JP4896556B2 - Injection mold equipment - Google Patents

Injection mold equipment Download PDF

Info

Publication number
JP4896556B2
JP4896556B2 JP2006092018A JP2006092018A JP4896556B2 JP 4896556 B2 JP4896556 B2 JP 4896556B2 JP 2006092018 A JP2006092018 A JP 2006092018A JP 2006092018 A JP2006092018 A JP 2006092018A JP 4896556 B2 JP4896556 B2 JP 4896556B2
Authority
JP
Japan
Prior art keywords
mold
insert
cooling means
heating means
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006092018A
Other languages
Japanese (ja)
Other versions
JP2007261197A (en
Inventor
和夫 本田
嘉亮 伊藤
義之 三瓶
弘樹 安斎
Original Assignee
福島県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福島県 filed Critical 福島県
Priority to JP2006092018A priority Critical patent/JP4896556B2/en
Publication of JP2007261197A publication Critical patent/JP2007261197A/en
Application granted granted Critical
Publication of JP4896556B2 publication Critical patent/JP4896556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、溶融樹脂を金型内に射出して樹脂成形品を得る射出成形用金型装置に関し、特に、表面に高アスペクト比の微細構造を持った樹脂製マイクロ部品の射出成形用金型装置に関する。   TECHNICAL FIELD The present invention relates to an injection mold apparatus for obtaining a resin molded product by injecting molten resin into a mold, and in particular, an injection mold for resin microparts having a fine structure with a high aspect ratio on the surface. Relates to the device.

マイクロ化学チップやマイクロ分析チップ、液晶ディスプレイのバックライト内の導光板、コンパクトディスク基板等は、表面に数百マイクロメートル(μm)から数十ナノメートル(nm)単位の微細な凹凸構造をもった樹脂製品であり、その製造は、主に、溶融樹脂を金型内に注入して成形品を得る射出成形法により行われている。   Microchemical chips, microanalytical chips, light guide plates in backlights of liquid crystal displays, compact disc substrates, etc. have fine concavo-convex structures on the surface of several hundreds of micrometers (μm) to several tens of nanometers (nm). The resin product is manufactured mainly by an injection molding method in which a molten resin is injected into a mold to obtain a molded product.

例えば、コンパクトディスクの成形においては、その基板の表面の凹凸構造が幅0.5μm程度で深さ0.1μm程度と比較的浅いため、金型表面温度の適正化を図りながら、射出直後に金型内の入子を移動させるなどして、キャビティ内圧力を高め、これによって金型表面構造を樹脂成形品に転写して製造する射出圧縮成形法などが用いられている。   For example, in compact disc molding, since the uneven structure on the surface of the substrate is relatively shallow, with a width of about 0.5 μm and a depth of about 0.1 μm, the mold surface temperature is optimized and the mold is immediately after injection. An injection compression molding method or the like is used in which the pressure inside the cavity is increased by moving the insert in the mold, thereby transferring the mold surface structure to a resin molded product.

一方、金型温度を樹脂材料の軟化点以下の一定温度に制御して、幅と高さの比が0.5以上の高アスペクト比の微細凹凸構造を成形品に転写するには、金型内に注入された樹脂のスキン層が軟化点以下に冷却される前に、キャビティ内の樹脂の圧力をキャビティ面の微細構造を転写できる圧力まで上げる必要がある。そのため、材料の特性上許される範囲で樹脂温度を高くしてキャビティ内に高速で注入して、速やかにキャビティ内圧を上げる必要がある。しかし、アスペクト比の高い微細構造の場合には、微細な凹部の底面や隅角まで十分に樹脂を流入させることが困難であるため、正確に転写した微細形状の成形品ができないという問題があった。さらに、キャビティ内への溶融樹脂の高速かつ高圧注入は、キャビティ面に形成されたアスペクト比の高い微細構造に変形をきたし、離型時の離型抵抗の増加から成形品の一部を欠損させるなどの問題があった。   On the other hand, to control the mold temperature to a constant temperature below the softening point of the resin material and transfer a fine concavo-convex structure with a high aspect ratio with a width to height ratio of 0.5 or more to the molded product, Before the resin skin layer injected therein is cooled below the softening point, it is necessary to increase the pressure of the resin in the cavity to a pressure at which the fine structure of the cavity surface can be transferred. For this reason, it is necessary to increase the resin pressure within a range allowed by the characteristics of the material and inject it into the cavity at a high speed to quickly increase the cavity internal pressure. However, in the case of a fine structure with a high aspect ratio, it is difficult to allow the resin to sufficiently flow into the bottom and corners of fine recesses, so that there is a problem that a precisely shaped finely molded product cannot be obtained. It was. Furthermore, high-speed and high-pressure injection of molten resin into the cavity causes deformation of the microstructure with a high aspect ratio formed on the cavity surface, and part of the molded product is lost due to an increase in mold release resistance during mold release. There were problems such as.

