JP4889698B2 - Stent yarn for vascular - Google Patents

Stent yarn for vascular

Info

Publication number
JP4889698B2
JP4889698B2 JP2008234591A JP2008234591A JP4889698B2 JP 4889698 B2 JP4889698 B2 JP 4889698B2 JP 2008234591 A JP2008234591 A JP 2008234591A JP 2008234591 A JP2008234591 A JP 2008234591A JP 4889698 B2 JP4889698 B2 JP 4889698B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008234591A
Other languages
Japanese (ja)
Other versions
JP2009000553A (en )
Inventor
敬二 伊垣
Original Assignee
株式会社 京都医療設計
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Description

本発明は、生体の血管、リンパ管、胆管や尿管などの脈管内に装着され、脈管の内腔を一定の状態に保持するために用いられる脈管用ステントに用いられる脈管ステント用糸に関する。 The present invention, living blood vessels, lymphatic vessels, mounted to the vessel, such as a bile duct or urinary tract, vascular stents yarn used for vascular stents used to hold the lumen in a constant state of vascular about the.

従来、生体の脈管、特に動脈などの血管に狭窄部が発生した場合に、この狭窄部にバルーンカテーテルの先端部近傍に設けたバルーン形成部を挿入し、バルーン形成部を膨張させてバルーンを形成することにより、血管狭窄部を拡張して血流を良くする手術である経皮的血管形成術(PTCA:Percutaneous Transluminal Coronary Angioplasty)が行われている。 Traditionally, vessels of a living body, particularly in the case where stenosis occurs in the blood vessel such as an artery, was inserted a balloon forming portion provided in the vicinity of the distal end portion of the balloon catheter to the stenosis, and inflating the balloon forming portion balloon by forming, to expand the blood vessel stenosis percutaneous angioplasty is surgery to improve blood flow (PTCA: percutaneous Transluminal Coronary angioplasty) has been performed.

ところで、経皮的血管形成術を施しても、狭窄を発生させた部分に高い確率で再び狭窄が発生することが知られている。 Incidentally, even when subjected to percutaneous angioplasty, again constriction with a high probability is known to occur in the portion that caused the stenosis.

このような再狭窄を防止するため、経皮的血管形成術を施した部分に、筒状をなすステントを装着することが行われている。 Therefore to such prevent restenosis, the portion subjected to percutaneous angioplasty, has been carried out mounting the stent forming a cylindrical shape. このステントは、縮径された状態で血管内に挿入され、その後拡径されて血管内に装着されることにより、血管をその内部から支持し、血管に再狭窄が発生することを防止しようとするものである。 The stent is inserted into a blood vessel in the reduced diameter state, by being mounted subsequently is expanded in a blood vessel, the vessel is supported from the inside, trying to prevent the restenosis occurs in the vessel it is intended to.

この種のステントとして、バルーン拡張型ステントと自己拡張型ステントが提案されている。 As this type of stent, balloon expandable stent and a self-expanding stents have been proposed.

ところで、バルーン拡張型ステントは、折り畳まれ縮径された状態でカテーテルに設けられたバルーンに被せられ、バルーンとともに血管内の狭窄が発生している病変部位等の装着目的部位に挿入された後、バルーンが膨張されることにより拡径されて血管の内面を支持する。 Incidentally, balloon-expandable stents, placed over the balloon provided to the catheter while being reduced in diameter folded, after narrowing in the blood vessel is inserted into the mounting target site such as a lesion has occurred with a balloon, balloon is expanded by being inflated for supporting the inner surface of the blood vessel. バルーン拡張型ステントは、一旦拡径されるとこの拡径された状態に固定され、血管壁の拍動に連動して変形することができない。 Balloon expandable stent is fixed in a state that is the expanded Once expanded, can not be deformed in conjunction with the pulsation of the blood vessel wall. また、バルーン拡張型ステントは、拡径されて血管内に装着された後変形してしまうと、元の拡径された状態に復元することができず、確実に血管の内面を支持することができなくなるおそれがある。 Further, balloon expandable stent, when being enlarged deformed after being fitted into the vessel, can not be restored to the state that is the original diameter, it reliably supports the inner surface of the blood vessel there is a possibility that can not be.

一方、自己拡張型ステントは、血管内の装着目的部位の内径より小さい外径を有するチューブなどの保持体内に縮径されて収納され、保持体に収納された状態で血管内の装着目的部位に挿入される。 On the other hand, self-expanding stent is housed a reduced diameter in the holding body such as a tube having an outer diameter smaller than the inner diameter of the mounting target site within the vessel, the mounting target site in a blood vessel in a state of being housed in the holding member It is inserted. 血管内の装着目的部位に挿入されたステントは、保持体から押し出され、あるいは抜き取られることによりステント自身が有する復元力を利用して縮径前の状態に拡径されることにより血管の内壁を支持した状態を維持する。 Inserted stent mounting target site in a blood vessel is pushed out from the holding member, or the inner wall of the blood vessel by utilizing a restoring force with the stent itself is expanded to a state of reduced diameter front by being withdrawn to maintain the support state.

この種の自己拡張型ステントとして、ステンレスなどの金属製の線状体を正弦波状に折り曲げ、あるいはジクザグ状に折り曲げながら筒状に形成したものが提案されている。 As a self-expanding stent of this type, bending a metal linear member, such as stainless sinusoidally, or those formed into a cylindrical shape while bending the zigzag shape it is proposed.

金属製の線状体を用いた自己拡張型ステントは、拡張時の外径を高精度に制御することが困難であり、装着される血管の内径に比し過度に拡径するおそれがある。 Self-expanding stents using a linear body made of metal, it is difficult to control the outer diameter during expansion with high accuracy, there is a risk of excessively expanded than the inner diameter of the vessel to be attached. さらに、このステントは、縮径状態に保持する力が開放されると急峻に拡径する。 Furthermore, this stent steeply expanded when the force holding the reduced diameter state is released. 血管内に挿入されたステントが急峻に拡径すると、血管の内壁を損傷させてしまうおそれもある。 When inserted stent within the vessel is rapidly expanded, there is a fear that damage the inner wall of the blood vessel.

また自己拡張型ステントとして、Ti−Ni系合金、Ti−Ni−Cu系合金、Ti−Ni−Fe系合金等の形状記憶合金により形成したものが提案されている。 Also as a self-expanding stents, Ti-Ni based alloys, Ti-Ni-Cu alloy, those formed by a shape memory alloy such as Ti-Ni-Fe-based alloy has been proposed.

形状記憶合金を用いたステントは、血管内の装着目的部位に装着されるときの大きさに形状記憶され、その後縮径され、縮径された状態で血管内に挿入される。 Stent with shape memory alloy is sized shape memory when it is mounted to the mounting target site in the blood vessel, subsequently reduced in diameter, it is inserted into a blood vessel in the reduced diameter state. このステントは、血管内の装着目的部位に挿入された後、バルーンを用いて形状記憶された大きさまで拡径され、その後生体の体温により超弾性を示すことにより、血管の内壁を支持した状態を維持する。 The stent, after being inserted into the mounting target site in a blood vessel, a larger diameter to using a balloon shape memory magnitude, by showing superelastic body temperature subsequent biological, a state of supporting the inner wall of the blood vessel maintain.

形状記憶合金は、血管に比し剛性がきわめて高いため、血管の内壁の一部に極めて大きな力学的な圧力を付与することになり、血管を損傷させるおそれがある。 Shape memory alloys, rigidity than the vessel is very high, it will be given an extremely large mechanical pressure to a portion of the inner wall of the blood vessel, may damage the blood vessel. また、形状記憶合金を用いたステントは、血管内の目的部位に装着される時、血管の内壁に対し均等に拡径しない場合が多い。 Further, the stent using a shape memory alloy, when it is attached to the target site in the blood vessel, is often not evenly expanded to the inner wall of the blood vessel. ステントの一部が先に血管の内壁に当接して拡径を開始すると、血管を均等に拡径することができなくなる。 When a portion of the stent starts to expand in diameter in contact with the inner wall of the blood vessel ahead, it can not be uniformly expanded blood vessels. 血管のステントの一部が先に当接した部分が過大に拡径され、損傷を受けやすくなってしまう。 Part portion of the vascular stent is in contact with the previously is excessively enlarged, it becomes susceptible to damage.

また、形状記憶合金等の金属を用いたステントは、一旦血管等の脈管内に装着すると、外科的手術を施して取り出さない限り永久に生体内に留置されてしまう。 Furthermore, stents using a metal such as shape memory alloy, once attached to the vessel such as blood vessels, it would be placed in the body permanently unless removed subjected to surgery.

このような金属製のステントが有する問題点を解決するために提案されたステントとして、特開平5−103830号公報(特許文献1)、特表平5−509008号公報(特許文献2)に記載されたものがある。 As proposed stent in order to solve the problems such metallic stents has, JP-A 5-103830 (Patent Document 1), described in JP Kohyo 5-509008 (Patent Document 2) there are things that have been.
特開平5−103830号公報 JP-5-103830 discloses 特表平5−509008号公報 本発明は、上述したような従来提案されている脈管用ステントが有している問題点を解決し得る脈管用ステントに用いて有用な脈管用ステント糸を提供することを技術課題とするものであって、血管などの脈管に損傷を与えることなく、確実に脈管を拡径させた状態に維持できる脈管用ステントを構成し得る脈管用ステント糸を提供することにある。 Kohyo 5-509008 discloses the present invention provides a stent yarn for useful vascular using the vascular stent capable of solving the problems stent for vascular proposed conventionally as described above has it been made to a technical problem to, without damaging the vessels such as blood vessels, to provide for vascular stents yarns can constitute a stent for vascular capable of maintaining the state of surely it is expanded the vessel It lies in the fact.

また、本発明は、脈管内に装着した後一定期間経過後、消失させ、病変部の回復後に脈管からの取り出し手術を不要とすることができる脈管用ステントを構成し得る脈管用ステント糸を提供することを技術課題とする Further, the present invention after a certain period of time after mounting within the vessel is lost, a vascular stent yarns can constitute a vascular stent can be made unnecessary extraction operation from the vessel after restoration of the lesion and technology object of the present invention is to provide.

さらに、本発明は、血管などの脈管を均等な力で支持することができる脈管用のステントを構成し得る脈管用ステント糸を提供することを技術課題とする Furthermore, the present invention is directed to an object to provide a vascular stent yarns can constitute a stent for vascular vessels can be supported with uniform force, such as a blood vessel.

さらにまた、本発明は、屈曲した血管等の脈管に追随性良く挿入でき、脈管内の装着目的部位に容易且つ確実に装着することができる脈管用のステントを構成し得る脈管用ステント糸を提供することを技術課題とする Furthermore, the present invention is followability well be inserted into vessels such tortuous vessels, vascular stents yarns can constitute a stent for vascular can be easily and reliably mounted to the mounting target site within the vessel the and technology object of the present invention is to provide.

上述のような技術課題を解決するために提案される本発明は、生体の脈管内に装着された後、一定期間経過後に上記生体内で消失する形状記憶特性を有する生体吸収性ポリマーからなる糸であって、ジグザグ状に折り曲げられ上記ジグザグ状の形状が多段となるように巻回され筒状をなす脈管ステントを構成するにおいて 、上記糸は、ガラス転移温度Tgが70℃以下であって、温度の制御による形状記憶機能を有する生体吸収性ポリマーを溶融紡糸し延伸された一連に連続したモノフィラメントからなる。 Yarns present invention proposed in order to solve the technical problems as described above, after being attached to the vessel of a living body, comprising a bioabsorbable polymer having a shape memory characteristic to disappear in the living body after a certain period of time a is, in the yarn is the zigzag shape is bent in a zigzag shape constituting a vascular stent forming a wound tubular so that the multi-stage, the yarn has a glass transition temperature Tg was at 70 ° C. or less Te, comprising a bioabsorbable polymer having shape memory function by control of the temperature from the melt-spun drawn series in continuous monofilaments. そして、上記糸は、直線部と折り曲げ部が順次連続するジグザグ状に折り曲げられ、上記折り曲げ部を変位部として開閉されるとともに、上記折り曲げ部が第1の角度に開かれた状態で形状記憶されてなり、上記折り曲げ部を外力により上記第1の角度より小さい第2の角度に折り曲げて収縮した状態から上記第1の角度に変位された開かれた状態への変化が温度の制御により行われることを特徴とする。 Then, the thread is folded in a zigzag shape portion bent and straight portions successive, while being open and close the bent portion as the displacement portion, the bent portion is a shape memory in a state of being open to the first angle It becomes Te, the change to the first angle is smaller than the second angle bent deflated displaced from the state with the first angle has been opened state is performed by the control of temperature by an external force to the bent portion it is characterized in.

この糸は、生体吸収性ポリマーをスクリュー押出機を用いて溶解紡糸し延伸したモノフィラメントであることが望ましい。 This yarn is preferably a bioabsorbable polymer is a monofilament dissolved spun stretching using a screw extruder.

そして、糸は、直径が50〜300μmの延伸モノフィラメントであることが望ましい。 The yarn is preferably a diameter of stretched monofilaments of 50 to 300 [mu] m.

また、糸は、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグリコール酸とポリ乳酸の共重合体、ポリジオキサノン、トリメチレンカーボネートとグリコリドとの共重合体、ポリグリコール酸又はポリ乳酸とεーカプロラクトンとの共重合体のいずれか1又は2以上を複合した生体吸収性ポリマーにより形成される。 Moreover, the yarn, polylactic acid (PLLA), polyglycolic acid (PGA), a copolymer of polyglycolic acid and polylactic acid, polydioxanone, copolymer of trimethylene carbonate and glycolide, polyglycolic acid or polylactic acid and ε formed by bioabsorbable polymer that combines any one or more of the copolymers of over caprolactone.

さらに、 糸には X線不透過剤混入若しくは付着されることにより、脈管に留置した状態 X線を用いて生体外より容易に確認することができる。 Furthermore, it is possible to thread the Rukoto X-ray opaque agent is mixed or deposited, easily confirmed from outside the living body using X-ray while placed in the vessel.

さらにまた、生体吸収性ポリマーにより形成された糸に、抗血栓剤やその他新生内膜の加増殖を抑制することを目的とする薬剤を混入若しくは被着することにより、 この糸を用いて形成されたステントの溶解と共に抗血栓剤等の薬剤の投与を持続して投与することができる。 Furthermore, the yarn formed by bioabsorbable polymer, by incorporating or depositing a drug intended to inhibit the pressurized proliferation antithrombotic agent or other neointima is formed using this yarn it can be administered with with dissolution of the stent by sustained administration of agents such as anti-thrombotic agents.

さらにまた、生体吸収性ポリマーにより形成された糸に、β線を放射する放射線源、γ線を放射する放射線源を混入若しくは被着することにより、 この糸を用いて形成されたステントの生体への挿入とともに患部への放射線の照射が可能となり、持続して放射線の照射が可能となる。 Furthermore, the yarn formed by bioabsorbable polymer, a radiation source that emits β rays, by incorporating or depositing a radiation source that emits γ-rays, to the living body of the stent formed using this yarn inserted with enables irradiation of radiation to the affected part, it is possible to sustained by irradiation of radiation.

本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下に説明される実施例の説明から一層明らかにされるであろう。 Other objects, specific advantages obtained by the invention of the present invention will be more apparent from the description of the embodiments described below.

本発明に係る脈管用ステント用の糸は、形状記憶機能を有する生体吸収性ポリマーを用いて形成されているので、 この糸を用いて形成された脈管用ステントは、脈管内に留置される状態の大きさに形状記憶されることができ、血管などの脈管を損傷させることなく、確実に脈管を拡径させた状態に維持できる。 State yarns for vascular stent according to the present invention, because it is formed by using a bioabsorbable polymer having shape memory function, vascular stent formed using this yarn, which is placed in the vessel of the size can be shape memory, without damaging the vessels such as blood vessels, can be maintained in a state of surely is expanded the vessel.

また、血管などの脈管に装着した後、容易に拡径することができ、さらに、血管などの脈管を均等な力で支持することができるので、脈管を安定した状態で確実に拡径した状態に保持することができる脈管用ステントを構成できる。 Also, after mounting to the vessel, such as a blood vessel, can easily be expanded further, it is possible to support the vessel, such as a blood vessel with a uniform force, reliably expand in a state that the vessel stable can be configured vascular stent can be held in diameter state.

特に、本発明に係る脈管用ステントは、生体吸収性ポリマーを用いて形成されてなるので、脈管内に留置した後数週間乃至数ヶ月間はその形態を保持するものの、装着後数ヶ月以内に消失させることができるので、臨床上望ましいステントを提供できる。 In particular, stents for vascular according to the present invention, since being formed by using a bioabsorbable polymer, for weeks to months after placement in the vessel although retains its form, within a few months after installation it is possible to eliminate, can provide a clinically desirable stent.

以下、本発明に係る脈管用のステントを図面を参照して具体的に説明する。 Will be specifically described below stent for vascular according to the present invention with reference to the drawings.

本発明に係る脈管用のステント1は、例えば生体の冠動脈の如き血管内に挿入されて用いられるものであって、図1に示すように、形状記憶機能を有する生体吸収性ポリマーからなる糸2を筒状に形成したステント本体3を備える。 The stent 1 for the vessel according to the present invention is, for example, those used by being inserted into a living body in such vessel coronary artery, as shown in FIG. 1, a yarn made of a bioabsorbable polymer having shape memory function 2 comprising a stent body 3 formed in a cylindrical shape to.

ここで、糸2は、人体等の生体に装着したとき、生体に悪影響を与えることがない生体吸収性ポリマーにより形成される。 Here, the thread 2, when attached to a living body such as a human body, is formed by bioabsorbable polymer does not adversely affect the living body. この生体吸収性ポリマーとしては、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグラクチン(ポリグリコール酸とポリ乳酸との共重合体)、ポリジオキサノン、ポリグリコネート(トリメチレンカーボネートとグリコリドの共重合体)、ポリグリコール酸又はポリ乳酸とεーカプロラクトン共重合体などが用いられる。 As the bioabsorbable polymer, polylactic acid (PLLA), polyglycolic acid (PGA), polyglactin (copolymer of polyglycolic acid and polylactic acid), polydioxanone, polyglyconate (trimethylene carbonate and glycolide copolymerization coalescence), polyglycolic acid or polylactic acid and ε over caprolactone copolymer and the like are used. また、これら材料を2以上複合した生体吸収性ポリマーを用いることができる。 Further, it is possible to use a composite bioabsorbable polymer 2 or more of these materials.

生体吸収性ポリマー製の糸2は、スクリュー押出機を用いて形成することができる。 Yarn 2 made of bioabsorbable polymers can be formed by using a screw extruder. スクリュー押出機を用いて糸2を形成するには、材料となる生体吸収性ポリマーで形成されたペレットを融点Tm以下の温度で加熱した状態で減圧乾燥し、このペレットをスクリュー押出機のホッパーに投入し、シリンダ内で融点Tm近傍若しくは融点以上熱分解点以下まで加熱しながら圧縮して溶融する。 To form the yarn 2 using the screw extruder, the pellets formed of a bioabsorbable polymer as a material was dried under reduced pressure while heating at a temperature lower than the melting point Tm, the pellets into the hopper of a screw extruder charged into and melted and compressed while being heated to the melting point Tm near or above the melting point below the thermal decomposition point in the cylinder. この溶融された生体吸収性ポリマーを融点Tm以下の温度であってガラス転移点Tg以上の温度に設定されたノズルより押し出す。 This molten bioabsorbable polymer a temperature below the melting point Tm extruded from a nozzle that is set to a temperature above the glass transition point Tg. この押し出された生体吸収性ポリマーを巻き取ることにより線状体が形成される。 Linear body is formed by winding the extruded bioabsorbable polymer. この線状体をさらに延伸することにより、本発明に用いられる糸2が形成される。 By the linear body further stretching, the yarn 2 to be used in the present invention is formed.

ここで形成される糸2は、図2に示すように、生体吸収性ポリマーが一連に連続したモノフィラメントにより形成される。 Yarn 2 which is formed here, as shown in FIG. 2, is formed by a monofilament bioabsorbable polymer are continuous in a series.

本発明に用いられる糸2は、モノフィラメントのみならず、図3に示すように、複数本のモノフィラメント2aが一体化されたマルチフィラメントにより形成されたものであってもよい。 Yarn 2 used in the present invention not monofilament only, as shown in FIG. 3, or may be a plurality of monofilaments 2a is formed by the integrated multifilament.

上述したような生体吸収性ポリマーを用い上述したようなスクリュー押出機を用いて形成される糸2は、ポリマーの分子類が架橋され、形状記憶特性を有する。 Yarn 2 formed by using a screw extruder as described above using a bioabsorbable polymer such as described above, molecules, polymers are cross-linked, having shape memory characteristics.

本発明に用いられる糸2は、断面形状が円形のみならず、扁平な断面形状を有するものなどが用いられる。 Yarn 2 used in the present invention is not cross section circular only, such as those having a flattened cross-sectional shape is used.

上述のように形成された糸2は、図4に示すように、連続するV字状をなすようにジグザグ状に折り曲げながら螺旋状に巻回されることにより筒状のステント本体3を形成する。 Yarn 2 formed as described above, as shown in FIG. 4, to form a cylindrical stent body 3 by being spirally wound while bending in a zigzag pattern so as to form a V-shaped continuous . このとき、糸2は、V字状をなす1つの折り曲げ部4の一辺を短線部4aとし、他の辺を長線部4bとすることにより螺旋状に巻回された形状が得られる。 At this time, the yarn 2, one side of one folded portion 4 forming a V-shape and Tansen portion 4a, wound shape is obtained spirally by a Nagasen portion 4b of the other sides. 糸2の中途部に形成される折り曲げ部4の開き角θ 1がほぼ同一であって、折り曲げ部4間の短線部4a及び長線部4bの長さをそれぞれほぼ同一とすることにより、図5に示すように、互いに隣接する折り曲げ部4の頂点が互いに接触するようになる。 Opening angle theta 1 of the bent portion 4 is formed in the middle portion of the thread 2 is a substantially identical, by substantially the same length of the short line section 4a and Nagasen portion 4b between the bent portion 4, respectively, 5 as shown in, so that the vertex of the bent portion 4 adjacent to each other contact each other. 互いに接触した折り曲げ部4の頂点のいくつか若しくは全部は互いに接合される。 Some or all of the vertices of the bent portion 4 in contact are joined together with one another. ステント本体3を形成する糸2は、折り曲げ部4の互いに頂点を接触させた部分が接合されることにより、確実に筒状の形状を保持した状態に維持される。 Yarns 2 forming the stent body 3, by the portion contacting the apexes each other bent portion 4 is joined, it is maintained in a state holding the reliably cylindrical shape.

なお、互いに頂点を接触させた折り曲げ部4の接合は、接合部分を融点Tm以上に加熱し溶融して融着することにより行われる。 The bonding of the folded portion 4 contacting the vertices to each other, heating the bonding portion more than the melting point Tm is performed by fusing to melt.

上述のように筒状に形成されたステント本体3を用いて構成されるステント1は、血管内に留置される状態の大きさに形状記憶される。 The stent 1 constructed using a stent body 3 formed into a cylindrical shape as described above, is shape memory to the size of the condition being placed in the vessel. この形状記憶は、図6に示すように、ステント1を生体の脈管内に装着されたときの大きさに保持するに足る大きさに形成した軸状の型枠101に装着し、糸2を構成する生体吸収性ポリマーのガラス転移温度Tg以上の温度であって融点Tm以下の温度に加熱し、型枠101の大きさに倣った大きさに変形させる。 The shape memory, as shown in FIG. 6, the stent 1 is mounted on the shaft-like mold frame 101 formed to a size enough to hold the size of when mounted within the vessel of a living body, the yarn 2 a glass transition temperature Tg or a temperature of bioabsorbable polymers comprising heating to a temperature below the melting point Tm, deforming to a size conforming to the size of the mold 101. その後、型枠101に装着されたステント1を型枠101とともにガラス転移温度Tg以下に冷却すると、ステント1は、変形が与えられた状態に固定化される形状記憶が与えられる。 Thereafter, when the stent 1 mounted in a mold 101 with the mold 101 to cool below the glass transition temperature Tg, the stent 1, shape-memory is provided which is fixed in a state in which deformation is given.

ステント1を変形して形状記憶を与える加熱は、加熱炉等を用いて行われる。 Heating giving deformed to the shape memory of the stent 1 is performed using a heating furnace or the like.

ここで得られるステント1は、図1に示すように、直径(R 1 )が約3〜5mmで、その長さ(L 1 )が10〜15mmの大きさに形状記憶される。 The stent 1 obtained here, as shown in FIG. 1, at about 3~5mm diameter (R 1), a length (L 1) is a shape memory to the size of 10-15 mm. この大きさは、生体の血管内に留置される状態の径若しくはそれ以上の径を有する大きさである。 This size is sized to have a diameter or more in the diameter of the condition to be placed in the vessel of a living body.

枠体101に装着されて形状記憶されたステント1は、枠体101から外された後縮径される。 Mounted on the frame 101 by a shape memory stent 1 is reduced in diameter after being removed from the frame 101. この縮径は、ステント1がガラス転移温度Tg以下に冷却された状態でステント本体3の外周囲から力学的な圧力を加えながら変形されることによって行われるものであって、例えば、図7に示すように、縮径用型枠201に設けた縮径溝202にステント本体3を押し込むことによって行われる。 This diameter is, there is carried out by the stent 1 is deformed while applying a mechanical pressure from the outer periphery of the stent body 3 while being cooled below the glass transition temperature Tg, for example, in FIG. 7 as shown, it takes place by pushing the stent body 3 to the reduced diameter groove 202 formed in the condensation diameter contouring mold 201. この縮径溝202は、長尺なステント1の挿入を容易に行い得るように、型枠201の平面側を開放した凹状の溝として形成されている。 The condensation diameter groove 202, as can easily perform the insertion of the elongated stent 1 is formed as a groove recessed opening the flat side of the mold 201.

型枠201の縮径溝202に押し込まれたステント1は、折り曲げ部4の開き角θ 1が図8に示すように小さい角θ 2となるように折り曲げ部4を変位させることにより縮径される。 The stent 1 is pushed into the reduced diameter groove 202 of the mold 201, the opening angle theta 1 of the bent portion 4 is reduced in diameter by displacing the bent portion 4 so that the small angle theta 2, as shown in FIG. 8 that. この折り曲げ部4を変位させることにより行われる縮径は、ガラス転移温度Tg以下に冷却された糸2の折り曲げ部4が変形されることにより行われる。 Diameter that is performed by displacing the bent portion 4 is made by bending portions 4 of the yarn 2 cooled to below the glass transition temperature Tg is deformed. このとき、ステント1は、生体の脈管に容易に挿入し得るに足る直径を有するように縮径される。 At this time, the stent 1 is reduced in diameter so as to have a diameter sufficient to be easily inserted into the vascular biological. 例えば、直径(R 1 )が約3〜5mmの大きさに形状記憶されたステント1にあっては、図9に示すように、直径(R 2 )が約1mm〜2mmの大きさを有するように縮径される。 For example, the diameter In the shape memory stent 1 (R 1) the magnitude of about 3 to 5 mm, as shown in FIG. 9, the diameter (R 2) is to have a size of about 1mm~2mm It is reduced in diameter.

なお、拡径された状態に形状記憶されたステント1は、縮径されることにより、形状記憶された状態よりやや長さ方向に引き延ばされるようになる。 Incidentally, the stent 1 which is shape memory in the expanded state, by being reduced in diameter, so that slightly stretched in the longitudinal direction than the shape memory state.

縮径用型枠201に設けた縮径溝202に押し込まれて縮径されたステント1は、縮径溝202の開放された端部203から引き出される。 The stent 1 is reduced in diameter is pushed into the reduced diameter groove 202 formed in the condensation diameter contouring mold 201 is withdrawn from the open end 203 of the reduced diameter groove 202. 生体吸収性ポリマーにより形成された糸2を用いて形成されたステント1は、縮径用型枠201から外された後、少なくともガラス転移温度Tg以下に保存されることにより、変位部となる折り曲げ部4に与えられた歪みが保存され縮径状態を保持する。 The stent 1 formed by using the yarn 2 formed by the bioabsorbable polymer, after being removed from the condensed diameter contouring mold 201, by being stored in the following at least the glass transition temperature Tg, bending the displacement portion strain given to parts 4 to retain the reduced diameter state is saved.

拡径された状態に形状記憶されたステント1を縮径するためには、上述したような縮径用型枠201を用いることのみならず種々の方法を用いることができる。 To diameter shape memory stent 1 is in expanded state, various methods not only use a reduced diameter contouring formwork 201 as described above can be used. 例えば、型枠などを用いることなく、形状記憶されたステント1の外周から力学的な圧力を加えて縮径するようにしてもよい。 For example, without using a mold, it may be reduced in diameter by the addition of mechanical pressure from the outer periphery of the shape memory stent 1.

上述のように外圧が加えられて縮径されたステント1は、ガラス転移温度Tg以上に加熱されると、折り曲げ部4に与えられていた歪みが開放され、小さな開き角θ 2まで折り曲げられた折り曲げ部4が開き角θ 1まで開き、初期の形状記億された形状に回復する。 The stent 1 external pressure is reduced in diameter added as described above, when heated above the glass transition temperature Tg, is the strain that has been given to the bent portion 4 is opened, bent to a small opening angle theta 2 the bent portion 4 is opened to the open angle θ 1, to recover the initial shape memory billion shape. すなわち、ステント1は、ガラス転移温度Tg以上に再度加熱されることにより、図1に示すように、初期の形状記憶された大きさに拡径される。 That is, the stent 1 by being heated again to a temperature higher than the glass transition temperature Tg, as shown in FIG. 1, is expanded to a size that is the initial shape memory.

ところで、本発明に係る脈管用のステント1は、生体の冠動脈の如き血管内に挿入されて用いられ、血管に挿入されたときに形状記憶された状態に拡径して血管の内壁を支持するものである。 Meanwhile, the stent 1 for vascular according to the present invention is used is inserted into such vessel of a living body coronary, diametrically enlarged shape memory state to support the inner wall of the blood vessel when it is inserted into a blood vessel it is intended. そこで、脈管用ステント1のステント本体3を形成する糸2は、生体の体温若しくは体温に近い温度により形状回復し得るように、ガラス転移温度Tgが70℃以下の生体吸収性ポリマーが用いられる。 Therefore, the yarn 2 forming the stent body 3 of vascular stent 1, so that the temperature can be shape recovery by close to body temperature or body temperature of a living body, the glass transition temperature Tg is 70 ° C. or less bioabsorbable polymer used.

ガラス転移温度Tgが70℃以下にあって、生体の体温により形状回復するような糸2により形成されたステント1は、形状記憶された状態に拡径させるため、加熱する場合であっても、生体の血管に熱傷を発生させることがない温度で行うことができる。 Glass transition temperature Tg is in the 70 ° C. or less, the stent 1 formed by the yarn 2 so as to shape recovery by the body temperature of a living body, in order to increase the diameter to shape memory state, even in the case of heating, it can be carried out at a temperature not causing burns to the blood vessel of a living body.

なお、縮径された状態で血管に装着されるステント1は、カテーテルに設けたバルーンにより血管の内壁に接触する大きさに拡径される。 Incidentally, the stent 1 to be mounted on the vessel with reduced diameter state is expanded to a size that is in contact with the inner wall of the blood vessel by a balloon provided on the catheter. ステント1は、バルーンを用いて血管の内壁に接触するように拡径されることにより、均等に血管の内壁に接触して体温により均等に加温されて形状回復させることができる。 The stent 1, by being expanded to contact the inner wall of the blood vessel using a balloon, can be uniformly in contact with the inner wall of the blood vessel is uniformly warmed by the body temperature is shape recovery.

また、ステント1を形状回復させるため、カテーテルを介してバルーン内に加温された造影剤を注入する場合でも、その温度は50℃程度で足り、生体の血管に熱傷を発生させることを確実に防止できる。 Further, in order to the stent 1 the shape recovery, even when injecting warmed contrast agent into the balloon through the catheter, the temperature sufficient at about 50 ° C., to ensure that cause burns to the blood vessel of a living body It can be prevented.

ここで、生体吸収性ポリマーとして、ガラス転移温度Tgが約57℃のポリ乳酸(PLLA)を用いた糸2により形成したステント1と、ガラス転移温度Tgが約37℃のポリグリコール酸(PGA)を用いた糸2により形成したステント1の形状回復の温度依存性を示す。 Here, as the bioabsorbable polymer, the stent 1 formed by the yarn 2 of glass transition temperature Tg was used about 57 ° C. polylactic acid (PLLA), a glass transition temperature Tg of about 37 ° C. of polyglycolic acid (PGA) the shows the temperature dependence of the shape recovery of the stent 1 formed by the yarn 2 used.

ここで用いられる糸2は、ポリ乳酸(PLLA)及びポリグリコール酸(PGA)を上述したようなスクリュー押出機を用いて、直径が50μm〜300μmの延伸モノフィラメントにて形成される。 Yarn 2 used here, using a polylactic acid (PLLA) and polyglycolic acid (PGA) screw extruder as described above, and the diameter is formed by stretching monofilament 50 m to 300 m. 各ステント1は、この糸2を用いて上述したようにジグザグ状に折り曲げながら筒状に巻回することによって形成され、直径(R 1 )が4mmの大きさとなるように形状記憶し、直径(R 2 )が1.4mmの大きさとなるように縮径される。 Each stent 1 is formed by winding in a cylindrical shape while bending in a zigzag pattern as described above using the thread 2, the diameter (R 1) is a shape memory such that the size of 4 mm in diameter ( R 2) is reduced in diameter such that the size of 1.4 mm. なお、各ステント1は、形状記憶された状態で12mmの長さ(L 1 )とされる。 Each stent 1 is in a state of being shape-memory length of 12mm and (L 1).

ポリ乳酸(PLLA)製の糸2により形成したステント1は、図10中Aで示すように、70℃で僅か0.2秒で形状回復し、50℃では13秒で形状回復し、体温に近い37℃では約20分をかけて緩やかに形状回復する。 Polylactic acid stent 1 formed by the yarn 2 made of (PLLA), as shown in FIG. 10 A, and shape recovery in just 0.2 seconds at 70 ° C., and shape recovery at 50 ° C. At 13 seconds, the temperature gently shape recovery over about 20 minutes at near 37 ° C.. また、室温に近い20℃以下では形状回復することなく縮径された状態が維持される。 Further, the reduced diameter state without shape recovery is less than 20 ° C. near room is maintained.

このように、ポリ乳酸(PLLA)製の糸2により形成したステント1は、加熱温度を制御することにより、形状回復に要する時間を制御することができるので、ステント1が装着される血管の状態などに適合するように適宜形状回復速度を制御することができる。 Thus, the stent 1 formed by polylactic acid (PLLA) made of yarn 2, by controlling the heating temperature, it is possible to control the time required for shape recovery, the blood vessel stent 1 is mounted state it is possible to control the appropriate shape recovery rate to match the like.

また、ポリグリコール酸(PGA)製の糸2により形成したステント1は、図10中Bで示すように、45℃で僅か0.5秒で形状回復し、体温に近い37℃では約1秒で形状回復し、体温より低い30℃では10秒で形状回復する。 Further, the stent 1 formed by the yarn 2 made of polyglycolic acid (PGA), as shown in FIG. 10 B, and shape recovery in just 0.5 seconds 45 ° C., 37 ° C. in about 1 second near body temperature in and shape recovery, shape recovery at 30 ° C. at 10 seconds lower than body temperature. また、室温に近い15℃以下では形状回復することなく縮径された状態が維持される。 Further, the reduced diameter state without shape recovery is less than 15 ℃ near room is maintained.

ガラス転移温度Tgが低いポリグリコール酸(PGA)製の糸2により形成したステント1は、血管に挿入することにより体温により急峻に形状回復されるので、血管に装着後直ちに拡径することが必要なものに適用して有用であり、さらに、加熱することなく体温により迅速に形状回復させることができるので、ステント1を形状回復させるための加熱制御が容易となる。 The stent 1 formed by the yarn 2 made of glass transition temperature Tg is lower polyglycolic acid (PGA), so is sharply shape recovery by body temperature by inserting into a blood vessel, it must be immediately enlarged later attached to the vessel it is useful when applied to such, further, since it is possible to rapidly shape recovery by body temperature without heating, thereby facilitating the heating control for the stent 1 shape recovery.

上述した脈管用ステント1は、中途部に折り曲げ部を形成するようにジグザグに折り曲げた1本の糸2を螺旋状に巻回して筒状のステント本体3を形成するようにしているが、中途部に折り曲げ部を形成するようにジグザグに折り曲げた1本の糸をリング状に形成し、このリング状に巻回した複数の糸21を、図11に示すように、軸方向に並列配置して筒状のステント本体23を形成するようにしたものであってもよい。 Vascular stent 1 described above, but so as to form a cylindrical stent body 3 the thread 2 of the one that zigzag wound spirally so as to form a bent portion in the middle portion, middle a single yarn zigzag to form a bent portion in section is formed in a ring shape, a plurality of yarns 21 wound on the ring-shaped, as shown in FIG. 11, arranged in parallel in the axial direction may be such that so as to form a cylindrical stent body 23 Te.

このステント本体23も、並列配置された各糸21の折り曲げ部24の互いに頂点を接触させた部分が接合されることにより、確実に筒状の形状を保持した状態に維持される。 The stent body 23, by a portion contacting the apexes each other of the bent portion 24 of the yarn 21 arranged in parallel are joined, it is maintained in a state holding the reliably cylindrical shape.

このように形成されたステント本体23を用いて形成されたステント1も、前述したステント1と同様に、軸状の型枠101に装着され、糸21を構成する生体吸収性ポリマーのガラス転移温度Tg以上の温度であって融点Tm以下の温度に加熱され、生体の脈管内に留置されたときの大きさに形状記憶され、その後、縮径用型枠201等を用いて生体の脈管に容易に挿入し得るに足る太さに縮径される。 The stent 1 formed in this way by using the formed stent body 23, similarly to the stent 1 described above, is mounted on the shaft-like mold frame 101, a glass transition temperature of the bioabsorbable polymer constituting the yarn 21 a temperature higher than Tg is heated to a temperature below the melting point Tm, is shape memory to a size when it is placed in the vessel of a living body, then the vessel of a living body using a reduced diameter contouring formwork 201, etc. It is reduced in diameter to the thickness enough to be easily inserted.

本発明に係るステント1は、糸2をジグザグに折り曲げながら筒状に巻回して形成されればよく、その巻回の方法として種々の方法を採用することができる。 The stent 1 according to the present invention, the yarn 2 may be made of wound into a cylindrical shape while zigzag, it is possible to adopt various methods as the method of winding.

ところで、従来提案されているステントに用いられている形状記憶合金の形状記憶回復力は概ね数十Kg/mm 2であるのに対し、本発明に係るステントを形成する糸を構成する生体吸収性ポリマーの形状記憶回復力は概ね数Kg/mm 2である。 Incidentally, while the shape memory recovery force of the shape memory alloy used in the stent proposed in the prior art is generally several tens Kg / mm 2, bioabsorbable constituting the yarns forming the stent according to the present invention shape memory resilience of the polymer is generally a few Kg / mm 2. このように、形状記憶機能を有する生体吸収性ポリマーは、形状記憶合金に比し形状記憶回復力が極めて小さい。 Thus, the bioresorbable polymer having shape memory function, the shape memory recovery force than the shape memory alloy is extremely small. さらに、形状記憶機能を有する生体吸収性ポリマーが形状記憶された状態に復帰する速度も、形状記憶合金の10倍以上とすることができる。 Furthermore, the rate of return to the state bioabsorbable polymer having shape memory function is shape memory can also be at least 10 times of the shape memory alloy. このような特性を有する形状記憶機能を有する生体吸収性ポリマー製の糸を用いて形成されたステントは、形状記憶合金を用いたステントに比し10倍以上の時間で形状記憶された状態に復帰させることができる。 The stent formed using the yarn made of a bioabsorbable polymer having shape memory function having such properties are restored to the shape memory state by 10 times longer than the stent using a shape memory alloy it can be.

このように、形状記憶回復力が小さく、且つ形状記憶された状態に復帰する時間が長い特性を有する生体吸収性ポリマー製の糸を用いて形成されたステントは、縮径された状態で血管内に挿入された後拡径される場合にも、急峻に拡径されることがなくほぼ均等に拡径し、しかも血管の内壁に過度の力学的な圧力を与えることもないので、血管に損傷を与えるようなことを確実に防止することができる。 Thus, small shape memory resilient, and shape the time to return to the stored state is formed by using a yarn made of a bioabsorbable polymer having a long characteristic stent, the blood vessel diameter state even if it is expanded after insertion into the steeply increased in diameter to it is not substantially uniformly expanded, and since nor provide mechanical pressure inside wall to excessive blood vessel damage to the vessel it is possible to reliably prevent the like give.

また、形状記憶機能を有する生体吸収性ポリマー製の糸は、形状記憶合金等の金属製の線状体に比し摩擦係数も小さいので、ステントが拡径する途中で血管の内壁の一部に当接したとしても、血管の内壁面を滑って均等に拡径し、血管に損傷を与えることを防止できる。 Also, yarn made of bioabsorbable polymer having shape memory function, the friction coefficient relative to the linear body made of a metal such as shape memory alloy is small, a part of the inner wall of the blood vessel in the course of stent diameter even in contact, sliding an inner wall surface of the vessel evenly expanded, it is possible to prevent the damage to the vessel.

ところで、一般に、血管の再狭窄を防止することを目的に使用されるステントは、血管内に留置した後数週間乃至数ヶ月間はその形態を保持するものの、装着後数ヶ月以内に消失することが望ましいことが臨床経験上明らかにされている。 Incidentally, in general, stents are used for the purpose of preventing restenosis of blood vessels, for weeks to months after placement in the blood vessel although retains its form, it disappears within a few months after installation has been revealed on the clinical experience may be desirable.

本発明に係るステントは、生体吸収性ポリマー製の糸により形成されているので、生体の血管に留置した後、数週間ないし数カ月間はその形態を保持するものの、血管内への留置後数ヶ月前後で生体組織に吸収させて消失させることができる。 The stent according to the present invention, because it is formed by the thread made of bioabsorbable polymer, after placement in the blood vessel of a living body, is between a few weeks to several months but retains its form, several months after placement into a blood vessel it can be eliminated by absorbing the body tissue before and after.

ポリマー繊維製の糸には、各種の薬剤を混入させることが可能である。 The yarn made of polymer fibers, it is possible to incorporate various agents. そこで、繊維を紡糸する時点でX線不透過剤を混入することにより、血管に留置された脈管用ステントの状態をX線によって観察することができ、ヘパリン、ウロキナーゼやt−PAなど血栓溶解剤や抗血栓剤を混入しておくことにより、血管の血栓性の再狭窄を防止することができ、さらに薬剤を持続して投与でき、β線を放射する放射線源、γ線を放射する放射線源を混入若しくは被着することにより、生体内の患部に集中した放射線の照射を容易に行うことが可能となり、しかも持続して放射線の照射が可能となる。 Therefore, by incorporating X-ray opaque agent at the time of spinning the fibers, it is possible to observe the state of the stent for vessel that is placed in the blood vessel by X-ray, heparin, etc. urokinase or t-PA thrombolytic agent by previously mixing and antithrombotic agent, it is possible to prevent the restenosis of thrombotic vascular, be administered by further sustained drug, a radiation source that emits β-ray radiation source that emits γ-rays by mixing or depositing, it is possible to easily perform the irradiation of the radiation concentrated on the diseased part of the body, the irradiation of radiation is possible yet sustained manner.

さらに、糸に新生内膜の加増殖を抑制することを目的とする薬剤を混入することにより、持続して新生内膜の加増殖を抑制することを目的とする薬剤の投与が可能となる。 Furthermore, by incorporation of the drug for the purpose of suppressing the pressure neointimal proliferation in the yarn, thereby enabling the administration of a medicament intended to inhibit the pressurized neointimal proliferation persisted.

なお、X線不透過剤や、血栓溶解剤や抗血栓剤、若しくは新生内膜の加増殖を抑制することを目的とする薬剤、放射線源は、紡糸した後、この糸の表面に塗布するなどして被着するようにしてもよい。 Incidentally, or X-ray opaque agent, thrombolytic agent or an antithrombotic agent, or agents for the purpose of suppressing the pressure neointimal proliferation, radiation source, after spinning, etc. is applied to the surface of the yarn it may be deposited in.

本発明に係るステント1は、形状記憶機能を有する生体吸収性ポリマーからなる糸を互いに重なり合うことなく筒状に巻回して形成されているので、図12に示すように、長手方向に容易に撓み変形することができ、屈曲した血管301に対し追随性良く挿入することができる。 The stent 1 according to the present invention, because it is formed by winding in a cylindrical shape without overlapping yarns made of bioabsorbable polymer having shape memory function with each other, as shown in FIG. 12, easily bending the longitudinal direction it can deform, it is possible to follow good insertion to the blood vessel 301 that is bent. 特に、中途部に折り曲げ部を設けた糸を用いて形成したステント1は、長手方向に極めて容易に変形でき、屈曲した血管301に対し一層追随性良く挿入することができる。 In particular, the stent 1 formed by using the yarn having a bent portion in the middle part can very easily deformed in the longitudinal direction, can be inserted more followability well to vessel 301 bent.

また、本発明に係るステント1は、糸2が重なり合う部分を生じさせることなく形成され、この糸2の折り曲げ部4を変位部として形状記憶された状態に変位するので、糸の2の重なりによる抵抗を受けることなく円滑な形状回復を行うことができる。 Further, the stent 1 according to the present invention is formed without causing portions yarn 2 overlap, so displacing the bent portion 4 of the yarn 2 to the shape memory state as a displacement unit, by the overlap of two yarns resistance can be carried out in a smooth shape recovery without receiving.

さらに、本発明に係るステント1は、糸2が重なり合うことなく巻回されて形成されてなるので、重なり目がない形状となり、血管壁に与える損傷も少なくすることができる。 Furthermore, the stent 1 according to the present invention, since being formed by winding without yarn 2 overlap, becomes overlap a weakness shape, can also damage reduced to give the vessel wall.

図1は、本発明に係る脈管用ステントを示す平面図である。 Figure 1 is a plan view showing a vascular stent according to the present invention. 図2は、本発明に係るステントを構成する糸を示す斜視図である。 Figure 2 is a perspective view showing a yarn constituting the stent according to the present invention. 図3は、本発明に係るステントを構成する糸の他の例を示す斜視図である。 Figure 3 is a perspective view showing another example of a yarn constituting the stent according to the present invention. 図4は、ステント本体を構成する糸の折り曲げ状態を示す平面図である。 Figure 4 is a plan view showing a folded state of the yarn constituting the stent body. 図5は、ステント本体の一部を拡大して示す平面図である。 Figure 5 is a plan view showing an enlarged portion of the stent body. 図6は、脈管用ステントに形状記憶を与える状態を示す斜視図である。 Figure 6 is a perspective view showing a state that gives shape memory stent for vascular. 図7は、拡径された状態に形状記憶された脈管用ステントを縮径する状態を示す斜視図である。 Figure 7 is a perspective view showing a state of reduced diameter and is shape memory in the expanded state the vascular stent. 図8は、脈管用ステントが縮径されたときの糸の折り曲げ状態を示す平面図である。 Figure 8 is a plan view showing a folded state of the yarn when the stent for vessel is contracted. 図9は、縮径された状態を示す脈管用ステントの平面図である。 Figure 9 is a plan view of a stent for vascular showing the reduced diameter state. 図10は、本発明に係る脈管用ステントの温度特性を示す特性図である。 Figure 10 is a characteristic diagram showing temperature characteristics of the vascular stent according to the present invention. 図11は、本発明に係る脈管用ステントの他の例を示す斜視図である。 Figure 11 is a perspective view showing another example of a vascular stent according to the present invention. 図12は、本発明に係る脈管用ステントを血管に挿入する状態を示す側面図である。 Figure 12 is a vascular stent according to the present invention is a side view showing a state of inserting into a blood vessel.

符号の説明 DESCRIPTION OF SYMBOLS

1 脈管用ステント、2 糸、3 ステント本体、4 折り曲げ部 1 vascular stents, 2 yarn, 3 stent body 4 bent portion

Claims (5)

  1. 生体の脈管内に装着された後、一定期間経過後に上記生体内で消失する形状記憶特性を有する生体吸収性ポリマーからなる糸であって、ジグザグ状に折り曲げられ上記ジグザグ状の形状が多段となるように巻回され筒状をなす脈管ステントを構成するにおいて After being attached to the vessel of a living body, a yarn made of a bioabsorbable polymer having a shape memory characteristic to disappear in the living body, the above zigzag shape bent in zigzag the multistage after a certain period of time in the yarn constituting the vascular stent forming a wound cylindrical shapes,
    上記糸は、ガラス転移温度Tgが70℃以下であって、温度の制御による形状記憶機能を有する生体吸収性ポリマーを溶融紡糸し延伸された一連に連続したモノフィラメントからなり、 The thread is equal to or less than 70 ° C. The glass transition temperature Tg is comprised of bioabsorbable polymers with a shape memory function according to the control of temperature from melt-spun drawn series in continuous monofilaments,
    上記糸は、直線部と折り曲げ部が順次連続するジグザグ状に折り曲げられ、上記折り曲げ部を変位部として開閉されるとともに、上記折り曲げ部が第1の角度に開かれた状態で形状記憶されてなり、 The thread is folded in a zigzag shape portion bent and straight portions successive, while being open and close the bent portion as the displacement portion, the bent portion is being shape memory in a state of being open to the first angle ,
    上記折り曲げ部を外力により上記第1の角度より小さい第2の角度に折り曲げて収縮した状態から上記第1の角度に変位された開かれた状態への変化が温度の制御により行われることを特徴とする脈管ステント用糸。 Characterized in that a change in the bent portion to said first angle is smaller than the second bending angle contracted displaced from the state with the first angle with the held state by the external force is performed by control of the temperature vascular stent for the yarn to be.
  2. 上記糸は、直径が50〜300μmの延伸モノフィラメントである請求項1記載の脈管ステント用糸。 The thread is vascular stents yarn according to claim 1, wherein a stretched monofilament of 50~300μm in diameter.
  3. 上記糸は、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグリコール酸とポリ乳酸の共重合体、ポリジオキサノン、トリメチレンカーボネートとグリコリドとの共重合体、ポリグリコール酸又はポリ乳酸とε‐カプロラクトンとの共重合体の1 又は 2以上の生体吸収性ポリマーにより形成されていることを特徴とする請求項1記載の脈管ステント用糸。 The thread is polylactic acid (PLLA), polyglycolic acid (PGA), a copolymer of polyglycolic acid and polylactic acid, polydioxanone, copolymer of trimethylene carbonate and glycolide, polyglycolic acid or polylactic acid ε- vascular stents yarn according to claim 1, characterized in that it is formed by one or more bioabsorbable polymers copolymer of caprolactone.
  4. 上記糸は、X線不透過剤、抗血栓剤、その他新生内膜の加増殖を抑制することを目的とする薬剤、β線を放射する放射線源、γ線を放射する放射線源のうちの1又は2以上が混入された高分子ポリマーにより形成されている請求項1記載の脈管ステント用糸。 The thread is, X-rays opacifying agent, antithrombotic agents, among other agents for the purpose of suppressing the pressure neointimal proliferation, radiation source emits β-ray radiation source that emits γ-rays 1 or vascular stent yarn according to claim 1, wherein is formed by 2 or more are mixed high polymers.
  5. 上記糸の表面に、X線不透過剤、抗血栓剤、その他新生内膜の加増殖を抑制することを目的とする薬剤、β線を放射する放射線源、γ線を放射する放射線源のうちの1又は2以上が被着されている請求項1記載の脈管ステント用糸。 The surface of the yarn, X-rays opacifying agent, antithrombotic agents, agents for the purpose of suppressing the pressure growth of other neointimal radiation source that emits β rays, among the radiation source emits γ-rays vascular stents yarn according to claim 1, wherein one or more are deposited in.
JP2008234591A 1998-09-08 2008-09-12 Stent yarn for vascular Active JP4889698B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25427898 1998-09-08
JP1998254278 1998-09-08
JP2008234591A JP4889698B2 (en) 1998-09-08 2008-09-12 Stent yarn for vascular

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234591A JP4889698B2 (en) 1998-09-08 2008-09-12 Stent yarn for vascular

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000568542 Division 1999-09-08

Publications (2)

Publication Number Publication Date
JP2009000553A true JP2009000553A (en) 2009-01-08
JP4889698B2 true JP4889698B2 (en) 2012-03-07

Family

ID=17262754

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000568542A Active JP4889151B2 (en) 1998-09-08 1999-09-08 Stent for vascular
JP2008234591A Active JP4889698B2 (en) 1998-09-08 2008-09-12 Stent yarn for vascular
JP2008234592A Active JP4889699B2 (en) 1998-09-08 2008-09-12 Stent for vascular

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000568542A Active JP4889151B2 (en) 1998-09-08 1999-09-08 Stent for vascular

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008234592A Active JP4889699B2 (en) 1998-09-08 2008-09-12 Stent for vascular

Country Status (8)

Country Link
US (4) US6500204B1 (en)
EP (4) EP2138137A3 (en)
JP (3) JP4889151B2 (en)
KR (1) KR100617375B1 (en)
CN (1) CN1271979C (en)
CA (1) CA2308434C (en)
ES (2) ES2527282T3 (en)
WO (1) WO2000013737A1 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
KR100617375B1 (en) * 1998-09-08 2006-08-29 가부시키가이샤 이가키 이료 세케이 Stent for vessels
US8460367B2 (en) 2000-03-15 2013-06-11 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
WO2001095834A1 (en) * 2000-06-13 2001-12-20 Scimed Life Systems, Inc. Disintegrating stent and method of making same
JP2002200175A (en) * 2000-12-27 2002-07-16 Gunze Ltd Biological duct stent
JP4707227B2 (en) * 2000-12-27 2011-06-22 グンゼ株式会社 Biological duct stent
US6933421B2 (en) 2001-07-24 2005-08-23 Kimberly-Clark Worldwide Inc. Methods of making disposable products having humidity activated materials with shape-memory
US6627673B2 (en) 2001-07-24 2003-09-30 Kimberly-Clark Worldwide, Inc. Methods of making humidity activated materials having shape-memory
US6664436B2 (en) 2001-07-24 2003-12-16 Kimberly-Clark Worldwide, Inc. Disposable products having humidity activated materials with shape-memory
US7008446B1 (en) * 2001-08-17 2006-03-07 James Peter Amis Thermally pliable and carbon fiber stents
KR101049871B1 (en) 2002-09-25 2011-07-15 가부시키가이샤 교토 이료 세케이 Stent using a room and a room for vascular stents
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US7794494B2 (en) * 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
CA2526276C (en) * 2003-05-23 2011-05-03 Kabushikikaisha Igaki Iryo Sekkei Stent supplying device
DE10357742A1 (en) * 2003-06-13 2005-03-10 Mnemoscience Gmbh Stent of shape-memory polymer is used as vascular e.g. iliac, renal, carotid, femoral-poplietal or coronary stent or design non-vascular stent for gastrointestinal tract, trachea, esophagus, bile duct, ureter, urethra or Fallopian tube
WO2004110515A1 (en) * 2003-06-13 2004-12-23 Mnemoscience Gmbh Biodegradable stents
WO2004110315A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
US8999364B2 (en) 2004-06-15 2015-04-07 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
EP1958657A1 (en) * 2003-07-18 2008-08-20 Boston Scientific Limited Medical devices
US8088156B2 (en) * 2003-10-07 2012-01-03 Cordis Corporation Graft material attachment device and method
EP1679095A4 (en) * 2003-10-15 2011-08-03 Igaki Iryo Sekkei Kk Vessel stent feeder
US7232461B2 (en) * 2003-10-29 2007-06-19 Cordis Neurovascular, Inc. Neck covering device for an aneurysm
US20050107867A1 (en) * 2003-11-17 2005-05-19 Taheri Syde A. Temporary absorbable venous occlusive stent and superficial vein treatment method
US7377939B2 (en) * 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
US7731740B2 (en) * 2004-04-02 2010-06-08 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
US20140107761A1 (en) 2004-07-26 2014-04-17 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US20060020330A1 (en) 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US20060052822A1 (en) * 2004-08-31 2006-03-09 Mirizzi Michael S Apparatus and material composition for permanent occlusion of a hollow anatomical structure
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US7875233B2 (en) * 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
CA2587960C (en) 2004-11-12 2013-05-21 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US7815661B2 (en) 2005-01-25 2010-10-19 Tyco Healthcare Group, Lp Method and apparatus for implanting an occlusive structure
US9056157B2 (en) * 2005-03-24 2015-06-16 Medtronic Vascular, Inc. Hybrid biodegradable/non-biodegradable stent, delivery system and method of treating a vascular condition
US20080228186A1 (en) * 2005-04-01 2008-09-18 The Regents Of The University Of Colorado Graft Fixation Device
CA2603081C (en) * 2005-04-04 2013-09-03 Sinexus, Inc. Device and methods for treating paranasal sinus conditions
JP5141254B2 (en) * 2005-10-06 2013-02-13 株式会社カネカ Indwelling stent
DE102005050386A1 (en) 2005-10-20 2007-04-26 Campus Gmbh & Co. Kg Temporarily in a body cavity vascular stent ablegbarer
US20070162110A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Bioabsorbable drug delivery devices
US20070158880A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast tubes
US20070160672A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast films
US20090076594A1 (en) * 2006-03-14 2009-03-19 Patrick Sabaria Method of monitoring positioning of polymer stents
US9017361B2 (en) 2006-04-20 2015-04-28 Covidien Lp Occlusive implant and methods for hollow anatomical structure
US8747878B2 (en) * 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
WO2007134239A3 (en) * 2006-05-12 2008-01-10 Cordis Corp Balloon expandable bioabsorbable drug eluting flexible stent
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7731890B2 (en) * 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
US7740791B2 (en) * 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US8099849B2 (en) * 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US20080236601A1 (en) * 2007-03-28 2008-10-02 Medshape Solutions, Inc. Manufacturing shape memory polymers based on deformability peak of polymer network
KR100824074B1 (en) 2007-04-24 2008-04-21 주식회사 엠아이텍 Stent
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US20100298926A1 (en) * 2007-10-16 2010-11-25 Kabushikikaisha Kyoto Iryo Sekkei Cylindrically-shaped element for luminal stent, and luminal stent
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
JPWO2009072172A1 (en) 2007-12-03 2011-04-21 株式会社グッドマン Stent and a method of manufacturing the same
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US20090157158A1 (en) * 2007-12-13 2009-06-18 Vitezslav Ondracek Self-expanding biodegradable stent
US8585731B2 (en) * 2007-12-18 2013-11-19 Intersect Ent, Inc. Self-expanding devices and methods therefor
US7972373B2 (en) * 2007-12-19 2011-07-05 Advanced Technologies And Regenerative Medicine, Llc Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
EP2234546A1 (en) * 2007-12-20 2010-10-06 Boston Scientific Scimed, Inc. Polymeric slotted tube coils
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
WO2009157164A1 (en) * 2008-06-27 2009-12-30 株式会社 京都医療設計 Vascular stent
US8069858B2 (en) * 2008-07-24 2011-12-06 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US20100170521A1 (en) * 2008-07-24 2010-07-08 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US8430933B2 (en) * 2008-07-24 2013-04-30 MedShape Inc. Method and apparatus for deploying a shape memory polymer
US8763222B2 (en) 2008-08-01 2014-07-01 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
US8012402B2 (en) 2008-08-04 2011-09-06 Abbott Cardiovascular Systems Inc. Tube expansion process for semicrystalline polymers to maximize fracture toughness
US20100244304A1 (en) * 2009-03-31 2010-09-30 Yunbing Wang Stents fabricated from a sheet with increased strength, modulus and fracture toughness
EP3103502A1 (en) * 2009-05-15 2016-12-14 Intersect ENT, Inc. Expandable devices and methods therefor
US8992601B2 (en) * 2009-05-20 2015-03-31 480 Biomedical, Inc. Medical implants
US9216100B2 (en) * 2009-05-30 2015-12-22 Deutsche Institute für Textil-und Faserforschung Denkendorf Stiftung des öffentlichen Rechts Medical device
EP2440162A1 (en) * 2009-06-08 2012-04-18 Boston Scientific Scimed, Inc. Crosslinked bioabsorbable medical devices
US8435437B2 (en) * 2009-09-04 2013-05-07 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
US20110066222A1 (en) * 2009-09-11 2011-03-17 Yunbing Wang Polymeric Stent and Method of Making Same
US8501079B2 (en) * 2009-09-14 2013-08-06 Abbott Cardiovascular Systems Inc. Controlling crystalline morphology of a bioabsorbable stent
US9345602B2 (en) * 2010-09-23 2016-05-24 Abbott Cardiovascular Systems Inc. Processes for making crush recoverable polymer scaffolds
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8370120B2 (en) 2010-04-30 2013-02-05 Abbott Cardiovascular Systems Inc. Polymeric stents and method of manufacturing same
CA2804261A1 (en) * 2010-07-20 2012-01-26 Kyoto Medical Planning Co., Ltd. Stent covering member and stent apparatus
US20130297002A1 (en) 2010-07-20 2013-11-07 Kyoto Medical Planning Co., Ltd. Stent apparatus
US8381742B2 (en) 2011-01-24 2013-02-26 Leonard G. Lorch Dental floss
JP5650013B2 (en) 2011-02-28 2015-01-07 株式会社 京都医療設計 Stent device
US9427493B2 (en) 2011-03-07 2016-08-30 The Regents Of The University Of Colorado Shape memory polymer intraocular lenses
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US8968387B2 (en) 2012-07-23 2015-03-03 Abbott Cardiovascular Systems Inc. Shape memory bioresorbable polymer peripheral scaffolds
WO2014165754A1 (en) * 2013-04-05 2014-10-09 Sanford Health Anchoring guidewire and methods for use
US20150137416A1 (en) * 2013-11-14 2015-05-21 The Board Of Trustees Of The University Of Illinois Advanced Thermal Processing Techniques of "Sacrificial" Polylactic Acid
CN104667356A (en) * 2013-11-27 2015-06-03 山东瑞安泰医疗技术有限公司 In-vivo biodegradable shape memory macromolecule coronary stent system and manufacturing method thereof
US9364588B2 (en) 2014-02-04 2016-06-14 Abbott Cardiovascular Systems Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating
US20170266026A1 (en) * 2014-12-08 2017-09-21 Suntech Co., Ltd. Biodegradable stent and shape memory expanding method therefor

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026844B2 (en) * 1985-02-21 1990-02-14 Teijin Ltd
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
JP2561853B2 (en) * 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Compacts and methods of use thereof with a shape memory
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
EP0737453A3 (en) * 1990-05-18 1997-02-05 Richard S Stack Intraluminal stent
US5160341A (en) * 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
EP0528039B1 (en) * 1991-03-08 1999-07-07 IGAKI, Keiji Stent for vessel, structure of holding said stent, and device for mounting said stent
US5232648A (en) * 1991-07-19 1993-08-03 United States Surgical Corporation Bioabsorbable melt spun fiber based on glycolide-containing copolymer
WO1993006792A1 (en) * 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
JP2961287B2 (en) * 1991-10-18 1999-10-12 グンゼ株式会社 Biological conduit dilator, their preparation and stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
DE69318614T2 (en) * 1992-03-25 1998-11-05 Cook Inc Means for widening of blood vessels
JP3739411B2 (en) * 1992-09-08 2006-01-25 敬二 伊垣 Vascular Stent manufacturing method thereof, and vascular Stent device
US5288516A (en) * 1993-02-11 1994-02-22 E. I. Du Pont De Nemours And Company Process of producing bioabsorbable filaments
JP3583801B2 (en) * 1993-03-03 2004-11-04 ボストン サイエンティフィック リミテッドBoston Scientific Limited Stent and graft of the luminal cavity
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5716410A (en) * 1993-04-30 1998-02-10 Scimed Life Systems, Inc. Temporary stent and method of use
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
KR970004845Y1 (en) * 1993-09-27 1997-05-21 이재용 Stent for expanding a lumen
US5714230A (en) * 1993-11-18 1998-02-03 Mitsui Toatsu Chemicals, Inc. Degradable aliphatic polyester formed products
DE69527141T2 (en) * 1994-04-29 2002-11-07 Scimed Life Systems Inc Stent with collagen
US5554181A (en) * 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5575816A (en) * 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5817152A (en) 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
JPH08196643A (en) * 1995-01-24 1996-08-06 Jms Co Ltd Cavity organ treatment apparatus
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
WO1997014375A1 (en) * 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
DE19641335A1 (en) * 1996-10-08 1998-04-09 Inst Textil & Faserforschung Triblock terpolymer, its use for surgical sutures and methods for making
US5871437A (en) * 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
KR100617375B1 (en) * 1998-09-08 2006-08-29 가부시키가이샤 이가키 이료 세케이 Stent for vessels

Also Published As

Publication number Publication date Type
JP2009000553A (en) 2009-01-08 application
US20040215330A1 (en) 2004-10-28 application
EP2138135A3 (en) 2014-05-07 application
CN1271979C (en) 2006-08-30 grant
KR20010031832A (en) 2001-04-16 application
EP1033145A1 (en) 2000-09-06 application
US7335226B2 (en) 2008-02-26 grant
JP2008307405A (en) 2008-12-25 application
US20030060874A1 (en) 2003-03-27 application
ES2527282T3 (en) 2015-01-22 grant
US20030055488A1 (en) 2003-03-20 application
CA2308434A1 (en) 2000-03-16 application
WO2000013737A1 (en) 2000-03-16 application
JP4889151B2 (en) 2012-03-07 grant
EP2138135B1 (en) 2016-12-21 grant
EP1033145A4 (en) 2009-07-22 application
CN1277560A (en) 2000-12-20 application
US7066952B2 (en) 2006-06-27 grant
US7331988B2 (en) 2008-02-19 grant
EP2138135A2 (en) 2009-12-30 application
EP2138136A2 (en) 2009-12-30 application
JP4889699B2 (en) 2012-03-07 grant
EP2138137A3 (en) 2013-06-12 application
JP2008296041A (en) 2008-12-11 application
CA2308434C (en) 2008-02-05 grant
EP2138137A2 (en) 2009-12-30 application
ES2620130T3 (en) 2017-06-27 grant
EP2138136A3 (en) 2014-05-28 application
KR100617375B1 (en) 2006-08-29 grant
US6500204B1 (en) 2002-12-31 grant
EP1033145B1 (en) 2014-12-17 grant

Similar Documents

Publication Publication Date Title
US5591222A (en) Method of manufacturing a device to dilate ducts in vivo
US6387124B1 (en) Biodegradable drug delivery vascular stent
US6200335B1 (en) Stent for vessel
US5947977A (en) Apparatus and polymeric endoluminal sealing
US5464450A (en) Biodegradable drug delivery vascular stent
US6932930B2 (en) Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US5551954A (en) Biodegradable drug delivery vascular stent
US20080177374A1 (en) Biodegradable endoprostheses and methods for their fabrication
US6997948B2 (en) Bioabsorbable self-expanding stent
US7761968B2 (en) Method of crimping a polymeric stent
US5213580A (en) Biodegradable polymeric endoluminal sealing process
US5899935A (en) Balloon expandable braided stent with restraint
EP0604022A1 (en) Multilayered biodegradable stent and method for its manufacture
US5527337A (en) Bioabsorbable stent and method of making the same
US20050137678A1 (en) Low profile resorbable stent
US20080147165A1 (en) Stent fabricated from polymer composite toughened by a dispersed phase
US20050149172A1 (en) Minimal injury resorbable stent
US5670161A (en) Biodegradable stent
US20070290412A1 (en) Fabricating a stent with selected properties in the radial and axial directions
US20080147164A1 (en) Optimizing fracture toughness of polymeric stent
US20090146348A1 (en) Method of fabrication a stent from blow molded tubing
US5733327A (en) Stent for liberating drug
US5603722A (en) Intravascular stent
US20040138738A1 (en) Disintegrating stent and method of making same
US6991647B2 (en) Bioresorbable stent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100624

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250