JP4902601B2 - Driving method of plasma display device - Google Patents

Driving method of plasma display device Download PDF

Info

Publication number
JP4902601B2
JP4902601B2 JP2008177554A JP2008177554A JP4902601B2 JP 4902601 B2 JP4902601 B2 JP 4902601B2 JP 2008177554 A JP2008177554 A JP 2008177554A JP 2008177554 A JP2008177554 A JP 2008177554A JP 4902601 B2 JP4902601 B2 JP 4902601B2
Authority
JP
Japan
Prior art keywords
voltage
electrode
period
subfield
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008177554A
Other languages
Japanese (ja)
Other versions
JP2008282039A (en
Inventor
義一 金澤
重晴 浅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plasma Display Ltd
Original Assignee
Hitachi Plasma Display Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Ltd filed Critical Hitachi Plasma Display Ltd
Priority to JP2008177554A priority Critical patent/JP4902601B2/en
Publication of JP2008282039A publication Critical patent/JP2008282039A/en
Application granted granted Critical
Publication of JP4902601B2 publication Critical patent/JP4902601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、プラズマディスプレイ(PDP)装置及びその駆動方法に関し、特に各維持放電電極の両側に表示ラインを形成し、インタレース表示を行うALIS(Alternate Lighting of Surfaces)方式のPDP装置及びその駆動方法に関する。   The present invention relates to a plasma display (PDP) device and a driving method thereof, and more particularly to an ALIS (Alternate Lighting of Surfaces) type PDP device in which display lines are formed on both sides of each sustain discharge electrode to perform interlaced display and a driving method thereof. About.

特許第2001893号(特許文献1)は、高精細の表示を低コストで実現するALIS方式のPDP装置を開示している。図1は、この文献に開示されたALIS方式のPDP装置の概略構成を示すブロック図である。図示のように、ALIS方式のPDP装置は、維持放電電極を構成する第1電極(X電極)X−1,X−2,…及び第2電極(Y電極)Y−1,Y−2,…と、アドレス電極A−1,A−2…とが設けられたパネル1と、制御回路11と、アドレスドライバ13と、走査ドライバ12と、奇数Y維持放電(サスティン)回路16と、偶数Y維持放電(サスティン)回路17と、奇数X維持放電(サスティン)回路14と、偶数X維持放電(サスティン)回路15と、電源回路18とを備える。各要素の構成及び動作については、特許文献1に開示されているので、ここでは詳しい説明を省略する。   Japanese Patent No. 20001933 (Patent Document 1) discloses an ALIS PDP apparatus that realizes high-definition display at low cost. FIG. 1 is a block diagram showing a schematic configuration of an ALIS PDP apparatus disclosed in this document. As shown in the figure, the ALIS PDP apparatus includes first electrodes (X electrodes) X-1, X-2,... And second electrodes (Y electrodes) Y-1, Y-2,. ..., the panel 1 provided with the address electrodes A-1, A-2, ..., the control circuit 11, the address driver 13, the scan driver 12, the odd-number Y sustain discharge (sustain) circuit 16, and the even-number Y A sustain discharge (sustain) circuit 17, an odd number X sustain discharge (sustain) circuit 14, an even number X sustain discharge (sustain) circuit 15, and a power supply circuit 18 are provided. Since the configuration and operation of each element are disclosed in Patent Document 1, detailed description thereof is omitted here.

ALIS方式の特徴は、各Y電極の上側に隣接するX電極との間で第1表示ラインを形成し、下側に隣接するX電極との間で第2表示ラインを形成し、奇数フィールドで第1表示ラインを表示し、偶数フィールドで第2表示ラインを表示するインタレース表示を行う点で、この特徴により同じX電極及びY電極の本数で、従来の2倍の表示ラインが得られ、高精細化できる点である。   The feature of the ALIS system is that a first display line is formed between the X electrodes adjacent to the upper side of each Y electrode, and a second display line is formed between the X electrodes adjacent to the lower side. By displaying interlaced display of displaying the first display line and displaying the second display line in the even field, this feature provides twice as many display lines as before with the same number of X electrodes and Y electrodes. It is a point that can be made high definition.

また、PDP装置では、表示品質や信頼性の向上、消費電力の低減、低コスト化などのために各種の技術が提案されている。本発明はリセット動作に関係するが、これに関係する技術としては、例えば、特開2000−75835号公報(特許文献2)は、ALIS方式のパネルにおいて傾きの緩やかな電圧波形を有するリセットパルスを利用してコントラストを改善する技術を開示している。また、特表2000−501199号公報(特許文献3)は、ランプ波を利用したリセット方式を開示している。更に、特開2000−242224号公報(特許文献4)は全表示セルの点灯を伴うリセットパルスを第1サブフィールドのみに適用してコントラストを向上する技術を開示している。更に、特開2000−29431号公報(特許文献5)はサブフィールドの発光画素比率に従ってリセット電圧を変化させることにより動作を安定させる技術を開示しており、特開2000−172224号公報(特許文献6)は直前のサブフィールドの維持放電回数に応じてリセットパルスの電圧を設定することにより誤動作を低減する技術を開示している。   In the PDP device, various techniques have been proposed for improving display quality and reliability, reducing power consumption, and reducing costs. The present invention relates to a reset operation. As a technique related to this, for example, Japanese Patent Laid-Open No. 2000-75835 (Patent Document 2) uses a reset pulse having a voltage waveform with a gentle slope in an ALIS panel. A technique for improving the contrast by using it is disclosed. Japanese translation of PCT publication No. 2000-501199 (Patent Document 3) discloses a reset method using a ramp wave. Further, Japanese Patent Laid-Open No. 2000-242224 (Patent Document 4) discloses a technique for improving contrast by applying a reset pulse accompanied by lighting of all display cells only to the first subfield. Further, Japanese Patent Laid-Open No. 2000-29431 (Patent Document 5) discloses a technique for stabilizing the operation by changing the reset voltage in accordance with the subfield emission pixel ratio, and Japanese Patent Laid-Open No. 2000-172224 (Patent Document). 6) discloses a technique for reducing malfunctions by setting a reset pulse voltage according to the number of sustain discharges in the immediately preceding subfield.

近年、PDP装置の表示性能は著しく向上し、輝度、精細度及びコントラストなどにおいてもブラウン管に近い性能が得られるようになってきた。しかしながら、放送や映像ソフトの進化に伴い、表示装置側にも更なる性能向上が望まれており、暗室コントラストに関しても更なる向上が望まれている。この暗室コントラストを低下させる原因である黒表示の輝度は、放電の安定化のためのリセット放電による発光であり、多くの表示ラインを高速でアドレスするためには、十分なリセット放電が必要であり、そのためにある程度の輝度を伴う放電が必要であった。このように安定動作と暗室コントラストは相反する関係にある。上記特許文献4によれば、全表示セルの点灯を伴うリセットパルスを1フィールドに1回、すなわち1個のサブフィールドのみで印加し、他のサブフィールドでは前のサブフィールドで点灯していた表示セルでのみ消去放電のみを実行することにより、大幅に背景発光(黒輝度)が低減し、暗室コントラストが向上する。   In recent years, the display performance of PDP devices has been remarkably improved, and performance close to that of a cathode ray tube has been obtained in terms of brightness, definition, contrast, and the like. However, with the evolution of broadcasting and video software, further improvement in performance is desired on the display device side, and further improvement in darkroom contrast is desired. The brightness of black display, which is the cause of lowering the dark room contrast, is light emission due to reset discharge to stabilize discharge, and sufficient reset discharge is necessary to address many display lines at high speed. Therefore, a discharge with a certain level of luminance is necessary. Thus, stable operation and darkroom contrast are in a contradictory relationship. According to Patent Document 4, a reset pulse accompanied by lighting of all display cells is applied once in one field, that is, only in one subfield, and in other subfields, the display is lit in the previous subfield. By executing only the erasing discharge only in the cell, the background light emission (black luminance) is greatly reduced and the darkroom contrast is improved.

