JP4900804B2 - Dust core - Google Patents

Dust core Download PDF

Info

Publication number
JP4900804B2
JP4900804B2 JP2007026752A JP2007026752A JP4900804B2 JP 4900804 B2 JP4900804 B2 JP 4900804B2 JP 2007026752 A JP2007026752 A JP 2007026752A JP 2007026752 A JP2007026752 A JP 2007026752A JP 4900804 B2 JP4900804 B2 JP 4900804B2
Authority
JP
Japan
Prior art keywords
powder
amorphous alloy
magnetic
core
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007026752A
Other languages
Japanese (ja)
Other versions
JP2008192896A (en
Inventor
和則 西村
好正 西尾
克廣 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007026752A priority Critical patent/JP4900804B2/en
Publication of JP2008192896A publication Critical patent/JP2008192896A/en
Application granted granted Critical
Publication of JP4900804B2 publication Critical patent/JP4900804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、高周波抑制のためのパワーファクターコレクション(PFC)や、ノーマルモードチョークやパワーチョーク、その他、ハイブリッド自動車の大出力の電気モータを駆動するような電源回路リアクトルなどに用いられる圧粉磁心に関するものである。   The present invention relates to a powder magnetic core used for a power factor collection (PFC) for suppressing high frequency, a normal mode choke, a power choke, and a power circuit reactor for driving a high output electric motor of a hybrid vehicle. Is.

電源回路用磁心として主に3種類の磁心が用いられる。数十kHz以下の領域では、珪素鋼板、非晶質軟磁性帯板、微結晶質軟磁性帯板などが磁心材として主に用いられている。これらの磁心材は鉄を主成分とし、飽和磁束密度Bsと比透磁率μrが大きいという長所をもつ。しかしながら、珪素鋼板は高周波磁心損失が大きいという欠点を有し、非晶質軟磁性帯板と微結晶質軟磁性帯板は、磁心形状が巻磁心形状や積層磁心形状などに制約され、後述するフェライトのように種々の形状に成形し難い欠点を有する。
また、数十kHz以上の領域では、Mn-Zn系やNi-Zn系に代表されるフェライト磁心が広く用いられている。このフェライト磁心は、高周波磁心損失が小さく、また成形が比較的容易なため、種々の形状を大量生産できる特長を有する。しかしながら、飽和磁束密度Bsが前述の珪素鋼板や非晶質軟磁性帯板、微結晶質軟磁性帯板の3分の1から2分の1程度しかないため、磁気飽和を避けるようとすると磁心断面積が大きくなるという欠点を有する。
Three types of magnetic cores are mainly used as power circuit magnetic cores. In the region of several tens of kHz or less, silicon steel plates, amorphous soft magnetic strips, microcrystalline soft magnetic strips, etc. are mainly used as magnetic core materials. These magnetic core materials are mainly composed of iron, and have an advantage that the saturation magnetic flux density Bs and the relative permeability μr are large. However, silicon steel plates have the disadvantage that high frequency magnetic core loss is large, and amorphous soft magnetic strips and microcrystalline soft magnetic strips have a magnetic core shape that is constrained by a wound core shape or a laminated core shape, which will be described later. It has a drawback that it is difficult to form into various shapes like ferrite.
In the region of several tens of kHz or more, ferrite cores typified by Mn—Zn and Ni—Zn are widely used. Since this ferrite core has a small high-frequency core loss and is relatively easy to mold, it has the feature that various shapes can be mass-produced. However, the saturation magnetic flux density Bs is only about one-third to one-half that of the aforementioned silicon steel plate, amorphous soft magnetic strip, and microcrystalline soft magnetic strip. There is a disadvantage that the cross-sectional area becomes large.

数kHzから数百kHzまでの領域に用いられるリアクトル用の磁心として圧粉磁心がある。圧粉磁心は、磁性粉末の表面を絶縁処理したのち加工成形したもので、絶縁処理により渦電流損失の発生が抑制されている。そのため、圧粉磁心の高周波磁心損失は珪素鋼板に比べると小さいという長所を持つ。   There is a dust core as a magnetic core for a reactor used in a region from several kHz to several hundred kHz. The dust core is formed by subjecting the surface of the magnetic powder to insulation treatment and then processing, and generation of eddy current loss is suppressed by the insulation treatment. For this reason, the high frequency magnetic core loss of the dust core is small compared to the silicon steel sheet.

特に、急速に普及しはじめたハイブリッド自動車では、大出力の電気モータを有しており、これを駆動する電源回路には高電圧大電流に耐えうるリアクトルが必要になる。このリアクトルには小型化、低騒音化、低損失化、耐久性の要求が強く、リアクトルに用いられる磁心材の特性としては、高い飽和磁束密度Bs、適切な範囲の比透磁率μr、高機械的強度、そして低騒音化のために磁化した時の体積変形率が低いものであることが要求される。   In particular, a hybrid vehicle that has begun to spread rapidly has a high-output electric motor, and a power source circuit that drives the motor needs a reactor that can withstand a high voltage and a large current. There is a strong demand for miniaturization, low noise, low loss, and durability for this reactor. The characteristics of the magnetic core material used for the reactor include a high saturation magnetic flux density Bs, an appropriate range of relative permeability μr, and a high machine. It is required that the volume deformation rate when magnetized is low in order to reduce the mechanical strength and noise.

大電流用のリアクトル磁心として前述の圧粉磁心を用いたものがある。珪素鋼板、非晶質軟磁性帯板、微結晶質軟磁性帯板などの軟磁性帯板は透磁率が500〜5000程度であるが、圧粉磁心は10〜200程度であるため、軟磁性帯板に比べてギャップを少なくすることができる。この場合、フリンジング磁束が、軟磁性帯板に比べて少ないため、コイルに生じる渦電流を抑えることができる。そして、磁心損失の小さい圧粉磁心を用いることによりリアクトル損失を小さくできる。また、圧粉磁心は飽和しにくいので、大電流時に高透磁率が得られるという利点がある。   As a reactor core for large current, there is one using the above-mentioned dust core. Soft magnetic strips such as silicon steel plates, amorphous soft magnetic strips, and microcrystalline soft magnetic strips have a magnetic permeability of about 500 to 5000, but a dust core has a magnetic core of about 10 to 200. The gap can be reduced compared to the strip. In this case, since the fringing magnetic flux is smaller than that of the soft magnetic strip, the eddy current generated in the coil can be suppressed. The reactor loss can be reduced by using a dust core having a small magnetic core loss. In addition, since the dust core is not easily saturated, there is an advantage that a high magnetic permeability can be obtained at a large current.

低騒音を示す圧粉磁心として、特許文献1及び特許文献2が開示されている。特許文献1では、硬さと強度を向上させることにより騒音を抑制している。また、特許文献2では、圧粉磁心を構成する粉末の粒径を制御することにより騒音を抑制している。また、特許文献3では、非晶質合金粉末と軟磁性粉末を混合して圧粉磁心とすることが開示されている。
特開平6−176914号公報 特開2006−147959号公報 特開2006−176817号公報
Patent documents 1 and patent documents 2 are indicated as a dust core which shows low noise. In Patent Document 1, noise is suppressed by improving hardness and strength. Moreover, in patent document 2, the noise is suppressed by controlling the particle size of the powder which comprises a powder magnetic core. Patent Document 3 discloses that a powder magnetic core is obtained by mixing an amorphous alloy powder and a soft magnetic powder.
JP-A-6-176914 JP 2006-147959 A JP 2006-176817 A

しかしながら、非晶質合金粉末と軟磁性粉末を用いた混合粉末では、軟磁性粉末をどのようなものを使うかで磁気特性が大きく左右される。さらに、例えば大電流用リアクトルの磁心として圧粉磁心を用いる場合、高い機械的強度、低騒音、かつ磁気特性の何れも優れたものを得ることは難しい。これは、リアクトルの駆動時に発生する騒音、長時間駆動させても特性が劣化しない耐久性を得るための機械的強度が粉末の合金組成、粒径、被覆する絶縁材の種類や量、そして圧粉体の空隙率などに大きく依存し、お互いがトレードオフの関係になることが多いためである。
本発明の課題は、これら圧粉磁心の問題点を解決し、従来よりも機械的強度が高く低騒音で、かつ磁気特性の良好な圧粉磁心を提供することである。
However, in the mixed powder using the amorphous alloy powder and the soft magnetic powder, the magnetic characteristics greatly depend on what kind of soft magnetic powder is used. Furthermore, for example, when a dust core is used as the magnetic core of the high current reactor, it is difficult to obtain a high mechanical strength, low noise, and excellent magnetic characteristics. This is because the noise generated when the reactor is driven, the mechanical strength to obtain the durability that does not deteriorate the characteristics even if it is driven for a long time, the alloy composition of the powder, the particle size, the type and amount of the insulating material to be coated, and the pressure This is because it largely depends on the porosity of the powder and the like and often has a trade-off relationship.
An object of the present invention is to solve these problems of dust cores, and to provide a dust core having higher mechanical strength and lower noise than the conventional ones and having good magnetic properties.

本発明は、Fe−Si−B、Fe−Si−B−Cu−Nb、Fe−Zr−B及びCo−Fe−Si−Bからなる群から選択される少なくとも1種の粒状非晶質合金粉末と99.5質量%超がFeの粒状純Fe粉末が混合され、前記非晶質合金粉末と前記純Fe粉末の平均粒径は20μm以上異なり、非晶質合金粉末の全体に対する重量比率が20〜40%の範囲にあり、抵抗率が、1×10 Ωm以上であり、磁場10000A/mでの透磁率が純Fe粉末単体の圧粉体よりも高いことを特徴とする。
The present invention relates to at least one granular amorphous alloy powder selected from the group consisting of Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B, and Co-Fe-Si-B. And a granular pure Fe powder of more than 99.5% by mass of Fe is mixed , the average particle diameter of the amorphous alloy powder and the pure Fe powder differ by 20 μm or more, and the weight ratio with respect to the whole amorphous alloy powder is 20 It is in a range of ˜40 %, has a resistivity of 1 × 10 4 Ωm or more, and has a magnetic permeability at a magnetic field of 10,000 A / m higher than that of a compact powder of pure Fe powder .

本発明は、非晶質合金粉末と99.5%超がFeの純Fe粉末を混合して圧粉磁心とすることで、高い機械的強度、低騒音、かつ磁気特性に優れた圧粉磁心を得ることができる。また、純Fe粉末の重量比率や、非晶質合金粉末と純Fe粉末のアスペクト比、両粉末の平均粒径を所定の値にすることで、機械的強度、低騒音、かつ磁気特性がさらに優れた圧粉磁心とすることができる。これらの圧粉磁心は交流磁界中で動作させた時の騒音が抑制され、長時間駆動させても特性が劣化し難い。   The present invention mixes amorphous alloy powder and pure Fe powder with more than 99.5% Fe to form a powder magnetic core, thereby providing a powder magnetic core with high mechanical strength, low noise, and excellent magnetic properties. Can be obtained. In addition, by setting the weight ratio of pure Fe powder, the aspect ratio of amorphous alloy powder and pure Fe powder, and the average particle size of both powders to predetermined values, mechanical strength, low noise, and magnetic properties are further improved. An excellent powder magnetic core can be obtained. These dust cores suppress noise when operated in an alternating magnetic field, and their characteristics are unlikely to deteriorate even if they are driven for a long time.

本発明では、質量分率で50%以上を99.5%超がFeの柔らかい純Fe粉末を用いることで十分な占積率を保持するとともに、軟磁気特性の優れた非晶質合金粉末を質量分率で10%以上混ぜることで、抵抗率が大幅に向上し、かつ保磁力が5000A/m〜15000A/mでの透磁率が純Fe粉末単体での圧粉磁心よりも高く直流重畳特性に優れた圧粉磁心を得ることができた。非晶質合金粉末と純Fe粉末の他、粉末間に均一に存在するように既存の無機絶縁バインダー層を作ることが好ましい。   In the present invention, an amorphous alloy powder having an excellent soft magnetic property and a sufficient space factor can be obtained by using a pure Fe powder having a mass fraction of 50% or more and a soft Fe powder of more than 99.5% Fe. By mixing 10% or more in mass fraction, the resistivity is greatly improved, and the coercive force is 5000 A / m to 15000 A / m, and the permeability is higher than the dust core of pure Fe powder alone. An excellent powder magnetic core was obtained. In addition to the amorphous alloy powder and the pure Fe powder, it is preferable to make an existing inorganic insulating binder layer so as to exist uniformly between the powders.

非晶質合金粉末は、Fe-Si-B、Fe-Si-B-Cu-Nb、Fe-Zr-B及びCo-Fe-Si-Bから選択される。FeをNi、Cr、Mo、Zr、Hfか、Mnら選ばれる少なくとも1種以上の元素で置換してもよい。特にMnは微量添加で若干BSを向上させる効果がある。これらの置換元素は5原子%以下とすることが好ましい。Cは材料の角形性およびBSを向上し磁心を小型化できると共に低騒音化の効果があり、5原子%以下の範囲で添加することが好ましい。
また不可避な不純物としてS,P,Sn,Cu,Al,Tiから少なくとも1種以上の元素を0.50%以下の範囲で含有してもよい。
The amorphous alloy powder is selected from Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B, and Co-Fe-Si-B. Fe may be substituted with at least one element selected from Ni, Cr, Mo, Zr, Hf, or Mn. In particular, Mn has an effect of slightly improving B 2 S when added in a small amount. These substitution elements are preferably 5 atomic% or less. C improves the squareness of the material and B S and can reduce the size of the magnetic core, and also has the effect of reducing the noise. C is preferably added in the range of 5 atomic% or less.
In addition, as an inevitable impurity, at least one element selected from S, P, Sn, Cu, Al, and Ti may be contained in a range of 0.50% or less.

圧粉磁心を構成する軟磁性粉末において、非晶質合金粉末もしくは純Fe粉末どちらか一方の形状を球形にし、他方の不規則な偏平形状にしてもよい。純Fe粉末は非晶質合金粉末に比べて塑性変形しやすい。これらの混合粉末を圧縮成形すると、非晶質合金粉末は大きく塑性変形せずに純Fe粉末間に移動して占積率が高まる。これにより、純Fe粉末の全体に対する比率を高めるに伴い、圧環強度に換算した機械的強度を増加させることもできる。   In the soft magnetic powder constituting the dust core, either the amorphous alloy powder or the pure Fe powder may be spherical, and the other irregular flat shape. Pure Fe powder is more easily plastically deformed than amorphous alloy powder. When these mixed powders are compression molded, the amorphous alloy powder moves between pure Fe powders without greatly plastic deformation, and the space factor increases. Thereby, the mechanical strength converted into the crushing strength can be increased as the ratio of the pure Fe powder to the whole is increased.

また、混合粉末において、非晶質合金粉末と純Fe粉末の平均粒径を20μm以上変えることが好ましい。非晶質合金粉末間に純Fe粉末が入り込み、占積率が高まるとともに、機械的強度も向上する。   In the mixed powder, it is preferable to change the average particle diameter of the amorphous alloy powder and the pure Fe powder by 20 μm or more. Pure Fe powder enters between the amorphous alloy powders, increasing the space factor and improving the mechanical strength.

圧粉磁心の磁化を飽和させたときの体積変形率を減少させる方法としては、軟磁性粉末間のコーティング剤としてアルミナ、シリカ、マグネシア、カオリン等のセラミックス系バインダー及び絶縁材料を用い、これらを多量に配合させることがある。また、圧粉磁心の磁化を飽和させたときの体積変形率を減少させるには、本発明の圧粉磁心にエポキシ樹脂、アクリル樹脂、フェノール樹脂、シリコン樹脂、ポリアミド樹脂などの有機系の溶液、または水ガラス、コロイダルシリカ、コロイダルアルミナなどの無機系の溶液を含浸させ、その後硬化させることも有効である。   As a method of reducing the volume deformation rate when the magnetization of the powder magnetic core is saturated, ceramic binders and insulating materials such as alumina, silica, magnesia, kaolin, etc. are used as a coating agent between soft magnetic powders. May be blended in. Further, in order to reduce the volume deformation rate when the magnetization of the powder magnetic core is saturated, an organic solution such as an epoxy resin, an acrylic resin, a phenol resin, a silicon resin, or a polyamide resin is added to the powder magnetic core of the present invention, Alternatively, it is also effective to impregnate an inorganic solution such as water glass, colloidal silica, colloidal alumina, and then cure.

本発明の圧粉磁心をリアクトル磁心として使用した場合、動作時の磁心振動が小さくなるので騒音を十分に抑制することができ、従来にない高性能のリアクトルを得ることが出来る。また、ここで用いる圧粉磁心は高い機械的強度を有するので、リアクトルを長時間駆動させても特性は劣化し難い。フリンジング磁束が外部回路に影響を与えないように、比透磁率μrを調整するための非磁性ギャップとして用いたセラミックス板の周囲をコイルで覆う形状に設計することが好ましい。   When the dust core of the present invention is used as a reactor magnetic core, the magnetic core vibration during operation is reduced, so that noise can be sufficiently suppressed, and an unprecedented high performance reactor can be obtained. In addition, since the dust core used here has high mechanical strength, the characteristics hardly deteriorate even if the reactor is driven for a long time. In order to prevent the fringing magnetic flux from affecting the external circuit, it is preferable to design a shape in which the periphery of the ceramic plate used as a nonmagnetic gap for adjusting the relative permeability μr is covered with a coil.

本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。
(実施例1)
水アトマイズ法を用いて、99.9%がFeの純Fe粉末を作製した。この純Fe粉末は平均流径が90μmの粒状粉末である。また、非晶質合金粉末としてSwap法により製造されたATMIX社製の非晶質合金粉末(製品名Kuwamet)を用いた。この非晶質合金粉末は、合金組成が原子%で(Fe0.97Cr0.03)76(Si0.5B0.5)22C2で表され、平均流径が65μmの粒状粉末である。この2種類の軟磁性粉末を質量比率を各々変えて混合した。また、それぞれの混合粉末には、カオリン0.5質量%、アモルファスシリカ1.5質量%、アクリルエマルジョン1.5質量%、ステアリン酸亜鉛0.4質量%を添加した。
それぞれの混合粉末を成形圧20ton/cmで成形した後、窒素中雰囲気で、保持温度470℃×1時間の熱処理を施し、本発明の圧粉磁心用の圧粉体を製造した。純Fe粉末と非晶質合金粉末の混合比率により、圧密特性、100kHz,交流電圧1Vの条件で直流電流を変化させながら透磁率の変化を測定した直流重畳特性、50kHz,50mTの条件で交流B−Hアナライザにて測定したときのコアロス、および2端子法により電圧50Vで測定した抵抗率がどのように影響するのか調査した。
図1は、非晶質合金粉末の混合比率と占積率との関係を示したものである。非晶質合金粉末の混合比率が50%であっても占積率は純Fe粉末の単体からなる圧粉磁心とほぼ同等である。圧粉磁心では、軟磁性粉末の占積率と機械的強度がほぼ比例関係にある。機械的強度が高いと磁歪による圧粉磁心の変形量が小さくなり、磁歪振動による騒音を抑制することに繋がる。
図2は、非晶質合金粉末の混合比率を変えたときの、保磁力と初透磁率との関係を示したものである。純Fe粉末の混合比率が60%と80%の圧粉磁心(非晶質合金粉末の混合比率が40%と20%)は、保磁力Hが5000〜15000A/mの間で、純Fe粉末の単体からなる圧粉磁心と比較して初透磁率が高くなる。特にHEV用のリアクトルでは優れた直流重畳特性が必要になり、非晶質合金粉末の混合比率が10〜50%の本発明の圧粉磁心が有用である。
図3は、非晶質合金粉末の混合比率とコアロスとの関係を示したものである。非晶質合金粉末の混合比率が増えるに連れ、コアロスが下がる。
図4は、非晶質合金粉末の混合比率と抵抗率との関係を示したものである。非晶質合金粉末の混合比率が10%を超えると急激に抵抗率が向上する。特に非晶質合金粉末の混合比率が15%以上では抵抗率ρvが1×10Ωmとなり、20%以上では抵抗率ρvが1×10Ωmとなる。
このため、高周波抑制のためのパワーファクターコレクション(PFC)や、ノーマルモードチョークやパワーチョーク、ハイブリッド自動車の大出力の電気モータを駆動するような電源回路に用いられるリアクトル用磁心に有用である。
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Example 1
Using the water atomization method, 99.9% pure Fe powder was produced. This pure Fe powder is a granular powder having an average flow diameter of 90 μm. Further, an amorphous alloy powder (product name Kuwatet) manufactured by ATMIX manufactured by the Swap method was used as the amorphous alloy powder. This amorphous alloy powder is a granular powder having an alloy composition of atomic% and represented by (Fe 0.97 Cr 0.03 ) 76 (Si 0.5 B 0.5 ) 22 C 2 and an average flow diameter of 65 μm. These two types of soft magnetic powders were mixed at different mass ratios. Moreover, 0.5 mass% of kaolin, 1.5 mass% of amorphous silica, 1.5 mass% of acrylic emulsion, and 0.4 mass% of zinc stearate were added to each mixed powder.
Each of the mixed powders was molded at a molding pressure of 20 ton / cm 2 , and then subjected to a heat treatment at a holding temperature of 470 ° C. for 1 hour in an atmosphere in nitrogen to produce a green compact for the dust core of the present invention. Depending on the mixing ratio of pure Fe powder and amorphous alloy powder, DC superposition characteristics measured by changing the DC current while changing the DC current under the conditions of compaction characteristics, 100 kHz, AC voltage 1 V, AC B under the conditions of 50 kHz, 50 mT The influence of the core loss when measured with a -H analyzer and the resistivity measured at a voltage of 50 V by the two-terminal method were investigated.
FIG. 1 shows the relationship between the mixing ratio of the amorphous alloy powder and the space factor. Even when the mixing ratio of the amorphous alloy powder is 50%, the space factor is almost equivalent to a dust core made of pure Fe powder alone. In the dust core, the space factor of the soft magnetic powder and the mechanical strength are almost proportional. When the mechanical strength is high, the amount of deformation of the dust core due to magnetostriction is reduced, leading to suppression of noise due to magnetostrictive vibration.
FIG. 2 shows the relationship between coercivity and initial permeability when the mixing ratio of amorphous alloy powder is changed. A powder magnetic core with a mixing ratio of pure Fe powder of 60% and 80% (a mixing ratio of amorphous alloy powder of 40% and 20%) has a coercive force H between 5000 and 15000 A / m. The initial permeability is higher than that of a powder magnetic core made of a simple substance. In particular, a reactor for HEV requires excellent direct current superposition characteristics, and the dust core of the present invention having a mixing ratio of amorphous alloy powder of 10 to 50% is useful.
FIG. 3 shows the relationship between the mixing ratio of the amorphous alloy powder and the core loss. As the mixing ratio of the amorphous alloy powder increases, the core loss decreases.
FIG. 4 shows the relationship between the mixing ratio of the amorphous alloy powder and the resistivity. When the mixing ratio of the amorphous alloy powder exceeds 10%, the resistivity is rapidly improved. In particular, when the mixing ratio of the amorphous alloy powder is 15% or more, the resistivity ρv is 1 × 10 3 Ωm, and when it is 20% or more, the resistivity ρv is 1 × 10 4 Ωm.
For this reason, it is useful for power factor correction (PFC) for suppressing high frequency, a normal mode choke, a power choke, and a reactor magnetic core used in a power supply circuit that drives a high output electric motor of a hybrid vehicle.

圧粉磁心の非晶質合金粉末の混合比率と占積率との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of the amorphous alloy powder of a powder magnetic core, and a space factor. 圧粉磁心の非晶質合金粉末の混合比率と直流重畳特性との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of the amorphous alloy powder of a powder magnetic core, and direct current | flow superimposition characteristic. 圧粉磁心の非晶質合金粉末の混合比率とコアロスとの関係を示す図である。It is a figure which shows the relationship between the mixing ratio of the amorphous alloy powder of a powder magnetic core, and a core loss. 圧粉磁心の非晶質合金粉末の混合比率と抵抗率との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of the amorphous alloy powder of a powder magnetic core, and resistivity.

Claims (1)

Fe−Si−B、Fe−Si−B−Cu−Nb、Fe−Zr−B及びCo−Fe−Si−Bからなる群から選択される少なくとも1種の粒状非晶質合金粉末と99.5質量%超がFeの粒状純Fe粉末が混合され、前記非晶質合金粉末と前記純Fe粉末の平均粒径は20μm以上異なり、非晶質合金粉末の全体に対する重量比率が20〜40%の範囲にあり、抵抗率が、1×10 Ωm以上であり、磁場10000A/mでの透磁率が純Fe粉末単体の圧粉体よりも高いことを特徴とする圧粉磁心。
At least one granular amorphous alloy powder selected from the group consisting of Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B, and Co-Fe-Si-B, and 99.5 Particulate pure Fe powder with a mass% exceeding Fe is mixed , the average particle diameter of the amorphous alloy powder and the pure Fe powder is different by 20 μm or more, and the weight ratio of the amorphous alloy powder to the whole is 20 to 40%. A dust core having a range, a resistivity of 1 × 10 4 Ωm or more, and a magnetic permeability at a magnetic field of 10000 A / m higher than that of a pure powder of pure Fe powder .
JP2007026752A 2007-02-06 2007-02-06 Dust core Active JP4900804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026752A JP4900804B2 (en) 2007-02-06 2007-02-06 Dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026752A JP4900804B2 (en) 2007-02-06 2007-02-06 Dust core

Publications (2)

Publication Number Publication Date
JP2008192896A JP2008192896A (en) 2008-08-21
JP4900804B2 true JP4900804B2 (en) 2012-03-21

Family

ID=39752700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026752A Active JP4900804B2 (en) 2007-02-06 2007-02-06 Dust core

Country Status (1)

Country Link
JP (1) JP4900804B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315636B2 (en) * 2007-07-13 2013-10-16 大同特殊鋼株式会社 Amorphous soft magnetic metal powder and dust core
JP5288405B2 (en) * 2008-11-13 2013-09-11 Necトーキン株式会社 Inductor and method of manufacturing inductor
EP3083106A1 (en) * 2013-12-20 2016-10-26 Höganäs Ab (publ) Soft magnetic composite powder and component
WO2016185940A1 (en) 2015-05-19 2016-11-24 アルプス・グリーンデバイス株式会社 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
CN107424710B (en) * 2017-06-29 2019-10-11 安泰科技股份有限公司 A kind of Fe-based amorphous powder core of shield box class of magnetic permeability μ=60 and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734183A (en) * 1993-07-22 1995-02-03 Kawatetsu Techno Res Corp Composite dust core material and its production
JP2005286145A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Method for manufacturing soft magnetic material, soft magnetic powder and dust core
JP2005294458A (en) * 2004-03-31 2005-10-20 Nec Tokin Corp High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same
JP5062946B2 (en) * 2004-06-17 2012-10-31 株式会社豊田中央研究所 Powder for magnetic core, powder magnetic core and method for producing them
JP4483624B2 (en) * 2005-02-25 2010-06-16 Jfeスチール株式会社 Soft magnetic metal powder for dust core and dust core
JP2007012745A (en) * 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd Dust core and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008192896A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP6277426B2 (en) Composite magnetic body and method for producing the same
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP4895171B2 (en) Composite core and reactor
JP2008192897A (en) Dust core and reactor
JP2007012647A (en) Complex magnetic core and reactor employing the same
JP2007013042A (en) Composite magnetic core and reactor employing the same
JP4900804B2 (en) Dust core
JP2009224759A (en) Bond magnet for direct current reactor and direct current reactor
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP6478107B2 (en) Powder magnetic core and reactor using the powder magnetic core
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
WO2011121947A1 (en) Complex magnetic material, coil-embedded type magnetic element using the same, and manufacturing method thereof
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2010062326A (en) Bond magnet
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP4358756B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JP4568691B2 (en) Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
JP5288228B2 (en) Reactor core and reactor
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP2007042931A (en) Coil component and its manufacturing method
JP2003249410A (en) Dust core and reactor using the same
JPH04304601A (en) Magnetic material and induction electromagnetic apparatus
JP2002164208A (en) Powder for dust core, dust core, method of manufacturing the powder, and high-frequency reactor using the powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4900804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350