JP4905464B2 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP4905464B2
JP4905464B2 JP2008555550A JP2008555550A JP4905464B2 JP 4905464 B2 JP4905464 B2 JP 4905464B2 JP 2008555550 A JP2008555550 A JP 2008555550A JP 2008555550 A JP2008555550 A JP 2008555550A JP 4905464 B2 JP4905464 B2 JP 4905464B2
Authority
JP
Japan
Prior art keywords
oil
refrigerating machine
machine oil
refrigerant
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008555550A
Other languages
Japanese (ja)
Other versions
JP2009540170A (en
Inventor
洋一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008555550A priority Critical patent/JP4905464B2/en
Publication of JP2009540170A publication Critical patent/JP2009540170A/en
Application granted granted Critical
Publication of JP4905464B2 publication Critical patent/JP4905464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0215Lubrication characterised by the use of a special lubricant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/103Containing Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Description

本発明は、冷媒圧縮機に関するものである。   The present invention relates to a refrigerant compressor.

近年、冷媒圧縮機の高効率化手段として、粘度の低い冷凍機油を適用することにより入力を低減する例がある(例えば、特許文献1参照)。   In recent years, there has been an example in which the input is reduced by applying refrigeration oil having a low viscosity as means for improving the efficiency of a refrigerant compressor (see, for example, Patent Document 1).

以下、図面を参照しながら従来の冷媒圧縮機を説明する。   Hereinafter, a conventional refrigerant compressor will be described with reference to the drawings.

図2は特許文献1に記載された、従来の冷媒圧縮機の縦断面図である。図2において、密閉容器1内には冷媒2を充填するとともに、底部には冷凍機油3を貯留し、固定子4および回転子5からなる電動要素6と、これによって駆動される往復式の圧縮要素7を収容している。冷媒2には、炭化水素冷媒であるR600aを用いている。   FIG. 2 is a longitudinal sectional view of a conventional refrigerant compressor described in Patent Document 1. In FIG. In FIG. 2, the airtight container 1 is filled with the refrigerant 2, and the refrigerating machine oil 3 is stored at the bottom, and the electric element 6 including the stator 4 and the rotor 5, and the reciprocating compression driven thereby. Contains element 7. As the refrigerant 2, R600a which is a hydrocarbon refrigerant is used.

次に、圧縮要素7の詳細を以下に説明する。   Next, details of the compression element 7 will be described below.

クランクシャフト8は、回転子5を圧入固定した主軸9と、主軸9に対し偏心して形成された偏心軸10とからなり、下端には冷凍機油3に連通する給油ポンプ11を設けている。   The crankshaft 8 includes a main shaft 9 in which the rotor 5 is press-fitted and fixed, and an eccentric shaft 10 formed eccentrically with respect to the main shaft 9, and an oil supply pump 11 communicating with the refrigerating machine oil 3 is provided at the lower end.

シリンダブロック12は、略円筒形の圧縮室13を備え、主軸9を軸支する軸受部14が形成されている。   The cylinder block 12 includes a substantially cylindrical compression chamber 13, and a bearing portion 14 that supports the main shaft 9 is formed.

圧縮室13に間隔をもって嵌められたピストン15は、ピストンピン16を介して連結手段であるコンロッド17によって偏心軸10と連結されている。圧縮室13の端面は、バルブプレート18により封止されている。   The piston 15 fitted in the compression chamber 13 with a space is connected to the eccentric shaft 10 via a piston pin 16 by a connecting rod 17 which is a connecting means. The end surface of the compression chamber 13 is sealed with a valve plate 18.

ヘッド19は、図示していない高圧室を形成し、バルブプレート18に対して圧縮室13と反対側に固定される。マフラー20は、バルブプレート18とヘッド19とに挟持されている。   The head 19 forms a high pressure chamber (not shown), and is fixed to the valve plate 18 on the side opposite to the compression chamber 13. The muffler 20 is sandwiched between the valve plate 18 and the head 19.

サクションチューブ21およびディスチャージチューブ22は、密閉容器1に固定されるとともに、図示していない冷凍サイクルに接続されている。サクションチューブ21は冷媒2を密閉容器1内に導き、ディスチャージチューブ22は冷媒2を冷凍サイクルへと送り出す。   The suction tube 21 and the discharge tube 22 are fixed to the sealed container 1 and connected to a refrigeration cycle (not shown). The suction tube 21 guides the refrigerant 2 into the sealed container 1, and the discharge tube 22 sends the refrigerant 2 to the refrigeration cycle.

以上のように構成された冷媒圧縮機について以下、その動作、作用を説明する。   The operation and action of the refrigerant compressor configured as described above will be described below.

図示していない商用電源から供給される電力は、電動要素6に供給され、電動要素6の回転子5を回転させるとともに、クランクシャフト8を回転させる。そして偏心軸10の偏心運動が、連結手段のコンロッド17からピストンピン16を介してピストン15を駆動させ、ピストン15は圧縮室13内を往復運動する。冷媒2は、冷凍サイクルより図示していない吸入リードを介してサクションチューブ21から密閉容器1内に導かれる。そして冷媒2は、マフラー20から吸入され、圧縮室13内において連続して圧縮される。圧縮された冷媒2は、図示していない吐出バルブから吐出され、ディスチャージチューブ22より冷凍サイクルへと送り出される。   Electric power supplied from a commercial power source (not shown) is supplied to the electric element 6 to rotate the rotor 5 of the electric element 6 and rotate the crankshaft 8. The eccentric movement of the eccentric shaft 10 drives the piston 15 from the connecting rod 17 of the connecting means via the piston pin 16, and the piston 15 reciprocates in the compression chamber 13. The refrigerant 2 is introduced from the suction tube 21 into the sealed container 1 through a suction lead (not shown) from the refrigeration cycle. The refrigerant 2 is sucked from the muffler 20 and continuously compressed in the compression chamber 13. The compressed refrigerant 2 is discharged from a discharge valve (not shown) and sent out from the discharge tube 22 to the refrigeration cycle.

このとき冷凍機油3は、クランクシャフト8の給油ポンプ11により汲み上げられ、主軸9やピストン15等の各摺動部を潤滑する。   At this time, the refrigerating machine oil 3 is pumped up by the oil supply pump 11 of the crankshaft 8 and lubricates each sliding portion such as the main shaft 9 and the piston 15.

このような冷媒圧縮機において、冷凍機油3に40℃の時の粘度が8mm2/s未満である油を使用し、冷媒圧縮機の摺動部である圧縮室13とピストン15間や、クランクシャフト8と軸受部14間等での摩擦損失を低減して、高効率な冷媒圧縮機を実現しようとしていた。 In such a refrigerant compressor, oil having a viscosity of less than 8 mm 2 / s at 40 ° C. is used for the refrigerating machine oil 3, and between the compression chamber 13 and the piston 15 which are sliding parts of the refrigerant compressor, A friction loss between the shaft 8 and the bearing portion 14 or the like has been reduced to achieve a highly efficient refrigerant compressor.

しかしながら、上記従来の冷媒圧縮機では、40℃の時の粘度が8mm2/s未満の冷凍機油3を用いるため、その粘度が低いことから圧縮室13とピストン15との間に保持できる冷凍機油3の量が減少していた。そのため圧縮室13とピストン15との隙間から冷媒2が漏れ、漏れ損失が増加するという課題を有していた。 However, since the conventional refrigerant compressor uses the refrigerating machine oil 3 having a viscosity of less than 8 mm 2 / s at 40 ° C., the refrigerating machine oil that can be held between the compression chamber 13 and the piston 15 because the viscosity is low. The amount of 3 was decreasing. Therefore, the refrigerant | coolant 2 leaked from the clearance gap between the compression chamber 13 and piston 15, and had the subject that leakage loss increased.

また、圧縮室13とピストン15の隙間からの冷媒2の漏れを低減するために、圧縮室13とピストン15との隙間を小さくしすぎると、圧縮された冷媒2により周囲温度が上昇したときに、ピストン15の外壁と圧縮室13の内壁とが接触し、摩耗が生じるという課題を有していた。
特開昭62−059695号公報
Further, if the gap between the compression chamber 13 and the piston 15 is made too small in order to reduce the leakage of the refrigerant 2 from the gap between the compression chamber 13 and the piston 15, the ambient temperature rises due to the compressed refrigerant 2. The outer wall of the piston 15 and the inner wall of the compression chamber 13 are in contact with each other, causing a problem of wear.
JP 62-059695 A

本発明は、冷凍機油を貯溜する密閉容器と、電動要素と、電動要素によって駆動される圧縮要素と、圧縮要素には円筒形の圧縮室を備えたシリンダブロックと、圧縮室内において往復運動する円筒形のピストンとを備えた冷媒圧縮機であって、圧縮室の直径とピストンの直径との差が4μm以上、かつ15μm以下の範囲であり、冷凍機油は40℃の時の粘度が8mm/s以下である第1冷凍機油に、40℃の時の粘度が20mm/s以
上である第2冷凍機油を混合し、混合後の40℃の時の粘度が8mm/s以下である。
The present invention relates to a sealed container for storing refrigerating machine oil, an electric element, a compression element driven by the electric element, a cylinder block having a cylindrical compression chamber in the compression element, and a cylinder that reciprocates in the compression chamber. a refrigerant compressor comprising a shape of a piston, the difference between the diameter of the compression chamber diameter and piston 4μm or more and a range of 15 [mu] m, the refrigerating machine oil has a viscosity at a 40 ° C. is 8 mm 2 / s in the first refrigerating machine oil is less, the viscosity at a 40 ° C. mixture of second refrigerating machine oil is 20 mm 2 / s or more, is less than 8 mm 2 / s viscosity when in 40 ° C. after mixing .

このような冷媒圧縮機とすると、冷凍機油の粘性抵抗を低減することにより摩擦損失を低減するとともに、圧縮室とピストンとの間の冷凍機油の保持量を増やし、冷媒が漏れる漏れ損失を低減することができる。さらに、圧縮室の直径とピストンの直径との差を最適化できるので、圧縮室とピストンの接触による摩耗を抑え、高効率かつ高信頼性の冷媒圧縮機とすることができる。   With such a refrigerant compressor, the frictional resistance is reduced by reducing the viscosity resistance of the refrigeration oil, the amount of refrigeration oil retained between the compression chamber and the piston is increased, and the leakage loss that the refrigerant leaks is reduced. be able to. Furthermore, since the difference between the diameter of the compression chamber and the diameter of the piston can be optimized, wear due to contact between the compression chamber and the piston can be suppressed, and a highly efficient and highly reliable refrigerant compressor can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。また、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited to the embodiments.

(実施の形態)
図1は、本発明の実施の形態における冷媒圧縮機の縦断面図である。
(Embodiment)
FIG. 1 is a longitudinal sectional view of a refrigerant compressor according to an embodiment of the present invention.

図1において冷媒圧縮機100は、密閉容器101内に冷媒102が充填され、密閉容器101の底部には、冷凍機油103が貯留されている。また冷媒圧縮機100は、固定子104および回転子105からなる電動要素106と、電動要素106によって駆動される往復式の圧縮要素107を備えている。   In FIG. 1, the refrigerant compressor 100 is filled with a refrigerant 102 in a sealed container 101, and refrigerating machine oil 103 is stored at the bottom of the sealed container 101. The refrigerant compressor 100 includes an electric element 106 including a stator 104 and a rotor 105 and a reciprocating compression element 107 driven by the electric element 106.

次に、圧縮要素107の詳細を以下に説明する。   Next, details of the compression element 107 will be described below.

鉄系金属からなるクランクシャフト108は、回転子105を圧入固定した主軸109と、主軸109に対し偏心して形成された偏心軸110とからなる。クランクシャフト108の下端には、冷凍機油103に連通する給油ポンプ111を設けている。シリンダブロック112は、略円筒形の圧縮室113を備え、主軸109を軸支する軸受部114が形成されている。   The crankshaft 108 made of iron-based metal includes a main shaft 109 in which the rotor 105 is press-fitted and fixed, and an eccentric shaft 110 formed eccentrically with respect to the main shaft 109. An oil supply pump 111 communicating with the refrigerator oil 103 is provided at the lower end of the crankshaft 108. The cylinder block 112 includes a substantially cylindrical compression chamber 113, and a bearing portion 114 that supports the main shaft 109 is formed.

圧縮室113に間隔をもって嵌められた鉄系金属からなるピストン115は、ピストンピン116を介して連結手段であるコンロッド117によって偏心軸110と連結されている。   A piston 115 made of an iron-based metal fitted in the compression chamber 113 with a gap is connected to the eccentric shaft 110 through a piston pin 116 by a connecting rod 117 serving as a connecting means.

バルブプレート118は、圧縮室113の端面を封止するように配設されている。またバルブプレート118は、薄板状のばね鋼材により形成され、図示していない吸入孔を開閉する吸入リード119から構成されたバルブ部120を形成している。   The valve plate 118 is disposed so as to seal the end surface of the compression chamber 113. Further, the valve plate 118 is formed of a thin plate-shaped spring steel material, and forms a valve portion 120 including a suction lead 119 that opens and closes a suction hole (not shown).

またヘッド121は、バルブプレート118に対して圧縮室113と反対側に固定されている。マフラー122は、バルブプレート118とヘッド121とに挟持されている。   The head 121 is fixed on the opposite side of the compression chamber 113 with respect to the valve plate 118. The muffler 122 is sandwiched between the valve plate 118 and the head 121.

マフラー122は、ガラス繊維を混合したポリブチレンテレフタレートより形成されている。   The muffler 122 is formed from polybutylene terephthalate mixed with glass fibers.

サクションチューブ123およびディスチャージチューブ124は、密閉容器101に固定されるとともに、図示していない冷凍サイクルに接続されている。サクションチューブ123は冷媒102を密閉容器101内に導き、ディスチャージチューブ124は冷媒102を冷凍サイクルへと送り出す。   The suction tube 123 and the discharge tube 124 are fixed to the sealed container 101 and are connected to a refrigeration cycle (not shown). The suction tube 123 guides the refrigerant 102 into the sealed container 101, and the discharge tube 124 sends the refrigerant 102 to the refrigeration cycle.

以上のように構成された冷媒圧縮機について、以下その動作、作用を説明する。   The operation and action of the refrigerant compressor configured as described above will be described below.

図示していない商用電源から供給される電力は、電動要素106に供給され、電動要素106の回転子105を回転させる。回転子105は、クランクシャフト108を回転させ、偏心軸110の偏心運動がコンロッド117からピストンピン116を介してピストン115を駆動させて、ピストン115は圧縮室113内を往復運動する。   Electric power supplied from a commercial power source (not shown) is supplied to the electric element 106 to rotate the rotor 105 of the electric element 106. The rotor 105 rotates the crankshaft 108, and the eccentric motion of the eccentric shaft 110 drives the piston 115 from the connecting rod 117 through the piston pin 116, and the piston 115 reciprocates in the compression chamber 113.

そして、サクションチューブ123より密閉容器101内に導かれた冷媒102は、マフラー122を通って圧縮室113内に吸入される。圧縮室113内に吸入された冷媒102は連続して圧縮され、圧縮された冷媒102は、ディスチャージチューブ124より冷凍サイクルへと送り出される。冷凍サイクルへ送り出された冷媒102は、再びサクションチューブ123より密閉容器101内へ導かれる。   The refrigerant 102 introduced into the sealed container 101 from the suction tube 123 is sucked into the compression chamber 113 through the muffler 122. The refrigerant 102 sucked into the compression chamber 113 is continuously compressed, and the compressed refrigerant 102 is sent out from the discharge tube 124 to the refrigeration cycle. The refrigerant 102 sent out to the refrigeration cycle is guided again into the sealed container 101 through the suction tube 123.

このとき、クランクシャフト108の給油ポンプ111により冷凍機油103を汲み上げ、主軸109やピストン115等の各摺動部を潤滑する。   At this time, the refrigerating machine oil 103 is pumped up by the oil supply pump 111 of the crankshaft 108, and the sliding parts such as the main shaft 109 and the piston 115 are lubricated.

次に、(表1)を用いて、圧縮室113の直径とピストン115の直径との差と、冷凍機油の種類および圧縮機の効率との関係について説明する。   Next, the relationship between the difference between the diameter of the compression chamber 113 and the diameter of the piston 115, the type of refrigerating machine oil, and the efficiency of the compressor will be described using (Table 1).

(表1)は、ピストン115の外径が30mmの同一仕様の冷媒圧縮機を用いて、3種類の冷凍機油と、圧縮室113の直径とピストン115の直径との差を変えて圧縮機の効率を測定した結果である。   (Table 1) uses a refrigerant compressor of the same specification with an outer diameter of the piston 115 of 30 mm and changes the difference between the three types of refrigerating machine oil, the diameter of the compression chamber 113 and the diameter of the piston 115. It is the result of measuring efficiency.

冷凍機油Aは、本発明の実施の形態の冷媒圧縮機に使用される冷凍機油103である。第1冷凍機油として40℃の時の粘度が7.5mm2/sの鉱油に、第2冷凍機油として40℃の時の粘度が20mm2/sである鉱油を3重量%混合し、混合後の粘度は40℃の時に8mm2/sである。 The refrigerating machine oil A is the refrigerating machine oil 103 used in the refrigerant compressor according to the embodiment of the present invention. 3% by weight of mineral oil having a viscosity of 20 mm 2 / s at 40 ° C. as the second refrigerator oil is mixed with mineral oil having a viscosity of 7.5 mm 2 / s at 40 ° C. as the first refrigerator oil, and after mixing The viscosity of is 8 mm 2 / s at 40 ° C.

冷凍機油Bは、冷凍機油Aと比較するためのものであり、40℃の時の粘度が8mm2/sである鉱油である。 The refrigerating machine oil B is for comparison with the refrigerating machine oil A, and is a mineral oil having a viscosity at 40 ° C. of 8 mm 2 / s.

冷凍機油Cも、冷凍機油Aと比較するためのものであり、40℃の時の粘度が10mm2/sである鉱油である。 The refrigerating machine oil C is also used for comparison with the refrigerating machine oil A, and is a mineral oil having a viscosity of 10 mm 2 / s at 40 ° C.

試験条件は、凝縮温度=54.4℃、蒸発温度=−23.3℃である。そして3台の冷媒圧縮機に、冷媒としてR600aを用い、圧縮室113の直径とピストン115の直径との差を、4μm以上18μm以下に変化させて圧縮機の効率を比較した。   The test conditions are condensation temperature = 54.4 ° C. and evaporation temperature = −23.3 ° C. Then, R600a was used as the refrigerant for the three refrigerant compressors, and the difference between the diameter of the compression chamber 113 and the diameter of the piston 115 was changed from 4 μm to 18 μm to compare the efficiency of the compressors.

Figure 0004905464
Figure 0004905464

(表1)より、圧縮室113の直径とピストン115の直径との差が、4μm以上18μm以下の範囲では、40℃の時の粘度が8mm2/sの鉱油のみで構成された冷凍機油Bを用いた場合、40℃の時の粘度が10mm2/sである鉱油のみで構成された冷凍機油Cを用いた場合と同等以下の圧縮機の効率であり、圧縮機の効率は向上しなかった。 (Table 1) shows that when the difference between the diameter of the compression chamber 113 and the diameter of the piston 115 is in the range of 4 μm or more and 18 μm or less, the refrigerating machine oil B composed only of mineral oil having a viscosity at 40 ° C. of 8 mm 2 / s. Is used, the efficiency of the compressor is equal to or less than that when the refrigerating machine oil C composed only of mineral oil having a viscosity at 40 ° C. of 10 mm 2 / s is used, and the efficiency of the compressor is not improved. It was.

これは、冷凍機油Bを用いた場合は、冷凍機油Bの粘性抵抗の低減による摩擦損失の低減以上に、冷凍機油Bの粘度が低いために圧縮室113とピストン115との隙間より冷凍機油Bが流出する。そして圧縮室113とピストン115との隙間のシール性が低下して、冷媒102がリークしてしまい、結果として圧縮機の効率が向上しなかったと推察される。   This is because when refrigeration oil B is used, the refrigeration oil B is more than the gap between the compression chamber 113 and the piston 115 because the viscosity of the refrigeration oil B is lower than the reduction in friction loss due to the reduction in the viscous resistance of the refrigeration oil B. Leaks. And it is guessed that the sealing performance of the gap between the compression chamber 113 and the piston 115 was lowered, the refrigerant 102 leaked, and as a result, the efficiency of the compressor was not improved.

一方、本発明の実施の形態の冷媒圧縮機の冷凍機油103である冷凍機油Aは、圧縮室113の直径とピストン115の直径との差が4μm以上15μm以下では、冷凍機油Cを用いたときよりも圧縮機の効率が向上した。   On the other hand, when the difference between the diameter of the compression chamber 113 and the diameter of the piston 115 is 4 μm or more and 15 μm or less, the refrigerating machine oil A which is the refrigerating machine oil 103 of the refrigerant compressor according to the embodiment of the present invention is used when the refrigerating machine oil C is used. More efficient compressor.

これは、40℃の時の粘度が20mm2/sと粘度が高い鉱油を混ぜていることにより、圧縮室113とピストン115との隙間から流出する冷凍機油Aの量を抑制することができ、低粘度油を用いることによる摩擦損失の低減効果に加えて、冷凍機油103による圧縮室113とピストン115との間のシール性の低下を抑制することができ、圧縮機の効率が向上したと推察される。 This can suppress the amount of the refrigerating machine oil A flowing out from the gap between the compression chamber 113 and the piston 115 by mixing mineral oil having a high viscosity of 20 mm 2 / s at 40 ° C., In addition to the effect of reducing friction loss due to the use of low-viscosity oil, it is speculated that the reduction in the sealing performance between the compression chamber 113 and the piston 115 due to the refrigerating machine oil 103 can be suppressed, and the efficiency of the compressor has been improved. Is done.

詳細な結果は示していないが、第1冷凍機油として40℃の時の粘度が7.5mm2/sよりもさらに粘度の低い油を用い、第2冷凍機油として40℃の時の粘度が20mm2/sよりもさらに高い油を種々組み合わせて適量混合し、混合後の粘度が40℃の時に8mm2/s以下とした冷凍機油を種々用いて圧縮機の効率を測定した結果、冷凍機油Bおよび冷凍機油Cに対して同様の効果があることを確認している。 Although detailed results are not shown, an oil having a viscosity lower than 7.5 mm 2 / s at 40 ° C. is used as the first refrigerator oil, and a viscosity at 20 ° C. is 20 mm as the second refrigerator oil. As a result of measuring the efficiency of the compressor using various refrigerating machine oils of 8 mm 2 / s or less when the viscosity after mixing was variously combined with various oils higher than 2 / s and the viscosity after mixing was 40 ° C. And it has been confirmed that there is a similar effect on the refrigerating machine oil C.

すなわち、圧縮室113の直径とピストン115の直径との差が4μm以上15μm以下の範囲であれば、圧縮室113とピストン115との隙間を小さくしすぎて摩耗が生じることを防止しつつ、混合された冷凍機油の低粘度の効果により摩擦損失を低減することができるとともに、第2冷凍機油の効果により圧縮室113とピストン115との間のシール性の低下を抑制することができ、高効率の冷媒圧縮機とすることができる。   That is, if the difference between the diameter of the compression chamber 113 and the diameter of the piston 115 is in the range of 4 μm or more and 15 μm or less, the gap between the compression chamber 113 and the piston 115 is made too small to prevent wear and mixing. Friction loss can be reduced by the effect of the low viscosity of the refrigerating machine oil, and the deterioration of the sealing performance between the compression chamber 113 and the piston 115 can be suppressed by the effect of the second refrigerating machine oil. It can be set as a refrigerant compressor.

特に、長期運転時には、圧縮室113とピストン115とが摺動して摩耗し、これらの隙間が大きくなることがあるが、その際にも圧縮室113とピストン115との摺動部におけるオイルシール性を確保することができ、高い効率を維持することができる。   In particular, during long-term operation, the compression chamber 113 and the piston 115 may slide and wear, and the gap between them may become large. In this case as well, the oil seal at the sliding portion between the compression chamber 113 and the piston 115 may be generated. Performance can be ensured, and high efficiency can be maintained.

なお、摺動部などの摩擦損失を低減するために、第1冷凍機油として40℃の時の粘度が8mm2/s以下の粘度の低い冷凍機油を用いる際、第2冷凍機油は40℃の時の粘度が20mm2/s以上の、より高粘度油を選択して混合すれば冷凍機油Aと同様に効果が得られる。そして、第1冷凍機油と第2冷凍機油とは、粘度と混合割合の組み合わせが無数にあることは言うまでもない。 In addition, in order to reduce friction loss of a sliding part etc., when using the refrigerating machine oil with a low viscosity of 8 mm 2 / s or less as the first refrigerating machine oil at 40 ° C., the second refrigerating machine oil is 40 ° C. If a higher viscosity oil with a viscosity of 20 mm 2 / s or more is selected and mixed, the effect can be obtained as in the case of the refrigerator oil A. Needless to say, the first refrigerating machine oil and the second refrigerating machine oil have numerous combinations of viscosities and mixing ratios.

なお、本発明の実施の形態の冷媒圧縮機においては、40℃の時の粘度が8mm2/s未満である第1冷凍機油に鉱油を用いたが、エステル油、ハードアルキルベンゼン油を用いても良い。 In the refrigerant compressor according to the embodiment of the present invention, mineral oil is used as the first refrigerating machine oil having a viscosity of less than 8 mm 2 / s at 40 ° C. However, ester oil or hard alkylbenzene oil may be used. good.

また、本発明の実施の形態の冷媒圧縮機おいては、40℃の時の粘度が20mm2/s以上である第2冷凍機油に鉱油を用いたが、エステル油、ハードアルキルベンゼン油、ポリ―α―オレフィン油、ポリアルキレングリコール油を用いても良い。 In the refrigerant compressor according to the embodiment of the present invention, mineral oil is used as the second refrigerating machine oil having a viscosity of 20 mm 2 / s or more at 40 ° C., but ester oil, hard alkylbenzene oil, poly- α-olefin oil and polyalkylene glycol oil may be used.

また、圧縮室113の直径とピストン115の直径との差が15μmである冷媒圧縮機を凝縮温度=54.4℃、蒸発温度=−23.3℃において500時間運転した。その結果、40℃の時の粘度が8mm2/sの冷凍機油Bを用いたときは、バルブ部120にマフラー122から抽出されたと考えられるオリゴマの付着が観察された。しかし、第1冷凍機油として40℃の時の粘度が7.5mm2/sである鉱油に、第2冷凍機油として40℃の時の粘度が20mm2/sである鉱油を3重量%以上混合して構成された冷凍機油Aを用いたときには、オリゴマやスラッジ等の付着物は観察されなかった。 Further, a refrigerant compressor in which the difference between the diameter of the compression chamber 113 and the diameter of the piston 115 was 15 μm was operated for 500 hours at a condensation temperature = 54.4 ° C. and an evaporation temperature = −23.3 ° C. As a result, when the refrigerating machine oil B having a viscosity at 40 ° C. of 8 mm 2 / s was used, it was observed that oligomers thought to have been extracted from the muffler 122 were observed on the valve unit 120. However, mineral oil with a viscosity of 7.5 mm 2 / s at 40 ° C. as the first refrigerating machine oil and 3% by weight or more of mineral oil with a viscosity of 20 mm 2 / s at 40 ° C. as the second refrigerating machine oil When the refrigerating machine oil A constituted as described above was used, deposits such as oligomers and sludge were not observed.

これは、40℃の時の粘度が20mm2/sと高い鉱油を混合したために、冷凍機油103の揮発性を抑えることができ、高温になるバルブ部120にオリゴマやスラッジが残留して付着することを抑制できたためであると推察される。 This is because the mineral oil having a viscosity as high as 20 mm 2 / s at 40 ° C. is mixed, so that the volatility of the refrigerating machine oil 103 can be suppressed, and oligomers and sludge remain and adhere to the valve portion 120 that becomes high temperature. This is presumed to have been possible to suppress this.

また、第2冷凍機油の重量割合を3重量%より増加させることにより、さらに揮発し難くなるのでバルブ部120へのオリゴマ付着を抑制する効果が大きくなったと推察される。   Further, it is speculated that increasing the weight ratio of the second refrigerating machine oil from 3% by weight makes it more difficult to volatilize, so that the effect of suppressing the adhesion of the oligomer to the valve unit 120 is increased.

詳細な結果は示していないが、第1冷凍機油として40℃の時の粘度が7.5mm2/sよりもさらに粘度の低い油を用い、第2冷凍機油として40℃の時の粘度が20mm2/sよりもさらに高い油を種々組み合わせて混合し、混合後の粘度が40℃の時に8mm2/s以下とした冷凍機油を種々用いて試験を行った結果、第2冷凍機油が3重量%以上混合されていれば、オリゴマやスラッジ等の付着物は観察されなかった。 Although detailed results are not shown, an oil having a viscosity lower than 7.5 mm 2 / s at 40 ° C. is used as the first refrigerator oil, and a viscosity at 20 ° C. is 20 mm as the second refrigerator oil. As a result of tests using various refrigerating machine oils having a viscosity of not more than 8 mm 2 / s when the viscosity after mixing is various combinations of oils higher than 2 / s, the second refrigerating machine oil has a weight of 3%. If more than% was mixed, deposits such as oligomers and sludge were not observed.

したがって、40℃のときの粘度が8mm2/s未満である鉱油に、40℃の時の粘度が20mm2/s以上である油を3重量%以上混合して構成された冷凍機油Aを用いることにより、バルブ部等へのオリゴマ付着を抑制して高信頼性の圧縮機とすることができる。 Therefore, the refrigerating machine oil A constituted by mixing 3% by weight or more of an oil having a viscosity of 20 mm 2 / s or more at 40 ° C. with mineral oil having a viscosity of less than 8 mm 2 / s at 40 ° C. is used. As a result, it is possible to suppress the oligomer adhesion to the valve portion or the like and to obtain a highly reliable compressor.

次に(表2)を用いて、冷媒と冷凍機油との適合性について説明する。密閉容器101に、HFC冷媒であるR134a及びHC冷媒であるR600aと、エステル油、鉱油、ハードアルキルベンゼン油を基油とする冷凍機油とをそれぞれ封入し、140℃において14日間エージングを行い、冷媒と冷凍機油との適合性を調査した。   Next, the compatibility between the refrigerant and the refrigerating machine oil will be described using (Table 2). The sealed container 101 is filled with R134a, which is an HFC refrigerant, R600a, which is an HC refrigerant, and refrigerating machine oil based on ester oil, mineral oil, and hard alkylbenzene oil, and is aged at 140 ° C. for 14 days. The compatibility with refrigeration oil was investigated.

Figure 0004905464
Figure 0004905464

(表2)より、冷媒と冷凍機油との全ての組み合わせにおいて、スラッジ等の発生も見られず良好な結果であった。   From (Table 2), the generation of sludge and the like was not observed in all combinations of refrigerant and refrigeration oil, and the results were satisfactory.

したがって、HFC冷媒及びHC冷媒と、エステル油、鉱油、ハードアルキルベンゼン油を基油とする冷凍機油を用いても、冷凍機油の劣化を抑え、信頼性の高い冷媒圧縮機とすることができる。   Therefore, even when using HFC refrigerant, HC refrigerant, and refrigerating machine oil based on ester oil, mineral oil, and hard alkylbenzene oil, deterioration of refrigerating machine oil can be suppressed and a highly reliable refrigerant compressor can be obtained.

なお、エステル油、鉱油、ハードアルキルベンゼン油を混合して用いても同様の効果が得られる。   In addition, the same effect is acquired even if it mixes and uses ester oil, mineral oil, and hard alkylbenzene oil.

また、冷凍機油103に酸化防止剤を添加しておくことにより、保管時に高温高湿環境下に曝されたとしても冷凍機油103の劣化を抑えることができるので、信頼性の高い冷媒圧縮機とすることができる。   In addition, by adding an antioxidant to the refrigerating machine oil 103, deterioration of the refrigerating machine oil 103 can be suppressed even when exposed to a high temperature and high humidity environment during storage. can do.

また、冷凍機油103にトリクレジルフォスフェートのような自身が化学反応して金属表面に皮膜を形成することが可能な極圧添加剤を混合しておくことにより、摺動部の摩耗を抑えて信頼性の高い冷媒圧縮機とすることができる。   In addition, the refrigeration oil 103 is mixed with an extreme pressure additive such as tricresyl phosphate that can react with itself to form a film on the metal surface, thereby suppressing wear of the sliding portion. And a highly reliable refrigerant compressor.

また、冷凍機油103に高級脂肪酸、高級アルコール、エステル基を有する化合物のような金属と物理的、もしくは化学的に吸着することのできる油性剤を添加してもよい。このような油性剤を添加することにより、マフラー122よりオリゴマが抽出されたとしても、金属表面に付着することを抑えることが期待でき、冷凍サイクルの冷媒102の流路の閉塞を抑えることができるので、信頼性の高い冷媒圧縮機とすることができる。   Further, an oily agent capable of being physically or chemically adsorbed with a metal such as a higher fatty acid, a higher alcohol, or a compound having an ester group may be added to the refrigerating machine oil 103. By adding such an oily agent, even if the oligomer is extracted from the muffler 122, it can be expected to suppress adhesion to the metal surface, and blockage of the flow path of the refrigerant 102 in the refrigeration cycle can be suppressed. Therefore, it can be set as a reliable refrigerant compressor.

以上のように、本発明の実施の形態の冷媒圧縮機は、圧縮室113の直径とピストン115の直径との差を4μm以上、かつ15μm以下とし、冷凍機油103は40℃のときの粘度が8mm/s以下であり、40℃のときの粘度が8mm/s以下である第1冷凍機油に、40℃の時の粘度が20mm/s以上である第2冷凍機油を混合することにより、高い圧縮機の効率と高い信頼性を実現することができる。 The viscosity of the refrigerant compressor of embodiment, the difference between the diameters of the piston 115 in the compression chamber 113 4 [mu] m or more and a 15μm or less, refrigerating machine oil 103, when the 40 ° C. of above, the present invention There is less 8 mm 2 / s, to 40 ° C. first refrigerating machine oil viscosity is less 8 mm 2 / s at a, the viscosity at a 40 ° C. mixing the second refrigerating machine oil is 20 mm 2 / s or more Thus, high compressor efficiency and high reliability can be realized.

以上のように、本発明の冷媒圧縮機は高い効率を備え、冷凍サイクルを用いた機器に幅広く適用できる。   As described above, the refrigerant compressor of the present invention has high efficiency and can be widely applied to devices using a refrigeration cycle.

本発明の実施の形態における冷媒圧縮機の縦断面図The longitudinal cross-sectional view of the refrigerant compressor in embodiment of this invention 従来の冷媒圧縮機の縦断面図Vertical section of a conventional refrigerant compressor

符号の説明Explanation of symbols

100 冷媒圧縮機
101 密閉容器
102 冷媒
103 冷凍機油
106 電動要素
107 圧縮要素
112 シリンダブロック
113 圧縮室
115 ピストン
DESCRIPTION OF SYMBOLS 100 Refrigerant compressor 101 Airtight container 102 Refrigerant 103 Refrigerating machine oil 106 Electric element 107 Compression element 112 Cylinder block 113 Compression chamber 115 Piston

Claims (5)

冷凍機油を貯溜する密閉容器と、電動要素と、前記電動要素によって駆動される圧縮要素と、前記圧縮要素には円筒形の圧縮室を備えたシリンダブロックと、前記圧縮室内において往復運動する円筒形のピストンとを備えた冷媒圧縮機であって、前記圧縮室の直径と前記ピストンの直径との差が4μm以上、かつ15μm以下の範囲であり、前記冷凍機油は40℃の時の粘度が8mm/s以下であり、40℃の時の粘度が8mm/s以下である第1冷凍機油に、40℃の時の粘度が20mm/s以上である第2冷凍機油を混合し、さらに、前記第2冷凍機油の重量割合を3重量%以上とした冷媒圧縮機。A sealed container for storing refrigerating machine oil, an electric element, a compression element driven by the electric element, a cylinder block having a cylindrical compression chamber in the compression element, and a cylindrical shape that reciprocates in the compression chamber a piston and a refrigerant compressor provided with the compression chamber diameter and the difference between the diameter of the piston is 4μm or more and a or less in the range 15 [mu] m, the refrigerating machine oil, the viscosity at a 40 ° C. A second refrigerating machine oil having a viscosity at 40 ° C. of 20 mm 2 / s or higher is mixed with the first refrigerating machine oil having a viscosity of 8 mm 2 / s or lower and a viscosity at 40 ° C. of 8 mm 2 / s or lower , Furthermore, the refrigerant compressor which made the weight ratio of said 2nd refrigerator oil 3weight% or more . 前記圧縮室において圧縮する冷媒はHFC冷媒またはHC冷媒であり、前記冷凍機油はエステル油、鉱油、ハードアルキルベンゼン油のいずれかひとつを基油とする請求項1に記載の冷媒圧縮機。The refrigerant compressor according to claim 1 , wherein the refrigerant to be compressed in the compression chamber is an HFC refrigerant or an HC refrigerant, and the refrigerating machine oil uses any one of ester oil, mineral oil, and hard alkylbenzene oil as a base oil . 前記冷凍機油に酸化防止剤が添加されている請求項1または2に記載の冷媒圧縮機。The refrigerant compressor according to claim 1 or 2 , wherein an antioxidant is added to the refrigerating machine oil . 前記冷凍機油に極圧添加剤が添加されている請求項1または2に記載の冷媒圧縮機。The refrigerant compressor according to claim 1 or 2 , wherein an extreme pressure additive is added to the refrigerating machine oil. 前記冷凍機油に油性剤が添加されている請求項1または2に記載の冷媒圧縮機。The refrigerant compressor according to claim 1 or 2 , wherein an oily agent is added to the refrigerating machine oil.
JP2008555550A 2007-09-10 2008-04-10 Refrigerant compressor Active JP4905464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008555550A JP4905464B2 (en) 2007-09-10 2008-04-10 Refrigerant compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007233780 2007-09-10
JP2007233780 2007-09-10
JP2008555550A JP4905464B2 (en) 2007-09-10 2008-04-10 Refrigerant compressor
PCT/JP2008/057458 WO2009034738A1 (en) 2007-09-10 2008-04-10 Refrigerant compressor

Publications (2)

Publication Number Publication Date
JP2009540170A JP2009540170A (en) 2009-11-19
JP4905464B2 true JP4905464B2 (en) 2012-03-28

Family

ID=39787867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555550A Active JP4905464B2 (en) 2007-09-10 2008-04-10 Refrigerant compressor

Country Status (6)

Country Link
US (1) US20100236282A1 (en)
EP (1) EP2064305B1 (en)
JP (1) JP4905464B2 (en)
KR (1) KR20090057175A (en)
CN (1) CN101541935B (en)
WO (1) WO2009034738A1 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542495A (en) * 1965-09-24 1970-11-24 Maurice Barthalon Reciprocating electric motor
FR1582781A (en) * 1968-01-12 1969-10-10
JPS5527372A (en) * 1978-08-18 1980-02-27 Matsushita Refrig Co Refrigerator oil
JPS60187790A (en) * 1984-03-08 1985-09-25 Mitsubishi Electric Corp Pressure difference oil supplying device for rolling piston type compressor
JPS6162596A (en) * 1984-09-03 1986-03-31 Nippon Oil & Fats Co Ltd Oil for freezer
US6458288B1 (en) * 1988-12-06 2002-10-01 Idemitsu Kosan Co., Ltd. Lubricating oil for refrigerator with compressor
US5273410A (en) * 1989-12-28 1993-12-28 Kabushiki Kaisha Toshiba Compressor exhibiting an iron sulfide wear surface
JP3007903B2 (en) * 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
JPH07293468A (en) * 1994-04-28 1995-11-07 Toshiba Corp Closed type compressor
US5469777A (en) * 1994-07-05 1995-11-28 Ford Motor Company Piston assembly having abradable coating
JPH08151590A (en) * 1994-11-30 1996-06-11 Mitsubishi Oil Co Ltd Refrigerator oil composition and compressor
JPH09208980A (en) * 1996-02-02 1997-08-12 Nippon Oil Co Ltd Refrigerating machine oil composition and fluid composition for refrigerating machine
KR100204173B1 (en) * 1996-12-19 1999-06-15 윤종용 Reciprocating refrigerant compressor
AU4429800A (en) * 1999-05-10 2000-11-21 New Japan Chemical Co. Ltd. Lubricating oil for refrigerator, hydraulic fluid composition for refrigerator and method for lubrication of refrigerator
JP3860942B2 (en) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment
JP2002031059A (en) * 2000-07-17 2002-01-31 Zexel Valeo Climate Control Corp Reciprocating refrigerant compressor
JP4171575B2 (en) * 2000-07-24 2008-10-22 新日本石油株式会社 Refrigerator oil composition
AU2002246690B2 (en) * 2000-12-15 2006-02-02 Spineology, Inc. Annulus- reinforcing band
US6777367B2 (en) * 2001-02-13 2004-08-17 Fina Technology, Inc. Method for the preparation of metallocene catalysts
US7429270B2 (en) * 2003-04-14 2008-09-30 Synthes (U.S.A.) Intervertebral implant
DE10358471A1 (en) * 2003-11-17 2005-06-23 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor for motor vehicles
CN200985869Y (en) * 2005-09-08 2007-12-05 松下电器产业株式会社 Refrigerant compressor
US7879100B2 (en) * 2007-01-19 2011-02-01 Spinemedica, Llc Methods and systems for forming implants with selectively exposed mesh for fixation and related implants

Also Published As

Publication number Publication date
KR20090057175A (en) 2009-06-04
US20100236282A1 (en) 2010-09-23
CN101541935B (en) 2012-06-06
EP2064305A1 (en) 2009-06-03
EP2064305B1 (en) 2020-06-03
CN101541935A (en) 2009-09-23
WO2009034738A1 (en) 2009-03-19
JP2009540170A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4525679B2 (en) Refrigerant compressor
JP5477455B2 (en) Hermetic compressor
US7422423B2 (en) Refrigerant compressor, and refrigerating machine using the same
KR20060038374A (en) Fluid machinery
JP2021088991A (en) Hermetically sealed refrigerant compressor and refrigeration device using the same
JP4905464B2 (en) Refrigerant compressor
JP2021080926A (en) Hermetic refrigerant compressor and freezing device using the same
JP2010025075A (en) Sliding member and hermetic compressor
TW200406546A (en) Refrigerant compressor
JP2010077863A (en) Refrigerant compressor and refrigerating cycle device
JP2005113865A (en) Refrigerant compressor
JP2005133634A (en) Refrigerant compressor
JP7307065B2 (en) Hermetic refrigerant compressor and freezer/refrigerator using the same
JP2007120342A (en) Sliding member, compressor and refrigerating cycle device
JP2009270444A (en) Hermetic compressor and refrigerating cycle device
JP2010249391A (en) Sliding member, sealed compressor, and refrigerating cycle device
JP2015001214A (en) Refrigerant compressor
JP2010185286A (en) Sliding member and compressor
JP2010185287A (en) Sliding member and compressor
JP2007255247A (en) Sliding member, compressor and refrigerating cycle device
JP2010185344A (en) Sliding member and compressor
JP2010185288A (en) Sliding member and compressor
JP2009138585A (en) Slide member and compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4905464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250