一方、特許文献1に開示されたALIS方式のPDP装置においては、特許文献2に開示されたスロープ波形のリセットパルスを利用することにより、500:1程度の暗室コントラストが得られている。しかしながら、この方法はすべてのサブフィールドで全表示セルを対象としたリセット放電を実施しているため、特許文献4に開示された技術を適用した場合の背景発光の輝度より輝度が10倍程度高くなっている。ALIS方式のような全ての電極の隙間を表示ラインとして利用するパネルや高精細パネルにおいては、上下に隣接する表示セル間の結合が強く、点灯セルから消灯セルへの電荷の拡散が起きやすい。従って、リセット後にアドレス放電や維持放電を実施しない場合でも表示セルの状態が変化する。そのために、次のサブフィールドのアドレス放電を安定に実施するためには、あらためて消灯セルを含めて全表示セルを対象としたリセット放電を実施する必要があった。
特許第2001893号 特開2000−75835号公報 特表2000−501199号公報 特開2000−242224号公報 特開2000−29431号公報 特開2000−172224号公報
On the other hand, in the ALIS PDP apparatus disclosed in Patent Document 1, a darkroom contrast of about 500: 1 is obtained by using the reset pulse having the slope waveform disclosed in Patent Document 2. However, since this method performs reset discharge for all display cells in all subfields, the luminance is about 10 times higher than the luminance of background light emission when the technique disclosed in Patent Document 4 is applied. It has become. In a panel or high-definition panel that uses all electrode gaps as a display line as in the ALIS system, coupling between display cells adjacent vertically is strong, and charge diffusion from a lighted cell to a light-off cell tends to occur. Therefore, the state of the display cell changes even when the address discharge or the sustain discharge is not performed after the reset. Therefore, in order to stably perform the address discharge in the next subfield, it is necessary to perform reset discharge for all display cells including the extinguished cells.
Patent No. 20001933 JP 2000-75835 A Special Table 2000-501199 JP 2000-242224 A JP 2000-29431 A JP 2000-172224 A

図2は、ALIS方式のパネルで維持放電により電荷が隣接する表示セルに拡散する様子を示している。ALIS方式のパネルでは、維持電極(X電極、Y電極)は等間隔に配置されており、全ての電極の隙間で放電が可能な構造となっている。この図では、奇数フィールドにおいてX2電極とY2電極間に点灯セルが形成される場合の動作を示している。図2の(A)は維持放電期間の初期の様子を示している。放電によって生成された電子や正イオンなどの荷電粒子は放電空間内を電界によって移動する。ALIS方式のパネルや高精細パネルでは、隣接セルの電極が点灯セルの近傍にあり、そこには強電界がかかっているため電荷が移動して蓄積しやすい。この場合、隣接セルに拡散する電荷は、ほとんどが移動度の大きい電子である。   FIG. 2 shows how charges are diffused to adjacent display cells by sustain discharge in an ALIS panel. In the ALIS panel, the sustain electrodes (X electrode, Y electrode) are arranged at equal intervals, and the discharge can be performed in the gaps of all the electrodes. This figure shows the operation in the case where a lighted cell is formed between the X2 electrode and the Y2 electrode in the odd field. FIG. 2A shows the initial state of the sustain discharge period. Charged particles such as electrons and positive ions generated by the discharge move in the discharge space by an electric field. In an ALIS panel or a high-definition panel, an electrode of an adjacent cell is in the vicinity of a lighting cell, and a strong electric field is applied to the electrode, so that charges easily move and accumulate. In this case, most of the charges diffusing into the adjacent cells are electrons having high mobility.

図2の(B)は、維持放電を繰返し実施した場合、つまり維持放電パルス数が多い(維持放電期間が長い)サブフィールドの維持放電期間の後半の状態を示す。次のサブフィールドに移行する段階で、仮に特許文献4に開示されたように点灯セルのみを対象としたリセット(消去)を実施した場合、点灯セルに隣接する消灯セルの電荷はそのまま残留することになる。そのような状態でアドレス期間に入り、図2の(C)に示すように、Y1電極に走査パルスが印加されると、走査パルスの−170VにY1電極に蓄積された負電荷による電圧が重畳される。そのため、消灯セルでアドレスパルスが印加されず、アドレス電極AとY電極間に放電が無い表示セルでもX電極とY電極間に放電が発生してしまう。この表示セルは次の維持放電期間で発光することになり、誤表示になる。また、図2の(D)に示すように、X3電極に負電荷が蓄積されている場合には、Y3電極に走査パルスが印加され、アドレス電極Aにアドレスパルスが印加されてY3電極とアドレス電極の間で放電が実行されても、X電極側の負電荷が実効電圧を低下させるためX電極とY電極間の放電が不発となり、維持放電に必要な壁電荷が形成されず、維持放電が行われないことになる。すなわち不点灯になる。   FIG. 2B shows a state in the second half of the sustain discharge period of the subfield in which the sustain discharge is repeatedly performed, that is, the number of sustain discharge pulses is large (the sustain discharge period is long). At the stage of shifting to the next subfield, if reset (erase) is performed only on the lighted cell as disclosed in Patent Document 4, the charge of the light-off cell adjacent to the lighted cell remains as it is. become. In this state, the address period starts, and as shown in FIG. 2C, when a scan pulse is applied to the Y1 electrode, a voltage due to the negative charge accumulated in the Y1 electrode is superimposed on -170 V of the scan pulse. Is done. For this reason, an address pulse is not applied to the extinguished cell, and a discharge occurs between the X electrode and the Y electrode even in a display cell where there is no discharge between the address electrode A and the Y electrode. This display cell emits light in the next sustain discharge period, resulting in erroneous display. As shown in FIG. 2D, when negative charges are accumulated in the X3 electrode, a scan pulse is applied to the Y3 electrode, an address pulse is applied to the address electrode A, and the Y3 electrode and the address are addressed. Even if a discharge is performed between the electrodes, the negative charge on the X electrode side lowers the effective voltage, so the discharge between the X electrode and the Y electrode does not occur, the wall charge necessary for the sustain discharge is not formed, and the sustain discharge Will not be done. That is, it is not lit.

このように、ALIS方式のパネルのような隣接セルの電極が近くに存在するパネルでは、すべてのサブフィールドごとの全表示セルを対象としたリセット放電が不可欠であった。また、蓄積電荷がもっとも多い場合を想定してリセット電圧を設定し、全サブフィールドにおいてその電圧でリセットを行っていた。そのため、リセット電圧は高くなり、背景発光をある程度以下に低減することが難しく、暗室コントラスト向上が不十分であった。   As described above, in a panel in which electrodes of adjacent cells are present nearby such as an ALIS system panel, reset discharge for all display cells in all subfields is indispensable. In addition, a reset voltage is set assuming that the accumulated charge is the largest, and the reset is performed with the voltage in all subfields. For this reason, the reset voltage is increased, it is difficult to reduce the background light emission to a certain level, and the darkroom contrast is not sufficiently improved.

本発明は、このような問題を解決するもので、ALIS方式のパネルのような隣接セルの電極が近くに存在するパネルでも、背景発光を十分に低減し、暗室コントラストを更に向上できるPDP装置の駆動方法及びPDP装置を実現することを目的とする。   The present invention solves such a problem, and even in a panel in which electrodes of adjacent cells are present nearby such as an ALIS system panel, background light emission can be sufficiently reduced and dark room contrast can be further improved. An object is to realize a driving method and a PDP device.

本発明は、上記目的を実現するため、第1方向に伸びる第1電極と第2電極を隣接して配置し、1表示フィールドはリセット期間、アドレス期間及び維持放電期間を有する複数のサブフィールドを有するプラズマディスプレイ装置の駆動方法であって、前記リセット期間は、少なくとも書き込み放電工程と消去放電工程とを備え、前記書き込み放電工程の際に、電圧値が時間の経過に伴って増大方向に徐々に変化する傾きの緩やかな第1のスロープ波形の電圧を前記第2電極に印加し、前記消去放電工程の際に、電圧値が時間の経過に伴って減少方向に徐々に変化する傾きの緩やかな第2のスロープ波形の電圧を前記第2電極に印加し、前記複数のサブフィールドのうち少なくとも2個のサブフィールドにおける前記第1のスロープ波形の電圧の到達電圧値を異ならせる。
In order to achieve the above object, according to the present invention , a first electrode extending in a first direction and a second electrode are disposed adjacent to each other, and one display field includes a plurality of subfields having a reset period, an address period, and a sustain discharge period. A plasma display device driving method comprising: at least a writing discharge step and an erasing discharge step, wherein the reset period includes a voltage value that gradually increases in time as time passes. A voltage having a first slope waveform with a gradually changing slope is applied to the second electrode, and the voltage value gradually changes in a decreasing direction as time passes during the erasing discharge process. A voltage having a second slope waveform is applied to the second electrode, and the voltage of the first slope waveform in at least two subfields of the plurality of subfields. Varying the arrival voltage value.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。本発明によれば、各サブフィールドのリセット放電において、必要以上に大きな電圧を印加することがないため、背景輝度を低減でき、暗室コントラストを向上させることができる。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows. According to the present invention, since a voltage larger than necessary is not applied in the reset discharge of each subfield, the background luminance can be reduced and the darkroom contrast can be improved.

以下本発明の実施例を説明するが、ここでは特許文献1に開示された図1に示したような構成を有するALIS方式のPDP装置に本発明を適用した場合を例として説明する。   Hereinafter, embodiments of the present invention will be described. Here, a case where the present invention is applied to an ALIS system PDP apparatus having the configuration shown in FIG. 1 disclosed in Patent Document 1 will be described as an example.

図3は、本発明の実施例のPDP装置の駆動波形を示す図であり、奇数フィールドにおける駆動波形を示している。本発明は、リセット期間の駆動波形に特徴があり、アドレス期間及び維持放電期間は従来例と同じであるので、ここでは説明は省略し、リセット期間の電圧波形について説明する。   FIG. 3 is a diagram showing a drive waveform of the PDP device according to the embodiment of the present invention, and shows a drive waveform in an odd field. The present invention is characterized by the drive waveform in the reset period, and the address period and the sustain discharge period are the same as those in the conventional example. Therefore, the description is omitted here, and the voltage waveform in the reset period is described.

図4は、本発明の実施例において、リセット期間にX電極とY電極に印加される電圧波形を示す図である。リセット期間では、X電極に徐々に−Vwx(−120V)に到達する傾きの緩やかなスロープ波形のパルスを印加する。このような波形を使用することにより、前のサブフィールドで点灯していた表示セルの壁電荷を消去する。これが第1消去期間である。次にX電極の電圧を維持した状態でY電極にスロープ波形のパルスを印加して、全表示セルを対象として放電させて壁電荷を形成する。これが書き込み期間である。その後、更にX電極に電圧Vx(90V)を印加した状態で、Y電極に−Vey(−160V)に到達するスロープ波形のパルスを印加する。これが第2消去期間である。   FIG. 4 is a diagram showing voltage waveforms applied to the X electrode and the Y electrode during the reset period in the embodiment of the present invention. In the reset period, a pulse having a gentle slope waveform that gradually reaches −Vwx (−120 V) is applied to the X electrode. By using such a waveform, the wall charge of the display cell that was lit in the previous subfield is erased. This is the first erase period. Next, a pulse having a slope waveform is applied to the Y electrode in a state where the voltage of the X electrode is maintained, and all the display cells are discharged to form wall charges. This is the writing period. Thereafter, a pulse having a slope waveform reaching −Vey (−160 V) is applied to the Y electrode while the voltage Vx (90 V) is further applied to the X electrode. This is the second erase period.

本発明では、第1消去期間及び書き込み期間にX電極とY電極間に印加する電圧を調整するのが特徴である。なお、図4に示すように印加電圧はスロープ波形であり徐々に変化するので、ここで電圧を調整するとは最終的に印加される電圧レベルを調整することを意味する。電圧の調整方法としては、Y電極側の電圧を調整する方法、X電極側の電圧を調整する方法、更に両者を調整する方法がある。図4では、X電極に印加するスロープ波形の到達する最終電圧が−Vwx1から−Vwx2までの範囲で変化し、Y電極に印加するスロープ波形の到達する最終電圧がVw1からVw2までの範囲で変化する。−Vwx2は従来と同じ−120Vであり、−Vwx1は−50Vであり、この範囲内で各サブフィールド毎に所定の値に設定している。また、Vw2は従来と同じ200Vであり、Vw1は100Vであり、サブフィールドの条件や表示状態に応じてこの範囲内で所定の値に設定している。   The present invention is characterized in that the voltage applied between the X electrode and the Y electrode is adjusted in the first erasing period and the writing period. As shown in FIG. 4, the applied voltage has a slope waveform and gradually changes. Therefore, adjusting the voltage here means adjusting the voltage level to be finally applied. The voltage adjustment method includes a method of adjusting the voltage on the Y electrode side, a method of adjusting the voltage on the X electrode side, and a method of adjusting both. In FIG. 4, the final voltage reached by the slope waveform applied to the X electrode changes in the range from -Vwx1 to -Vwx2, and the final voltage reached by the slope waveform applied to the Y electrode changes in the range from Vw1 to Vw2. To do. -Vwx2 is -120V, which is the same as the prior art, and -Vwx1 is -50V, and is set to a predetermined value for each subfield within this range. Further, Vw2 is 200 V, which is the same as the conventional one, and Vw1 is 100 V, and is set to a predetermined value within this range according to the subfield conditions and display state.

図5は、上記のようなリセット波形を発生する駆動回路の構成を示す図であり、図1の奇数Xサスティン回路14、偶数Xサスティン回路15、奇数Yサスティン回路16、及び偶数Yサスティン回路17の部分に相当する。参照番号31はX電極に印加する維持放電パルスを生成する回路であり、41はY電極に印加する維持放電パルスを生成する回路である。この駆動回路では、X電極側及びY電極側共に、あらかじめリセット用の電圧値が4種類それぞれ用意されている。パネル1の表示セル21のY電極に印加する電圧はスイッチ42〜45のいずれかを選択的にオンすることで対応する電圧値が出力される。また、X電極側については、もっとも低い(絶対値のもっとも大きな)電圧−Vwxの電源が設けられており、この電圧を出力する時にはスイッチ37をオンした上でスイッチ35をオンにする。また、それより高い(絶対値の小さな)電圧を出力する場合にはスイッチ37をオフした状態でスイッチ38又は39をオンにするか又は両方をオフにしてスイッチ35をオンする。スイッチ37をオンした場合には、電圧−Vwxがパネル1の表示セル21のX電極に出力され、それ以外の時には1個から3個のツエナーダイオードで規定される電圧を差し引いた電圧が出力される。なお、本実施例では、Y電極側は複数の電源から、X電極側は単一電源からツエナーダイオードを利用して出力電圧を生成しているが、X電極側とY電極側の両者共いずれか一方の方式で実現することも可能である。なお、本実施例では出力電圧が取りうる電圧値は4種類であるが、この程度であっても背景発光を十分に低減することが可能である。   FIG. 5 is a diagram showing the configuration of a drive circuit that generates the reset waveform as described above. The odd X sustain circuit 14, the even X sustain circuit 15, the odd Y sustain circuit 16, and the even Y sustain circuit 17 shown in FIG. It corresponds to the part. Reference numeral 31 is a circuit for generating a sustain discharge pulse to be applied to the X electrode, and 41 is a circuit for generating a sustain discharge pulse to be applied to the Y electrode. In this drive circuit, four types of reset voltage values are prepared in advance on both the X electrode side and the Y electrode side. The voltage applied to the Y electrode of the display cell 21 of the panel 1 is outputted by selectively turning on any of the switches 42 to 45. On the X electrode side, a power source having the lowest voltage (−the largest absolute value) −Vwx is provided. When outputting this voltage, the switch 35 is turned on and then the switch 35 is turned on. When a higher voltage (small absolute value) is output, the switch 38 or 39 is turned on with the switch 37 turned off, or both are turned off and the switch 35 is turned on. When the switch 37 is turned on, the voltage -Vwx is output to the X electrode of the display cell 21 of the panel 1, and in other cases, a voltage obtained by subtracting the voltage defined by one to three Zener diodes is output. The In this embodiment, an output voltage is generated from a plurality of power sources on the Y electrode side and a single power source on the X electrode side using a Zener diode. It is also possible to realize with either method. In this embodiment, there are four types of voltage values that can be taken by the output voltage. Even at this level, background light emission can be sufficiently reduced.

図6は、本発明の第1実施例における各サブフィールドのリセット波形を示す図である。PDP装置は、発光するか発光しないかの制御しか行えないので、階調レベルの表示は1フィールドを複数のサブフィールドで構成し、点灯するサブフィールドを組み合わせることにより行う。第1実施例では、1フィールド(奇数フィールド又は偶数フィールド)は10個のサブフィールドで構成されており、第1サブフィールドと第10サブフィールドの維持放電期間がもっとも長く、維持放電パルスがもっとも多いのでもっとも明るい。そして、中央のサブフィールドほど維持放電期間が短くなっている。これはPDP装置特有の画質劣化現象である色偽輪郭を低減するための表示シーケンスである。   FIG. 6 is a diagram showing a reset waveform of each subfield in the first embodiment of the present invention. Since the PDP device can only control whether light is emitted or not, gradation level is displayed by composing one field with a plurality of subfields and combining the lighted subfields. In the first embodiment, one field (odd field or even field) is composed of 10 subfields, the sustain discharge period of the first subfield and the 10th subfield is the longest, and the sustain discharge pulse is the most. So brightest. The sustain discharge period is shorter in the central subfield. This is a display sequence for reducing false color contours, which is a phenomenon of image quality deterioration unique to PDP devices.

第1実施例では、リセット期間の書き込み期間にY電極に印加する電圧Vwのみを可変にし、これをリセット電圧と呼ぶことにする。第1実施例では、次に説明する理由で、第1サブフィールドのリセット電圧をもっとも大きく設定している。第1の理由は、ALS方式の場合、第1サブフィールドで奇数行の表示と偶数行の表示が切り替わるため、前のフィールドで点灯していなかった電極対側も活性化しておく必要があるためである。第2の理由は、フィールドの周期は表示装置の外部から入力される垂直同期信号に同期する。そのため、垂直同期信号の周期が長い映像信号の場合、最終サブフィールドが終了してから第1サブフィールドが開始されるまでの時間が長くなり、放電の安定度を左右するプライミング効果が低下するため、あらためて全表示セルに対して比較的強い放電を実施し、空間電荷を生成する必要があるためである。第3の理由は、第10サブフィールドの維持放電回数が多いため、図2の(B)に示したように、多量の電子が隣接セルに蓄積している場合があるからであり、例えば、Y電極側に蓄積した電子はリセット電圧(Vw)の実効値を下げるため高い電圧が必要になる。以上の理由により、第1サブフィールドのリセット電圧は約200Vに設定する必要がある。従来は、ここで必要な200Vの電圧を全サブフィールドで印加していたために第1サブフィールド以外では過剰な印加電圧になっていた。   In the first embodiment, only the voltage Vw applied to the Y electrode during the writing period of the reset period is made variable, and this is called a reset voltage. In the first embodiment, the reset voltage of the first subfield is set to the largest value for the reason described below. The first reason is that, in the case of the ALS method, since the odd-numbered display and the even-numbered display are switched in the first subfield, it is necessary to activate the electrode pair side that was not lit in the previous field. It is. The second reason is that the period of the field is synchronized with a vertical synchronization signal input from the outside of the display device. For this reason, in the case of a video signal having a long period of the vertical synchronization signal, the time from the end of the last subfield to the start of the first subfield becomes long, and the priming effect that affects the stability of discharge is reduced. This is because it is necessary to perform a relatively strong discharge on all the display cells again to generate space charges. The third reason is that since the number of sustain discharges in the tenth subfield is large, a large amount of electrons may be accumulated in the adjacent cell as shown in FIG. The electrons accumulated on the Y electrode side require a high voltage to lower the effective value of the reset voltage (Vw). For the above reason, the reset voltage of the first subfield needs to be set to about 200V. Conventionally, since the necessary voltage of 200 V is applied in all subfields, the applied voltage is excessive except in the first subfield.

第2サブフィールドのリセット電圧は、直前の第1サブフィールドの維持放電回数は多いが、上記の第1および第2の理由がないので第1サブフィールドより下げることが可能である。   Although the number of sustain discharges in the immediately preceding first subfield is large, the reset voltage of the second subfield can be lower than that of the first subfield because there is no first and second reasons described above.

第5サブフィールドの維持放電回数は数回ともっとも少なく、図2で説明した隣接する表示セルでの電荷の蓄積はほとんどないので、点灯セルに隣接する消灯セルであっても前のリセット期間で形成された状態が維持されている。従って、その後の第6サブフィールドのリセット電圧はもっとも低く約100Vに設定している。X電極とY電極の間の放電閾値電圧は220V程度であるため、消灯セルはほとんど放電を行わない。   The number of sustain discharges in the fifth subfield is the fewest, and there is almost no charge accumulation in the adjacent display cells described with reference to FIG. The formed state is maintained. Therefore, the reset voltage in the sixth subfield thereafter is the lowest and is set to about 100V. Since the discharge threshold voltage between the X electrode and the Y electrode is about 220 V, the extinguished cell hardly discharges.

第3サブフィールドから第5サブフィールドのリセット電圧は、第2サブフィールドと第6サブフィールドのリセット電圧の間の値であり、第7サブフィールドから第10サブフィールドのリセット電圧は、維持放電期間が徐々に長くなるのでそれに応じて第6サブフィールドのリセット電圧より若干高く設定する。なお、第1実施例では、リセット期間の長さは固定である。   The reset voltage of the third subfield to the fifth subfield is a value between the reset voltages of the second subfield and the sixth subfield, and the reset voltage of the seventh subfield to the tenth subfield is a sustain discharge period. Is set to be slightly higher than the reset voltage of the sixth subfield accordingly. In the first embodiment, the length of the reset period is fixed.

図7は、本発明の第2実施例における各サブフィールドのリセット波形を示す図である。図6の第1実施例との違いは、Y電極に印加する電圧Vwを変化させると共に、電極に印加する電圧を諸条件に応じて変化させている点である。第1サブフィールドのリセット期間の第1消去期間におけるX電極への印加電圧と書き込み期間におけるY電極への印加電圧は、上記と同じ理由で両者とも絶対値を大きくしている。第1実施例では第サブフィールドのリセット電圧を低くしているが、この第2実施例ではY電極への印加電圧は高い状態に維持した上で、X電極側の電圧の絶対値を小さくしている(負電圧なので高くしている)。その理由は次の通りである。維持放電期間ではアドレス電極は平均的には陰極となるため、アドレス放電でアドレス電極側に形成された負電荷は、維持放電にさらされて徐々に消去される。しかし、維持放電回数が少ない場合は消去されにくい。そして、その電荷がそのまま残留するとアドレスパルス電圧の実行値を下げる方向に作用するため好ましくない。従って、リセット期間でのアドレス電極側の負電荷を消去するために、X電極とY電極間の電圧は小さく設定しても、Y電極とアドレス電極間の電圧が大きくなるように設定し、アドレス電極とY電極間の放電によりアドレス電極側の負電荷を消去する働きを強めている。   FIG. 7 is a diagram showing a reset waveform of each subfield in the second embodiment of the present invention. The difference from the first embodiment of FIG. 6 is that the voltage Vw applied to the Y electrode is changed and the voltage applied to the electrode is changed according to various conditions. The applied voltage to the X electrode in the first erasing period of the reset period of the first subfield and the applied voltage to the Y electrode in the writing period are both increased in absolute value for the same reason as described above. In the first embodiment, the reset voltage of the subfield is lowered. In the second embodiment, the voltage applied to the Y electrode is kept high, and the absolute value of the voltage on the X electrode side is reduced. (Because it is a negative voltage, it is increased.) The reason is as follows. In the sustain discharge period, the address electrode becomes a cathode on average, so that the negative charge formed on the address electrode side by the address discharge is exposed to the sustain discharge and gradually erased. However, when the number of sustain discharges is small, it is difficult to erase. If the charge remains as it is, it is not preferable because it acts in the direction of lowering the effective value of the address pulse voltage. Therefore, in order to erase the negative charge on the address electrode side in the reset period, the voltage between the X electrode and the Y electrode is set to be small even if the voltage between the X electrode and the Y electrode is set small. The function of erasing the negative charge on the address electrode side by the discharge between the electrode and the Y electrode is strengthened.

図8は、本発明の第3実施例の維持電極駆動回路の構成を示す図である。図5の第1及び第2実施例の駆動回路では、電圧の異なる複数の電源を設けるか、単一電源からツエナーダイオードを利用して出力電圧を生成しているが、第3実施例の駆動回路では、電極に印加する電圧を徐々に変化させ、電極の電圧を監視して所定値に到達した時に電圧の印加を停止する点が異なる。なお、第3実施例のX電極側駆動回路30は、図8のX電極側駆動回路と同様の構成を有するものとする。リセット電圧Vwは、スイッチ54をオンすることで、電流制限器55を介して表示セル21のY電極へ印加される。電流制限器55が設けられているので、パネル1に流れ込む電流が制限され、Y電極の電圧は傾きの緩やかなスロープ波形で変化する。更に、Y電極に印加されるリセットパルス電圧は電圧検出器56で監視され、所定の電圧に達した時にリセット電圧制御回路53によりスイッチ54がオフされる。リセット電圧制御回路53は、表示シーケンス制御回路51からの実行中のサブフィールドの情報、維持放電の回数情報などを受け、それらの情報からリセット印加電圧を決定する。   FIG. 8 is a diagram showing the configuration of the sustain electrode drive circuit of the third embodiment of the present invention. In the drive circuits of the first and second embodiments in FIG. 5, a plurality of power supplies having different voltages are provided or an output voltage is generated from a single power supply using a Zener diode. The circuit is different in that the voltage applied to the electrode is gradually changed, the voltage of the electrode is monitored, and the voltage application is stopped when a predetermined value is reached. It is assumed that the X electrode side drive circuit 30 of the third embodiment has the same configuration as the X electrode side drive circuit of FIG. The reset voltage Vw is applied to the Y electrode of the display cell 21 via the current limiter 55 by turning on the switch 54. Since the current limiter 55 is provided, the current flowing into the panel 1 is limited, and the voltage of the Y electrode changes with a slope waveform with a gentle slope. Further, the reset pulse voltage applied to the Y electrode is monitored by the voltage detector 56, and when the voltage reaches a predetermined voltage, the switch 54 is turned off by the reset voltage control circuit 53. The reset voltage control circuit 53 receives information on the subfield being executed from the display sequence control circuit 51, information on the number of sustain discharges, and the like, and determines the reset application voltage from these information.

第3実施例では、リセット電圧が所定の値に達してスイッチ54をオフすると同時に、次の消去工程に移行する。図9は、第3実施例における各サブフィールドのリセット波形を示す図である。図6及び図7ではY電極の電圧がそれぞれ所定値に達した後しばらくの間保持されているのに対して、第3実施例ではY電極の電圧がそれぞれ所定値に達した直後に印加が停止され、次の消去期間の動作に移行している。これにより、動作時間を短縮でき、短縮した時間を、例えば維持放電期間の延長に使用できる。   In the third embodiment, when the reset voltage reaches a predetermined value and the switch 54 is turned off, the process proceeds to the next erase step. FIG. 9 is a diagram showing a reset waveform of each subfield in the third embodiment. 6 and 7, the voltage of the Y electrode is held for a while after reaching the predetermined value, whereas in the third embodiment, the voltage is applied immediately after the voltage of the Y electrode reaches the predetermined value. The operation is stopped and the operation is shifted to the next erasing period. Thereby, the operation time can be shortened, and the shortened time can be used, for example, for extending the sustain discharge period.

以上第1から第3実施例を説明したが、各設定電圧やいずれの電圧を出力するかについては、パネルの設計や駆動条件によって最適値を設定することはいうまでもない。   Although the first to third embodiments have been described above, it goes without saying that optimum values are set according to the design of the panel and the driving conditions as to which set voltage and which voltage are output.

図10は、本発明の効果を説明する図であり、第1から第3実施例で示したように各サブフィールドのリセット電圧を最適になるように制御した場合のリセット発光の強度を従来技術による場合と対比して示している。図示のように、中央でのリセットパルスによる発光強度が小さくなり、背景輝度は従来の約1/2から1/3になり、暗室コントラストは2倍から3倍に改善された。   FIG. 10 is a diagram for explaining the effect of the present invention. As shown in the first to third embodiments, the intensity of reset light emission when the reset voltage of each subfield is controlled to be optimum is shown in FIG. It is shown in contrast with the case of. As shown in the figure, the light emission intensity due to the reset pulse at the center is reduced, the background luminance is reduced from about 1/2 to 1/3 of the conventional one, and the darkroom contrast is improved from 2 times to 3 times.

なお、上記のように、維持放電回数が多い場合に放電で発生する電荷が拡散して隣接する表示セルの電極に蓄積されるのが大きな原因である。従って、前のフィールドの維持放電回数が少ない場合には、次のフィールドのリセット電圧を低くすることが可能である。例えば、PDP装置では、表示率が高い時には維持放電期間の長さを短くして電力増加を制限することが行われるが、そのような場合には、書き込み放電工程のリセット電圧を小さくすることが可能である。   As described above, when the number of sustain discharges is large, a large cause is that charges generated by discharge are diffused and accumulated in the electrodes of adjacent display cells. Therefore, when the number of sustain discharges in the previous field is small, the reset voltage in the next field can be lowered. For example, in a PDP device, when the display rate is high, the length of the sustain discharge period is shortened to limit the power increase. In such a case, the reset voltage in the write discharge process may be reduced. Is possible.

(付記1) 第1方向に伸びる第1電極と第2電極を隣接して交互に配置し、前記第2電極の一方に隣接する第1電極との間で第1表示ラインを形成し、前記第2電極の他方に隣接する第1電極との間で第2表示ラインを形成し、前記第1表示ラインと前記第2表示ラインを交互に別々のフィールドで表示するインタレース表示を行うプラズマディスプレイ装置の駆動方法であって、1表示フィールドは複数のサブフィールドで構成され、各サブフィールドは、少なくともリセット期間、アドレス期間及び維持放電期間より構成され、更に、前記リセット期間は、少なくとも書き込み放電工程と消去放電工程とを備えるプラズマディスプレイ装置の駆動方法において、前記書き込み放電工程の電圧を、少なくとも一部のサブフィールドで異ならせることを特徴とするプラズマディスプレイ装置の駆動方法(1)。   (Supplementary Note 1) First electrodes and second electrodes extending in a first direction are alternately arranged adjacent to each other, a first display line is formed between the first electrode adjacent to one of the second electrodes, A plasma display that performs interlaced display in which a second display line is formed between the second electrode and the first electrode adjacent to the other of the second electrodes, and the first display line and the second display line are alternately displayed in separate fields. An apparatus driving method, wherein one display field includes a plurality of subfields, and each subfield includes at least a reset period, an address period, and a sustain discharge period, and the reset period includes at least an address discharge process. In the method of driving the plasma display device comprising the erasing discharge process, the voltage of the write discharge process is different in at least some subfields. A driving method of a plasma display apparatus which comprises causing (1).

(付記2) 付記1に記載のプラズマディスプレイ装置の駆動方法であって、前記維持放電期間における維持放電回数の少ないサブフィールドの後のサブフィールドの前記リセット期間の前記書き込み放電工程の電圧を小さくするプラズマディスプレイ装置の駆動方法。   (Additional remark 2) It is a drive method of the plasma display apparatus of Additional remark 1, Comprising: The voltage of the said write discharge process of the said reset period of the subfield after a subfield with few sustain discharge frequency in the said sustain discharge period is made small. Driving method of plasma display apparatus.

(付記3) 付記1に記載のプラズマディスプレイ装置の駆動方法であって、前記プラズマディスプレイ装置は、前記第1と第2電極に対して垂直な方向に伸びる第3電極を更に備え、前記書き込み放電工程では、前記第3電極に所定の電圧を印加した状態で、前記第1電極に印加する電圧又は第2電極に印加する電圧又はその両方の電圧を変化させるプラズマディスプレイ装置の駆動方法(2)。   (Supplementary note 3) The plasma display device driving method according to supplementary note 1, wherein the plasma display device further includes a third electrode extending in a direction perpendicular to the first and second electrodes, and the write discharge In the step, the driving method of the plasma display device (2), wherein the voltage applied to the first electrode and / or the voltage applied to the second electrode is changed while a predetermined voltage is applied to the third electrode. .

(付記4) 付記1に記載のプラズマディスプレイ装置の駆動方法であって、前記第1又は第2表示ラインを表示するフィールドが終了した後、次のフィールドの最初のサブフィールドのリセット期間における前記書き込み放電工程の電圧を他のサブフィールドより大きくするプラズマディスプレイ装置の駆動方法。   (Supplementary note 4) The plasma display device driving method according to supplementary note 1, wherein the writing in the reset period of the first subfield of the next field after the field for displaying the first or second display line is completed. A method for driving a plasma display apparatus, wherein a voltage in a discharge process is made larger than that in other subfields.

(付記5) 付記1に記載のプラズマディスプレイ装置の駆動方法であって、1フィールドの時間が短くなり、フィールド内の最後のサブフィールドが終了した後次のフィールドの最初のサブフィールドを開始するまでの間に休止期間が発生した時には、前記休止期間の長さに応じて最初のサブフィールドのリセット期間における前記書き込み放電工程の電圧を大きくするプラズマディスプレイ装置の駆動方法。   (Additional remark 5) It is a drive method of the plasma display apparatus of Additional remark 1, Comprising: Time of one field becomes short, and after the last subfield in a field is complete | finished, it starts until the first subfield of the next field is started A method of driving a plasma display apparatus, wherein when a pause period occurs between the first and second subfields, the voltage in the write discharge process is increased in accordance with the length of the pause period.

(付記6) 付記1に記載のプラズマディスプレイ装置の駆動方法であって、前記書き込み放電工程の電圧波形は、電圧が緩やかに変化するスロープ波形であるプラズマディスプレイ装置の駆動方法(3)。   (Supplementary note 6) The plasma display device driving method according to supplementary note 1, wherein the voltage waveform in the write discharge step is a slope waveform in which the voltage gradually changes.

(付記7) 付記6に記載のプラズマディスプレイ装置の駆動方法であって、前記書き込み放電工程の時間は一定であり、各サブフィールド毎に所定の電圧に到達した後、その電圧を書き込み放電工程終了まで維持するプラズマディスプレイ装置の駆動方法。   (Supplementary note 7) The driving method of the plasma display device according to supplementary note 6, wherein the time of the writing discharge process is constant, and after reaching a predetermined voltage for each subfield, the voltage is set to the end of the writing discharge process. A method of driving a plasma display device that maintains a maximum of.

(付記8) 付記6に記載のプラズマディスプレイ装置の駆動方法であって、前記書き込み放電工程の電圧波形の電圧変化率は全サブフィールドで同じであり、電圧が所定の値に到達した後直ちに次の消去工程に移行するプラズマディスプレイ装置の駆動方法。   (Supplementary note 8) The plasma display device driving method according to supplementary note 6, wherein the voltage change rate of the voltage waveform in the write discharge step is the same in all subfields, and immediately after the voltage reaches a predetermined value. Driving method of plasma display apparatus which shifts to the erasing process.

(付記9) 第1方向に伸び、隣接して交互に配置された第1電極及び第2電極と、前記第1および第2電極に駆動電圧を印加する駆動回路とを備え、前記第2電極の一方に隣接する第1電極との間で第1表示ラインを形成し、前記第2電極の他方に隣接する第1電極との間で第2表示ラインを形成し、前記第1表示ラインと前記第2表示ラインを交互に別々のフィールドで表示するインタレース表示を行い、1表示フィールドは複数のサブフィールドで構成され、各サブフィールドは、少なくともリセット期間、アドレス期間及び維持放電期間より構成され、更に、前記リセット期間は、少なくとも書き込み放電工程と消去放電工程とを備えるプラズマディスプレイ装置において、前記駆動回路は、少なくとも一部のサブフィールドの前記書き込み放電工程で、異なる電圧を出力することを特徴とするプラズマディスプレイ装置(4)。   (Supplementary Note 9) A first electrode and a second electrode that extend in a first direction and are alternately arranged adjacent to each other, and a drive circuit that applies a drive voltage to the first and second electrodes, and the second electrode A first display line is formed between the first electrode adjacent to one of the first electrodes, a second display line is formed between the first electrode adjacent to the other of the second electrodes, and the first display line Interlaced display in which the second display lines are alternately displayed in separate fields is performed. One display field is composed of a plurality of subfields, and each subfield is composed of at least a reset period, an address period, and a sustain discharge period. Further, in the plasma display device including at least a write discharge process and an erasure discharge process in the reset period, the drive circuit includes at least a part of the subfields. In came narrowing discharge process, a plasma display apparatus and outputs a different voltage (4).

(付記10) 付記9に記載のプラズマディスプレイ装置であって、前記駆動回路は、書き込み放電用の複数の電圧源を備え、該複数の電圧源を選択して電圧を異ならせるプラズマディスプレイ装置。   (Additional remark 10) It is a plasma display apparatus of Additional remark 9, Comprising: The said drive circuit is provided with the several voltage source for write discharge, The plasma display apparatus which selects this several voltage source and makes a voltage differ.

(付記11) 付記9に記載のプラズマディスプレイ装置であって、前記駆動回路は、時間経過に従って、電圧が所定の値まで徐々に増加する電圧源回路と、電極に印加される電圧を監視する電圧監視回路とを備え、電極の電圧が所定の値に達した時点で電圧印加を中断するプラズマディスプレイ装置。   (Additional remark 11) It is a plasma display apparatus of Additional remark 9, Comprising: The said drive circuit is a voltage source circuit from which a voltage increases gradually to predetermined value as time passes, and the voltage which monitors the voltage applied to an electrode A plasma display device comprising a monitoring circuit and interrupting voltage application when the voltage of the electrode reaches a predetermined value.

(付記12) 第1方向に伸びる第1電極と第2電極を隣接して交互に配置し、前記第2電極の一方に隣接する第1電極との間で第1表示ラインを形成し、前記第2電極の他方に隣接する第1電極との間で第2表示ラインを形成し、前記第1表示ラインと前記第2表示ラインを交互に別々のフィールドで表示するインタレース表示を行うプラズマディスプレイ装置の駆動方法であって、1表示フィールドは複数のサブフィールドで構成され、
各サブフィールドは、少なくともリセット期間、アドレス期間及び維持放電期間より構成され、更に、前記リセット期間は、少なくとも書き込み放電工程と消去放電工程とを備えるプラズマディスプレイ装置の駆動方法において、表示率が高い時には前記維持放電期間の長さを短くして電力増加を制限するように、表示率に応じて前記維持放電期間の長さを制御し、前記維持放電期間が短い時には、前記書き込み放電工程の最終電圧を小さくすることを特徴とするプラズマディスプレイ装置の駆動方法(5)。
(Additional remark 12) The 1st electrode extended in the 1st direction and the 2nd electrode are alternately arranged adjacently, a 1st display line is formed between the 1st electrode adjacent to one side of the 2nd electrode, A plasma display that performs interlaced display in which a second display line is formed between the second electrode and the first electrode adjacent to the other of the second electrodes, and the first display line and the second display line are alternately displayed in separate fields. A device driving method, wherein one display field is composed of a plurality of subfields,
Each subfield includes at least a reset period, an address period, and a sustain discharge period, and the reset period includes at least a writing discharge process and an erasing discharge process in a driving method of a plasma display apparatus when a display rate is high. The length of the sustain discharge period is controlled according to a display rate so as to limit the increase in power by shortening the length of the sustain discharge period, and when the sustain discharge period is short, the final voltage of the write discharge process (5) A method of driving a plasma display device, wherein

本発明は、プラズマディスプレイ装置に利用可能である。   The present invention is applicable to a plasma display device.

ALIS方式のプラズマディスプレイ装置(PDP装置)の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the plasma display apparatus (PDP apparatus) of an ALIS system. 従来技術の問題点を説明する図である。It is a figure explaining the problem of a prior art. 本発明の実施例における駆動波形を示す図である。It is a figure which shows the drive waveform in the Example of this invention. 実施例のリセット波形を示す図である。It is a figure which shows the reset waveform of an Example. 実施例の維持電極駆動回路の構成を示す図である。It is a figure which shows the structure of the sustain electrode drive circuit of an Example. 本発明の第1実施例における各サブフィールドのリセット波形を示す図である。It is a figure which shows the reset waveform of each subfield in 1st Example of this invention. 本発明の第2実施例における各サブフィールドのリセット波形を示す図である。It is a figure which shows the reset waveform of each subfield in 2nd Example of this invention. 本発明の第3実施例の維持電極駆動回路の構成を示す図である。It is a figure which shows the structure of the sustain electrode drive circuit of 3rd Example of this invention. 第3実施例における各サブフィールドのリセット波形を示す図である。It is a figure which shows the reset waveform of each subfield in 3rd Example. 本発明の効果を説明する図である。It is a figure explaining the effect of this invention.

符号の説明Explanation of symbols

1…プラズマディスプレイパネル、11…制御回路、12…走査回路、13…アドレスドライバ、14…奇数X維持放電(サスティン)回路、15…偶数X維持放電(サスティン)回路、16…奇数Y維持放電(サスティン)回路、17…偶数Y維持放電(サスティン)回路、18…電源回路。   DESCRIPTION OF SYMBOLS 1 ... Plasma display panel, 11 ... Control circuit, 12 ... Scan circuit, 13 ... Address driver, 14 ... Odd X sustain discharge (sustain) circuit, 15 ... Even X sustain discharge (sustain) circuit, 16 ... Odd Y sustain discharge ( (Sustain) circuit, 17 ... even Y sustain discharge (sustain) circuit, 18 ... power supply circuit.

Claims (2)

第1方向に伸びる第1電極と第2電極を隣接して配置し、1表示フィールドはリセット期間、アドレス期間及び維持放電期間を有する複数のサブフィールドを有するプラズマディスプレイ装置の駆動方法であって、
前記アドレス期間は、前記第2電極に負極性の走査パルスを印加する期間であり、
前記維持放電期間は、前記第1電極と前記第2電極の少なくとも何れか一方に、維持放電を行うための維持パルスを印加する期間であり、
前記リセット期間は、少なくとも書き込み放電工程と消去放電工程とを備え、
前記書き込み放電工程の際に、電圧値が時間の経過に伴って増大方向に徐々に変化する傾きの緩やかな第1のスロープ波形の電圧を前記第2電極に印加し、
前記消去放電工程の際に、電圧値が時間の経過に伴って減少方向に徐々に変化する傾きの緩やかな第2のスロープ波形の電圧を前記第2電極に印加し、
前記維持パルスの印加数が第1のサブフィールドより多い第2のサブフィールドの直後のサブフィールドでの、前記第1のスロープ波形の最大到達電圧時での前記第1及び第2電極間の電圧差が、前記第1のサブフィールドの直後のサブフィールドでの、前記第1のスロープ波形の最大到達電圧時での前記第1及び第2電極間の電圧差よりも大きくなるように、前記第1のスロープ波形の電圧の到達電圧値異ならせることを特徴とするプラズマディスプレイ装置の駆動方法。
A driving method of a plasma display apparatus, wherein a first electrode extending in a first direction and a second electrode are disposed adjacent to each other, and one display field has a plurality of subfields having a reset period, an address period, and a sustain discharge period,
The address period is a period in which a negative scan pulse is applied to the second electrode,
The sustain discharge period is a period in which a sustain pulse for performing a sustain discharge is applied to at least one of the first electrode and the second electrode,
The reset period includes at least a write discharge step and an erase discharge step,
During the write discharge step, a voltage having a first slope waveform with a gentle slope in which the voltage value gradually changes in an increasing direction as time passes is applied to the second electrode,
During the erasing discharge step, a voltage having a second slope waveform with a gentle slope in which the voltage value gradually changes in a decreasing direction with the passage of time is applied to the second electrode,
The voltage between the first and second electrodes at the maximum voltage of the first slope waveform in the subfield immediately after the second subfield in which the number of sustain pulses applied is greater than that in the first subfield. The first difference is greater than the voltage difference between the first and second electrodes at the maximum voltage reached in the first slope waveform in the subfield immediately after the first subfield . the driving method of a plasma display device according to claim racemase Rukoto different arrival voltage value of the voltage of the first slope waveform.
請求項1に記載のプラズマディスプレイ装置の駆動方法において、
前記書き込み放電工程の前記第1のスロープ波形の電圧は、単位時間当たりの電圧変化量が一定な所定の傾きを有するスロープ波形の電圧であることを特徴とするプラズマディスプレイ装置の駆動方法。
The driving method of the plasma display device according to claim 1,
The method of driving a plasma display device, wherein the voltage of the first slope waveform in the write discharge step is a voltage of a slope waveform having a predetermined slope with a constant voltage change amount per unit time.
JP2008177554A 2008-07-08 2008-07-08 Driving method of plasma display device Expired - Fee Related JP4902601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177554A JP4902601B2 (en) 2008-07-08 2008-07-08 Driving method of plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177554A JP4902601B2 (en) 2008-07-08 2008-07-08 Driving method of plasma display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001240662A Division JP4902068B2 (en) 2001-08-08 2001-08-08 Driving method of plasma display device

Publications (2)

Publication Number Publication Date
JP2008282039A JP2008282039A (en) 2008-11-20
JP4902601B2 true JP4902601B2 (en) 2012-03-21

Family

ID=40142835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177554A Expired - Fee Related JP4902601B2 (en) 2008-07-08 2008-07-08 Driving method of plasma display device

Country Status (1)

Country Link
JP (1) JP4902601B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272232A (en) * 1998-03-20 1999-10-08 Fujitsu Ltd Plasma device panel and device using the same
JP2000172224A (en) * 1998-12-08 2000-06-23 Hitachi Ltd Plasma display panel driving method, and plasma display
JP2000221940A (en) * 1999-01-28 2000-08-11 Mitsubishi Electric Corp Driving device of plasma display panel and driving method therefor
JP4124305B2 (en) * 1999-04-21 2008-07-23 株式会社日立プラズマパテントライセンシング Driving method and driving apparatus for plasma display
JP2001154633A (en) * 1999-11-30 2001-06-08 Mitsubishi Electric Corp Plasma display device and its control method
JP4902068B2 (en) * 2001-08-08 2012-03-21 日立プラズマディスプレイ株式会社 Driving method of plasma display device

Also Published As

Publication number Publication date
JP2008282039A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4902068B2 (en) Driving method of plasma display device
JP2002149111A (en) Plasma display panel and driving method therefor
JP2001228820A (en) Driving method for plasma display panel and plasma display device
JP2001306029A (en) Method for driving ac-type pdp
JP5131241B2 (en) Driving method of plasma display panel
JP4816728B2 (en) Plasma display panel driving method and plasma display device
KR19990013656A (en) Plasma display panel with high brightness with low power consumption
JP4902601B2 (en) Driving method of plasma display device
JP4902724B2 (en) Driving method of plasma display device
JP4902766B2 (en) Driving method of plasma display device
JP5099238B2 (en) Plasma display device
JP2007163736A (en) Method for driving plasma display panel
JP2005202160A (en) Method for driving plasma display panel
JP2010266648A (en) Driving method of plasma display panel, and plasma display device
WO2013046652A1 (en) Method for driving plasma display panel and plasma display device
JP2010266649A (en) Method of driving plasma display panel, and plasma display device
JP2010266650A (en) Driving method of plasma display panel, and plasma display device
JP2008122734A (en) Method for driving plasma display panel
JP2011033922A (en) Plasma display device
JPWO2007023537A1 (en) Plasma display panel driving method and display device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees