるように添加し、試料(dNTP試料)を調製した。ここで、dNTPの構成成分であるdATP、dTTP、dCTP及びdGTPがそれぞれ1.4mMとなるようにdNTP試料を調製した。さらに、dATP、dTTP、dCTP及びdGTPのうちいずれか一つのdNTPを1.4mMとなるように上記試薬溶液に添加した4種の試料(dATP試料、dTTP試料、dCTP試料及びdGTP試料)を調製した。   A sample (dNTP sample) was prepared by adding dNTP, which is a nucleic acid amplification reaction substrate, to the reagent solution so as to be 5.6 mM. Here, dNTP samples were prepared so that dATP, dTTP, dCTP, and dGTP, which are constituents of dNTP, were 1.4 mM, respectively. Furthermore, four types of samples (dATP sample, dTTP sample, dCTP sample, and dGTP sample) were prepared by adding any one of dATP, dTTP, dCTP, and dGTP to the reagent solution so as to be 1.4 mM. .

(2)測定モード
ポテンシオスタット(北斗電工社製、HZ−5000)を用い、リニアー・スイープ・ボルタンメトリー(LSV)法による酸化電流値の測定を以下の条件で行った。
初期電位:自然電位
走査速度:80mV/sec
最終電位:1.2V
サンプリング:100mV
(2) Measurement mode Using a potentiostat (Hokuto Denko, HZ-5000), the oxidation current value was measured by the linear sweep voltammetry (LSV) method under the following conditions.
Initial potential: Natural potential Scanning speed: 80 mV / sec
Final potential: 1.2V
Sampling: 100 mV

(3)測定方法
微量測定用セル(BAS社製)に添加した試料80μLについて電気化学的測定を行った。
(3) Measuring method Electrochemical measurement was performed on 80 μL of the sample added to the micro-measurement cell (manufactured by BAS).

(4)電極
参照電極として銀/塩化銀電極(BAS社製:直径4mm)を用い、対極として白金線を用い、作用電極としてグラッシーカーボン電極(BAS社製:外径3mm、電極直径1mmのディスク電極)を用いた。測定前に、これらの電極表面を、セル研磨キット(BAS社製)を用いて研磨した。
(4) Electrode A silver / silver chloride electrode (manufactured by BAS: diameter 4 mm) is used as a reference electrode, a platinum wire is used as a counter electrode, and a glassy carbon electrode (manufactured by BAS: disk 3 mm outside diameter, electrode diameter 1 mm) is used as a working electrode. Electrode). Prior to measurement, these electrode surfaces were polished using a cell polishing kit (manufactured by BAS).

(5)評価
調製したdNTP試料、dATP試料、dTTP試料、dCTP試料及びdGTP試料について、LSV測定を行った。図2に、LSV法による酸化電流値の測定結果を示す。図2に示されるように、dNTP試料の場合0.8V辺りより酸化電流が流れ始め、1.2Vまでその酸化電流値が上昇した。また、dATP試料、dTTP試料及びdCTP試料においては、0.8〜1.2Vの範囲内において酸化電流値の上昇はほとんど認められなかった。一方、dGTP試料においては、0.8V辺りから酸化電流が流れ始め、1.2Vまでその酸化電流値は上昇した。dNTP試料とdGTP試料における酸化電流値の変化はほぼ一致した。
(5) Evaluation LSV measurement was performed on the prepared dNTP sample, dATP sample, dTTP sample, dCTP sample, and dGTP sample. FIG. 2 shows the measurement result of the oxidation current value by the LSV method. As shown in FIG. 2, in the case of the dNTP sample, the oxidation current started to flow around 0.8V, and the oxidation current value increased to 1.2V. Further, in the dATP sample, dTTP sample, and dCTP sample, almost no increase in the oxidation current value was observed within the range of 0.8 to 1.2V. On the other hand, in the dGTP sample, the oxidation current started to flow around 0.8V, and the oxidation current value increased to 1.2V. The changes in the oxidation current values in the dNTP sample and the dGTP sample almost coincided.

上記測定結果より、核酸塩基のうちグアニンのみが、0.8〜1.2Vの範囲内において電極で酸化され、酸化電流を生じさせることが明らかとなった。なお、核酸塩基のうち、グアニンの酸化電位が最も低いことが知られている。   From the above measurement results, it became clear that only guanine of the nucleobases was oxidized at the electrode within the range of 0.8 to 1.2 V, and an oxidation current was generated. In addition, it is known that the oxidation potential of guanine is the lowest among nucleobases.

更に、上記試薬溶液の成分(塩類、トリスバッファー、プライマー、Bst等)についても、上記電位範囲内において酸化電流値の上昇はほとんど認められなかった。これらのことから、核酸増幅反応を行う反応液の成分のうち、上記電位範囲内で酸化電流を生じさせるものはグアニンのみであることが明らかとなった。   Further, with respect to the components of the reagent solution (salts, Tris buffer, primer, Bst, etc.), almost no increase in oxidation current value was observed within the potential range. From these facts, it was clarified that, among the components of the reaction solution for performing the nucleic acid amplification reaction, only guanine produces an oxidation current within the above potential range.

実施例2:グアニンの電極酸化反応を利用した核酸増幅の有無の判定
核酸増幅反応を行う反応液について、実施例1と同様の条件で電気化学的測定を行うことにより、核酸増幅の有無を判定することが可能かどうか検討した。
Example 2: Determination of presence or absence of nucleic acid amplification using electrode oxidation reaction of guanine For a reaction solution for performing a nucleic acid amplification reaction, the presence or absence of nucleic acid amplification is determined by performing electrochemical measurement under the same conditions as in Example 1. We examined whether it was possible.

(1)LAMP法による核酸増幅反応
実施例1で調製したdNTP試料と同様の試料を増幅反応溶液として用い、核酸増幅法としてLAMP(Loop−Mediated Isothermal Amplification)法を採用して核酸増幅反応を行った。反応温度は65℃とした。また、増幅反応陽性標準の鋳型核酸として、PSAのcDNAをクローニングしたpBR322を用いた。
(1) Nucleic acid amplification reaction by LAMP method A sample similar to the dNTP sample prepared in Example 1 is used as an amplification reaction solution, and a nucleic acid amplification reaction is performed by adopting a LAMP (Loop-Mediated Isolation Amplification) method as a nucleic acid amplification method. It was. The reaction temperature was 65 ° C. Moreover, pBR322 into which PSA cDNA was cloned was used as a template nucleic acid for the amplification reaction positive standard.

(2)電気化学的測定
実施例1と同様の測定モード、測定方法及び電極により、反応時間が異なる増幅反応溶液について電気化学的測定を行い、電気化学的特性の反応時間の経過に伴う変化を評価した。
(2) Electrochemical measurement Using the same measurement mode, measurement method and electrode as in Example 1, electrochemical measurement is performed on amplification reaction solutions having different reaction times, and changes in the electrochemical characteristics with the passage of reaction time are observed. evaluated.

(3)測定結果
図3に、増幅反応液のLSV法による酸化電流値の測定結果を示す。図3に示されるように、核酸増幅反応(LAMP反応)の進行に伴って、すなわち濁度の増加に伴って酸化電流値が低下することが観察された。図4は、電位1Vにおける酸化電流値と濁度との関係を示すグラフである。図4から明らかなように、例えば1V近辺の酸化電流値の低下を確認することにより、核酸増幅の有無を判定することが可能であると考えられる。
(3) Measurement result In FIG. 3, the measurement result of the oxidation current value by the LSV method of an amplification reaction liquid is shown. As shown in FIG. 3, it was observed that the oxidation current value decreased as the nucleic acid amplification reaction (LAMP reaction) progressed, that is, as the turbidity increased. FIG. 4 is a graph showing the relationship between the oxidation current value and the turbidity at a potential of 1V. As is clear from FIG. 4, it is considered possible to determine the presence or absence of nucleic acid amplification by confirming a decrease in the oxidation current value around 1 V, for example.

実施例3:電極の影響
電極の種類が電気化学的測定の結果に与える影響について検討した。グラッシーカーボン電極に代えて金電極(BAS社製:外径3mm、電極直径1.6mmのディスク電極)を作用電極として用いて、実施例2と同様の核酸増幅反応における反応液の電気化学的特性の変化を評価した。また、作用電極(カーボンペースト)、参照電極(銀/塩化銀)及び対極(カーボンペースト)が約2mm角の基板上に形成されたサンプルリザーバー付きディスポーザブル電極(北斗科学産業社製)を電極として用いて同様の評価を行った。
Example 3 Influence of Electrode The influence of the type of electrode on the result of electrochemical measurement was examined. Electrochemical characteristics of the reaction solution in the same nucleic acid amplification reaction as in Example 2 using a gold electrode (manufactured by BAS: disk electrode having an outer diameter of 3 mm and an electrode diameter of 1.6 mm) as the working electrode instead of the glassy carbon electrode Was evaluated for changes. In addition, a disposable electrode with a sample reservoir (made by Hokuto Kagaku Sangyo Co., Ltd.) in which a working electrode (carbon paste), a reference electrode (silver / silver chloride) and a counter electrode (carbon paste) are formed on a 2 mm square substrate is used as an electrode. The same evaluation was performed.

(4)測定方法
作用電極が金電極の場合はサンプル容量を80μLとし、微量測定用セル(BAS社製)を用いて電流値を測定した。また、ディスポーザブル電極の場合はサンプル容量を100μLとし、サンプルリザーバーを用いて電流値を測定した。
(4) Measurement method When the working electrode was a gold electrode, the sample volume was set to 80 μL, and the current value was measured using a trace measurement cell (manufactured by BAS). In the case of a disposable electrode, the sample volume was set to 100 μL, and the current value was measured using a sample reservoir.

(5)測定結果
図5は作用電極として金電極を用いた場合、図6はディスポーザブル電極を用いた場合の電気化学的測定の測定結果を示すグラフである。図5、6に示すように、作用電極としてグラッシーカーボン電極に代えて金電極又はディスポーザブル電極を用いた場合でも、LAMP反応による核酸増幅が生じたとき(positive)の酸化電流値は、核酸増幅が生じなかった場合(negative)の酸化電流値より低値を示した。以上の結果から、核酸増幅反応の進行に伴う酸化電流値の低下は、電極の種類によらず測定可能であることが確認された。
(5) Measurement Result FIG. 5 is a graph showing the measurement result of electrochemical measurement when a gold electrode is used as the working electrode, and FIG. 6 is a graph showing the measurement result of electrochemical measurement when a disposable electrode is used. As shown in FIGS. 5 and 6, even when a gold electrode or a disposable electrode is used in place of the glassy carbon electrode as the working electrode, the oxidation current value when nucleic acid amplification by the LAMP reaction occurs (positive) The value was lower than the oxidation current value when it did not occur (negative). From the above results, it was confirmed that the decrease in the oxidation current value accompanying the progress of the nucleic acid amplification reaction can be measured regardless of the type of electrode.

実施例4:不溶性担体上での核酸増幅反応への適用
多孔質支持体中での核酸増幅反応の場合について、核酸増幅反応の有無の電気化学的な検出の可否を検討した。
Example 4 Application to Nucleic Acid Amplification Reaction on Insoluble Carrier In the case of nucleic acid amplification reaction in a porous support, the possibility of electrochemical detection of the presence or absence of nucleic acid amplification reaction was examined.

(1)試料の調製等
試料の調製、LAMP法で検出する鋳型核酸及び反応温度、測定モードは実施例2と同様の条件で実験を行った。
(1) Preparation of sample, etc. The experiment was performed under the same conditions as in Example 2 with respect to sample preparation, template nucleic acid detected by the LAMP method, reaction temperature, and measurement mode.

(2)電気化学的測定
電極は、実施例3で使用したものと同様のディスポーザブル電極を用いた。5mm×10mmのサイズに切り出した吸水用濾紙(東洋濾紙社製:No.26−WA)に増幅反応液を浸漬し、その濾紙を電極に押し付けることによって電気化学的な測定を行った。
(2) Electrochemical measurement The electrode used was a disposable electrode similar to that used in Example 3. Electrochemical measurement was performed by immersing the amplification reaction solution in a water-absorbing filter paper cut out to a size of 5 mm × 10 mm (Toyo Filter Paper Co., Ltd .: No. 26-WA) and pressing the filter paper against the electrode.

(3)測定結果
図7に電気化学的測定の測定結果を示す。実施例3と同様に、例えば1V近辺において、核酸増幅反応が生じた場合(Positive)の酸化電流値は、核酸増幅が生じなかった場合(Negative)の酸化電流値より低い値を示した。この結果から、電気化学的測定により、不溶性担体上での核酸増幅の有無を検出することが可能であることが確認された。このように、不溶性担体上に浸漬された増幅反応液の場合であっても核酸増幅の有無の検出ができたということは、試料に含まれる不溶性の不要物(変性したタンパク質や無機沈殿等)が反応液に持ち込まれても核酸増幅の検出が可能であることを示唆している。
(3) Measurement results Fig. 7 shows the measurement results of electrochemical measurement. Similarly to Example 3, for example, in the vicinity of 1 V, the oxidation current value when the nucleic acid amplification reaction occurred (Positive) showed a value lower than the oxidation current value when the nucleic acid amplification did not occur (Negative). From this result, it was confirmed that the presence or absence of nucleic acid amplification on the insoluble carrier could be detected by electrochemical measurement. Thus, even in the case of an amplification reaction solution immersed on an insoluble carrier, the presence or absence of nucleic acid amplification could be detected, which means that insoluble unnecessary substances contained in the sample (denatured proteins, inorganic precipitates, etc.) This suggests that nucleic acid amplification can be detected even if is introduced into the reaction solution.

実施例5:測定モードの検討
核酸増幅反応の進行に伴う酸化電流値の低下の要因を解明する目的で、LSV法以外の測定モードによる電気化学的測定を行った。測定モード以外の条件は、実施例2と同様とした。
Example 5: Examination of measurement mode In order to elucidate the cause of the decrease in the oxidation current value accompanying the progress of the nucleic acid amplification reaction, electrochemical measurement was performed in a measurement mode other than the LSV method. Conditions other than the measurement mode were the same as in Example 2.

(1)ディファレンシャルパルスボルタンメトリー(DPV)
DPV法による電気化学的測定を以下の条件で行った。DPV法によれば、バックグラウンドからの電流や電極反応に伴う電気二重層の充電等の反応が低減でき、電極で生じる正味の反応を正確に捉えることが可能である。
初期電位:自然電位
最終電位:1.2V
パルス幅:50msec
パルス周期:1sec
パルス高さ:10mV
サンプリング間隔:5mV
(1) Differential pulse voltammetry (DPV)
Electrochemical measurement by the DPV method was performed under the following conditions. According to the DPV method, reactions such as current from the background and charging of the electric double layer accompanying the electrode reaction can be reduced, and the net reaction occurring at the electrode can be accurately captured.
Initial potential: natural potential Final potential: 1.2V
Pulse width: 50msec
Pulse period: 1 sec
Pulse height: 10mV
Sampling interval: 5 mV

(2)クロノアンペロメトリー(CA)
CA法による電気化学的な測定を以下の条件で行った。CA法は電極に一定の電位をかけ続けながら電流測定を行う方法であり、特定の電位における電流値をLSV法と比較してより正確に測定できる。
初期電位:自然電位
印加電位:1V
サンプリング:20sec
(2) Chronoamperometry (CA)
Electrochemical measurement by the CA method was performed under the following conditions. The CA method is a method in which current measurement is performed while applying a constant potential to an electrode, and a current value at a specific potential can be measured more accurately than in the LSV method.
Initial potential: natural potential Applied potential: 1V
Sampling: 20 sec

(3)測定結果
図8は、DPV法による電気化学的測定の結果を示すグラフである。DPV法の場合、LSV法の場合(図3)と異なり、0.8V付近に明瞭なピークが観察された。この酸化電流値のピークは、LAMP反応による核酸増幅の有無に拘らず、同等の0.8V付近に認められた。このことは、グアニンは、dNTPの状態であっても核酸増幅が生じて核酸鎖中に取り込まれた状態であっても同様の反応機構で電極酸化を受けていることを示している。一方でLSV法の場合と同様に、増幅反応が進行したとき(Positive)の酸化電流値はNegativeと比較して低い値を示している。このことから、dNTPがポリマー化して核酸鎖を生成したときに電極への接触頻度が低下していることが示唆される。
(3) Measurement Results FIG. 8 is a graph showing the results of electrochemical measurement by the DPV method. In the case of the DPV method, unlike the case of the LSV method (FIG. 3), a clear peak was observed in the vicinity of 0.8V. This peak of the oxidation current value was observed around the same 0.8 V regardless of the presence or absence of nucleic acid amplification by the LAMP reaction. This indicates that guanine is subjected to electrode oxidation by the same reaction mechanism even in a dNTP state, even when nucleic acid amplification occurs and is incorporated into a nucleic acid chain. On the other hand, as in the case of the LSV method, the oxidation current value when the amplification reaction proceeds (Positive) is lower than that of Negative. This suggests that the frequency of contact with the electrode is reduced when dNTPs are polymerized to form nucleic acid chains.

また、図9に示すように、CA法による限界電流測定においても増幅反応の進行に伴う酸化電流値の変化が認められた。図10は、CA法によって得られた電流−時間曲線に対してコットレルプロット解析を行った結果を示すグラフである。核酸増幅反応が進んだ場合(Positive)の直線の傾きは、核酸増幅反応が起きなかった場合(Negative)の直線の傾きより小さかった。コットレルプロットで得られる直線の傾きは、検出対象物質の拡散係数と相関することから、核酸増幅によってグアニンの拡散係数が低下した結果、酸化電流値が低下したものと考えられる。   Moreover, as shown in FIG. 9, the change of the oxidation current value accompanying the progress of the amplification reaction was also observed in the limit current measurement by the CA method. FIG. 10 is a graph showing the results of performing a Cottrell plot analysis on the current-time curve obtained by the CA method. The slope of the straight line when the nucleic acid amplification reaction progressed (Positive) was smaller than the slope of the straight line when the nucleic acid amplification reaction did not occur (Negative). Since the slope of the straight line obtained by the Cottrell plot correlates with the diffusion coefficient of the substance to be detected, it is considered that the oxidation current value decreased as a result of the decrease in the diffusion coefficient of guanine due to nucleic acid amplification.

検出装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of a detection apparatus. LSV法によるdNTP中の各塩基の酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value of each base in dNTP by LSV method. 増幅反応液のLSV法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value by LSV method of an amplification reaction liquid. 電位1Vにおける酸価電流値と濁度との関係を示すグラフである。It is a graph which shows the relationship between the acid value electric current value in electric potential 1V, and turbidity. 増幅反応液のLSV法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value by LSV method of an amplification reaction liquid. 増幅反応液のLSV法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value by LSV method of an amplification reaction liquid. 増幅反応液のLSV法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value by LSV method of an amplification reaction liquid. 増幅反応液のDPV法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation electric current value by DPV method of an amplification reaction liquid. 増幅反応液のCA法による酸化電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation current value by CA method of an amplification reaction liquid. CA法による酸化電流値の測定結果のコットレルプロットによる解析結果を示すグラフである。It is a graph which shows the analysis result by the Cottrell plot of the measurement result of the oxidation current value by CA method.

符号の説明Explanation of symbols

10…反応装置、11…反応槽、12…電極、12a…作用電極、12b…参照電極、12c…対極、15…ラバーヒーター、30…精製装置、31…回収槽、33…保持槽、34…陽極側電解槽、35…陰極側電解槽、37…多孔性濾過膜、41…陽極、42…陰極、50…接続部、100…検出装置。   DESCRIPTION OF SYMBOLS 10 ... Reaction apparatus, 11 ... Reaction tank, 12 ... Electrode, 12a ... Working electrode, 12b ... Reference electrode, 12c ... Counter electrode, 15 ... Rubber heater, 30 ... Purification apparatus, 31 ... Collection tank, 33 ... Holding tank, 34 ... Anode-side electrolytic cell, 35 ... cathode-side electrolytic cell, 37 ... porous filtration membrane, 41 ... anode, 42 ... cathode, 50 ... connection part, 100 ... detection device.

Claims (9)

核酸が回収槽内にプールされるように被検試料から核酸を精製するステップと、
前記回収槽内にプールされた核酸を前記回収槽に接続された反応槽内に導入するステップと、
前記反応槽内で、精製した核酸を含む反応液中で標的核酸を増幅する核酸増幅反応を行い、核酸増幅反応を行う反応液の電気化学的特性の変化に基づいて核酸増幅の有無を判定する方法を用いて前記反応液における標的核酸の核酸増幅の有無を判定するステップと、を備える、被検試料中の標的核酸の検出方法。
Purifying nucleic acid from a test sample such that the nucleic acid is pooled in a collection vessel;
Introducing the nucleic acid pooled in the recovery tank into a reaction tank connected to the recovery tank;
In the reaction tank, a nucleic acid amplification reaction is performed to amplify the target nucleic acid in a reaction solution containing purified nucleic acid, and the presence or absence of nucleic acid amplification is determined based on a change in electrochemical characteristics of the reaction solution in which the nucleic acid amplification reaction is performed. A method for determining the presence or absence of nucleic acid amplification of the target nucleic acid in the reaction solution using the method, and a method for detecting the target nucleic acid in the test sample.
前記反応液に所定の電圧を印加したときの電流値の変化に基づいて核酸増幅の有無を判定する、請求項1記載の検出方法。   The detection method according to claim 1, wherein the presence or absence of nucleic acid amplification is determined based on a change in current value when a predetermined voltage is applied to the reaction solution. 前記所定の電圧が0.8〜1.2Vである、請求項2記載の検出方法。   The detection method according to claim 2, wherein the predetermined voltage is 0.8 to 1.2V. 前記電流値の変化が、グアニンの酸化により生じる酸化電流に由来する電流値の低下である、請求項2又は3記載の検出方法。   The detection method according to claim 2 or 3, wherein the change in the current value is a decrease in a current value derived from an oxidation current caused by oxidation of guanine. 電気泳動によって被検試料から核酸を精製する、請求項1〜4のいずれか一項に記載の検出方法。   The detection method according to any one of claims 1 to 4, wherein the nucleic acid is purified from the test sample by electrophoresis. 核酸増幅反応を行う反応液が投入される反応槽と、
前記反応槽内に挿入された電極と、を有し、
前記反応槽が、被検試料から精製された核酸がプールされる回収槽に接続されている、
請求項1〜5のいずれか一項に記載の検出方法に用いられる反応装置。
A reaction vessel into which a reaction solution for performing a nucleic acid amplification reaction is charged;
An electrode inserted into the reaction vessel,
The reaction vessel is connected to a collection vessel in which nucleic acids purified from the test sample are pooled;
The reaction apparatus used for the detection method as described in any one of Claims 1-5.
請求項6記載の反応装置と、
当該反応装置の反応槽に接続された、被検試料から核酸を精製する精製装置と、を備え、
前記精製装置が、前記被検試料から精製された核酸がプールされる回収槽を有し、前記回収槽が前記反応槽に接続されており、
請求項1〜5のいずれか一項に記載の検出方法に用いられる検出装置。
A reactor according to claim 6;
A purification device for purifying nucleic acid from a test sample connected to the reaction vessel of the reaction device,
The purification apparatus has a recovery tank in which nucleic acids purified from the test sample are pooled, and the recovery tank is connected to the reaction tank;
The detection apparatus used for the detection method as described in any one of Claims 1-5.
前記精製装置が、電気泳動によって被検試料から核酸を精製する精製装置である、請求項7記載の検出装置。   The detection apparatus according to claim 7, wherein the purification apparatus is a purification apparatus that purifies nucleic acid from a test sample by electrophoresis. 前記精製装置が、
陽極側電解槽と、
前記反応槽に接続されており、核酸がプールされる回収槽と、
被検試料が保持される保持槽と、
陰極側電解槽と、を有し、
これらがこの順に接続されている、請求項8記載の検出装置。
The purification device is
An anode side electrolytic cell;
A recovery tank connected to the reaction tank and in which nucleic acids are pooled;
A holding tank in which the test sample is held;
A cathode side electrolytic cell,
The detection device according to claim 8, wherein these are connected in this order.
JP2006346283A 2006-12-22 2006-12-22 Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor Active JP4908182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346283A JP4908182B2 (en) 2006-12-22 2006-12-22 Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346283A JP4908182B2 (en) 2006-12-22 2006-12-22 Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2008157733A JP2008157733A (en) 2008-07-10
JP4908182B2 true JP4908182B2 (en) 2012-04-04

Family

ID=39658802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346283A Active JP4908182B2 (en) 2006-12-22 2006-12-22 Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4908182B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047500A (en) * 2001-08-01 2003-02-18 Fuji Photo Film Co Ltd Method for detecting target nucleic acid fragment and detecting kit for target nucleic acid fragment
WO2003080829A1 (en) * 2002-03-26 2003-10-02 Jun Kikuchi Dna trap/release apparatus using channel and method of trapping and releasing dna
JP3854183B2 (en) * 2002-03-28 2006-12-06 株式会社東芝 Sample separation detection chip
ES2330347T3 (en) * 2004-02-26 2009-12-09 DELTA, DANSK ELEKTRONIK, LYS &amp; AKUSTIK METHOD, CHIP, DEVICE AND INTEGRATED SYSTEM FOR THE DETECTION OF BIOLOGICAL PARTICLES.
JP2006133098A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Method for detecting protein or dna and detection chip for same
US8313638B2 (en) * 2006-03-03 2012-11-20 Universite Paris Diderot-Paris 7 Method for the electrochemical detection of target nucleic acid sequences
JP2006292772A (en) * 2006-07-10 2006-10-26 Toshiba Corp Sample separation detecting chip

Also Published As

Publication number Publication date
JP2008157733A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US20230074766A1 (en) Method of Measuring the pH of a Sample
US20200362404A1 (en) Electrochemical Detection Of Polymerase Reactions By Specific Metal-Phosphate Complex Formation
KR20130092164A (en) Electrochemical one-step detection method of dna based on the transport control of signaling materials
JP4765813B2 (en) Method for electrochemical measurement of double-stranded DNA content
EP1953541B1 (en) Method for determination of amount of double-stranded dna
KR101345077B1 (en) Method for the electrochemical detection of target nucleic acid sequences
Shin et al. Electrochemical detection of DNA mutations on a PNA-modified electrode utilizing a single-stranded DNA specific endonuclease
JP5262725B2 (en) Nucleic acid detection method and nucleic acid detection chip
JP4908182B2 (en) Nucleic acid amplification determination method, target nucleic acid detection method, and apparatus used therefor
CN107228892B (en) Electrochemistry mercury ion sensor of temperature-controllable and preparation method thereof
Kara et al. Electrochemical Genoassay Design for Allele‐Specific Detection of Toll‐Like Receptor‐2 Gene Polymorphism
JP2003144152A (en) Method for detecting target nucleic acid fragment and detection kit for target nucleic acid fragment
PT1516067E (en) Detection of toxic algae
CN115248240B (en) Dual-channel electrochemical method based on DNAzyme and application research of dual-channel electrochemical method in lead ion detection
RU114320U1 (en) DEVICE FOR DIRECT ELECTROCHEMICAL REGISTRATION OF UNPRIMITED SYNTHESIS OF DNA MOLECULES BASED ON PH-SENSITIVE SENSOR
JP2006145342A (en) Analyzing method of polynucleotide
JP4561478B2 (en) Polymorph detection method, polymorph detection kit
JP2007295811A (en) Method for performing real-time polymerase chain reaction, pyrophosphate sensor electrode and real-time polymerase chain reaction apparatus
JP2007037483A (en) Method for detecting whether enzymatic reaction exist or not
Nguyen et al. Identification of bacteria strains using the Recombinase Polymerase Amplification assay on a miniaturized solid-state pH sensor
CN117210540A (en) Gene detection method based on three-way nucleic acid coded lock
WO2020030647A1 (en) Electrochemical detection of polymerase reactions by specific metal-phosphate complex formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250