この問題を避けるため、金型温度を樹脂材料の軟化点以上の温度まで昇温させて置いて、キャビティ面の微細構造を変形させない程度の低い圧力で溶融樹脂を注入した後に、金型を樹脂の軟化点以下の温度まで降温して、成形品を取り出すヒートサイクル成形法が用いられている。   In order to avoid this problem, the mold temperature is raised to a temperature equal to or higher than the softening point of the resin material, and after injecting the molten resin at a low pressure that does not deform the fine structure of the cavity surface, the mold is A heat cycle molding method is used in which the temperature is lowered to a temperature equal to or lower than the softening point, and the molded product is taken out.

しかし、このヒートサイクル成形法には、昇温・降温に時間がかかり成形サイクルタイムが長くなる問題があり、その解決として種々の技術的構成が提案されている。   However, this heat cycle molding method has a problem that it takes time to raise and lower the temperature and the molding cycle time becomes long, and various technical configurations have been proposed as a solution.

例えば、特開昭63−182119号においては、金型入子(明細書では「インサート」)内部に電熱手段のカートリッジヒーターとエアー送風による冷却用通路を設けて、短時間で金型入子の表面を温度制御する技術が開示されている。   For example, in Japanese Patent Application Laid-Open No. 63-182119, a cartridge heater of electric heating means and a cooling passage by air blowing are provided inside a mold insert (in the specification, “insert”), and the mold insert can be quickly installed. A technique for controlling the temperature of the surface is disclosed.

また、特開平06−328538号においては、金型にキャビティ面を構成する入子を嵌装配置し、この入子の反キャビティ面側に冷媒液路を形成すると共にこの冷媒液路内に加熱ヒーターを配置する構成が開示されている。   In Japanese Patent Laid-Open No. 06-328538, an insert forming a cavity surface is fitted and arranged in a mold, and a refrigerant liquid path is formed on the side opposite to the cavity surface of the insert and heating is performed in the refrigerant liquid path. A configuration in which a heater is arranged is disclosed.

さらに、特開平11−348041号においては、金型内のキャビティ面に近い位置に小口径管路からなる回路Aを形成すると共に、遠い位置に大口径管路からなる冷却用回路Bを形成して常時冷却水を流して置き、金型の昇温が必要な時(溶融樹脂の充填時)にのみ、所定時間だけ上記回路Aに水蒸気を通気させて加熱することによって、金型の昇温と冷却とを繰り返す方式の技術が開示されている。
特開昭63−182119号 特開平06−328538号 特開平11−348041号
Further, in Japanese Patent Application Laid-Open No. 11-348041, a circuit A composed of a small diameter pipe is formed at a position close to the cavity surface in the mold, and a cooling circuit B composed of a large diameter pipe is formed at a far position. When the temperature of the mold needs to be raised (at the time of filling with the molten resin), the temperature of the mold is raised only by heating the circuit A with water vapor for a predetermined time only. And a technique of repeating cooling and cooling are disclosed.
JP-A-63-182119 JP 06-328538 A JP 11-348041 A

しかし、上記した特開昭63−182119(特許文献1)の開示技術は、金型のキャビティ部を構成する入子(明細書では「インサート」)に加熱用電熱ヒーターと冷却媒体(エアー)用通路をそれぞれ別に設ける構成を採ってはいるが、入子の全体領域において加熱と冷却を繰り返しているためにエネルギー効率が悪くなる欠点があった。さらに、入子の周囲との熱流により、キャビティ周囲の金型部材をも不要な加熱と冷却とを繰り返すことになるため、熱容量が大きくなって、効率的なサイクルタイムの短縮が図れていない問題がある。加えて、入子内部に加熱手段や冷却回路を形成するものであるため、入子自体のコスト高をも招き、種々仕様の成形品に迅速に対応させることができないという問題も有している。   However, the technology disclosed in Japanese Patent Laid-Open No. 63-182119 (Patent Document 1) described above is for an electric heater for heating and a cooling medium (air) in an insert (in the specification, “insert”) that constitutes a cavity portion of a mold. Although a configuration in which the passages are provided separately is employed, there is a drawback in that energy efficiency is deteriorated because heating and cooling are repeated in the entire region of the insert. In addition, the heat flow with the surroundings of the nesting causes unnecessary heating and cooling of the mold members around the cavity, so the heat capacity increases and the cycle time cannot be shortened efficiently. There is. In addition, since the heating means and the cooling circuit are formed inside the insert, the cost of the insert itself is increased, and there is a problem that it is impossible to quickly cope with molded products of various specifications. .

また、特開平06−328538(特許文献2)の開示技術では、キャビティを入子で構成し、この入子を直接加熱冷却する方式で少ない熱容量で効率的な処理を主眼としているが、冷却と加熱との熱分布領域が同一であるため、成形サイクルタイム毎に加熱と冷却を繰り返す行程の場合にはやはりエネルギー効率に問題があった。   In addition, in the disclosed technology disclosed in Japanese Patent Laid-Open No. 06-328538 (Patent Document 2), the cavity is configured by a nest and the nest is directly heated and cooled to focus on efficient processing with a small heat capacity. Since the heat distribution area with heating is the same, there is still a problem in energy efficiency in the process of repeating heating and cooling every molding cycle time.

さらにまた、特開平11−348041(特許文献3)の開示技術は、加熱用回路Aをキャビティ面から近い位置に、冷却用回路Bをそれより遠い位置に配設する構成を採っているが、キャビティ付近以外の金型内流路とその周囲の金型部材、及び金型外の流路においては同じように同一領域を加熱・冷却することになり、やはりエネルギー効率が悪いという問題があった。   Furthermore, the technology disclosed in Japanese Patent Application Laid-Open No. 11-348041 (Patent Document 3) employs a configuration in which the heating circuit A is disposed at a position closer to the cavity surface and the cooling circuit B is disposed at a position farther from the cavity surface. The same area is heated and cooled in the mold flow path other than near the cavity, the mold member around it, and the flow path outside the mold. .

また、この技術的手法をマイクロメーター単位の微細な凹凸構造を転写するための金型に適用すると、冷却用回路と加熱用回路が接近して回路間の温度勾配が大きくなってしまうことに加えて、相対的に加熱用回路の管路径が小さくなって十分な熱量が得られず、必要な熱量を迅速に供給できない問題がある。さらに、熱媒体として水や水蒸気を用いているため、小さい領域における管路の気密性の確保と熱手段の配置、さらにはこれらの保守管理に慎重さが要求されている。そのための製造及び保守に高コストを要し実際上は実現性に乏しいものであった。   In addition, when this technical method is applied to a mold for transferring a fine concavo-convex structure of a micrometer unit, a cooling circuit and a heating circuit come close to each other and a temperature gradient between the circuits becomes large. Therefore, there is a problem that the pipe diameter of the heating circuit becomes relatively small and a sufficient amount of heat cannot be obtained, and the necessary amount of heat cannot be supplied quickly. Furthermore, since water or water vapor is used as a heat medium, care must be taken to ensure the airtightness of the pipeline in a small area, to arrange the heat means, and to maintain and manage them. For this reason, the manufacturing and maintenance cost is high, and the practicality is poor.

そこで、上述した種々課題を解決するため、本発明の射出成形金型は次のような新規な技術的思想を提案するものである。   Therefore, in order to solve the various problems described above, the injection mold of the present invention proposes the following new technical idea.

すなわち、本発明に係る射出成形用金型装置は、溶融樹脂を金型内に射出して成形品を得る射出成形用金型装置において、キャビティ金型を入子で構成し、該入子の反キャビティ面(以下「背面」と言う。)側に熱伝導させる冷却手段と加熱手段とを背面側に配置すると共に、それぞれの設置区域を分けた状態で配置し、かつ、前記冷却手段と前記加熱手段との設置区域の間の熱伝導を遮断したことを特徴としている。

That is, an injection mold apparatus according to the present invention is an injection mold apparatus that obtains a molded product by injecting molten resin into a mold. The cooling means and the heating means for conducting heat to the side opposite to the cavity surface (hereinafter referred to as “rear face”) are arranged on the rear face side, and are arranged in a state where the respective installation areas are separated, and the cooling means and the The heat conduction between the installation area with the heating means is cut off .

この冷却手段と加熱手段とを区域分けした配置の好ましい構成としては、冷却手段を入子の背面の中心部付近に配置すると共に加熱手段を冷却手段の周辺部付近に配置することである。好ましくは、冷却手段と加熱手段との間には熱移動を阻止するように断熱材で熱絶縁する。   As a preferable configuration of the arrangement in which the cooling means and the heating means are divided into sections, the cooling means is arranged in the vicinity of the center portion of the back surface of the nest and the heating means is arranged in the vicinity of the peripheral portion of the cooling means. Preferably, heat insulation is performed between the cooling means and the heating means with a heat insulating material so as to prevent heat transfer.

また、可動側及び固定側のそれぞれにおいて、入子、冷却手段、及び加熱手段を含む全体を断熱材で包囲して断熱シールドしたことを特徴としている。   In addition, each of the movable side and the fixed side is characterized in that the entire structure including the nest, the cooling means, and the heating means is surrounded by a heat insulating material and heat shielded.

上記冷却手段の構成については、種々の構成があるが、入子の背面へ流動性冷媒が直接接触して熱伝導させる構成とすることが好ましく、例えば、入子の背面側に開放した溝を入子の背面に密着させることにより流動性冷媒(例えば、ガスや液体)が流通する管路を形成する構成としてもよい。   There are various configurations for the cooling means, but it is preferable that the flowable refrigerant is in direct contact with the back surface of the nest to conduct heat, for example, a groove opened on the back side of the nest is used. It is good also as a structure which forms the conduit | pipe through which fluid refrigerant | coolants (for example, gas and liquid) distribute | circulate by making it closely_contact | adhere to the back surface of a nest | insert.

次に、上記構成の固定側及び可動側の各入子、各冷却手段、及び各加熱手段は、固定側及び可動側の各入子の温度勾配が、パーティング面に対して対称となるように形成して配置することがより好ましい。また温度勾配が同じになるために、温度分布のほかに加熱と冷却の時間をも制御することが好ましい。   Next, in each of the fixed side and movable side nests, the cooling means, and the heating means of the above configuration, the temperature gradients of the fixed side and movable side nests are symmetrical with respect to the parting surface. It is more preferable to form and arrange them. Since the temperature gradient is the same, it is preferable to control the heating and cooling time in addition to the temperature distribution.

本発明は、上記構成により、次のような、顕著な効果を奏する。すなわち、射出成形が困難であった、外形寸法が30mm×20mm程度で厚さが1mm以下で、表面に数100μm(マイクロメ−トル)から数10nm(ナノメ−トル)で幅と高さの比が1対0.5から1対5のアスペクト比の高い微細な凹凸構造を持つ、例えばマイクロ化学チップやマイクロ分析チップなどの樹脂製マイクロ部品を安定して、かつ短い成形サイクルタイムで製造することができる。   The present invention has the following remarkable effects by the above configuration. That is, injection molding is difficult, the outer dimensions are about 30 mm × 20 mm, the thickness is 1 mm or less, and the ratio of width to height is from several hundred μm (micrometer) to several tens of nm (nanometer) on the surface. Resin microparts such as microchemical chips and microanalytical chips having a fine concavo-convex structure with a high aspect ratio of 1: 0.5 to 1: 5 can be manufactured stably and with a short molding cycle time. it can.

また、加熱手段と冷却手段を別体とすると共に互いに独立した別回路で作動するように構成し、かつ互いに断熱絶縁して熱移動の防止を図っているため、無駄の無い効率良い加熱と冷却をレスポンス良く繰り返すことができる。またキャビティを構成する入子を板状に形成してその背面側に冷却手段を直接接触させているため効果的な伝熱を行うことができる。さらに、固定側・可動側を略同容量の入子のみで構成しているため、少ない熱容量で効率良く短時間で温度の昇降を繰り返すことができる。   In addition, since the heating means and the cooling means are separated and configured to operate in separate circuits that are independent of each other, and insulated from each other to prevent heat transfer, efficient heating and cooling without waste Can be repeated with good response. Moreover, since the nest | insert which comprises a cavity is formed in plate shape and the cooling means is made to contact the back side directly, effective heat transfer can be performed. Furthermore, since the fixed side and the movable side are configured only by nests having substantially the same capacity, the temperature can be repeatedly raised and lowered efficiently and in a short time with a small heat capacity.

また、冷却媒体に液体を用いる場合には、漏洩を考慮して金型内の流路の接続部に漏れ防止シールの必要があるが、好ましい例として気体を用いる場合は、その必要がなくより簡易な構造とすることができ、回路構成を小型化して熱容量を低減することができる。   In addition, when a liquid is used as the cooling medium, it is necessary to provide a leak-proof seal at the connection portion of the flow path in the mold in consideration of leakage. However, when a gas is used as a preferable example, it is not necessary. A simple structure can be obtained, and the heat capacity can be reduced by downsizing the circuit configuration.

さらにまた、入子及び加熱手段と冷却手段とを含めた全体を断熱シ−ルドして周囲の型板や受板などの金型構造部材への熱流出を防止しているため、効率的な入子の昇温と降温を行うことができる。   Furthermore, since the entire structure including the insert and the heating means and the cooling means is insulated to prevent heat from flowing out to the mold structural members such as the surrounding mold plate and receiving plate, it is efficient. The temperature of the nesting can be raised and lowered.

本願で提供する溶融樹脂を金型内に射出して成形品を得る射出成形用金型装置に関する発明を実施するための最良の形態は、可動側及び固定側のキャビティ金型を板状の入子で構成し、該板状の入子の反キャビティ面側である背面に直接熱を伝導させるための冷却手段と加熱手段とを背面に沿って区域分けして配置する。好ましくは冷却手段を入子の背面の中央部付近に配置し、加熱手段をその周辺部に配置することである。さらに、この冷却手段と加熱手段との間には、その手段間の熱移動を遮断するために少なくともいずれか一方の手段を断熱材で包囲するなどして熱絶縁する。   The best mode for carrying out the invention relating to an injection mold apparatus for injecting molten resin provided in the present application into a mold to obtain a molded product is to insert a cavity mold on the movable side and the fixed side into a plate-like shape. A cooling means and a heating means for conducting heat directly to the back surface of the plate-like insert that is on the side opposite to the cavity surface of the plate-like insert are arranged along the back surface. Preferably, the cooling means is disposed in the vicinity of the central portion of the back surface of the insert, and the heating means is disposed in the peripheral portion thereof. Further, between the cooling means and the heating means, in order to block heat transfer between the means, at least one of the means is thermally insulated by surrounding it with a heat insulating material.

加えて、上記手段間の熱絶縁が施された冷却手段及び(又は)加熱手段と入子を含む全体を断熱材で包囲して、全体としても断熱シールドするようにしている。   In addition, the whole including the cooling means and / or the heating means and the insert, which are thermally insulated between the above means, is surrounded by a heat insulating material so as to be heat shielded as a whole.

以下に、本願発明の実施例について、図1、図2に実施例図に基づいて、詳細に説明する。図1は本発明に係る射出成形用金型装置を示す概略縦断面図であり、図2は本願発明の要部を拡大して示す概略縦断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic longitudinal sectional view showing an injection mold apparatus according to the present invention, and FIG. 2 is a schematic longitudinal sectional view showing an enlarged main part of the present invention.

図示する樹脂射出成形機の基本的構成は、次のとおりである。図面上において、上下端部にそれぞれ固定側取付板20及び可動側取付板30とが対向して配置され、該固定側取付板20の下面側には固定側型板21が取付られており、この固定側型板21と接離してパーティング面を構成する可動側型板31が配置される。可動側型板31は下面側に受板32が取り付けられ、この受板32はスペーサーブロック33によって一定の可動空間が確保されて可動側取付板30によって支持されている。前記可動空間には上下2枚のエジェクタープレート34、34を支持台として型開き時の成形品の離型時に作動するエジェクターピン35が立設配置されている。22、36はカートリッジヒーターであり固定側取付板30、及び受板32にそれぞれ適宜の位置に埋設状に配置している。これにより各型板21,31の温度を所定の温度に維持しており、同様に配置した温度センサ(例えば、熱電対)23、37、によって温度管理をしている。   The basic configuration of the illustrated resin injection molding machine is as follows. In the drawing, the fixed-side mounting plate 20 and the movable-side mounting plate 30 are arranged opposite to the upper and lower ends, respectively, and the fixed-side mold plate 21 is mounted on the lower surface side of the fixed-side mounting plate 20. A movable side template 31 that constitutes a parting surface in contact with and away from the fixed side template 21 is disposed. A receiving plate 32 is attached to the lower surface side of the movable side template 31, and the receiving plate 32 is supported by the movable side attaching plate 30 with a certain movable space secured by a spacer block 33. In the movable space, ejector pins 35 are arranged upright and actuated when the molded product is released when the mold is opened with the upper and lower ejector plates 34 and 34 as support bases. Reference numerals 22 and 36 denote cartridge heaters, which are arranged in appropriate positions on the fixed side mounting plate 30 and the receiving plate 32, respectively. Thereby, the temperature of each template 21, 31 is maintained at a predetermined temperature, and temperature management is performed by temperature sensors (for example, thermocouples) 23, 37 arranged in the same manner.

以上の基本的な構成は、特に本願において発明した部分でなく従来装置と特に変わりがないため、これ以上の詳細な構成の説明については省略する。   The above basic configuration is not particularly the part invented in the present application and is not particularly different from that of the conventional device, and thus the detailed description of the detailed configuration is omitted.

本願発明の主眼は、固定側型板20及び可動側型板31の接離面(パーティング面)の間に配設したキャビティ部の構成にある。すなわち、成形品の表面に微細な凹凸面を転写するための金型に入子1を用い、かつ熱絶縁を施して入子1を小さい熱容量で温度の昇降を繰り返すように構成したものである。   The main point of the present invention is the configuration of the cavity portion disposed between the contact and separation surfaces (parting surfaces) of the fixed-side template 20 and the movable-side template 31. That is, the insert 1 is used in a mold for transferring a fine uneven surface to the surface of a molded product, and the insert 1 is configured to be repeatedly raised and lowered in temperature with a small heat capacity. .

本実施例は、入子1を厚さ3mmの板状に形成しており、固定側入子1fの表面には幅100μm深さ50μmの溝断面からなる流路構造(図示省略。)と、幅20μm高さ40μm長さ100μmの壁面構造を転写するための微細な凹凸構造(図示省略。)を形成しており、かつ可動側入子1mには20mm×20mm深さ0.4mmの薄板状のマイクロ分析用のチップ外形形状を彫り込み形成している。また、固定側、可動側のそれぞれの入子1f,1mの中心にはそれぞれに温度センサとしての熱電対2を埋設状に設置しており、ここからの温度情報を基に入子の温度を監視して昇温・降温の制御を行っている。   In the present embodiment, the insert 1 is formed in a plate shape with a thickness of 3 mm, and a flow path structure (not shown) having a groove cross section with a width of 100 μm and a depth of 50 μm is formed on the surface of the fixed-side insert 1 f. A fine concavo-convex structure (not shown) is formed for transferring a wall structure having a width of 20 μm, a height of 40 μm and a length of 100 μm, and the movable side nest 1 m is a thin plate having a size of 20 mm × 20 mm and a depth of 0.4 mm. The chip outline shape for micro analysis is engraved and formed. In addition, a thermocouple 2 as a temperature sensor is embedded in the center of each of the nests 1f and 1m on the fixed side and the movable side, and the temperature of the nest is determined based on temperature information from here. Monitoring and controlling temperature rise and fall.

可動側、固定側の各入子1f,1mの背面の中央部付近を除いた周辺部には、例えば、ベリリウム銅合金製のブロック内にカートリッジヒーターを配置した加熱手段3を接合しており、かつこの入子1と接する面以外の部分については、例えばジルコニアセラミックス製の断熱材4で包囲して、その周囲と共に後述の冷却手段5との断熱を図っている。これにより加熱手段3からの熱流が入子1以外の周辺部に流れることを防ぎ、少ない熱容量で迅速にかつ効率的な昇温を可能としている。   For example, heating means 3 in which a cartridge heater is disposed in a block made of beryllium copper alloy is joined to the peripheral portion except for the vicinity of the central portion of the back surface of each of the movable side and fixed side inserts 1f and 1m. In addition, the portion other than the surface in contact with the insert 1 is surrounded by a heat insulating material 4 made of, for example, zirconia ceramics, and heat insulation with the cooling means 5 described later is performed together with the surroundings. As a result, the heat flow from the heating means 3 is prevented from flowing to the peripheral portion other than the insert 1 and the temperature can be raised quickly and efficiently with a small heat capacity.

一方、可動側、固定側の各入子1f,1mの背面(反キャビティ面側)の中央部付近には、断面が幅2mm深さ2mmの溝条の回路から構成した冷却手段5を当接させて配設している。この溝条の回路に開口側を入子1の背面に当接密着させることによって管路6を形成している。この管路6は、流動性冷媒としての冷却ガスが流入路7から流入して流出路8から排出する回路構成をしている。このように入子1背面が管路6の一側面を担っているため、この背面に直接冷却ガスが触れることになるため効率的な除熱による入子1の降温を行うことができる。   On the other hand, a cooling means 5 composed of a grooved circuit having a cross section of 2 mm in width and 2 mm in depth is brought into contact with the vicinity of the center of the back surface (on the opposite side of the cavity) of each of the nests 1f and 1m on the movable side and the fixed side. Are arranged. The pipe 6 is formed by bringing the opening side into contact with the back surface of the insert 1 in close contact with the groove circuit. This pipe line 6 has a circuit configuration in which a cooling gas as a fluid refrigerant flows in from the inflow path 7 and is discharged from the outflow path 8. Thus, since the back surface of the insert 1 bears one side surface of the pipe 6, the cooling gas directly touches the back surface, so that the temperature of the insert 1 can be lowered by efficient heat removal.

また、加熱手段3を背面の縁部付近に、また冷却手段5を背面の中心部付近に配置することにより、熱の溜まりやすい中心部付近を効率良く除熱することによって、入子全体としては均一な温度分布の状態で降温することができることとなる。本実施例では冷却ガスに、空気、窒素、又はヘリウムを使用するが、ヘリウムを使った場合には、空気や窒素より降温時間を約3割短縮することができる。   Further, by arranging the heating means 3 in the vicinity of the edge of the back surface and the cooling means 5 in the vicinity of the center portion of the back surface, by efficiently removing heat near the center portion where heat is likely to accumulate, The temperature can be lowered with a uniform temperature distribution. In this embodiment, air, nitrogen, or helium is used as the cooling gas. However, when helium is used, the temperature lowering time can be shortened by about 30% compared to air or nitrogen.

さらに、入子1、加熱手段3、及び冷却手段5の全体を包囲するように例えばジルコニアセラミックス製等の断熱材9を配設して、昇温・降温を繰り返す部分をその周辺部から熱絶縁し、キャビティ部の昇温・降温を効率的に短時間で行えるようにしている。   Further, a heat insulating material 9 made of, for example, zirconia ceramics is disposed so as to surround the entire nest 1, the heating means 3, and the cooling means 5, and the portion where the temperature rise / fall is repeated is thermally insulated from the peripheral portion. In addition, the temperature of the cavity can be increased and decreased efficiently in a short time.

固定側取付板20と可動側型板31に当接した受板31にはそれぞれカートリッジヒーター22,36と熱電対23,37が設置されて、金型全体の温度を成形品取り出し温度より10℃低い温度に設定している。これにより、金型全体の温度が安定して成形品Mや入子1にたわみやひずみを生じさせることなく、高精度な金型開閉を行うことができ、これにより表面に微細構造を転写成形した小片な樹脂製の成形品Mを損傷与えずに安定して離型することができた。   Cartridge heaters 22 and 36 and thermocouples 23 and 37 are installed on the receiving plate 31 in contact with the fixed side mounting plate 20 and the movable side template 31, respectively. The temperature is set low. As a result, the temperature of the entire mold can be stabilized and the mold M and the insert 1 can be opened and closed with high accuracy without causing deflection or distortion, thereby transferring the microstructure to the surface. The molded piece M made of a small piece of resin could be stably released without damaging it.

本実施例では、樹脂材料に軟化点温度が94℃のPMMA樹脂(旭化成ケミカルズ株式会社製DELPET 560F)を用い、前述の金型で、樹脂温度を230℃、金型温度を70℃として、射出前に加熱手段3のカートリッジヒーター(電気ヒーター)22,36に通電して入子1を昇温し、可動側・固定側の入子1f,1mの温度が130℃に到達した直後に樹脂をキャビティ内に射出する。射出と同時に加熱手段3である電気ヒーターの通電を止め、同時に冷却ガスの電磁バルブ(流路開閉弁)を開けて冷却ガスを流通させて入子1f,1mを冷却する。入子温度を80℃まで降温させた時点で金型(対面当接した入子)を開き、エジェクターピン35により成形品Mを金型から突き出して脱型させる。かかる工程を繰り返すことにより、30秒の成形サイクルタイムで安定してマイクロ分析用のチップ基板を成形することができた。   In this example, PMMA resin (DELPET 560F manufactured by Asahi Kasei Chemicals Corporation) having a softening point temperature of 94 ° C. is used as the resin material, and the resin temperature is 230 ° C. and the mold temperature is 70 ° C. with the above-described mold. Before energizing the cartridge heaters (electric heaters) 22 and 36 of the heating means 3 to raise the temperature of the insert 1, the resin is applied immediately after the temperature of the movable and fixed inserts 1 f and 1 m reaches 130 ° C. Injection into the cavity. Simultaneously with the injection, energization of the electric heater as the heating means 3 is stopped, and at the same time, an electromagnetic valve (flow path opening / closing valve) for the cooling gas is opened to circulate the cooling gas to cool the nests 1f and 1m. When the nesting temperature is lowered to 80 ° C., the mold (the nesting in contact with each other) is opened, and the molded product M is ejected from the mold by the ejector pin 35 and removed. By repeating this process, a chip substrate for microanalysis could be stably molded with a molding cycle time of 30 seconds.

また、固定側・可動側のキャビティ近傍の温度制御をする部分の構造を、金型開き面(パーティング面)に対して対称となるように構成して、昇温・降温速度や温度勾配や温度分布がほぼ同じとなるように設定することで残留応力分布の差異による成形品Mの変形やひずみを抑えることができた。その結果、0.4mmの薄板状のチップでありながらも、反りの無い転写精度の高い成形品Mを得ることができた。   In addition, the structure of the temperature control part in the vicinity of the cavity on the fixed side / movable side is configured to be symmetric with respect to the mold opening surface (parting surface). By setting the temperature distribution to be substantially the same, the deformation and distortion of the molded product M due to the difference in residual stress distribution could be suppressed. As a result, it was possible to obtain a molded product M having a high transfer accuracy without warping even though it was a 0.4 mm thin plate-shaped chip.

本発明に係る射出成形用金型装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the mold apparatus for injection molding which concerns on this invention. 本願発明の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of this invention.

符号の説明Explanation of symbols

1f 固定側入子
1m 可動側入子
2 熱電対
3 加熱手段
4 断熱材
5 冷却手段
6 管路
7 流入路
8 流出路
9 断熱材
20 固定側取付板
21 固定側型板
22 カートリッジヒーター
23 熱電対
30 可動側取付板
31 可動側型板
32 受板
33 スペーサーブロック
34 エジェクタープレート
35 エジェクターピン
36 カートリッジヒーター
37 熱電対
M 成型品

1f Fixed side insert 1m Movable side insert 2 Thermocouple 3 Heating means 4 Heat insulating material 5 Cooling means 6 Pipe line 7 Inflow path 8 Outflow path 9 Heat insulating material 20 Fixed side mounting plate 21 Fixed side mold plate 22 Cartridge heater 23 Thermocouple 30 Movable side mounting plate 31 Movable side template 32 Receiving plate 33 Spacer block 34 Ejector plate 35 Ejector pin 36 Cartridge heater 37 Thermocouple M Molded product

Claims (5)

溶融樹脂を金型内に射出して成形品を得る射出成形用金型装置において、キャビティ金型を入子で構成し、該入子の反キャビティ面側に熱伝導させる冷却手段と加熱手段とを反キャビティ面側に配置すると共に、それぞれの設置区域を分けた状態で配置し、かつ、前記冷却手段と前記加熱手段との設置区域の間の熱伝導を遮断したことを特徴とする射出成形用金型装置。 In an injection mold apparatus that obtains a molded product by injecting molten resin into a mold, a cavity mold is constituted by an insert, and a cooling means and a heating means for conducting heat to the opposite cavity surface side of the insert Is disposed on the side opposite to the cavity surface, and is disposed in a state where the respective installation areas are separated, and the heat conduction between the installation areas of the cooling means and the heating means is cut off. Mold equipment. 冷却手段と加熱手段と配置において、
冷却手段を入子の反キャビティ面側の中心部付近に、かつ加熱手段を冷却手段の周辺部付近にそれぞれ配置したことを特徴とする請求項1記載の射出成形用金型装置。
In the cooling means and heating means and arrangement,
2. An injection mold apparatus according to claim 1, wherein the cooling means is disposed in the vicinity of the central portion of the insert opposite to the cavity side, and the heating means is disposed in the vicinity of the peripheral portion of the cooling means.
入子、冷却手段、及び加熱手段を含む全体を断熱シールドしたことを特徴とする請求項1、又は2記載の射出成形用金型装置。  3. The mold apparatus for injection molding according to claim 1, wherein the whole including the insert, the cooling means, and the heating means is insulated and shielded. 冷却手段の構成において、  In the configuration of the cooling means,
流動性冷媒が入子の反キャビティ面へ直接接触して熱伝導させる構成としたことを特徴とする請求項1、2、又は3記載の射出成形用金型装置。  4. The mold apparatus for injection molding according to claim 1, wherein the flowable refrigerant is in direct contact with the opposite cavity surface of the insert to conduct heat.
固定側及び可動側の各入子の温度勾配が、パーティング面に対して対称となるように、固定側及び可動側の各入子、各冷却手段、及び各加熱手段を形成して配置したことを特徴とする請求項1、2、3、又は4記載の射出成形用金型装置。  The fixed and movable side inserts, the cooling means, and the heating means are formed and arranged so that the temperature gradient of the fixed and movable side inserts is symmetrical with respect to the parting surface. 5. The mold apparatus for injection molding according to claim 1, 2, 3, or 4.
JP2006092018A 2006-03-29 2006-03-29 Injection mold equipment Expired - Fee Related JP4896556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092018A JP4896556B2 (en) 2006-03-29 2006-03-29 Injection mold equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092018A JP4896556B2 (en) 2006-03-29 2006-03-29 Injection mold equipment

Publications (2)

Publication Number Publication Date
JP2007261197A JP2007261197A (en) 2007-10-11
JP4896556B2 true JP4896556B2 (en) 2012-03-14

Family

ID=38634652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092018A Expired - Fee Related JP4896556B2 (en) 2006-03-29 2006-03-29 Injection mold equipment

Country Status (1)

Country Link
JP (1) JP4896556B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396617B (en) * 2006-09-29 2013-05-21 Toray Industries Method for manufacturing a sheet having transferred minute shape and apparatus for manufacturing the same
JP2009125976A (en) * 2007-11-20 2009-06-11 Nippon Yakin Kogyo Co Ltd Die for molding resin and molding method
US8507073B2 (en) 2008-05-22 2013-08-13 Panasonic Corporation Exterior parts
CN103459130B (en) * 2011-04-01 2016-10-19 罗克器械公司 For compressing-consolidate the apparatus and method of the part being made up of the composite with the thermoplastic matrix especially coming from natural continuous lod
CN115279571A (en) * 2020-04-01 2022-11-01 Ev 集团 E·索尔纳有限责任公司 Apparatus and method for injection molding
CN114701100B (en) * 2022-03-30 2023-06-02 贵州省工程复合材料中心有限公司 Manufacturing method of injection mold suitable for intelligent manufacturing of precise deep cavity type product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232809A (en) * 1983-06-16 1984-12-27 Shigeru Ikemoto Mold assembly for molding synthetic resin products

Also Published As

Publication number Publication date
JP2007261197A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4896556B2 (en) Injection mold equipment
KR100850308B1 (en) Synthetic resin molding mold
US7118372B2 (en) Molding tool having a heating and cooling medium
US20060246166A1 (en) Injection molding system and method for using the same
KR101273591B1 (en) Injection molding device
JP6744097B2 (en) Injection mold and method of controlling injection mold
JP2005138366A (en) Precise die
JP5194599B2 (en) Hot press apparatus, hot press method, and pattern transfer method by hot press
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
JP2012000868A (en) Die for molding hard liquid resin and hard liquid resin molding method
TW201524733A (en) Mould tool having moving parts
JP2018027632A (en) Molding die for resin molded body
JP2010105363A (en) Temperature controller for molding die device, and molding die system
Lin et al. Experimental study on the filling of nano structures with infrared mold surface heating
Chen et al. Mold temperature variation for assisting micro-molding of DVD micro-featured substrate and dummy using pulsed cooling
JP2008137275A (en) Mold apparatus and method for manufacturing molded article
US20040046281A1 (en) Localized compression molding process for fabricating microstructures on thermoplastic substrates
Chen et al. Improvement of replication accuracy of micro-featured molding using gas-assisted heating for mold surface
JP2008100380A (en) Transfer device and transfer method
JP2013123900A (en) Injection molding mold
JP2001018257A (en) Injection molding mold, injection molding machine, and injection molding method
JPH06218784A (en) Injection molding device
Nakao et al. Injection Molding Techniques for the Fabrication of MEMS Elements
JP4493360B2 (en) Mold structure for injection molding
JP5356452B2 (en) Melt fine transfer molding method and melt fine transfer molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees