JP4897768B2 - Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing - Google Patents

Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing Download PDF

Info

Publication number
JP4897768B2
JP4897768B2 JP2008284213A JP2008284213A JP4897768B2 JP 4897768 B2 JP4897768 B2 JP 4897768B2 JP 2008284213 A JP2008284213 A JP 2008284213A JP 2008284213 A JP2008284213 A JP 2008284213A JP 4897768 B2 JP4897768 B2 JP 4897768B2
Authority
JP
Japan
Prior art keywords
resin
preformed
hollow sealing
electronic component
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284213A
Other languages
Japanese (ja)
Other versions
JP2010114192A (en
Inventor
正人 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2008284213A priority Critical patent/JP4897768B2/en
Publication of JP2010114192A publication Critical patent/JP2010114192A/en
Application granted granted Critical
Publication of JP4897768B2 publication Critical patent/JP4897768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、可動部付きの電子部品のように、中空部を確保した上でパッケージングする必要のある電子部品の中空封止方法、中空封止用樹脂、及び中空封止用樹脂の製造方法に関する。   The present invention relates to a method for hollow sealing an electronic component that requires packaging after securing a hollow portion, such as an electronic component with a movable portion, a hollow sealing resin, and a hollow sealing resin. It relates to a manufacturing method.

例えば、インクジェットのプリンタヘッド、圧力センサ、加速度センサ等の超小型スイッチを構成するマイクロ・エレクトロ・メカニカル・システム(MEMS)、携帯電話機の如き移動通信機器などに使用する表面弾性波(SAW)素子、バルク弾性波(BAW)素子など、機能部に機械的可動部が存在する電子部品が知られている。   For example, a surface acoustic wave (SAW) element used in a mobile communication device such as a micro electro mechanical system (MEMS), a cellular phone, etc., which constitutes a micro switch such as an ink jet printer head, a pressure sensor, an acceleration sensor, 2. Description of the Related Art Electronic components such as bulk acoustic wave (BAW) elements that have mechanically movable parts in functional parts are known.

可動部付きの電子部品は、その機能上、当該電子部品等をそのまま樹脂等にて密封封止することができない。すなわち、可動部付きの電子部品を有効に機能させるためには、パッケージの内部に「中空部(非封止空間)」を確保する必要がある。本明細書では、このような電子部品を総称して、中空封止を必要とする電子部品と称することとする。   An electronic component with a movable part cannot be hermetically sealed with resin or the like as it is because of its function. That is, in order for an electronic component with a movable part to function effectively, it is necessary to secure a “hollow part (non-sealed space)” inside the package. In this specification, such electronic components are collectively referred to as electronic components that require hollow sealing.

中空部を形成する構造として、従来、金属製のキャップを用いる方法が提案されていた。しかし、この方法は、金属キャップによる厚さ方向の制約が問題となることが多い。そのため、金属キャップに代わり、例えば特許文献1においては、樹脂を用いて中空部を確保しながらSAWデバイスをパッケージングする中空封止技術が開示されている。   As a structure for forming the hollow portion, conventionally, a method using a metal cap has been proposed. However, this method often has a problem of restriction in the thickness direction due to the metal cap. Therefore, instead of the metal cap, for example, Patent Document 1 discloses a hollow sealing technique for packaging a SAW device while securing a hollow portion using a resin.

このSAWデバイスの製造に当たっては、図6(a)(b)に示されるように、先ず配線基板3とSAWチップ4との空隙に櫛歯状電極6とAuバンプ8とを取り囲むように熱硬化性樹脂の隔壁12が形成される。これは、モールド樹脂13を成形する際に、この隔壁12の存在により、該モールド樹脂13がSAWチップ4と配線基板3との間の空間Spに流れ込むのを防止するためである。   In manufacturing the SAW device, as shown in FIGS. 6A and 6B, first, thermosetting is performed so as to surround the comb-like electrode 6 and the Au bump 8 in the gap between the wiring substrate 3 and the SAW chip 4. A partition wall 12 made of a conductive resin is formed. This is to prevent the mold resin 13 from flowing into the space Sp between the SAW chip 4 and the wiring board 3 due to the presence of the partition wall 12 when the mold resin 13 is molded.

隔壁12によってモールド樹脂13の流れ込まない非封止空間Spが確保されることにより、SAWデバイス2は、その本来の機能を発揮することができる。   By securing the non-sealing space Sp into which the mold resin 13 does not flow by the partition wall 12, the SAW device 2 can exhibit its original function.

特開2007−73554号公報JP 2007-73554 A

しかしながら、この特許文献1に開示された技術を含め、従来の中空封止を必要とする電子部品のパッケージング手法は、いずれも、確保すべき空間に封止材料が流れ込まないように予めキャップや隔壁等を別部材にて形成しておき、その上で、本来の封止材料にて封止するというものであったため、1個1個の非封止空間を精度良く確保するための工程が複雑で製造に時間が掛かる上に小型化が難しく、また、多くの部品を必要とするためコスト高になり易いという問題があった。   However, all of the conventional packaging methods for electronic components that require hollow sealing, including the technology disclosed in Patent Document 1, have caps or caps in advance so that the sealing material does not flow into the space to be secured. Since the partition walls and the like are formed with separate members and then sealed with the original sealing material, a process for accurately securing each non-sealing space is provided. There is a problem that it is complicated and takes time to manufacture and is difficult to reduce in size, and requires many parts, and therefore tends to be expensive.

本発明は、このような従来の問題を解消するためになされたものであって、中空封止を必要とする電子部品のパッケージングの小型化、製造の簡易化、及び低コスト化を実現することをその課題としている。   The present invention has been made to solve such a conventional problem, and realizes downsizing of packaging of electronic parts that require hollow sealing, simplification of manufacturing, and cost reduction. That is the issue.

本発明は、電子部品の中空封止方法であって、所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形された予備成形樹脂を準備し、該予備成形樹脂に対して前記所定の温度以上に加熱したスタンパ部材を押し込んで凹部を形成すると共に、該スタンパ部材の有する熱にて該凹部を熱硬化させ、前記凹部に前記電子部品を対応・配置させた上で、該電子部品を封止することにより、上記課題を解決したものである。   The present invention relates to a method for hollow sealing an electronic component, comprising preparing a preformed resin preformed in a predetermined shape using a thermosetting resin that is cured at a predetermined temperature as a material. The stamper member heated above the predetermined temperature is pushed in to form a recess, and the recess is heat-cured by the heat of the stamper member, and the electronic component is arranged / corresponding to the recess, The above-described problems are solved by sealing the electronic component.

本発明では、中空封止を必要とする電子部品のパッケージングに当たり、熱硬化性の予備成形樹脂を準備し、この予備成形樹脂にて電子部品を直接樹脂封止する。予備成形樹脂には、封止の前に、該予備成形樹脂の硬化温度以上に加熱したスタンパ部材が押し込まれる。これにより、スタンパ部材が押し込まれることによって凹部が形成され、且つスタンパ部材の有する熱にて該凹部を部分的に熱硬化させることができる。   In the present invention, when packaging an electronic component that requires hollow sealing, a thermosetting preformed resin is prepared, and the electronic component is directly resin-sealed with the preformed resin. A stamper member heated to a temperature equal to or higher than the curing temperature of the preformed resin is pushed into the preformed resin before sealing. Thereby, a recessed part is formed when a stamper member is pushed in, and this recessed part can be partially thermoset with the heat which a stamper member has.

本発明では、このように、電子部品が配置されるべき非封止空間の付近のみを予め熱硬化させ、「形状の確定された凹部」を形成しておくのが大きな特徴である。この凹部に非封止品たる電子部品を対応・配置させ、当該予備成形樹脂を用いて、該電子部品を圧縮封止する。凹部の周辺は、既に熱硬化が完了しているため、圧縮封止を行っても当該凹部はその形状が保持されるため、これがそのまま非封止空間を形成することになる。   As described above, the present invention is characterized in that only the vicinity of the non-sealed space in which the electronic component is to be placed is thermally cured in advance to form a “recess having a fixed shape”. An electronic component, which is an unsealed product, is made to correspond to and disposed in the recess, and the electronic component is compressed and sealed using the preformed resin. Since the thermosetting has already been completed around the concave portion, the shape of the concave portion is maintained even if compression sealing is performed, and this forms an unsealed space as it is.

従って、本発明によれば、非封止空間を確保するために、別途の部材を必要とせず、同一の予備成形樹脂を使ってそのまま封止を完了することができる。凹部(非封止空間)の大きさはスタンパ部材の外径で規定できる。凹部の形成位置は、予備成形樹脂の位置に対するスタンパ部材の機械的な位置によって規定できる。いずれも機械的な製造精度に依存するため正確である。また、単一の予備成形樹脂にいわゆるディンプル加工を施すだけなので、小型化が容易であり、従来より製造時間を大幅に短縮することができる。さらに、この手法は、後述するように、必要ならば複数のスタンパ部材を一度に駆動することにより、複数の凹部を同時に形成することもできるため、大量生産にも好適である。   Therefore, according to this invention, in order to ensure a non-sealing space, a separate member is not required and sealing can be completed as it is using the same preforming resin. The size of the recess (non-sealing space) can be defined by the outer diameter of the stamper member. The formation position of the recess can be defined by the mechanical position of the stamper member with respect to the position of the preformed resin. Both are accurate because they depend on mechanical manufacturing accuracy. In addition, since the so-called dimple processing is only performed on a single preformed resin, it is easy to reduce the size, and the manufacturing time can be greatly shortened as compared with the prior art. Further, as described later, this method is suitable for mass production because a plurality of recesses can be formed simultaneously by driving a plurality of stamper members at a time if necessary.

なお、本発明は、電子部品を中空封止する際に使用される電子部品の中空封止用樹脂であって、所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形されると共に、自身の表面の一部に熱硬化された凹部を備えた電子部品の中空封止用樹脂ととらえることもできる。   The present invention is a resin for hollow sealing of an electronic component used when hollowly sealing an electronic component, and preliminarily molded into a predetermined shape using a thermosetting resin that is cured at a predetermined temperature as a material. In addition, it can also be regarded as a resin for hollow sealing of an electronic component provided with a thermosetting recess on a part of its surface.

また、所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形された樹脂を準備し、該予備成形された樹脂に加熱された凸部を有するスタンパを押し当てることを特徴とする電子部品の中空封止用樹脂の製造方法と捉えることもできる。   Further, a resin preformed in a predetermined shape is prepared using a thermosetting resin that cures at a predetermined temperature as a material, and a stamper having a heated convex portion is pressed against the preformed resin. It can also be regarded as a method for producing a resin for hollow sealing of electronic parts.

本発明によれば、中空封止を必要とする電子部品のパッケージングを簡易に且つ低コストで精度良く実現することができる。また、この種の製品で強いニーズのある小型化にも良好に対応することができる。   According to the present invention, packaging of electronic components that require hollow sealing can be realized easily and accurately at low cost. In addition, this type of product can cope well with downsizing which has strong needs.

以下、添付図面を参照しつつ、本発明の実施形態の一例について詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

電子部品のパッケージングの分野において、いわゆる「予備成形樹脂(プリフォーム樹脂)」と称されるシート状(平板状)の樹脂を使用して加圧下で圧縮封止する手法が知られている。予備成形樹脂を用いる圧縮樹脂封止は、電子部品を封止する際の樹脂の流れが小さいため、電子部品のワイヤが切断される等の不具合が発生しにくく、また、加圧下で封止できることからエアの巻き込みの少ない高品質のパッケージングが可能である。   In the field of electronic component packaging, a method of compressing and sealing under pressure using a sheet-like (flat plate-like) resin called “preliminary resin (preform resin)” is known. Compressed resin sealing using preformed resin is less likely to cause problems such as cutting of electronic component wires because the resin flow is small when sealing electronic components, and can be sealed under pressure High quality packaging with less air entrainment is possible.

この実施形態では、予備成形された樹脂に予め所定の加工を施し、その上で上記圧縮樹脂封止に掛かる。   In this embodiment, a predetermined process is performed in advance on the preformed resin, and then the compression resin sealing is performed.

図1は、本発明の最も基本的な実施形態の一例を示す概念図である。図1において、符号20が予備成形樹脂、22がスタンパ部材である。   FIG. 1 is a conceptual diagram showing an example of the most basic embodiment of the present invention. In FIG. 1, reference numeral 20 is a preformed resin, and 22 is a stamper member.

予備成形樹脂20は、所定の温度以上に加熱すると硬化する熱硬化性の樹脂を、比較的弱い圧縮力にて硬化温度未満で所定の平板形状に成形することによって製造・準備する。なお、このとき、図2に示されるように、複数(図示の例では6個)の予備成形樹脂20を合体した大きさに相当する大きな予備成形樹脂20Tを形成した後にサイジングすることによって一個一個の予備成形樹脂20(の母体)を製造するようにしてもよい。この手法は、任意の大きさの予備成形樹脂20を正確な寸法で製造できるため、ばらつきの小さな予備成形樹脂20を精度良く効率的に製造できる点で優れる。   The preforming resin 20 is manufactured and prepared by molding a thermosetting resin that cures when heated to a predetermined temperature or more into a predetermined flat plate shape at a temperature lower than the curing temperature with a relatively weak compressive force. At this time, as shown in FIG. 2, one by one is formed by sizing after forming a large preformed resin 20T corresponding to the combined size of a plurality (six in the illustrated example) of preformed resins 20. The preformed resin 20 (the base material) may be manufactured. This method is excellent in that the preformed resin 20 having an arbitrary size can be manufactured with an accurate dimension, and thus the preformed resin 20 with small variations can be manufactured accurately and efficiently.

スタンパ部材22は、確保しようとする非封止空間の内径D1と同一の外径d1を有している。スタンパ部材22は、予備成形樹脂20の硬化温度以上に加熱されている。したがって、スタンパ部材22を予備成形樹脂20に所定の深さdiだけ押し込むことにより、内径D1、深さdiの非封止空間に相当する凹部24を形成可能である。スタンパ部材22は、予備成形樹脂20の硬化温度以上に加熱されているため、押し込んだ状態を維持すると、凹部24の付近のみが熱硬化され、熱硬化部24Aが形成される。なお、図示の熱硬化部24Aは、概念的に示したもので、実際の熱硬化部の大きさ(或いは範囲)を示したものではない。   The stamper member 22 has the same outer diameter d1 as the inner diameter D1 of the non-sealed space to be secured. The stamper member 22 is heated above the curing temperature of the preformed resin 20. Therefore, by pressing the stamper member 22 into the preformed resin 20 by a predetermined depth di, the concave portion 24 corresponding to the non-sealed space having the inner diameter D1 and the depth di can be formed. Since the stamper member 22 is heated to a temperature equal to or higher than the curing temperature of the preformed resin 20, when the pressed state is maintained, only the vicinity of the recess 24 is thermally cured to form a thermosetting portion 24A. The illustrated thermosetting portion 24A is conceptually shown, and does not indicate the actual size (or range) of the thermosetting portion.

図3に示されるように、実際に凹部24を形成するときには、この実施形態では、計10個のスタンパ部材22a〜22jが5個ずつ2列に並んだ状態で、基台26上に配置された押圧装置30を使用するようにしている。基台26は、全体がスタンパ部材22a〜22jごと上下動可能である。これにより、押圧装置30の1回の駆動(上下動)で図4に示されるような10個の凹部24a〜24jを同時に形成可能である。   As shown in FIG. 3, when the recess 24 is actually formed, in this embodiment, a total of ten stamper members 22a to 22j are arranged on the base 26 in a state of being arranged in two rows of five. The pressing device 30 is used. The entire base 26 can move up and down together with the stamper members 22a to 22j. Accordingly, ten concave portions 24a to 24j as shown in FIG. 4 can be formed simultaneously by one driving (up and down movement) of the pressing device 30.

それぞれの凹部24a〜24j付近の熱硬化部の形成範囲(熱硬化される範囲)は、スタンパ部材22がどの程度予備成形樹脂20の硬化温度より高い温度に設定されているか、或いはどの程度の時間スタンパ部材22を予備成形樹脂20内に押し込んでいるか等、に依存して変化する。定性的には、スタンパ部材22の加熱温度が高いほど、また、押し込んでいる時間が長いほど、凹部24a〜24j付近の熱硬化部の形成範囲は大きくなる。熱硬化部の形成範囲が大きくなると、凹部24a〜24jの形成強度は高まるが、次工程の圧縮封止の際の圧縮代が小さくなり過ぎて封止全体の品質に悪影響が発生する恐れがある。また、基板との接触面の熱硬化部が大きくなりすぎると、圧縮封止の際に溶融して基板と接着する部分がなくなってしまう。そのため、熱硬化部の形成範囲は適宜の範囲のみに抑えることになる。また、凹部24a〜24j付近の熱硬化部と非硬化部(次工程での圧縮封止部)との境界における熱分布は、スタンパ部材22の加熱温度が高くて押し込み時間が短いほどそのグラデーションが急になる傾向となる。逆に、スタンパ部材22の加熱温度が比較的低くて押し込み時間が長いほど、熱分布のグラデーションは緩くなる傾向となる。熱硬化部と次工程での圧縮封止部との親和性は、基本的には熱分布のグラデーションが緩いほど良好になるが、現実的には小型化の要請等との兼ね合いとなる。そのため、封止しようとする電子部品の大きさや用途、或いは予備成形樹脂20自体が素材的に有する単位容積当たりの強度等を考慮して、スタンパ部材22の加熱温度及び押し込み時間を最適な値に設定することになる。   The formation range (thermosetting range) of the thermosetting portion in the vicinity of each of the recesses 24a to 24j is set to a temperature higher than the curing temperature of the preforming resin 20 or how long the stamper member 22 is set. It changes depending on whether the stamper member 22 is pushed into the preformed resin 20 or the like. Qualitatively, the higher the heating temperature of the stamper member 22 and the longer the pressing time, the larger the formation range of the thermosetting portions near the recesses 24a to 24j. When the formation range of the thermosetting portion is increased, the formation strength of the recesses 24a to 24j is increased, but the compression allowance at the time of compression sealing in the next process becomes too small, which may adversely affect the quality of the entire sealing. . Moreover, when the thermosetting part of a contact surface with a board | substrate becomes large too much, the part which fuse | melts in the case of compression sealing and adheres to a board | substrate will be lost. Therefore, the formation range of the thermosetting portion is limited to an appropriate range. Further, the heat distribution at the boundary between the thermosetting portion and the non-curing portion (compression sealing portion in the next process) in the vicinity of the recesses 24a to 24j has a gradation as the heating temperature of the stamper member 22 is higher and the pressing time is shorter. It tends to be steep. Conversely, as the heating temperature of the stamper member 22 is relatively low and the pressing time is long, the gradation of the heat distribution tends to become gentler. The affinity between the thermosetting portion and the compression sealing portion in the next process is basically improved as the gradation of the heat distribution is loosened. However, in reality, this is a balance with the demand for downsizing. Therefore, the heating temperature and the pushing time of the stamper member 22 are set to optimum values in consideration of the size and application of the electronic component to be sealed or the strength per unit volume of the preformed resin 20 itself. Will be set.

図5を参照して、このようにして非封止空間に相当する凹部24a〜24jが形成された予備成形樹脂20を用いて被封止品たるMEMS(電子部品)54a〜54jを圧縮樹脂封止するための工程を説明する。   Referring to FIG. 5, MEMS (electronic parts) 54a to 54j, which are to be sealed, are sealed with compression resin using the preformed resin 20 in which the recesses 24a to 24j corresponding to the non-sealing spaces are formed in this way. The process for stopping will be described.

この実施形態では、予備成形樹脂20に対して所定の圧力を加える圧縮封止工程が、上型40と下型42とで構成される一組の圧縮封止金型44によって実現されている。下型42は、貫通孔46Aを有する枠状金型46と、該貫通孔46A内に嵌合・配置された圧縮金型48とを備える。圧縮金型48は、枠状金型46の貫通孔46Aに沿って基板52及び上型40に向かって(相対的に)進退動する。なお、図示はしないが、下型42上には離型フィルムが被せられる。   In this embodiment, the compression sealing step of applying a predetermined pressure to the preformed resin 20 is realized by a set of compression sealing molds 44 constituted by the upper mold 40 and the lower mold 42. The lower mold 42 includes a frame-shaped mold 46 having a through hole 46A, and a compression mold 48 fitted and arranged in the through hole 46A. The compression mold 48 moves back and forth (relatively) toward the substrate 52 and the upper mold 40 along the through hole 46A of the frame-shaped mold 46. Although not shown, a release film is placed on the lower mold 42.

基板52は、10個のMEMS(マイクロ・エレクトロ・メカニカル・システム)54a〜54jを備えている。MEMS54a〜54jは、可動部を備えるため、中空部(非封止空間)を必要とする。即ち、この実施形態では、MEMS54a〜54jが「中空封止を必要とする電子部品」に相当している。基板52は、複数のMEMS54a〜54jごと上型40に取り付けられ、該上型40と枠状金型46との間でクランプされる。   The substrate 52 includes ten MEMS (micro electro mechanical systems) 54a to 54j. Since the MEMS 54a to 54j include a movable part, a hollow part (non-sealed space) is required. That is, in this embodiment, the MEMS 54a to 54j correspond to “electronic components that require hollow sealing”. The substrate 52 is attached to the upper mold 40 together with the plurality of MEMSs 54 a to 54 j and clamped between the upper mold 40 and the frame-shaped mold 46.

予備成形樹脂20は、枠状金型46で囲まれた圧縮金型48の上面に載置される。この実施形態では、予備成形樹脂20の投入の際に枠状金型46と圧縮金型48との境界に若干の段差が敢えて形成されるように設計されており、予備成形樹脂20が丁度枠状金型46の貫通孔46Aによって位置決めされるようになっている。従って、予備成形樹脂20上に形成されている凹部24a〜24jも、下型42に対してきわめて正確に位置決めされる。   The preforming resin 20 is placed on the upper surface of the compression mold 48 surrounded by the frame-shaped mold 46. In this embodiment, the preformed resin 20 is designed so that a slight step is formed at the boundary between the frame-shaped mold 46 and the compression mold 48 when the preformed resin 20 is charged. It is positioned by the through hole 46A of the metal mold 46. Accordingly, the recesses 24 a to 24 j formed on the preforming resin 20 are also positioned very accurately with respect to the lower mold 42.

この圧縮封止金型44による圧縮樹脂封止は、以下のような手順で行われる。   The compression resin sealing by the compression sealing die 44 is performed in the following procedure.

最初に、上型40に、図示せぬ基板供給機構によって基板52がセットされる。次に、枠状金型46の貫通孔46A内(圧縮金型48の上面)に予備成形樹脂20が投入・配置される。予備成形樹脂20は、予め形成された凹部24a〜24jを上側にして配置される。凹部24a〜24jの形成位置は、基板52上のMEMS24a〜24jの組み込み位置に対応している。次いで、予備成形樹脂20の加熱が開始されると共に、枠状金型46と圧縮金型48が共に上型40に向かって上昇し、枠状金型46と上型40との間で基板52がクランプされる。さらに、圧縮金型48が基板52に向けて上昇すると、予備成形樹脂20の凹部24a〜44jが基板52上のMEMS54a〜54jの配置位置と対応し、凹部24a〜24j以外の上面が基板52と接触する。   First, the substrate 52 is set on the upper mold 40 by a substrate supply mechanism (not shown). Next, the preforming resin 20 is charged and placed in the through hole 46 </ b> A of the frame-shaped mold 46 (the upper surface of the compression mold 48). The preformed resin 20 is arranged with the recessed portions 24a to 24j formed in advance on the upper side. The positions where the recesses 24 a to 24 j are formed correspond to the positions where the MEMS 24 a to 24 j are mounted on the substrate 52. Next, heating of the preforming resin 20 is started, and the frame-shaped mold 46 and the compression mold 48 are both raised toward the upper mold 40, and the substrate 52 is interposed between the frame-shaped mold 46 and the upper mold 40. Is clamped. Further, when the compression mold 48 rises toward the substrate 52, the recesses 24a to 44j of the preforming resin 20 correspond to the positions where the MEMSs 54a to 54j are arranged on the substrate 52, and the upper surface other than the recesses 24a to 24j is the substrate 52. Contact.

凹部24a〜24jの付近は、前工程でのスタンプ部材22a〜22eの押し込みにより、既に熱硬化されているため、この圧縮行程によっても、凹部24a〜24jの形状は、そのまま保持され、該凹部24a〜24jが、そのまま非封止空間として機能する。その後、圧縮金型48が基板52に向かって更に圧縮された後、温度が更に上昇されて予備成形樹脂20全体を熱硬化させる。予備成形樹脂20の硬化後、圧縮封止金型44を開き、樹脂封止された基板52を取り出す。   Since the vicinity of the recesses 24a to 24j has already been thermally cured by the pressing of the stamp members 22a to 22e in the previous process, the shape of the recesses 24a to 24j is maintained as it is even by this compression stroke. -24j functions as an unsealed space as it is. Thereafter, after the compression mold 48 is further compressed toward the substrate 52, the temperature is further increased to thermally cure the entire preformed resin 20. After the preforming resin 20 is cured, the compression sealing mold 44 is opened, and the resin-sealed substrate 52 is taken out.

この実施形態によれば、予備成形樹脂20には、予め凹部24a〜24jが形成され、しかも、その周りが熱硬化されているため、非封止空間を形成するための別途の部材は必要なく、また、該別途の部材を組み込んだりする手間も必要もなく、極めて簡易且つ低コストで中空封止を必要とする電子部品をパッケージングすることが可能である。   According to this embodiment, the preformed resin 20 is formed with the recesses 24a to 24j in advance, and the periphery thereof is thermally cured, so that there is no need for a separate member for forming an unsealed space. In addition, it is possible to package an electronic component that requires hollow sealing at an extremely simple and low cost without the need for incorporating the separate member.

なお、本発明においては、予備成形樹脂の母体をどのように製造するかについては、特に限定されない。しかしながら、上記実施形態のように、複数の予備成形樹脂に相当する大きな予備成形樹脂を形成すると共に、該大きな予備成形樹脂をサイジングすることによって一個一個の予備成形樹脂を製造するように構成すると、より寸法精度の高い予備成形樹脂を容易に製造することができるようになるという点で好ましい。予備成形樹脂の寸法精度を高めることにより、中空封止を必要とする電子部品と凹部との位置決め精度をより高めることができる。   In the present invention, there is no particular limitation on how to manufacture the preformed resin matrix. However, as in the above embodiment, when forming a large preformed resin corresponding to a plurality of preformed resins and sizing the large preformed resin to produce individual preformed resins one by one, This is preferable in that a preformed resin with higher dimensional accuracy can be easily manufactured. By increasing the dimensional accuracy of the preformed resin, the positioning accuracy between the electronic component requiring hollow sealing and the recess can be further increased.

また、本発明においては、必ずしも複数の凹部を同時に形成させるように構成する必要はない。例えば、1つの凹部を有する予備成形樹脂をMEMSに合わせて複数枚並べても良い。これにより大きさ、種類の異なるMEMSを一括封止できる。複数の凹部を1個のスタンパ部材を順に動かして、形成しても良い。また、例えば5個ずつ2列、計10個の凹部を形成する際に、5個のスタンパ部材を1列に並べた押圧装置を用意し、この押圧装置を1列ずつ水平方向に移動させることによって計10個の凹部を形成するようにしてもよい。但し、基板上の複数のMEMSが同じものの場合や大きさに大差がない場合には、上記実施形態のように、マトリクス状に全凹部に対応したスタンパ部材を配置した押圧装置を用意し、全凹部を同時に形成させるようにするのが好ましい。この構成によれば、単に製造工程を簡略化できるだけでなく、先に熱硬化させた凹部の影響が、後に熱硬化させる凹部に悪影響を与えたりしないようにすることが可能である。   Moreover, in this invention, it is not necessary to comprise so that a several recessed part may be formed simultaneously. For example, a plurality of preformed resins having one recess may be arranged in accordance with the MEMS. As a result, MEMS of different sizes and types can be collectively sealed. A plurality of recesses may be formed by sequentially moving one stamper member. For example, when forming a total of 10 recesses in two rows of five, prepare a pressing device in which five stamper members are arranged in one row, and move the pressing device in the horizontal direction one row at a time. Thus, a total of 10 recesses may be formed. However, when the plurality of MEMS on the substrate are the same or there is no great difference in size, a pressing device in which stamper members corresponding to all the concave portions are arranged in a matrix form as in the above embodiment is prepared. It is preferable to form the recesses simultaneously. According to this configuration, it is possible not only to simplify the manufacturing process but also to prevent the influence of the concave portion that has been heat-cured first from adversely affecting the concave portion that is to be thermally cured later.

また、本発明においては、圧縮封止工程を実現するための圧縮封止金型の構成についても、特に限定されない。しかしながら、例えば上記実施形態のように、該圧縮封止金型が、上型と、貫通孔を有する枠状金型及び該貫通孔に嵌合して配置された圧縮金型を有する下型と、で構成される一組の金型によって実現され、且つ枠状金型の貫通孔によって、予備成形樹脂の下型上における載置位置の位置決めがなされるように構成するのが好ましい。これにより、金型上の予備成形樹脂の位置決めを簡易に且つ高精度に行うことができ、結果として凹部(被封止空間)と電子部品との位置決め精度をより高めることができる。   Moreover, in this invention, it does not specifically limit about the structure of the compression sealing metal mold | die for implement | achieving a compression sealing process. However, for example, as in the above-described embodiment, the compression-sealing mold includes an upper mold, a frame-shaped mold having a through-hole, and a lower mold having a compression mold that is fitted to the through-hole. It is preferable that the mounting position on the lower mold of the preformed resin be positioned by the through-hole of the frame-shaped mold. Thereby, the positioning of the preforming resin on the mold can be performed easily and with high accuracy, and as a result, the positioning accuracy between the recess (sealed space) and the electronic component can be further increased.

また、上記実施形態においては、基板を上型に取り付け、その後基板の下に予備成形樹脂を取り付けるようにしていたが、基板を上型に取り付けると共に予備成形樹脂を下型上に載置する構成であってもよい。この構成によれば、予備成形樹脂を軟化させた上で基板にタッチさせることができるので、特に複雑な金線を有している場合に有効である。更には、基板を下型上に載置し、基板の上に予備成形樹脂を載置する構成でもよく、又、基板の上に予備成形樹脂を予め載置した上で、(予備成形樹脂ごと)基板を下型上に載置する構成であってもよい。   In the above embodiment, the substrate is attached to the upper die, and then the preformed resin is attached to the lower die. However, the substrate is attached to the upper die and the preformed resin is placed on the lower die. It may be. According to this configuration, the preformed resin can be softened and then touched on the substrate, which is particularly effective when a complicated gold wire is provided. Furthermore, the substrate may be placed on the lower mold, and the preformed resin may be placed on the substrate. Alternatively, the preformed resin may be placed on the substrate in advance (for each preformed resin). ) The substrate may be placed on the lower mold.

可動部付きの電子部品のように、特に中空部を確保してパッケージングする必要のある電子部品のパッケージに利用可能である。   Like an electronic component with a movable part, it can utilize for the package of the electronic component which needs to secure a hollow part especially and can package.

本発明に係る電子部品のパッケージ方法の最も基本的な実施形態の一例を示す断面図Sectional drawing which shows an example of the most fundamental embodiment of the packaging method of the electronic component which concerns on this invention 予備成形樹脂の母材を製造する一例を示す平面図Plan view showing an example of manufacturing a preformed resin base material 予備成形樹脂に10個の凹部を形成する工程を示した正面図Front view showing the process of forming 10 recesses in the preformed resin 予備成形樹脂に10個の凹部が形成された状態を示す平面図The top view which shows the state in which ten recessed parts were formed in preforming resin 圧縮封止工程を示す工程図Process drawing showing compression sealing process 従来の中空封止を必要とする電子部品のパッケージ方法を説明するための断面図Sectional drawing for demonstrating the packaging method of the electronic component which requires the conventional hollow sealing

符号の説明Explanation of symbols

20…予備成形樹脂
22(22a〜22j)…スタンパ部材
24…凹部
24A…熱硬化部
26…基台
30…押圧装置
40…上型
42…下型
46…枠状金型
46A…貫通孔
48…圧縮金型
52…基板
54a〜54j…MEMS(電子部品)
DESCRIPTION OF SYMBOLS 20 ... Preliminarily molded resin 22 (22a-22j) ... Stamper member 24 ... Recessed part 24A ... Thermosetting part 26 ... Base 30 ... Pressing device 40 ... Upper mold 42 ... Lower mold 46 ... Frame-shaped metal mold 46A ... Through-hole 48 ... Compression mold 52 ... Substrate 54a to 54j ... MEMS (electronic component)

Claims (6)

電子部品の中空封止方法であって、
所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形された予備成形樹脂を準備し、
該予備成形樹脂に対して前記所定の温度以上に加熱したスタンパ部材を押し込んで凹部を形成すると共に、該スタンパ部材の有する熱にて該凹部を熱硬化させ、
前記凹部に前記電子部品を対応・配置させた上で、該電子部品を封止する
ことを特徴とする電子部品の中空封止方法。
A method for hollow sealing electronic components,
Prepare a preformed resin preformed in a predetermined shape in advance using a thermosetting resin that cures at a predetermined temperature,
A stamper member heated above the predetermined temperature is pushed into the preformed resin to form a recess, and the recess is thermally cured by the heat of the stamper member,
A method for hollow sealing an electronic component, wherein the electronic component is sealed after the electronic component is placed in correspondence with the recess.
請求項1において、
予備成形樹脂の準備が、複数の予備成形樹脂を合体した大きさに相当する大きな予備成形樹脂を形成した後に、サイジングすることによって一個一個の予備成形樹脂を製造するものである
ことを特徴とする電子部品の中空封止方法。
In claim 1,
The preparation of the preformed resin is to produce each preformed resin by sizing after forming a large preformed resin corresponding to the size of a plurality of preformed resins combined. Hollow sealing method for electronic components.
請求項1または2において、
前記凹部の形成が、複数のスタンパ部材を前記予備成形樹脂に一度に押圧することにより、複数の凹部を同時に形成するものである
ことを特徴とする電子部品の中空封止方法。
In claim 1 or 2,
The method for forming a hollow portion of an electronic component is characterized in that the formation of the concave portion is to simultaneously form a plurality of concave portions by pressing a plurality of stamper members against the preformed resin at once.
電子部品を中空封止する際に使用される電子部品の中空封止用樹脂であって、
所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形されると共に、自身の表面の一部に熱硬化された凹部を備えた
電子部品の中空封止用樹脂。
A resin for hollow sealing of electronic parts used when hollow sealing electronic parts,
A resin for hollow sealing of electronic parts, which is preliminarily molded into a predetermined shape using a thermosetting resin that is cured at a predetermined temperature, and has a concave portion that is thermoset on a part of its surface.
請求項4において、
前記凹部が、複数並んで配置された
ことを特徴とする電子部品の中空封止用樹脂。
In claim 4,
A resin for hollow sealing of electronic parts, wherein a plurality of the recesses are arranged side by side.
所定の温度で硬化する熱硬化性樹脂を材料として予め所定の形状に予備成形された樹脂を準備し、
該予備成形された樹脂に加熱された凸部を有するスタンパを押し当てる
ことを特徴とする電子部品の中空封止用樹脂の製造方法。
Prepare a resin preformed in a predetermined shape in advance using a thermosetting resin that cures at a predetermined temperature,
A method for producing a resin for hollow sealing of an electronic component, wherein a stamper having a heated projection is pressed against the preformed resin.
JP2008284213A 2008-11-05 2008-11-05 Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing Expired - Fee Related JP4897768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284213A JP4897768B2 (en) 2008-11-05 2008-11-05 Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284213A JP4897768B2 (en) 2008-11-05 2008-11-05 Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing

Publications (2)

Publication Number Publication Date
JP2010114192A JP2010114192A (en) 2010-05-20
JP4897768B2 true JP4897768B2 (en) 2012-03-14

Family

ID=42302544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284213A Expired - Fee Related JP4897768B2 (en) 2008-11-05 2008-11-05 Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing

Country Status (1)

Country Link
JP (1) JP4897768B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145839A (en) * 2012-01-16 2013-07-25 Nitto Denko Corp Hollow sealing resin sheet, manufacturing method of hollow sealing resin sheet, manufacturing method of hollow type electronic component apparatus, and hollow type electronic component apparatus
JP6446788B2 (en) * 2014-02-14 2019-01-09 日立化成株式会社 Hollow structure, method for manufacturing the same, and electronic component having hollow structure
JP2023022859A (en) * 2021-08-04 2023-02-16 アピックヤマダ株式会社 Compression molding apparatus and compression molding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246250A (en) * 1989-03-20 1990-10-02 Hitachi Ltd Sealing cap
JP3364328B2 (en) * 1994-07-28 2003-01-08 株式会社東芝 Resin-sealed semiconductor device and method of manufacturing the same
JP2002232178A (en) * 2001-02-01 2002-08-16 Tdk Corp Electronic component protecting cap, manufacturing method therefor, electronic device and manufacturing method therefor
CN1917999A (en) * 2004-02-04 2007-02-21 住友重机械工业株式会社 Pressing/molding apparatus, mold, and pressing/molding method
JP2008060354A (en) * 2006-08-31 2008-03-13 Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan Electronic parts and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010114192A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
CN202931555U (en) MEMS microphone
JP4897768B2 (en) Hollow sealing method for electronic component, resin for hollow sealing, and method for manufacturing resin for hollow sealing
JP6217998B1 (en) Resin sealing mold, primary molding mold, secondary molding mold, and resin molded product manufacturing method
EP1978552A1 (en) Method of encapsulating electronic part with resin and die assembly and lead frame both for use in the same
CN107527874A (en) Cavate pressure transducer devices
US20020070464A1 (en) Method for forming a protective package for electronic circuits
CN108321092A (en) The manufacturing method and circuit block of circuit block
JP2007048994A (en) Semiconductor device and its manufacturing method
JP4749707B2 (en) Resin mold and resin molding method
JP2011100825A5 (en) Method and apparatus for forming hollow resin package
EP1211722A1 (en) Manufacturing method of electronic device package
JP6032171B2 (en) Mold package manufacturing method
TWI729681B (en) Optical package structure
JP6237919B2 (en) Lead frame and semiconductor device manufacturing method
JP4296685B2 (en) Semiconductor package and manufacturing method thereof
JP4418373B2 (en) Semiconductor device
JP5879866B2 (en) Manufacturing method of hollow sealing structure
JP6561940B2 (en) Semiconductor sensor and manufacturing method thereof
JP2008140807A (en) Resin sealed semiconductor device
JP4351546B2 (en) Method of molding semiconductor device mounting package and molding die
JP2011238963A (en) Method of manufacturing package component
KR20180062971A (en) Chip packaging structure and chip packaging method
TWI670160B (en) Micro component and molding method thereof
KR101836769B1 (en) Semiconductor package and manufacturing method thereof
JP2009158978A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees