JP4885331B2 - Solar cell element connection method and correction method, and devices thereof - Google Patents

Solar cell element connection method and correction method, and devices thereof Download PDF

Info

Publication number
JP4885331B2
JP4885331B2 JP2011509363A JP2011509363A JP4885331B2 JP 4885331 B2 JP4885331 B2 JP 4885331B2 JP 2011509363 A JP2011509363 A JP 2011509363A JP 2011509363 A JP2011509363 A JP 2011509363A JP 4885331 B2 JP4885331 B2 JP 4885331B2
Authority
JP
Japan
Prior art keywords
solar cell
cell element
lead wire
tab lead
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011509363A
Other languages
Japanese (ja)
Other versions
JPWO2010119950A1 (en
Inventor
文夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO. & ENGINEERING CO., LTD.
Original Assignee
ECO. & ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO. & ENGINEERING CO., LTD. filed Critical ECO. & ENGINEERING CO., LTD.
Priority to JP2011509363A priority Critical patent/JP4885331B2/en
Application granted granted Critical
Publication of JP4885331B2 publication Critical patent/JP4885331B2/en
Publication of JPWO2010119950A1 publication Critical patent/JPWO2010119950A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、所謂裏面電極型又は両面電極型の太陽電池素子をタブリード線により接続させる太陽電池素子の接続方法及び矯正方法並びに接続装置に係り、特に、タブリード線が半田付けにより溶着された薄い太陽電池素子の反りを防止し、又はその反りを解消することができる太陽電池素子の接続方法及び矯正方法並びにこれらの装置に関する。   The present invention relates to a solar cell element connection method, a correction method, and a connection device for connecting so-called back electrode type or double-sided electrode type solar cell elements with tab lead wires, and in particular, a thin sun in which tab lead wires are welded by soldering. The present invention relates to a solar cell element connection method and correction method that can prevent or eliminate the warpage of a battery element, and an apparatus thereof.

太陽電池は、無尽蔵で環境汚染のないエネルギーとして存在する太陽光を直接電気エネルギーに変換する発電システムで、住宅用から大型発電分野へとその使用範囲を急速に拡大しつつある。   A solar cell is a power generation system that directly converts sunlight, which is inexhaustible and free from environmental pollution, into electrical energy, and is rapidly expanding its usage range from residential use to large-scale power generation.

特に住宅用や大型発電用の太陽電池の内、結晶系は、太陽電池素子の製造工程を経た後、複数の太陽電池素子をタブリード線によって電気的に接続してモジュールを形成する工程と、該モジュールを透明なカバー材と保護材との間に挟んでラミネートする工程を経て製造されている。また、各種の太陽電池の中で、特に非晶質シリコン系太陽電池や結晶シリコン系太陽電池等は、大面積で製造でき、製造コストも安価であることから、これまでに鋭意研究され、ここ数年の間にモジュール化形成並びにシステム化形成の生産技術の開発も一層促進され、3KW程度の家庭用小型発電装置から数百KWの大型発電装置が実用化されるまでに至っている。   In particular, among solar cells for residential use and large-scale power generation, the crystal system is a step of forming a module by electrically connecting a plurality of solar cell elements with tab lead wires after passing through the manufacturing process of the solar cell elements, It is manufactured through a process of laminating a module between a transparent cover material and a protective material. Among various types of solar cells, especially amorphous silicon solar cells and crystalline silicon solar cells can be manufactured in a large area and are inexpensive to manufacture. The development of production technology for modularization and systemization has been further promoted over several years, leading to the practical application of small power generators of about 3 KW to large power generators of several hundred KW.

一方、このような背景のもと、市場の需要増と相まって、市場からは大幅なコストダウンの要請もあり、その一つの手段として太陽電池を構成する素子基板の厚みがこれまでの200〜250ミクロンよりも薄手の150ミクロン程度にしたものが対象となり、また近い将来にはこれよりも極端に薄い100ミクロン以下を対象とする可能性もでてきている。
一方、タブリード線を表面側(受光面側)に溶着すると、このタブリード線が太陽光を遮ってしまい、発電効率が落ちるので、全ての電極を裏面側に設けるとともに、タブリード線を裏面のみに溶着する裏面電極型の太陽電池素子が実用化されつつある。
On the other hand, under such a background, coupled with an increase in market demand, there is a demand for a significant cost reduction from the market. As one means, the thickness of the element substrate constituting the solar cell is 200 to 250 so far. The target is about 150 microns, which is thinner than micron, and in the near future, there is a possibility that the target will be extremely thinner than 100 microns.
On the other hand, if the tab lead wire is welded to the front side (light-receiving surface side), this tab lead wire will block sunlight and power generation efficiency will drop, so all electrodes will be provided on the back side and the tab lead wire will be welded only on the back side. A back electrode type solar cell element is being put into practical use.

しかしながら、太陽電池素子を構成するシリコンとタブリード線内の銅の熱膨張率は、シリコンで2.4×10-6と小さいのに対し、銅で1.7×10-5と大きいため、薄手の太陽電池素子の裏面だけにタブリード線を溶着すれば、熱せられたタブリード線が冷却して大幅に収縮するのに対し、シリコンからなる太陽電池素子は冷却しても余り収縮しないので、室温まで冷却されると約156mm四方の太陽電池素子の端部が5〜6mm以上も浮き上がるほど反ることもある。また、両面電極型の場合でも、表裏のタブリード線を電極列上に配置する際のタブリード線のテンション差や溶着する際の温度差、或いは太陽電池素子自体の歪みにより反る場合が多い。However, since the thermal expansion coefficient of silicon constituting the solar cell element and copper in the tab lead wire is as small as 2.4 × 10 −6 for silicon and 1.7 × 10 −5 for copper, it is thin. If the tab lead wire is welded only on the back surface of the solar cell element, the heated tab lead wire cools and contracts significantly, whereas the solar cell element made of silicon does not shrink much even when cooled. When cooled, the end of the solar cell element about 156 mm square may be warped as it rises by 5 to 6 mm or more. Even in the case of the double-sided electrode type, there are many cases where warpage occurs due to a difference in tension between tab lead wires when the front and back tab lead wires are arranged on the electrode array, a temperature difference during welding, or distortion of the solar cell element itself.

この様に反った太陽電池素子は単に使用しにくいだけでなくマイクロクラックが発生して脆くなっており、特にこの太陽電池素子をガラス基板と封止部材の間に封止して太陽電池モジュールとする際に無理やり真っ直ぐに伸ばそうとすれば、割れや欠けが生じやすく、また、タブリード線が太陽電池素子から剥離することもある。これらの現象は発電実用時のヒートサイクル履歴によって助長される。封止される太陽電池素子のうち一枚でも割れ、欠けやタブリード線の剥離が生じると、太陽電池モジュール全体が駄目になってしまうので、この問題は切実である。   Such a warped solar cell element is not only difficult to use, but also microcracks are generated and become brittle. In particular, the solar cell element is sealed between a glass substrate and a sealing member to form a solar cell module. If it is forcibly extended straight, cracks and chips are likely to occur, and the tab lead wire may be peeled off from the solar cell element. These phenomena are facilitated by the heat cycle history during power generation practical use. If even one of the solar cell elements to be sealed is cracked, chipped, or stripped of the tab lead wire, the entire solar cell module becomes useless, so this problem is serious.

上記の欠点は、特許文献1〜3に記載されているように、半田付け後の太陽電池モジュールをタブリード線を押圧ベルト等で上から押圧した状態で冷却する方法により若干緩和される。しかしながら、この方法では太陽電池素子の反りはタブリード線内の銅箔の弾性変形として一時的に吸収されるに過ぎず、反りの解消が不十分であり、押圧ベルトが取り除かれると元に戻ってしまうことが多い。ある程度時間をかけて押圧すれば内部応力の一部が消え、太陽電池素子の反りが軽減できるが、押圧ベルトで押圧しながら長時間冷却しようとすれば非常に長いベルトが必要になり、その分移動手段も大型化してしまう。
また、この方法では、タブリード線の溶着及び冷却の際に、タブリード線のみならず、押圧ベルトも同時に加熱、冷却することになるため、熱効率が悪く、加熱手段や冷却手段も大型化せざるを得ない。
As described in Patent Documents 1 to 3, the above disadvantage is slightly alleviated by a method in which the solar cell module after soldering is cooled in a state where the tab lead wire is pressed from above with a pressing belt or the like. However, in this method, the warp of the solar cell element is only temporarily absorbed as the elastic deformation of the copper foil in the tab lead wire, and the warp is not sufficiently eliminated. It often ends up. If the pressure is applied for a certain period of time, some of the internal stress disappears, and the warpage of the solar cell element can be reduced. However, if you try to cool for a long time while pressing with the pressing belt, a very long belt is required. A moving means will also be enlarged.
Further, in this method, not only the tab lead wire but also the pressing belt is heated and cooled at the same time when the tab lead wire is welded and cooled, so that the thermal efficiency is poor and the heating means and the cooling means must be enlarged. I don't get it.

特開2004−273914号公報JP 2004-273914 A 特開2005−191259号公報JP 2005-191259 A 特開2005−191491号公報JP 2005-191491 A

本発明は上記従来技術の問題点を解消し、太陽電池素子の反りを解消する接続方法及び矯正方法並びにこれらの装置を提供することを目的とする。   An object of the present invention is to provide a connection method and a correction method that eliminate the above-described problems of the prior art and eliminate the warpage of solar cell elements, and devices thereof.

上記目的を達成するために、本発明の請求項1は、裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続方法であって、太陽電池素子の電極列に沿ってタブリード線を配置し、タブリード線及び太陽電池素子をタブリード線に付着する半田の溶融温度近辺まで加熱してから、太陽電池素子を逆反りさせ、次に、タブリード線を半田の溶融温度以上に加熱することにより太陽電池素子とタブリード線を半田付けし、半田付け後に半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の接続方法を内容とする。   In order to achieve the above object, claim 1 of the present invention is a solar cell element connection method in which a back electrode type or double sided electrode type solar cell element is connected by a tab lead wire in which solder is attached around a copper foil. The tab lead wire is arranged along the electrode array of the solar cell element, the tab lead wire and the solar cell element are heated to near the melting temperature of the solder attached to the tab lead wire, and then the solar cell element is warped backward, In addition, the solar cell element and the tab lead wire are soldered by heating the tab lead wire to a temperature equal to or higher than the melting temperature of the solder, and after the soldering, the reverse warping is performed at a temperature higher than the ductile brittle transition temperature of the solder and lower than the melting temperature of the solder. A solar cell element connection method characterized by holding the solar cell element.

本発明の請求項2は、裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続方法であって、太陽電池素子の電極列に沿ってタブリード線を配置し、タブリード線を半田の溶融温度以上に加熱することにより太陽電池素子とタブリード線を半田付けし、次に、この太陽電池素子を逆反りさせ、半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の接続方法を内容とする。   Claim 2 of the present invention is a method for connecting solar cell elements, in which a back electrode type or a double-sided electrode type solar cell element is connected by a tab lead wire having solder attached around a copper foil. The tab lead wires are arranged along the rows, and the tab lead wires are heated to a temperature higher than the melting temperature of the solder to solder the solar cell elements and the tab lead wires, and then the solar cell elements are reversely warped, and the ductile brittleness of the solder The solar cell element connection method is characterized in that the reversely warped solar cell element is held at a temperature higher than the transition temperature and lower than the melting temperature of the solder.

本発明の請求項3は、半田付け後の保持温度が半田の延性脆性遷移温度以上で100℃以下であることを特徴とする請求項1又は2に記載の太陽電池素子の接続方法を内容とする。   Claim 3 of the present invention includes the method for connecting solar cell elements according to claim 1 or 2, wherein the holding temperature after soldering is not less than the ductile brittle transition temperature of solder and not more than 100 ° C. To do.

本発明の請求項4は、半田付け後のタブリード線を、半田の延性脆性遷移温度以上になるよう誘導加熱により加熱すると共に、タブリード線の表面側に冷媒を接触させることにより100℃以下に冷却することにより、銅箔と太陽電池素子の間の半田の温度を銅箔の温度よりも高くすることを特徴とする請求項1又は2に記載の太陽電池素子の接続方法を内容とする。   According to a fourth aspect of the present invention, the tab lead wire after soldering is heated by induction heating so as to be equal to or higher than the ductile brittle transition temperature of the solder, and cooled to 100 ° C. or lower by bringing a refrigerant into contact with the surface side of the tab lead wire. By doing so, the temperature of the solder between copper foil and a solar cell element is made higher than the temperature of copper foil, The content of the connection method of the solar cell element of Claim 1 or 2 characterized by the above-mentioned.

本発明の請求項5は、太陽電池素子の逆反りは、太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、該太陽電池素子の中間部で表面側から押圧することにより行われることを特徴とする請求項1乃至4のいずれかに記載の太陽電池素子の接続方法を内容とする。   According to a fifth aspect of the present invention, the reverse warping of the solar cell element is performed by pressing the solar cell element from the back side at the front and rear edges of the electrode array in the arrangement direction, and pressing from the front side at the intermediate portion of the solar cell element. The content of the method for connecting solar cell elements according to claim 1, wherein the method is performed.

本発明の請求項6は、太陽電池素子の逆反りは、太陽電池素子を回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されることにより行われることを特徴とする請求項1乃至4のいずれかに記載の太陽電池素子の接続方法を内容とする。   A sixth aspect of the present invention is characterized in that the reverse warping of the solar cell element is performed by pressing or adsorbing the solar cell element on the surface of a rotating drum or a conveyor having a circular arc shape. The connection method of the solar cell element according to claim 1.

本発明の請求項7は、太陽電池素子の押圧は、回転ドラム、又は円弧状に膨出した形状のコンベアの進行方向後部においてタブリード線に進行方向後向きの張力を加えることにより行われることを特徴とする請求項6に記載の太陽電池素子の接続方法を内容とする。   The seventh aspect of the present invention is characterized in that the pressing of the solar cell element is performed by applying a backward tension in the traveling direction to the tab lead wire at the rear portion in the traveling direction of the rotating drum or the arc-shaped bulged conveyor. The method for connecting solar cell elements according to claim 6 is described.

本発明の請求項8は、太陽電池素子の吸着は、回転ドラム、又は円弧状に膨出した形状のコンベアの表面に設けられた真空吸着装置により行われることを特徴とする請求項6に記載の太陽電池素子の接続方法を内容とする。   According to an eighth aspect of the present invention, the solar cell element is adsorbed by a vacuum adsorption device provided on the surface of a rotating drum or a conveyor having an arcuate shape. The method of connecting the solar cell elements is as follows.

本発明の請求項9は、太陽電池素子及び/又は、タブリード線がキャリヤーフィルム上にマウントした状態で供給され、回転ドラム、又は円弧状に膨出した形状のコンベアの直前でキャリヤーフィルムが取り除かれることを特徴とする請求項1乃至8のいずれかに記載の太陽電池素子の接続方法を内容とする。   According to the ninth aspect of the present invention, the solar cell element and / or the tab lead wire is mounted in a state of being mounted on the carrier film, and the carrier film is removed immediately before the rotating drum or the conveyor having an arcuate shape. The method for connecting solar cell elements according to any one of claims 1 to 8, characterized in that.

本発明の請求項10は、逆反り前の加熱温度が100℃以上で半田の溶融温度未満あることを特徴とする請求項1記載の太陽電池素子の接続方法を内容とする。   According to a tenth aspect of the present invention, there is provided the method for connecting solar cell elements according to the first aspect, wherein the heating temperature before the reverse warp is 100 ° C. or higher and lower than the melting temperature of the solder.

本発明の請求項11は、銅箔の周りに半田を付着させたタブリード線で接続された裏面電極型又は両面電極型の太陽電池素子の反りを矯正する太陽電池素子の矯正方法であって、タブリード線で接続された太陽電池素子をタブリード線に付着する半田の溶融温度近辺まで加熱してから、太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、該太陽電池素子の中間部で表面側から押圧することにより、太陽電池素子を逆反りさせ、半田の延性脆性遷移温度以上で半田の溶融温度未満の温度まで冷却し、当該温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の矯正方法を内容とする。   Claim 11 of the present invention is a method of correcting a solar cell element for correcting warpage of a back electrode type or double sided electrode type solar cell element connected by a tab lead wire having solder attached around a copper foil, The solar cell elements connected by the tab lead wires are heated to near the melting temperature of the solder adhering to the tab lead wires, and then the solar cell elements are pressed from the back side at the front and back edges in the arrangement direction of the electrode rows, The solar cell element is reversely warped by pressing from the surface side at the middle part of the battery element, cooled to a temperature above the ductile brittle transition temperature of the solder and below the melting temperature of the solder, and the reversely warped sun at the temperature. The content of the method is a method of correcting a solar cell element characterized by holding the battery element.

本発明の請求項12は、逆反り前の加熱温度が100℃以上で半田の溶融温度未満あることを特徴とする請求項11記載の太陽電池素子の矯正方法を内容とする。   According to a twelfth aspect of the present invention, there is provided a method for correcting a solar cell element according to the eleventh aspect, wherein the heating temperature before reverse warping is 100 ° C. or higher and lower than the melting temperature of solder.

本発明の請求項13は、逆反り後の保持温度が半田の延性脆性遷移温度以上で100℃以下であることを特徴とする請求項11又は12に記載の太陽電池素子の矯正方法を内容とする。   Claim 13 of the present invention includes a method for correcting a solar cell element according to claim 11 or 12, wherein the holding temperature after reverse warping is not less than the ductile brittle transition temperature of the solder and not more than 100 ° C. To do.

本発明の請求項14は、逆反り後のタブリード線を、半田の延性脆性遷移温度以上になるよう誘導加熱により加熱すると共に、タブリード線の表面側に冷媒を接触させることにより100℃以下に冷却することにより、銅箔と太陽電池素子の間の半田の温度を銅箔の温度よりも高くすることを特徴とする請求項11又は12に記載の太陽電池素子の矯正方法を内容とする。   According to the fourteenth aspect of the present invention, the tab lead wire after the reverse warp is heated by induction heating so as to be equal to or higher than the ductile brittle transition temperature of the solder and cooled to 100 ° C. or lower by bringing a refrigerant into contact with the surface side of the tab lead wire. By doing so, the temperature of the solder between copper foil and a solar cell element is made higher than the temperature of copper foil, The content is the correction method of the solar cell element of Claim 11 or 12.

本発明の請求項15は、裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続装置であって、少なくともタブリード線の供給手段、太陽電池素子の供給手段、タブリード線を太陽電池素子に溶着する溶着手段、太陽電池素子を移動させる移動手段を有し、移動手段は、少なくともその一部に回転ドラム、又は円弧状に膨出した形状のコンベアを有するとともに、タブリード線が溶着された太陽電池素子を逆反りさせるために前記回転ドラム又は円弧状に膨出した形状のコンベアの表面に太陽電池素子を吸着する吸着手段、又は押圧する押圧手段を有し、逆反り状態の太陽電池素子を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段を有することを特徴とする太陽電池素子の接続装置を内容とする。   A fifteenth aspect of the present invention is a solar cell element connection device for connecting a back electrode type or double side electrode type solar cell element with a tab lead wire having solder attached around a copper foil, and at least the supply of the tab lead wire Means, a solar cell element supply means, a welding means for welding the tab lead wire to the solar cell element, and a moving means for moving the solar cell element. The moving means swells at least partially in a rotating drum or in an arc shape. An adsorbing means for adsorbing the solar cell element on the surface of the rotating drum or the conveyor bulged in an arc shape in order to reversely warp the solar cell element on which the tab lead wire is welded, or A pressing means for pressing, and a temperature holding means for holding the solar cell element in the reverse warped state at a temperature higher than the ductile brittle transition temperature and lower than the melting temperature of the solder. And contents connection device of the solar cell element characterized.

本発明の請求項16は、溶着手段によりタブリード線が太陽電池素子に溶着される際、太陽電池素子が回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されるように構成されることを特徴とする請求項15に記載の太陽電池素子の接続装置を内容とする。   According to a sixteenth aspect of the present invention, when the tab lead wire is welded to the solar cell element by the welding means, the solar cell element is pressed or adsorbed on the surface of the rotating drum or the conveyor having a bulged shape. It is comprised, The content is the connection apparatus of the solar cell element of Claim 15 characterized by the above-mentioned.

本発明の請求項17は、銅箔の周りに半田を付着させたタブリード線で接続された裏面電極型又は両面電極型の太陽電池素子の反りを矯正させるための太陽電池素子の矯正装置であって、少なくともタブリード線で接続された太陽電池素子の供給手段、太陽電池素子に溶着されたタブリード線を半田の溶融温度近辺まで加熱するための加熱手段、太陽電池素子を移動させる移動手段を有し、移動手段は、少なくともその一部に回転ドラム、又は円弧状に膨出した形状のコンベアを有するとともに、タブリード線が溶着された太陽電池素子を逆反りさせるために前記回転ドラム又は円弧状に膨出した形状のコンベアの表面に太陽電池素子を吸着する吸着手段、又は押圧する押圧手段を有し、逆反り状態の太陽電池素子を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段を有することを特徴とする太陽電池素子の矯正装置を内容とする。   Claim 17 of the present invention is a solar cell element correcting device for correcting warpage of a back electrode type or double sided electrode type solar cell element connected by a tab lead wire having solder attached around a copper foil. Supply means for solar cell elements connected by at least tab lead wires, heating means for heating the tab lead wires welded to the solar cell elements to near the melting temperature of the solder, and moving means for moving the solar cell elements The moving means has at least a part of a rotating drum or a conveyor having an arcuate shape, and the rotating means bulges in the rotating drum or arc to reversely warp the solar cell element to which the tab lead wire is welded. It has an adsorbing means for adsorbing the solar cell element on the surface of the conveyor having the shape taken out, or a pressing means for pressing, so that the solar cell element in the reverse warped state has a ductile brittle transition temperature or higher. The orthotic device of the solar cell element and having a temperature holding means for holding a temperature below the melting temperature of the field to the contents.

本発明の請求項18は、溶着手段によりタブリード線が太陽電池素子に溶着される際、太陽電池素子が回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されるように構成されることを特徴とする請求項17に記載の太陽電池素子の矯正装置を内容とする。   According to claim 18 of the present invention, when the tab lead wire is welded to the solar cell element by the welding means, the solar cell element is pressed or adsorbed on the surface of the rotating drum or the conveyor having a shape bulged in an arc shape. The solar cell element correction device according to claim 17, which is configured.

本発明による太陽電池素子の接続方法によれば、太陽電池素子を逆反り、即ち裏面電極型の場合は電極列が設けられた側の面が外側になるように湾曲させ、両面電極型の場合は既に反っている方向とは逆の方向に湾曲させてから電極列の上にタブリード線を溶着するか、或いはタブリード線を溶着してから太陽電池素子を逆反りさせ、半田が塑性変形しやすく且つ溶融しない温度で逆反りさせた太陽電池素子を保持することにより、シリコンと銅の線膨張率の差の大半は太陽電池素子と銅箔の間に介在する半田(以下、介在半田と称することがある)の塑性変形により吸収され、タブリード線内の銅箔に内部応力は殆ど残らず、従って、太陽電池素子の反りは大幅に低減される。   According to the method for connecting solar cell elements according to the present invention, the solar cell element is reversely warped, that is, in the case of the back electrode type, it is curved so that the surface on the side where the electrode array is provided is outside, and in the case of the double electrode type Is bent in the direction opposite to the direction in which it is already warped, and then the tab lead wire is welded on the electrode array, or the solar cell element is warped in reverse after the tab lead wire is welded, and the solder is easily plastically deformed. In addition, by holding the solar cell element that is reversely warped at a temperature that does not melt, most of the difference in linear expansion coefficient between silicon and copper is solder that intervenes between the solar cell element and the copper foil (hereinafter referred to as intervening solder). And the internal stress is hardly left in the copper foil in the tab lead wire, and thus the warpage of the solar cell element is greatly reduced.

既にタブリード線が溶着され太陽電池素子の反りが生じている場合でも、一旦該太陽電池素子とタブリード線を熱することにより銅箔を熱膨張させてから太陽電池素子を逆反りさせ、半田が塑性変形しやすく且つ溶融しない温度で逆反りさせた太陽電池素子を保持すれば、シリコンと銅の線膨張率の差の大半は介在半田の塑性変形により吸収され、タブリード線内の銅箔に残った内部応力は概ね解消され、これにより、太陽電池素子の反りが矯正される。
なお、逆反り前に行う加熱温度はタブリード線内の銅箔が十分熱膨張し、一時的に反りが解消され、且つ半田が溶融しない温度であることが必要で、好ましくは100℃以上で半田の溶融温度未満である。
Even when the tab lead wire is already welded and the solar cell element is warped, the solar cell element and the tab lead wire are once heated to thermally expand the copper foil, and then the solar cell element is warped backward, and the solder is plastic. If a solar cell element that is easily deformed and reversely warped at a temperature that does not melt is held, most of the difference in linear expansion coefficient between silicon and copper is absorbed by the plastic deformation of the intervening solder and remains on the copper foil in the tab lead wire. The internal stress is generally eliminated, thereby correcting the warpage of the solar cell element.
The heating temperature to be performed before the reverse warp needs to be a temperature at which the copper foil in the tab lead wire is sufficiently thermally expanded so that the warp is temporarily eliminated and the solder does not melt, preferably at 100 ° C. or higher. Less than the melting temperature.

逆反り後の保持温度は、好ましくは半田の延性脆性遷移温度以上であり、この程度であると半田が塑性変形しやすく且つ銅箔が十分収縮し、太陽電池素子とタブリード線の間の剪断力が大きくなる。   The holding temperature after the reverse warp is preferably equal to or higher than the ductile brittle transition temperature of the solder, and if this is the case, the solder is easily plastically deformed and the copper foil is sufficiently contracted, and the shear force between the solar cell element and the tab lead wire Becomes larger.

タブリード線を、半田の延性脆性遷移温度以上になるよう誘導加熱により加熱すると共に、タブリード線の表面側に冷媒を接触させて100℃以下に冷却し、これにより介在半田の温度を銅箔の温度よりも高くすれば、半田は一層塑性変形しやすくなり、太陽電池素子の反りは一層解消されやすくなる。   The tab lead wire is heated by induction heating so that the temperature becomes equal to or higher than the ductile brittle transition temperature of the solder, and the coolant is brought into contact with the surface side of the tab lead wire to cool to 100 ° C. or less, thereby reducing the temperature of the intervening solder to that of the copper foil. If it is higher than this, the solder will be more easily plastically deformed, and the warpage of the solar cell element will be more easily eliminated.

太陽電池素子の逆反りは、太陽電池素子を電極列の配列方向前後側の端縁で裏面側(裏面電極型の場合はタブリード線側)から押圧するとともに、該太陽電池素子の中間部で表面側(裏面電極型の場合は素子側)から押圧する方法により、或いは太陽電池素子を回転ドラム、又は円弧状に膨出した形状のコンベアの表面に、裏面側(裏面電極型の場合はタブリード線側)を上に向けた状態で押圧又は吸着する方法により行うことができる。   The reverse warping of the solar cell element is performed by pressing the solar cell element from the back side (the tab lead wire side in the case of the back electrode type) at the front and rear edges of the electrode array in the arrangement direction, and at the intermediate part of the solar cell element By pressing from the side (element side in the case of the back electrode type) or on the surface of the conveyor that has the solar cell element swelled in a circular drum shape or on the back side (in the case of the back electrode type, tab lead wire) It can be carried out by a method of pressing or adsorbing with the side) facing up.

太陽電池素子及びタブリード線は、特に極薄型の太陽電池素子を使用する場合や、或いはタブリード線として複雑な形状のもの(異型のシート状電極を含む)を使用する場合には、太陽電池素子及びタブリード線がキャリヤーフィルム上にマウントした状態で供給することにより、これらを破損させることなく安全に且つ確実に供給することができる。   When the solar cell element and the tab lead wire use an extremely thin solar cell element or when the tab lead wire has a complicated shape (including an irregular sheet-like electrode), the solar cell element and By supplying the tab lead wires mounted on the carrier film, the tab lead wires can be supplied safely and reliably without being damaged.

図1は本発明の接続方法及び矯正方法で使用できる裏面電極型の太陽電池素子を示し、(a)は裏面図、(b)は側面図である。FIG. 1 shows a back electrode type solar cell element that can be used in the connection method and the correction method of the present invention, wherein (a) is a back view and (b) is a side view. 図2(a)は本発明の接続方法を使用せずに反った太陽電池素子を示す模式図であり、図2(b)は本発明により反りを解消した太陽電池素子を示す模式図である。FIG. 2 (a) is a schematic diagram showing a solar cell element warped without using the connection method of the present invention, and FIG. 2 (b) is a schematic diagram showing a solar cell element whose warpage has been eliminated by the present invention. . 図3は太陽電池素子の逆反りの形状に沿った形状の溶着ヘッドでタブリード線を溶着する場合を示す模式説明図である。FIG. 3 is a schematic explanatory view showing a case where the tab lead wire is welded with a welding head having a shape along the shape of the reverse warp of the solar cell element. 図4は溶着ヘッドを太陽電池素子の逆反りの形状に沿って移動させてタブリード線を溶着する場合を示す模式説明図である。FIG. 4 is a schematic explanatory view showing the case where the tab lead wire is welded by moving the welding head along the shape of the reverse warp of the solar cell element. 図5は回転ロールを用いて太陽電池素子を逆反りさせ、タブリード線を溶着する場合を示す模式説明図である。FIG. 5 is a schematic explanatory view showing a case where a solar cell element is warped reversely using a rotating roll and a tab lead wire is welded. 図6は円弧状に膨出した形状のコンベアを用いて太陽電池素子を逆反りさせ、タブリード線を溶着する場合を示す模式説明図である。FIG. 6 is a schematic explanatory view showing a case where a solar cell element is warped reversely using a conveyor having an arcuate shape and a tab lead wire is welded. 図7は本発明の太陽電池素子の接続装置を示す模式説明図である。FIG. 7 is a schematic explanatory view showing a solar cell element connection device of the present invention. 図8は本発明の太陽電池素子の矯正装置を示す模式説明図である。FIG. 8 is a schematic explanatory view showing a solar cell element correcting device of the present invention.

本発明の太陽電池素子の接続方法は、裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続方法であって、太陽電池素子の電極列に沿ってタブリード線を配置し、タブリード線及び太陽電池素子をタブリード線に付着する半田の溶融温度近辺まで加熱してから、太陽電池素子を逆反りさせ、次に、タブリード線を半田の溶融温度以上に加熱することにより太陽電池素子とタブリード線を半田付けし、或いは、太陽電池素子とタブリード線を半田付けしたあとで太陽電池素子を逆反りさせ、半田付け後に半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で前記逆反りさせた太陽電池素子を保持することを特徴とする。   The solar cell element connection method of the present invention is a solar cell element connection method in which a back electrode type or double-sided electrode type solar cell element is connected by a tab lead wire in which solder is attached around a copper foil. The tab lead wire is arranged along the electrode array of the element, the tab lead wire and the solar cell element are heated to near the melting temperature of the solder adhering to the tab lead wire, and then the solar cell element is warped backward, and then the tab lead wire is Solder the solar cell element and the tab lead wire by heating above the melting temperature of the solder, or reversely warp the solar cell element after soldering the solar cell element and the tab lead wire, and then solder ductile brittleness The reversely warped solar cell element is held at a temperature not lower than the transition temperature and lower than the melting temperature of the solder.

また、本発明の太陽電池素子の矯正方法は、タブリード線で接続された太陽電池素子をタブリード線に付着する半田の溶融温度を超えない範囲で加熱してから、太陽電池素子を逆反りさせ、半田の延性脆性遷移温度より下がらない範囲で冷却し、当該温度で前記逆反りさせた太陽電池素子を保持することを特徴とする。   Further, the solar cell element correction method of the present invention is a method in which the solar cell element connected by the tab lead wire is heated in a range not exceeding the melting temperature of the solder attached to the tab lead wire, and then the solar cell element is warped backwards. It cools in the range which does not fall below the ductile brittle transition temperature of solder, and hold | maintains the said solar cell element reversely warped at the said temperature.

本発明の太陽電池素子の接続方法で接続され、或いは本発明の矯正対象となる太陽電池素子1は、例えば図1に示すような、電極列1aが+極、−極ともに裏面に設けられた、所謂、裏面電極型のものが特に適しているが、電極列が表面及び裏面に振り分けられた両面電極型の太陽電池素子1も用いることができる。なお、以下の説明は、主に裏面電極型の太陽電池素子に基づいて行う。
太陽電池素子の材質としては、従来から使用されている単結晶シリコンや多結晶シリコン等が全て使用でき、その厚さも従来から使用されている200〜250ミクロンのものは勿論、薄手の150ミクロン程度のものでもよく、さらに将来の使用が予想される100ミクロン以下のものにも対応可能である。
The solar cell element 1 connected by the solar cell element connection method of the present invention or the correction target of the present invention has an electrode array 1a provided on the back surface, for example, as shown in FIG. The so-called back electrode type solar cell element 1 is particularly suitable, but a double-sided electrode type solar cell element 1 in which the electrode array is distributed between the front surface and the back surface can also be used. The following description is mainly based on a back electrode type solar cell element.
As the material of the solar cell element, all of conventionally used single crystal silicon, polycrystalline silicon, etc. can be used, and the thickness thereof is of the order of 200 to 250 microns, which is conventionally used, and is about 150 microns thin. In addition, it is possible to cope with a size of 100 microns or less which is expected to be used in the future.

また、本発明に使用されるタブリード線2は通常のものでよく、例えば、市販の標準品(平角状で、幅2mm程度、厚み0.16mm程度の銅箔の両面に厚み40μm程度の半田がコーティングされている)を用いることができる。   The tab lead wire 2 used in the present invention may be a normal one. For example, a commercially available standard product (a flat rectangular shape having a width of about 2 mm and a thickness of about 0.16 mm on both sides of a copper foil with a thickness of about 40 μm is used. Coated).

上記の太陽電池素子1に上記のタブリード線2を溶着すれば、半田付けの際の熱により熱膨張した銅箔2aが半田2bを介して太陽電池素子1に接着された状態になるが、太陽電池素子1を構成するシリコンと銅箔2aを構成する銅は線膨張率は異なるため、熱膨張した銅箔2aが冷却されるにつれ太陽電池素子1と比較して大幅に収縮する。   If the tab lead wire 2 is welded to the solar cell element 1, the copper foil 2 a thermally expanded by the heat during soldering is bonded to the solar cell element 1 via the solder 2 b. Since the silicon constituting the battery element 1 and the copper constituting the copper foil 2a have different linear expansion coefficients, the thermal expansion of the copper foil 2a is significantly contracted as compared to the solar cell element 1.

このシリコンと銅の線膨張率の差を放置すれば、図2(a)に示したように、太陽電池素子1はタブリード線2が溶着された側を内側にして大きく反る。この反りは裏面電極型の太陽電池素子1の場合に特に顕著であるが、両面電極型の場合でも、表裏のタブリード線を電極列上に配置する際のタブリード線のテンション差や、銅箔の厚みの差、溶着する際の温度差、或いは太陽電池素子自体の歪みに基づいて反る場合が多い。
本発明では、図2(b)に示したように、この熱膨張率の差を主に半田2bの塑性変形で吸収して反りを解消する。但し、図2(a)(b)においては本発明の考え方を明確にするため太陽電池素子1と銅箔2aの間の半田2bを実際よりもはるかに厚く記載し、銅箔2aの外側の半田2bを記載していない。
If the difference between the linear expansion coefficients of silicon and copper is left as it is, the solar cell element 1 warps greatly with the side where the tab lead wire 2 is welded inward as shown in FIG. This warpage is particularly noticeable in the case of the back electrode type solar cell element 1, but even in the case of the double-sided electrode type, the difference in tension between the tab lead wires when the front and back tab lead wires are arranged on the electrode rows, and the copper foil In many cases, the warp is based on the difference in thickness, the temperature difference during welding, or the distortion of the solar cell element itself.
In the present invention, as shown in FIG. 2B, the difference in the coefficient of thermal expansion is mainly absorbed by the plastic deformation of the solder 2b to eliminate the warp. However, in FIGS. 2 (a) and 2 (b), in order to clarify the concept of the present invention, the solder 2b between the solar cell element 1 and the copper foil 2a is shown to be much thicker than the actual, and the outer side of the copper foil 2a is shown. Solder 2b is not described.

詳述すると、まず本発明では、太陽電池素子1は逆反りした状態にする。なお、本発明において逆反りとは、太陽電池素子1を現在反っている方向、或いは溶着後に反ると予想される方向とは逆の方向に反らせることをいい、タブリード線2を溶着する前の太陽電池素子1では、裏面電極型の場合は電極列1aを外側にして反らせることをいい、両面電極型の場合は素子の歪みにより現に反っている方向とは逆の方向に反らせることをいう。   More specifically, first, in the present invention, the solar cell element 1 is in a reverse warped state. In the present invention, the reverse warping means that the solar cell element 1 is warped in the direction that is currently warped, or the direction that is expected to be warped after welding, before the tab lead wire 2 is welded. In the case of the back surface electrode type, the solar cell element 1 is warped with the electrode array 1a facing outward, and in the case of the double-sided electrode type, it is warped in a direction opposite to the direction actually warped due to the distortion of the element.

素子を逆反りにする具体的な方法を例示すれば、例えば図3、図4に記載するように、太陽電池素子1を電極列1aの配列方向前後側の端縁で裏面側(タブリード線2側)(図3、図4では上側)から押圧具4を用いて押圧するとともに、該太陽電池素子1の中間部で表面側(素子1側)(図3、図4では下側)から押圧具4を用いて押圧する。或いは図5、図6に記載するように、太陽電池素子を回転ドラム6a、又は円弧状に膨出した形状のコンベア(以下、単に円弧状コンベアと称することがある)6bの表面に押圧又は吸着させる。図5においては回転ドラム6aの表面に真空吸引装置を利用した吸着手段6cを設け、この吸着手段6cにより太陽電池素子の表面を吸着させることにより逆反りさせている。図6においては円弧状コンベア6bの後部においてタブリード線に進行方向後向きの張力を加えることにより太陽電池素子を押圧している。移動手段の形状によってはタブリード線2に後向きの張力を加えることにより回転ドラム6aや円弧状コンベア6bの前側で太陽電池素子1が浮き上がる方向に力が働くことがあるが、この場合、回転ドラム6aや円弧状コンベア6bの前方に太陽電池素子1の浮き上がりを抑えるローラー等を押圧手段6dとして設ければよい。   For example, as shown in FIG. 3 and FIG. 4, for example, the solar cell element 1 is placed on the back surface side (tab lead wire 2 at the front and rear edges in the arrangement direction of the electrode array 1a. Side) (pressed from the upper side in FIGS. 3 and 4) using the pressing tool 4, and pressed from the surface side (element 1 side) (lower side in FIGS. 3 and 4) at the intermediate portion of the solar cell element 1. Press using the tool 4. Alternatively, as shown in FIGS. 5 and 6, the solar cell element is pressed or adsorbed on the surface of a rotating drum 6a or a conveyor 6b having a shape bulged in an arc shape (hereinafter sometimes simply referred to as an arc conveyor). Let In FIG. 5, the suction means 6c using a vacuum suction device is provided on the surface of the rotating drum 6a, and the surface of the solar cell element is sucked by the suction means 6c to be reversely warped. In FIG. 6, the solar cell element is pressed by applying a backward tension to the tab lead wire in the rear part of the arc-shaped conveyor 6b. Depending on the shape of the moving means, by applying a backward tension to the tab lead wire 2, a force may act in the direction in which the solar cell element 1 is lifted in front of the rotating drum 6a or the arc-shaped conveyor 6b. In this case, the rotating drum 6a A roller or the like that suppresses the floating of the solar cell element 1 may be provided as the pressing means 6d in front of the arc-shaped conveyor 6b.

なお、本発明においては太陽電池素子1を逆反りさせた状態でタブリード線2を溶着してもよいし、先にタブリード線2を溶着してから太陽電池素子1を逆反りさせてもよい。先にタブリード線2を溶着させる場合、溶着方法は従来から太陽電池素子1とタブリード線2を溶着させるために使用されている方法を全て好適に使用でき、例えば、特許文献1〜3に記載されている方法が採用できる。   In the present invention, the tab lead wire 2 may be welded while the solar cell element 1 is reversely warped, or the solar cell element 1 may be reversely warped after the tab lead wire 2 is first welded. In the case where the tab lead wire 2 is welded first, all the methods conventionally used for welding the solar cell element 1 and the tab lead wire 2 can be suitably used for the welding method. Can be adopted.

また、先に太陽電池素子1を逆反りさせてからタブリード線2を溶着する場合、シリコンと銅の線膨張率の差は、逆反りさせたときの曲率半径の差と一部相殺できるため、より一層反りを小さくできる。但し、タブリード線の高さが一定しないので、タブリード線2の溶着には、図3に示したような、太陽電池素子1の逆反りの形状に沿った形状の溶着ヘッド3を使用したり、或いは、図4に破線矢印で示したように、溶着ヘッド3を太陽電池素子1の逆反りの形状に合わせて移動させたり、図4に一点鎖線矢印で示したように、太陽電池素子1の移動にタイミングを合わせて溶着ヘッド3を上下動させたり、或いは図5、図6に示したように、回転ドラム6aや円弧状に膨出した形状のコンベア6bを使用して、溶着ヘッド3を動かさずに太陽電池素子1及びタブリード線2のほうを上下させる等、タブリード線の高さが一定しない点を考慮した措置が必要になる。   In addition, when the tab lead wire 2 is welded after the solar cell element 1 is reversely warped first, the difference in linear expansion coefficient between silicon and copper can partially offset the difference in curvature radius when reverse warping. The warpage can be further reduced. However, since the height of the tab lead wire is not constant, a welding head 3 having a shape along the shape of the reverse warp of the solar cell element 1 as shown in FIG. Alternatively, the welding head 3 is moved in accordance with the shape of the reverse warp of the solar cell element 1 as shown by a broken line arrow in FIG. 4, or the solar cell element 1 of the solar cell element 1 is moved as shown by a one-dot chain line arrow in FIG. The welding head 3 is moved up and down in synchronization with the movement, or, as shown in FIGS. 5 and 6, the rotating head 6a or the conveyor 6b bulged in an arc shape is used to move the welding head 3 It is necessary to take measures in consideration of the fact that the height of the tab lead wire is not constant, such as moving the solar cell element 1 and the tab lead wire 2 up and down without moving them.

なお、先に太陽電池素子1を逆反りさせてからタブリード線2を溶着する場合、太陽電池素子を逆反りさせる前に、太陽電池素子1とタブリード線2を予熱するほうが好ましい。即ち、薄型の太陽電池素子1はタブリード線2を溶着する前から少し反っていることが多く、溶着前の反り(例えば、表面方向に2mm)と逆反りの方向(例えば、裏面方向に5mm)が異なれば、かなり大きく変形させる必要が生じる(前記の例では、2+5=7mm分変形させる必要がある)ので、割れの発生を防止するため、予熱により溶着前の反りを解消する。これにより、逆反りの際の変形が小さくて済む。
予熱温度はタブリード線に付着する半田の溶融温度近辺までであるが、好ましくは100℃以上で半田の溶融温度未満である。
In addition, when the tab lead wire 2 is welded after the solar cell element 1 is reversely warped first, it is preferable to preheat the solar cell element 1 and the tab lead wire 2 before the solar cell element is reversely warped. That is, the thin solar cell element 1 is often slightly warped before the tab lead wire 2 is welded, and the warp before welding (for example, 2 mm in the front surface direction) and the reverse warp direction (for example, 5 mm in the back surface direction). If they are different, it is necessary to deform significantly (in the above example, it is necessary to deform by 2 + 5 = 7 mm), so that warpage before welding is eliminated by preheating in order to prevent cracking. Thereby, the deformation | transformation at the time of reverse curvature may be small.
The preheating temperature is up to around the melting temperature of the solder attached to the tab lead wire, but is preferably 100 ° C. or higher and lower than the melting temperature of the solder.

本発明においては、タブリード線2が溶着され逆反りされた太陽電池素子1を半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で保持するが、これにより、タブリード線内の銅箔2aと太陽電池素子1の線膨張率の差に因る収縮の差に基づく剪断応力が太陽電池素子1と銅箔2aの間に介在する半田2bに働き、これにより該半田2bが塑性変形し、このため、シリコンと銅の線膨張率の差が吸収される。
なお、延性脆性遷移温度とは、延性破面率が50%(即ち、脆性破面率50%)となる温度をいうが、この温度以上であると半田を塑性変形させやすくなる。
In the present invention, the solar cell element 1 on which the tab lead wire 2 is welded and reverse warped is held at a temperature higher than the ductile brittle transition temperature of the solder and lower than the melting temperature of the solder. And the shear stress based on the difference in shrinkage due to the difference in linear expansion coefficient between the solar cell element 1 acts on the solder 2b interposed between the solar cell element 1 and the copper foil 2a, and the solder 2b is plastically deformed. For this reason, the difference in coefficient of linear expansion between silicon and copper is absorbed.
The ductile brittle transition temperature is a temperature at which the ductile fracture surface ratio is 50% (that is, the brittle fracture surface ratio is 50%). If the temperature is higher than this temperature, the solder is easily plastically deformed.

本発明において、タブリード線2において銅箔2aにコーティングされる半田2bの溶融温度や延性脆性遷移温度は、錫−鉛の配合割合やその他の含有成分によって変化し、従ってメーカー毎、或いは製品毎に異なっているため、保持に適した温度を一概に定めることは困難であるが、保持温度が半田の溶融温度以上であると、半田2bが溶け落ちて接着の用をなさず、銅箔2aの位置がずれたり剥がれ落ちてしまうので好ましくない。但し、半田の溶融温度よりも低い場合でも、保持温度が半田の溶融温度と大差ない場合は銅箔があまり収縮しないので太陽電池素子1と銅箔2aの間の残留熱応力が弱くなり、半田2bの塑性変形も小さいため反りの解消効果も小さくなってしまう。
また、保持温度が半田の延性脆性遷移温度未満であると、半田部分は殆ど塑性変形しないため、反りの解消は限定的となってしまう。但し、延性脆性遷移温度よりも高かったとしても、保持温度が半田の延性脆性遷移温度と大差ない場合は半田の延伸速度が遅いため、反りが解消されるまでの時間が長くなる。
従って、保持温度については60〜100℃、好ましくは60〜90℃、更に好ましくは60〜80℃に設定するのが実用上適している。
In the present invention, the melting temperature and ductile brittle transition temperature of the solder 2b coated on the copper foil 2a in the tab lead wire 2 vary depending on the mixing ratio of tin and lead and other contained components, and therefore, for each manufacturer or each product. However, if the holding temperature is equal to or higher than the melting temperature of the solder, the solder 2b melts and does not serve for bonding, and the copper foil 2a Since the position is shifted or peeled off, it is not preferable. However, even when the melting temperature is lower than the melting temperature of the solder, if the holding temperature is not much different from the melting temperature of the solder, the copper foil does not shrink so much, the residual thermal stress between the solar cell element 1 and the copper foil 2a becomes weak, and the solder Since the plastic deformation of 2b is small, the effect of eliminating the warp is also small.
Further, if the holding temperature is lower than the ductile brittle transition temperature of the solder, the solder portion hardly undergoes plastic deformation, and thus the warping is limited. However, even if the temperature is higher than the ductile brittle transition temperature, if the holding temperature is not significantly different from the ductile brittle transition temperature of the solder, the solder stretching speed is slow, so the time until the warpage is eliminated becomes long.
Accordingly, it is practically suitable to set the holding temperature at 60 to 100 ° C, preferably 60 to 90 ° C, more preferably 60 to 80 ° C.

なお、本発明において介在半田の温度は高い方が好ましく銅箔の温度は低い方が好ましいが、銅は熱伝導率が高いので、冷媒を用いる方法(例えば、冷却用の温風をタブリード線に吹き付けるなど)のみで温度を保持しようとすれば、介在半田の温度は銅箔と殆ど同程度になってしまう。そこで、誘導加熱(電磁誘導の原理を用いた加熱方法)を用いてタブリード線を内部から暖めると共に、冷媒を用いる方法で表面から冷却すれば、介在半田の温度をより高くして塑性変形させやすく出来るとともに、銅箔の温度を低くして熱収縮させることができるので、反りの解消をより効率よく行うことができる。   In the present invention, the temperature of the intervening solder is preferably higher, and the temperature of the copper foil is preferably lower. However, since copper has a high thermal conductivity, a method using a refrigerant (for example, hot air for cooling is applied to the tab lead wire). If the temperature is maintained only by spraying, the temperature of the intervening solder will be almost the same as that of the copper foil. Therefore, if the tab lead wire is heated from the inside using induction heating (a heating method using the principle of electromagnetic induction) and cooled from the surface by a method using a refrigerant, the temperature of the intervening solder can be increased to facilitate plastic deformation. In addition, the temperature of the copper foil can be lowered to cause heat shrinkage, so that the warp can be eliminated more efficiently.

本発明においては、上記の保持温度で逆反りさせた太陽電池素子を保持することにより太陽電池素子1の反りを解消する。必要な保持時間は保持温度、半田の延性脆性遷移温度、銅箔に付着した半田の量等によって異なるため一概には云えないが、好ましくは60秒以上、更に好ましくは90秒以上、特に好ましくは120秒以上である。また保持時間の上限についても発明の効果を発揮させる点では特に限定されないが、12時間程度を超えた場合は生産管理が面倒になり、生産性も低下する。
なお、太陽電池素子が半田の延性脆性遷移温度より低い温度に急冷された場合等、適当な保持温度での保持時間が短すぎる場合は半田の塑性変形が十分進まず、シリコンと銅の熱膨張率の差が銅箔2aの弾性変形による内部応力として残るので、反りが十分解消できない。
In this invention, the curvature of the solar cell element 1 is eliminated by holding | maintaining the solar cell element reversely warped by said holding temperature. The required holding time varies depending on the holding temperature, the ductile brittle transition temperature of the solder, the amount of solder adhering to the copper foil, etc., but cannot be generally stated, but is preferably 60 seconds or more, more preferably 90 seconds or more, and particularly preferably 120 seconds or more. Further, the upper limit of the holding time is not particularly limited in terms of exerting the effect of the invention, but when it exceeds about 12 hours, the production management becomes troublesome and the productivity also decreases.
If the holding time at an appropriate holding temperature is too short, such as when the solar cell element is rapidly cooled to a temperature lower than the ductile brittle transition temperature of the solder, the plastic deformation of the solder does not proceed sufficiently, and the thermal expansion of silicon and copper Since the difference in rate remains as internal stress due to elastic deformation of the copper foil 2a, warping cannot be sufficiently resolved.

本発明において、薄型の太陽電池素子1や、複雑な形状のタブリード線2を使用する場合には、これらをキャリヤーフィルム5c上にマウントした状態で供給するほうが好ましい。キャリヤーフィルム5cにマウントした状態であれば薄型の太陽電池素子1や複雑な形状のタブリード線2の持ち運びもキャリヤーフィルム5cを把持することにより行うことができ、本発明で使用するような脆く割れやすい太陽電池素子1を直接把持して割ってしまう恐れや、細く持ちにくいタブリード線2を把持して形を崩したり、ねじれが発生する恐れがなくなるからであり、さらにキャリヤーフィルム5cを貼着することにより太陽電池素子1やタブリード線2が補強されるからである。
また、タブリード線2が、例えば薄膜をエッチングすることにより形成されるような微細な構造を有する場合、その微細な構造を保護することができる。
In the present invention, when the thin solar cell element 1 or the complicated-shaped tab lead wire 2 is used, it is preferable to supply them while being mounted on the carrier film 5c. When mounted on the carrier film 5c, the thin solar cell element 1 and the complicated-shaped tab lead wire 2 can be carried by holding the carrier film 5c, and it is brittle and easily broken as used in the present invention. This is because there is no fear that the solar cell element 1 may be directly gripped and broken, or the tab lead wire 2 that is thin and difficult to hold will be lost in shape or twisted, and the carrier film 5c is further adhered. This is because the solar cell element 1 and the tab lead wire 2 are reinforced.
Further, when the tab lead wire 2 has a fine structure formed, for example, by etching a thin film, the fine structure can be protected.

本発明の方法は裏面電極型の太陽電池素子に対して特に有効であるが、太陽電池素子の両面にタブリード線を溶着する通常の太陽電池素子であっても2. 5〜3mm程度反ることがあるので、これも逆反りさせて所定温度で保持することにより、反りを解消することができる。
また、半田に代えて導電性接着剤(例えば、微細銀粒子70重量%以上にエポキシ樹脂を混合してなるもの)を使用することもできる。導電性接着剤を使用する場合、図5に示すように、タブリード線2は2枚のキャリヤーフィルム5cで挟み込むように保持し、必要に応じてキャリヤーフィルム5cを剥離させて使用するほうが好ましい。なお導電性接着剤側に貼り付けるキャリヤーフィルム5cとしては剥離性が優れたものを使用する。
The method of the present invention is particularly effective for a back electrode type solar cell element, but even a normal solar cell element in which tab lead wires are welded to both surfaces of the solar cell element warps about 2.5 to 3 mm. Therefore, the warp can also be eliminated by causing the reverse warp to be maintained at a predetermined temperature.
Moreover, it can replace with solder and can also use a conductive adhesive (For example, what mixes an epoxy resin with 70 weight% or more of fine silver particles). When using a conductive adhesive, as shown in FIG. 5, it is preferable to hold the tab lead wire 2 so as to be sandwiched between two carrier films 5c, and to peel off the carrier film 5c if necessary. As the carrier film 5c to be attached to the conductive adhesive side, a film having excellent peelability is used.

既に太陽電池素子1が本発明とは別の方法によりタブリード線2で接続され、太陽電池素子1が反っているような場合でも、上述の接続方法と同様の方法で反りを矯正できる。但しこの場合、太陽電池素子1を逆反りさせる前に、一度太陽電池素子1を半田の溶融温度近辺まで加熱する必要がある。加熱されなければ半田2bが延性にならず、太陽電池素子1を逆反りさせても半田が塑性変形せず、さらに、冷えて収縮した銅箔2aを強引に引き延ばすことになるので太陽電池素子1にかかる応力が強すぎ、太陽電池素子1が破損してしまう恐れがあるからである。また、加熱温度が高すぎて半田の溶融温度以上になった場合は半田2bが溶け落ちて接着の用をなさず、銅箔2aの位置がずれたり剥がれ落ちてしまう。
上記の理由により、加熱温度は半田の延性脆性遷移温度以上で該半田の溶融温度未満である必要があるが、この範囲内であっても加熱温度が低ければ、銅箔が十分熱膨張しないため、太陽電池素子を逆反りさせたときに太陽電池素子1にかかる応力が強く、急速に逆反りさせるとやはり太陽電池素子1が破損してしまう危険性が増大するので、ゆっくり作業する必要が生じ、作業性が悪い。作業性を向上させるため、好ましい加熱温度は100℃以上であり、更に好ましくは160℃以上であり、これにより、銅箔2aを十分に熱膨張させることができる。
Even when the solar cell element 1 is already connected by the tab lead wire 2 by a method different from the present invention and the solar cell element 1 is warped, the warpage can be corrected by the same method as the above-described connection method. However, in this case, before the solar cell element 1 is reversely warped, it is necessary to once heat the solar cell element 1 to near the melting temperature of the solder. If not heated, the solder 2b does not become ductile, and even if the solar cell element 1 is reversely warped, the solder is not plastically deformed, and furthermore, the cooled and contracted copper foil 2a is forcibly stretched. This is because the stress applied to the solar cell element 1 is too strong and the solar cell element 1 may be damaged. In addition, when the heating temperature is too high and the solder melting temperature is exceeded, the solder 2b melts and does not serve for adhesion, and the position of the copper foil 2a is shifted or peeled off.
For the above reasons, the heating temperature needs to be higher than the ductile brittle transition temperature of the solder and lower than the melting temperature of the solder, but even within this range, if the heating temperature is low, the copper foil will not expand sufficiently. Since the stress applied to the solar cell element 1 is strong when the solar cell element is reversely warped, and the risk of the solar cell element 1 being damaged is increased when the solar cell element is rapidly warped, it is necessary to work slowly. The workability is bad. In order to improve workability, a preferable heating temperature is 100 ° C. or higher, and more preferably 160 ° C. or higher, whereby the copper foil 2a can be sufficiently thermally expanded.

本発明の太陽電池素子の矯正方法では、太陽電池素子1を逆反りさせた後は前述の太陽電池の接続方法と同様に、保持温度まで冷却してからそのまま逆反りさせた太陽電池素子1を保持することにより半田を塑性変形させ、これによりシリコンと銅の線膨張率の差を吸収する。
保持温度は、半田の延性脆性遷移温度以上で半田の溶融温度未満である必要があり、実用上は60〜100℃、好ましくは60〜90℃、更に好ましくは60〜80℃の範囲が適しており、保持時間は好ましくは60秒以上で、更に好ましくは90秒以上、特に好ましくは120秒以上であり、保持時間の上限は特にないが生産管理の都合上12時間程度が好ましいという点も、前述の太陽電池素子の接続方法と同様である。また、保温のための方法として、誘導加熱によりタブリード線を内部から暖めながら冷媒を用いて表面から冷却する方法が好ましい点も同様である。
In the method for correcting a solar cell element of the present invention, after the solar cell element 1 is reversely warped, the solar cell element 1 that has been reversely warped after being cooled to the holding temperature is cooled in the same manner as the above-described solar cell connection method. By holding it, the solder is plastically deformed, thereby absorbing the difference in linear expansion coefficient between silicon and copper.
The holding temperature needs to be higher than the ductile brittle transition temperature of the solder and lower than the melting temperature of the solder, and is practically in the range of 60 to 100 ° C., preferably 60 to 90 ° C., more preferably 60 to 80 ° C. The holding time is preferably 60 seconds or more, more preferably 90 seconds or more, particularly preferably 120 seconds or more, and there is no particular upper limit of the holding time, but about 12 hours is preferable for convenience of production control. This is the same as the method for connecting solar cell elements described above. In addition, the method of cooling from the surface using a refrigerant while heating the tab lead wire from the inside by induction heating is also preferable as a method for heat insulation.

次に、上記した太陽電池素子の接続方法に適した太陽電池素子の接続装置について説明する。
本発明の太陽電池素子の接続装置は、図7に示したように、裏面電極型又は両面電極型の太陽電池素子1を銅箔の周りに半田を付着させたタブリード線2で接続する太陽電池素子の接続装置8であって、少なくともタブリード線の供給手段5a、太陽電池素子の供給手段5b、タブリード線を太陽電池素子に溶着する溶着手段3、太陽電池素子を移動させる移動手段6を有し、移動手段6は、少なくともその一部に回転ドラム6a、又は円弧状に膨出した形状のコンベア6bを有するとともに、タブリード線2が溶着された太陽電池素子1を逆反りさせるために前記回転ドラム6a又は円弧状に膨出した形状のコンベア6bの表面に太陽電池素子1を吸着する吸着手段6c、又は押圧する押圧手段6dを有し、逆反り状態の太陽電池素子1を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段7を有することを特徴とする。
Next, a solar cell element connection apparatus suitable for the above-described solar cell element connection method will be described.
As shown in FIG. 7, the solar cell element connection device of the present invention is a solar cell in which a back electrode type or double sided electrode type solar cell element 1 is connected by a tab lead wire 2 in which solder is attached around a copper foil. The element connecting device 8 includes at least a tab lead wire supplying means 5a, a solar cell element supplying means 5b, a welding means 3 for welding the tab lead wire to the solar cell element, and a moving means 6 for moving the solar cell element. The moving means 6 has at least a part of the rotating drum 6a or a conveyor 6b having an arcuate shape, and the rotating drum 6 is used to reversely warp the solar cell element 1 on which the tab lead wire 2 is welded. 6a or the surface of a conveyor 6b bulged in an arc shape has an adsorbing means 6c for adsorbing the solar cell element 1 or a pressing means 6d for pressing, and the solar cell element 1 in a reverse warped state And having a temperature holding unit 7 for holding in sexual brittle transition temperature above a temperature below the melting temperature of the solder.

本発明においてタブリード線供給手段5aの態様は特に限定されず、例えばリール等に巻回されたタブリード線2の先頭の部分だけを太陽電池素子1に接着し、太陽電池素子1の移動に引かれてタブリード線が繰り出されるような、ごく単純なものでも構わない。但し、前述の通りタブリード線2に進行方向後向きの引張力を加えることにより回転ドラム6a又は円弧状に膨出した形状のコンベア6bの表面に太陽電池素子1を押圧することが可能であるので、進行方向後向きの引張力を加えることができる機構を設けたほうが好ましい。
進行方向後向きの引張力を加えることができる機構としては、タブリード線2を太陽電池素子1側に繰り出すタブリード線繰り出しロール(図示せず)やタブリード線2を真空吸引する真空吸引装置(図示せず)が好適に使用できる。タブリード線繰り出しロールを使用するときは、必要に応じ回転速度を遅め、又は逆回転することにより引張力を発生させる。タブリード線を真空吸引する真空吸引装置を使用するときは、タブリード線2を真空吸引装置で吸着させながら太陽電池素子1を移動させることにより、タブリード線2と真空吸引装置の間に摩擦力を生じさせ、これを引張力とする。
In the present invention, the mode of the tab lead wire supply means 5a is not particularly limited. For example, only the head portion of the tab lead wire 2 wound around a reel or the like is bonded to the solar cell element 1 and pulled by the movement of the solar cell element 1. It can be as simple as a tab lead wire. However, as described above, the solar cell element 1 can be pressed against the surface of the rotary drum 6a or the conveyor 6b having an arcuate shape by applying a backward pulling force to the tab lead wire 2. It is preferable to provide a mechanism capable of applying a backward tensile force in the traveling direction.
As a mechanism capable of applying a backward tensile force in the traveling direction, a tab lead wire feed roll (not shown) that feeds the tab lead wire 2 toward the solar cell element 1 and a vacuum suction device (not shown) that vacuums the tab lead wire 2 are shown. ) Can be suitably used. When using a tab lead wire feed roll, a tensile force is generated by slowing the rotation speed or rotating the roll as necessary. When using a vacuum suction device for vacuum suction of the tab lead wire, a frictional force is generated between the tab lead wire 2 and the vacuum suction device by moving the solar cell element 1 while adsorbing the tab lead wire 2 with the vacuum suction device. Let this be the tensile force.

本発明における太陽電池素子の供給手段5bも特に限定されず、従前の太陽電池素子の接続装置で用いられているものが全て使用できる。但し、近年使用され始めた薄型(厚さ150μm程度)の太陽電池素子1や、将来の使用が予想される極薄型(厚さ50μm程度)の太陽電池素子1の場合は脆く割れやすいため、長いキャリヤーフィルム5cに連続して貼着した状態で供給し、必要に応じキャリヤーフィルム剥離ロール5dを用いて剥離させるようにするのが好ましい。なお、図7に示した例において、太陽電池素子1は長いキャリヤーフィルム5cに連続して貼着されており、それぞれの太陽電池素子1、1の間部で折りたためるようになっている。また、本例において、剥離されたキャリヤーフィルム5cは放置されているが、別途設けたキャリヤーフィルム巻き取りロール(図示せず)に巻き取るようにしても良い。   The solar cell element supply means 5b in the present invention is not particularly limited, and any of the solar cell element connection devices used in the past can be used. However, in the case of a thin solar cell element 1 that has recently been used (thickness of about 150 μm) or a very thin solar cell element 1 that is expected to be used in the future (thickness of about 50 μm), it is fragile and easily broken. It is preferable that the film is supplied while being continuously adhered to the carrier film 5c, and is peeled off using a carrier film peeling roll 5d as necessary. In the example shown in FIG. 7, the solar cell element 1 is continuously attached to the long carrier film 5 c and is folded between the solar cell elements 1 and 1. In this example, the peeled carrier film 5c is left standing, but may be wound around a separately provided carrier film winding roll (not shown).

本発明で使用できる溶着ヘッド3の構造は特に限定されず、従来から使用されているものが全て好適に使用でき、具体的には、スポットヒーターを各タブリード線2上に配置したもの、ラインヒーターを各タブリード線2に沿って、その長さ方向と平行になるように配置したもの、ラインヒーターをタブリード線2に対して直角方向に配置し、タブリード線2と太陽電池素子1とを同時に加熱するようにしたもの、誘導加熱を利用したヒーターを各タブリード線2上に配置したもの等が挙げられる。これらのなかでは、溶着ヘッド3がタブリード線に接触しない、いわば非接触型の溶着ヘッド3が好ましく、さらには局部連続溶融固化が行えるものが好ましい。   The structure of the welding head 3 that can be used in the present invention is not particularly limited, and any of those conventionally used can be suitably used. Specifically, a spot heater is arranged on each tab lead wire 2, a line heater Are arranged along each tab lead wire 2 so as to be parallel to the length direction thereof, a line heater is arranged in a direction perpendicular to the tab lead wire 2, and the tab lead wire 2 and the solar cell element 1 are heated simultaneously. And a heater using induction heating arranged on each tab lead wire 2. Among these, the so-called non-contact type welding head 3 in which the welding head 3 does not come into contact with the tab lead wire is preferable, and one that can perform local continuous melting and solidification is preferable.

本発明における移動手段6は供給手段5bから供給された太陽電池素子1を溶着手段3まで移動させ、さらに後述の温度保持手段7により温度保持された領域を通過させるものである。本発明では、少なくとも温度保持手段7により温度保持された領域において、好ましくは溶着手段3によりタブリード線2が太陽電池素子1に溶着される領域においても、前記移動手段6が回転ドラム6a又は円弧状コンベア6bであり、太陽電池素子1がこの回転ドラム6a又は円弧状コンベア6bの表面に吸着又は押圧されることにより逆反りするように構成されている。なお、図7に示した例では温度保持手段7により温度保持された領域において回転ドラム6aが使用され、溶着手段3によりタブリード線2が太陽電池素子1に溶着される領域において円弧状コンベア6bが使用されているが、これに限られず、温度保持手段7の領域で円弧状コンベア6bを用いても良いし、溶着手段3の領域で回転ドラム6aを用いても良い。   The moving means 6 in the present invention moves the solar cell element 1 supplied from the supplying means 5b to the welding means 3, and further passes through the region held by the temperature holding means 7 described later. In the present invention, at least in the region where the temperature is held by the temperature holding unit 7, preferably in the region where the tab lead wire 2 is welded to the solar cell element 1 by the welding unit 3, the moving unit 6 may be the rotating drum 6 a or the arc shape. It is the conveyor 6b, and it is comprised so that it may reverse-warp when the solar cell element 1 is adsorb | sucked or pressed by the surface of this rotary drum 6a or the circular-arc-shaped conveyor 6b. In the example shown in FIG. 7, the rotary drum 6 a is used in the region where the temperature is held by the temperature holding unit 7, and the arc-shaped conveyor 6 b is used in the region where the tab lead wire 2 is welded to the solar cell element 1 by the welding unit 3. However, the present invention is not limited to this, and the arc-shaped conveyor 6b may be used in the region of the temperature holding means 7, or the rotating drum 6a may be used in the region of the welding means 3.

回転ドラム6a又は円弧状コンベア6bの表面に太陽電池素子1を吸着するための吸着手段6cとしては、太陽電池素子1を回転ドラム6a又は円弧状コンベア6bの曲面を利用して逆反りさせることが出来る限り特に限定されないが、回転ドラム6a又は円弧状コンベア6bの内部に真空吸引装置を設ける方法が例示できる。   As the adsorbing means 6c for adsorbing the solar cell element 1 to the surface of the rotating drum 6a or the arc-shaped conveyor 6b, the solar cell element 1 is reversely warped using the curved surface of the rotating drum 6a or the arc-shaped conveyor 6b. Although it does not specifically limit as much as possible, The method of providing a vacuum suction device in the inside of the rotating drum 6a or the arc-shaped conveyor 6b can be illustrated.

また、回転ドラム6a又は円弧状コンベア6bの表面に太陽電池素子1を押圧するための押圧手段6dについても、太陽電池素子1を逆反させることが出来る限り特に限定されないが、タブリード線供給装置5aを押圧手段6dとして用い、回転ドラム6a又は円弧状コンベア6bの進行方向後部においてタブリード線2に進行方向後向きの引張力を加えることにより、太陽電池素子を押圧する方法が例示できる。回転ドラム6a又は円弧状コンベア6bと後続の移動手段6の接続角度によってはタブリード線2に後向きの張力を加えることにより回転ドラム6aや円弧状コンベア6bの前側で太陽電池素子1が浮き上がる方向に力が働くことがあるが、この場合、回転ドラム6aや円弧状コンベア6bの後方に太陽電池素子1の浮き上がりを抑えるローラー等をもう1つの押圧手段6dとして設ければよい。   Further, the pressing means 6d for pressing the solar cell element 1 against the surface of the rotating drum 6a or the arc-shaped conveyor 6b is not particularly limited as long as the solar cell element 1 can be reversed, but the tab lead wire supply device 5a is provided. A method of pressing the solar cell element by applying a backward pulling force to the tab lead wire 2 at the rear of the rotating drum 6a or the arcuate conveyor 6b in the moving direction can be exemplified as the pressing means 6d. Depending on the angle of connection between the rotating drum 6a or the arc-shaped conveyor 6b and the subsequent moving means 6, a backward tension is applied to the tab lead wire 2 to force the solar cell element 1 to lift in front of the rotating drum 6a or the arc-shaped conveyor 6b. In this case, a roller or the like for suppressing the floating of the solar cell element 1 may be provided as another pressing means 6d behind the rotating drum 6a or the arc-shaped conveyor 6b.

本発明で使用する温度保持手段7は、上記の回転ドラム6a、円弧状コンベア6b、吸着手段6c、押圧手段6dを用いて逆反りさせた太陽電池素子1を所定温度で所定時間保持できるものであれば特に限定されない。図7に示した例では温度保持手段として恒温チャンバー7を用い、この恒温チャンバー7の中に回転ドラム6aを設置しているが、本発明はこれに限られず、例えば回転ドラム6aの中に設けたヒーターを温度保持手段7としても良い。また、誘導加熱を利用したヒーターと冷媒を用いた冷却装置(冷却用の温風を吹き付けるためのノズルなど)を両方用いて、介在半田の温度を上げつつ銅箔の温度を下げるように構成してもよい。   The temperature holding means 7 used in the present invention can hold the solar cell element 1 reversely warped using the rotating drum 6a, the arc-shaped conveyor 6b, the suction means 6c, and the pressing means 6d at a predetermined temperature for a predetermined time. If there is no particular limitation. In the example shown in FIG. 7, the constant temperature chamber 7 is used as the temperature holding means, and the rotary drum 6a is installed in the constant temperature chamber 7. However, the present invention is not limited to this, and for example, provided in the rotary drum 6a. A heater may be used as the temperature holding means 7. In addition, both the heater using induction heating and the cooling device using refrigerant (nozzle for blowing hot air for cooling, etc.) are used to increase the temperature of the intervening solder and lower the temperature of the copper foil. May be.

なお、太陽電池素子1の大きさ、タブリード線2の厚さ、半田の柔らかさ等により好適な逆反り高さは変化するので、これに応じて回転ドラム6aの半径、又は円弧状コンベア6bの極率半径を変化させるほうが好ましい。具体例としては回転ドラム6aを片持ち式とし、必要に応じて取り替えが出来るようにする方法や、円弧状コンベア6bの搬送用ベルトを長さが異なる別の搬送用ベルトと取り替え、このベルトの経路を変更する方法が例示できる。   Note that the preferred reverse warp height varies depending on the size of the solar cell element 1, the thickness of the tab lead wire 2, the softness of the solder, and the like, and accordingly, the radius of the rotating drum 6a or the arc-shaped conveyor 6b It is preferable to change the pole radius. As a specific example, the rotating drum 6a is cantilevered and can be replaced as necessary. The conveyor belt of the arc conveyor 6b is replaced with another conveyor belt having a different length. A method of changing the route can be exemplified.

次に、上記した太陽電池素子の矯正方法に適した太陽電池素子の矯正装置について説明する。
本発明の太陽電池素子の矯正装置は、図8に示したように、銅箔の周りに半田を付着させたタブリード線2で接続された裏面電極型又は両面電極型の太陽電池素子1の反りを矯正させるための太陽電池素子の矯正装置9であって、少なくともタブリード線で接続された太陽電池素子の供給手段5g、太陽電池素子に溶着されたタブリード線を半田の溶融温度近辺まで加熱するための加熱手段3b、太陽電池素子を移動させる移動手段6を有し、移動手段6は、少なくともその一部に回転ドラム6aを有するとともに、タブリード線2が溶着された太陽電池素子1を逆反りさせるために前記回転ドラム6aの表面に太陽電池素子1を吸着する吸着手段6c、又は押圧する押圧手段6dを有し、逆反り状態の太陽電池素子1を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段7を有することを特徴とする。上記装置において、回転ドラム6aの代わりに、図7に示したような円弧状に膨出したコンベア6bを用いてもよい。
Next, a solar cell element correction device suitable for the above-described solar cell element correction method will be described.
As shown in FIG. 8, the apparatus for correcting a solar cell element of the present invention is warped of a back electrode type or double-sided electrode type solar cell element 1 connected by a tab lead wire 2 having solder attached around a copper foil. Is a solar cell element correction device 9 for correcting the temperature of the solar cell element supplying means 5g connected by at least the tab lead wire, and for heating the tab lead wire welded to the solar cell element to near the melting temperature of the solder. Heating means 3b and moving means 6 for moving the solar cell element. The moving means 6 has at least a part of the rotating drum 6a and reversely warps the solar cell element 1 to which the tab lead wire 2 is welded. Therefore, the surface of the rotating drum 6a has an adsorbing means 6c for adsorbing the solar cell element 1 or a pressing means 6d for pressing, and the solar cell element 1 in the reverse warped state is moved to a ductile brittle transition temperature or less. Characterized in that in having a temperature holding unit 7 for holding the temperature below the melting temperature of the solder. In the above apparatus, instead of the rotating drum 6a, a conveyor 6b swelled in an arc shape as shown in FIG. 7 may be used.

本発明の太陽電池素子の矯正装置9は、上記した接続方法8におけるタブリード線の供給手段5a及び太陽電池素子の供給手段5bをタブリード線で接続された太陽電池素子の供給手段5gに変更し、溶着手段3を太陽電池素子に溶着されたタブリード線を半田の溶融温度近辺まで加熱するための加熱手段3bに変更した他は、上記した太陽電池素子の接続方法8と同様であるので説明を省略する。   The solar cell element correction device 9 of the present invention changes the tab lead wire supply means 5a and the solar cell element supply means 5b in the connection method 8 described above to a solar cell element supply means 5g connected by a tab lead wire, Since the welding means 3 is the same as the solar cell element connection method 8 described above except that the tab lead wire welded to the solar cell element is changed to a heating means 3b for heating to the vicinity of the melting temperature of the solder, the description is omitted. To do.

本発明におけるタブリード線で接続された太陽電池素子の供給手段5gとは、タブリード線で接続された太陽電池素子であって反りが解決されていないものを送出する装置である。具体的には、例えば、従来から使用されていた太陽電池素子の接続装置や、当該接続装置により接続された太陽電池素子を繰り出す送出装置が例示できる。   The solar cell element supply means 5g connected by the tab lead wire in the present invention is a device that sends out solar cell elements that are connected by the tab lead wire and have not been warped. Specifically, for example, conventionally used solar cell element connection devices and delivery devices for feeding out solar cell elements connected by the connection devices can be exemplified.

本発明における加熱手段3bとは、太陽電池素子に溶着されたタブリード線を半田の溶融温度近辺まで加熱するための手段である。具体的には、従来より太陽電池素子の接続装置において溶着ヘッドとして使用されてきたような、スポットヒーター、ラインヒーター、誘導加熱を利用したヒーター等が本発明における加熱手段3bとして使用できるが、半田を溶解しない程度にまで出力を弱めたり、処理時間を短くする必要がある。なお、図8においては加熱手段3bと恒温チャンバー7は隣接して設けられているが、隔離させて設けてもよいし、恒温チャンバー7の中に加熱手段3bを設けることも出来る。   The heating means 3b in the present invention is a means for heating the tab lead wire welded to the solar cell element to near the melting temperature of the solder. Specifically, spot heaters, line heaters, heaters using induction heating, and the like that have been used as welding heads in solar cell element connection devices can be used as the heating means 3b in the present invention. It is necessary to weaken the output to such an extent that it does not dissolve or shorten the processing time. In FIG. 8, the heating means 3 b and the constant temperature chamber 7 are provided adjacent to each other, but may be provided separately, or the heating means 3 b can be provided in the constant temperature chamber 7.

比較例(従来の接続方法)
太陽電池素子として、1辺156mmの正方形状で厚さ180〜200μm、電極列が+極、−極それぞれ3列づつ計6列設けられた裏面電極型のものを使用した。このような太陽電池素子100枚に定法でタブリード線を溶着し、室温まで放冷すると、タブリード線が収縮して太陽電池素子が反っていた。反り高さの平均は5.5mmであった。
Comparative example (conventional connection method)
As the solar cell element, a back electrode type element having a square shape with a side of 156 mm, a thickness of 180 to 200 μm, and six electrode rows each including three positive electrodes and three negative electrodes was used. When a tab lead wire was welded to 100 such solar cell elements by a conventional method and allowed to cool to room temperature, the tab lead wire contracted and the solar cell element warped. The average warp height was 5.5 mm.

実施例1(接続方法)
上記比較例で使用したのと同様の太陽電池素子100枚及びタブリード線を140℃に加温し、冷めないうちに棒状の押圧具を用いて太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、同じく棒状の押圧具を用いて該太陽電池素子の中間部で表面側から押圧することにより反り高さ5mmになるまで逆反りさせ、太陽電池素子の電極列上にタブリード線を配置した。
この状態でタブリード線を245℃まで加温して太陽電池素子に溶着してから60℃(保持温度)まで急冷し、この状態で60秒間保持し、その後押圧具を外して室温まで放冷した。
放冷後の太陽電池素子の反り高さは平均1.7mmで、実用に問題のない範囲であった。
Example 1 (connection method)
100 solar cell elements and tab lead wires similar to those used in the comparative example were heated to 140 ° C., and the solar cell elements were arranged at the front and rear ends of the electrode array using a rod-shaped pressing tool before cooling. On the electrode array of the solar cell element, it is pressed from the back surface side at the edge and reversely warped until it reaches a warp height of 5 mm by pressing from the front surface side at the middle part of the solar cell element using the same bar-shaped pressing tool. The tab lead wire was placed on.
In this state, the tab lead wire was heated to 245 ° C. and welded to the solar cell element, then rapidly cooled to 60 ° C. (holding temperature), held in this state for 60 seconds, and then the pressing tool was removed and allowed to cool to room temperature. .
The warped height of the solar cell element after being allowed to cool was 1.7 mm on average, and was in a range where there was no problem in practical use.

実施例2(接続方法)
上記比較例で使用したのと同様の太陽電池素子100枚に定法でタブリード線を溶着し、冷めないうちに棒状の押圧具を用いて太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、同じく棒状の押圧具を用いて該太陽電池素子の中間部で表面側から押圧することにより反り高さ5mmになるまで逆反りさせた。
この状態で60℃(保持温度)まで急冷し、この状態で60秒間保持し、その後押圧具を外して室温まで放冷した。
放冷後の太陽電池素子の反り高さは平均2.5mmで、実用に問題のない範囲であった。
Example 2 (connection method)
A tab lead wire is welded to 100 solar cell elements similar to those used in the comparative example by a regular method, and the solar cell elements are arranged at the front and rear edges of the electrode array using a rod-shaped pressing tool before cooling. While pressing from the back surface side, it was made to reverse-warp until it became 5 mm in warpage height by pressing from the surface side in the intermediate part of this solar cell element similarly using a rod-shaped pressing tool.
In this state, it was rapidly cooled to 60 ° C. (holding temperature), held in this state for 60 seconds, and then the pressing tool was removed and the mixture was allowed to cool to room temperature.
The warped height of the solar cell element after being allowed to cool was 2.5 mm on average, and was in a range where there was no problem in practical use.

実施例3(矯正方法)
上記比較例で得られた、反った太陽電池素子を150℃(加熱温度)まで加熱し、棒状の押圧具を用いて太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、同じく棒状の押圧具を用いて該太陽電池素子の中間部で表面側から押圧することにより反り高さ5mmになるまで逆反りさせた。
この状態で60℃(保持温度)まで急冷し、この状態で60秒間保持し、その後押圧具を外して室温まで放冷した。
放冷後の太陽電池素子の反り高さは平均2.5mmで、矯正前の5.5mmから大幅に矯正された。
Example 3 (correction method)
The warped solar cell element obtained in the above comparative example was heated to 150 ° C. (heating temperature), and the solar cell element was pressed from the back side with the edge of the electrode array in the front-rear direction in the arrangement direction of the electrode row. At the same time, by using the same bar-shaped pressing tool and pressing from the surface side at the intermediate portion of the solar cell element, the warping height was 5 mm.
In this state, it was rapidly cooled to 60 ° C. (holding temperature), held in this state for 60 seconds, and then the pressing tool was removed and the mixture was allowed to cool to room temperature.
The average height of the solar cell element after cooling was 2.5 mm, which was greatly corrected from 5.5 mm before correction.

実施例4(矯正方法)
上記実施例1で得られたタブリード線で接続された太陽電池素子を、実施例3と同様の方法で矯正した。
矯正後の太陽電池素子の反り高さは平均0.8mmで、矯正前の1.7mmから大幅に矯正された。
Example 4 (correction method)
The solar cell elements connected by the tab lead wires obtained in Example 1 were corrected in the same manner as in Example 3.
The average height of the solar cell element after correction was 0.8 mm, which was greatly corrected from 1.7 mm before correction.

叙上のとおり、本発明の太陽電池素子の接続方法、矯正方法によれば、タブリード線が溶着された太陽電池素子を逆反りさせてから適当な温度まで冷却し、そのまま逆反りさせた太陽電池素子を保持することにより介在半田を塑性変形させ、これにより、シリコンと銅の線膨張率の差を吸収させるので、太陽電池素子の反りが解消でき、モジュール化の際などにも破損しにくいので、太陽電池モジュールを作成する段階において太陽電池素子の反りを解消する方法として、または接続された太陽電池素子の反りを解消する方法として頗る有用である。   As described above, according to the solar cell element connection method and straightening method of the present invention, the solar cell element on which the tab lead wire is welded is reversely warped and then cooled to an appropriate temperature, and then the solar cell is reversely warped as it is. Holding the element causes plastic deformation of the intervening solder, which absorbs the difference in linear expansion coefficient between silicon and copper, so that the warpage of the solar cell element can be eliminated and it is difficult to break down when modularizing. It is useful as a method for eliminating the warpage of the solar cell elements in the stage of producing the solar cell module or as a method for eliminating the warpage of the connected solar cell elements.

1 太陽電池素子
1a 電極列
2 タブリード線
2a 銅箔
2b 半田
3 溶着手段(溶着ヘッド)
3b 加熱手段
4 押圧具
5a タブリード線の供給手段
5b 太陽電池素子の供給手段
5c キャリヤーフィルム
5d キャリヤーフィルム剥離ロール
5e キャリヤーフィルム巻き取りロール
5f ニップロール
5g タブリード線で接続された太陽電池素子の供給手段
6 移動手段
6a 回転ドラム
6b 円弧状コンベア
6c 吸着手段
6d 押圧手段
7 温度保持手段(恒温チャンバー)
8 太陽電池素子の接続装置
9 太陽電池素子の矯正装置
H 反り高さ
DESCRIPTION OF SYMBOLS 1 Solar cell element 1a Electrode row 2 Tab lead wire 2a Copper foil 2b Solder 3 Welding means (welding head)
3b Heating means 4 Pressing tool 5a Tab lead wire supply means 5b Solar cell element supply means 5c Carrier film 5d Carrier film peeling roll 5e Carrier film take-up roll 5f Nip roll 5g Solar cell element supply means connected by tab lead wires 6 Movement Means 6a Rotating drum 6b Arc conveyor 6c Adsorption means 6d Press means 7 Temperature holding means (constant temperature chamber)
8 Solar cell device connection device 9 Solar cell device straightening device H Warp height

Claims (18)

裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続方法であって、
太陽電池素子の電極列に沿ってタブリード線を配置し、
タブリード線及び太陽電池素子をタブリード線に付着する半田の溶融温度近辺まで加熱してから、
太陽電池素子を逆反りさせ、
次に、タブリード線を半田の溶融温度以上に加熱することにより太陽電池素子とタブリード線を半田付けし、
半田付け後に半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の接続方法。
A solar cell element connection method in which a back electrode type or double-sided electrode type solar cell element is connected with a tab lead wire with solder attached around a copper foil,
Place tab lead wires along the electrode array of solar cell elements,
After heating the tab lead wire and solar cell element to around the melting temperature of the solder attached to the tab lead wire,
Reverse warping the solar cell element,
Next, the solar cell element and the tab lead wire are soldered by heating the tab lead wire above the melting temperature of the solder,
A method for connecting solar cell elements, comprising: holding the solar cell element that is reversely warped at a temperature that is higher than a ductile brittle transition temperature of solder and lower than a melting temperature of solder after soldering.
裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続方法であって、
太陽電池素子の電極列に沿ってタブリード線を配置し、タブリード線を半田の溶融温度以上に加熱することにより太陽電池素子とタブリード線を半田付けし、
次に、太陽電池素子を逆反りさせ、
半田の延性脆性遷移温度以上で半田の溶融温度未満の温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の接続方法。
A solar cell element connection method in which a back electrode type or double-sided electrode type solar cell element is connected with a tab lead wire with solder attached around a copper foil,
The tab lead wire is arranged along the electrode array of the solar cell element, and the solar cell element and the tab lead wire are soldered by heating the tab lead wire to a temperature higher than the melting temperature of the solder,
Next, reverse the solar cell element,
A method for connecting solar cell elements, comprising: holding the solar cell element that is reversely warped at a temperature equal to or higher than a ductile brittle transition temperature of solder and lower than a melting temperature of solder.
半田付け後の保持温度が半田の延性脆性遷移温度以上で100℃以下であることを特徴とする請求項1又は2に記載の太陽電池素子の接続方法。  The method for connecting solar cell elements according to claim 1 or 2, wherein the holding temperature after soldering is not less than the ductile brittle transition temperature of solder and not more than 100 ° C. 半田付け後のタブリード線を、半田の延性脆性遷移温度以上になるよう誘導加熱により加熱すると共に、タブリード線の表面側に冷媒を接触させることにより100℃以下に冷却することにより、銅箔と太陽電池素子の間の半田の温度を銅箔の温度よりも高くすることを特徴とする請求項1又は2に記載の太陽電池素子の接続方法。  The tab lead wire after soldering is heated by induction heating so that the temperature becomes equal to or higher than the ductile brittle transition temperature of the solder, and is cooled to 100 ° C. or less by bringing a coolant into contact with the surface side of the tab lead wire. The method for connecting solar cell elements according to claim 1 or 2, wherein the temperature of the solder between the battery elements is made higher than the temperature of the copper foil. 太陽電池素子の逆反りは、太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、該太陽電池素子の中間部で表面側から押圧することにより行われることを特徴とする請求項1乃至4のいずれかに記載の太陽電池素子の接続方法。  The reverse warping of the solar cell element is performed by pressing the solar cell element from the back surface side at the front and rear edges of the arrangement direction of the electrode rows, and pressing from the front surface side at the intermediate portion of the solar cell element. The method for connecting solar cell elements according to any one of claims 1 to 4. 太陽電池素子の逆反りは、太陽電池素子を回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されることにより行われることを特徴とする請求項1乃至4のいずれかに記載の太陽電池素子の接続方法。  5. The reverse warping of the solar cell element is performed by pressing or adsorbing the solar cell element on the surface of a rotating drum or a conveyor having an arcuate shape. 5. The connection method of the solar cell element of description. 太陽電池素子の押圧は、回転ドラム、又は円弧状に膨出した形状のコンベアの進行方向後部においてタブリード線に進行方向後向きの張力を加えることにより行われることを特徴とする請求項6に記載の太陽電池素子の接続方法。  7. The pressing of the solar cell element is performed by applying a backward tension in the traveling direction to the tab lead wire at the rear portion in the traveling direction of the rotating drum or the arcuate-shaped conveyor. A method for connecting solar cell elements. 太陽電池素子の吸着は、回転ドラム、又は円弧状に膨出した形状のコンベアの表面に設けられた真空吸着装置により行われることを特徴とする請求項6に記載の太陽電池素子の接続方法。  The solar cell element connection method according to claim 6, wherein the adsorption of the solar cell element is performed by a vacuum adsorption device provided on the surface of a rotary drum or a conveyor having an arcuate shape. 太陽電池素子及び/又は、タブリード線がキャリヤーフィルム上にマウントした状態で供給され、回転ドラム、又は円弧状に膨出した形状のコンベアの直前でキャリヤーフィルムが取り除かれることを特徴とする請求項1乃至8のいずれかに記載の太陽電池素子の接続方法。  2. The solar cell element and / or the tab lead wire is supplied in a mounted state on the carrier film, and the carrier film is removed immediately before the rotating drum or the conveyor having an arcuate shape. The connection method of the solar cell element in any one of thru | or 8. 逆反り前の加熱温度が100℃以上で半田の溶融温度未満あることを特徴とする請求項1記載の太陽電池素子の接続方法。  The method for connecting solar cell elements according to claim 1, wherein the heating temperature before reverse warping is 100 ° C or higher and lower than the melting temperature of solder. 銅箔の周りに半田を付着させたタブリード線で接続された裏面電極型又は両面電極型の太陽電池素子の反りを矯正する太陽電池素子の矯正方法であって、
タブリード線で接続された太陽電池素子をタブリード線に付着する半田の溶融温度近辺まで加熱してから、
太陽電池素子を電極列の配列方向前後側の端縁で裏面側から押圧するとともに、該太陽電池素子の中間部で表面側から押圧することにより、太陽電池素子を逆反りさせ、
半田の延性脆性遷移温度以上で半田の溶融温度未満の温度まで冷却し、当該温度で前記逆反りさせた太陽電池素子を保持することを特徴とする太陽電池素子の矯正方法。
A method of correcting a solar cell element that corrects the warpage of a back-surface electrode type or double-sided electrode type solar cell element connected by a tab lead wire with solder attached around a copper foil,
After heating the solar cell elements connected with the tab lead wire to near the melting temperature of the solder attached to the tab lead wire,
While pressing the solar cell element from the back side at the edge of the arrangement direction of the electrode array from the back side, by pressing from the front side at the middle part of the solar cell element, the solar cell element is reversely warped,
A method for correcting a solar cell element, wherein the solar cell element is cooled to a temperature equal to or higher than a ductile brittle transition temperature of the solder and lower than a melting temperature of the solder, and the solar cell element that is reversely warped at the temperature is held.
逆反り前の加熱温度が100℃以上で半田の溶融温度未満あることを特徴とする請求項11記載の太陽電池素子の矯正方法。  The method for correcting a solar cell element according to claim 11, wherein the heating temperature before reverse warping is 100 ° C or higher and lower than the melting temperature of solder. 逆反り後の保持温度が半田の延性脆性遷移温度以上で100℃以下であることを特徴とする請求項11又は12に記載の太陽電池素子の矯正方法。  The method for correcting a solar cell element according to claim 11 or 12, wherein the holding temperature after reverse warping is not lower than the ductile brittle transition temperature of solder and not higher than 100 ° C. 逆反り後のタブリード線を、半田の延性脆性遷移温度以上になるよう誘導加熱により加熱すると共に、タブリード線の表面側に冷媒を接触させることにより100℃以下に冷却することにより、銅箔と太陽電池素子の間の半田の温度を銅箔の温度よりも高くすることを特徴とする請求項11又は12に記載の太陽電池素子の矯正方法。  The tab lead wire after the reverse warp is heated by induction heating so as to be equal to or higher than the ductile brittle transition temperature of the solder, and is cooled to 100 ° C. or less by bringing a coolant into contact with the surface side of the tab lead wire, so that the copper foil and the sun The method for correcting a solar cell element according to claim 11 or 12, wherein the temperature of the solder between the battery elements is made higher than the temperature of the copper foil. 裏面電極型又は両面電極型の太陽電池素子を銅箔の周りに半田を付着させたタブリード線で接続する太陽電池素子の接続装置であって、少なくともタブリード線の供給手段、太陽電池素子の供給手段、タブリード線を太陽電池素子に溶着する溶着手段、太陽電池素子を移動させる移動手段を有し、
移動手段は、少なくともその一部に回転ドラム、又は円弧状に膨出した形状のコンベアを有するとともに、タブリード線が溶着された太陽電池素子を逆反りさせるために前記回転ドラム又は円弧状に膨出した形状のコンベアの表面に太陽電池素子を吸着する吸着手段、又は押圧する押圧手段を有し、
逆反り状態の太陽電池素子を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段を有することを特徴とする太陽電池素子の接続装置。
A solar cell element connection device for connecting a back electrode type or double side electrode type solar cell element with a tab lead wire having solder attached around a copper foil, comprising at least a tab lead wire supply means and a solar cell element supply means , Welding means for welding the tab lead wire to the solar cell element, moving means for moving the solar cell element,
The moving means has at least part of a rotating drum or a conveyor having a shape bulging in an arc shape, and bulges in the rotating drum or the arc shape in order to reverse warp the solar cell element to which the tab lead wire is welded. Having an adsorbing means for adsorbing the solar cell element on the surface of the conveyor having the shape, or a pressing means for pressing,
An apparatus for connecting solar cell elements, comprising temperature holding means for holding a solar cell element in a reverse warped state at a temperature higher than a ductile brittle transition temperature and lower than a melting temperature of solder.
溶着手段によりタブリード線が太陽電池素子に溶着される際、太陽電池素子が回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されるように構成されることを特徴とする請求項15に記載の太陽電池素子の接続装置。  When the tab lead wire is welded to the solar cell element by the welding means, the solar cell element is configured to be pressed or adsorbed on the surface of a rotary drum or a conveyor having a circular arc shape. The solar cell element connection device according to claim 15. 銅箔の周りに半田を付着させたタブリード線で接続された裏面電極型又は両面電極型の太陽電池素子の反りを矯正させるための太陽電池素子の矯正装置であって、少なくともタブリード線で接続された太陽電池素子の供給手段、太陽電池素子に溶着されたタブリード線を半田の溶融温度近辺まで加熱するための加熱手段、太陽電池素子を移動させる移動手段を有し、
移動手段は、少なくともその一部に回転ドラム、又は円弧状に膨出した形状のコンベアを有するとともに、タブリード線が溶着された太陽電池素子を逆反りさせるために前記回転ドラム又は円弧状に膨出した形状のコンベアの表面に太陽電池素子を吸着する吸着手段、又は押圧する押圧手段を有し、
逆反り状態の太陽電池素子を延性脆性遷移温度以上で半田の溶融温度未満の温度に保持するための温度保持手段を有することを特徴とする太陽電池素子の矯正装置。
A device for correcting a solar cell element for correcting warpage of a back-surface electrode type or double-sided electrode type solar cell element connected by a tab lead wire having solder attached around a copper foil, and connected at least by a tab lead wire The solar cell element supply means, the heating means for heating the tab lead wire welded to the solar cell element to near the melting temperature of the solder, the moving means for moving the solar cell element,
The moving means has at least part of a rotating drum or a conveyor having a shape bulging in an arc shape, and bulges in the rotating drum or the arc shape in order to reverse warp the solar cell element to which the tab lead wire is welded. Having an adsorbing means for adsorbing the solar cell element on the surface of the conveyor having the shape, or a pressing means for pressing,
An apparatus for correcting a solar cell element, comprising temperature holding means for holding a solar cell element in a reverse warped state at a temperature higher than a ductile brittle transition temperature and lower than a melting temperature of solder.
溶着手段によりタブリード線が太陽電池素子に溶着される際、太陽電池素子が回転ドラム、又は円弧状に膨出した形状のコンベアの表面に押圧又は吸着されるように構成されることを特徴とする請求項17に記載の太陽電池素子の矯正装置。  When the tab lead wire is welded to the solar cell element by the welding means, the solar cell element is configured to be pressed or adsorbed on the surface of a rotary drum or a conveyor having a circular arc shape. The correction apparatus of the solar cell element of Claim 17.
JP2011509363A 2009-04-16 2010-04-16 Solar cell element connection method and correction method, and devices thereof Expired - Fee Related JP4885331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011509363A JP4885331B2 (en) 2009-04-16 2010-04-16 Solar cell element connection method and correction method, and devices thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009099778 2009-04-16
JP2009099778 2009-04-16
PCT/JP2010/056841 WO2010119950A1 (en) 2009-04-16 2010-04-16 Solar battery element connection method, correction method, and devices using these methods
JP2011509363A JP4885331B2 (en) 2009-04-16 2010-04-16 Solar cell element connection method and correction method, and devices thereof

Publications (2)

Publication Number Publication Date
JP4885331B2 true JP4885331B2 (en) 2012-02-29
JPWO2010119950A1 JPWO2010119950A1 (en) 2012-10-22

Family

ID=42982607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011509363A Expired - Fee Related JP4885331B2 (en) 2009-04-16 2010-04-16 Solar cell element connection method and correction method, and devices thereof

Country Status (3)

Country Link
JP (1) JP4885331B2 (en)
KR (1) KR20120022863A (en)
WO (1) WO2010119950A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237059A (en) * 2012-05-14 2013-11-28 Eco & Engineering Co Ltd Joining device and joining method for interconnector and solar battery element
EP2911206A3 (en) * 2014-02-24 2015-11-25 LG Electronics Inc. Solar cell module and method for manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471097B2 (en) * 2009-07-10 2014-04-16 東洋製罐株式会社 Bonding method of metal substrate and glass substrate
JP2012146895A (en) * 2011-01-14 2012-08-02 Eco & Engineering Co Ltd Method and apparatus for connecting solar cell element string with bus bar
KR101224123B1 (en) 2011-01-28 2013-01-21 주식회사 에스에프에이 Apparatus for manufacturing of back contact solar cell string
JP2013069963A (en) * 2011-09-26 2013-04-18 Alonics Ltd Connection device of rear surface contact type solar battery element and heating head
JP2013149919A (en) * 2012-01-23 2013-08-01 Three M Innovative Properties Co Member peeling method, member peeling device, and method of manufacturing semiconductor chip
EP2804224A1 (en) 2013-05-13 2014-11-19 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a photovoltaic module
WO2015071992A1 (en) * 2013-11-14 2015-05-21 有限会社エコ&エンジニアリング Apparatus and method for bonding interconnector and solar cell element
DE102016115355A1 (en) * 2016-08-18 2018-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of adhering a metallic foil to a surface of a semiconductor substrate and a semiconductor device with a metallic foil
CN106862690A (en) * 2017-02-09 2017-06-20 常州天合光能有限公司 IBC battery lists welding stage, series connection welding bench and its Series connection welding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273914A (en) * 2003-03-11 2004-09-30 Mekku:Kk Apparatus for manufacturing solar battery cell
JP2005191491A (en) * 2003-12-26 2005-07-14 Sharp Corp Process and apparatus for producing solar cell module
JP2005191259A (en) * 2003-12-25 2005-07-14 Sharp Corp Process and apparatus for producing solar cell module
JP2005235971A (en) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc Solder device of tab lead for solar battery containing flux coating function
JP2006278695A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell module
JP2006332264A (en) * 2005-05-25 2006-12-07 Kyocera Corp Method of manufacturing solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273914A (en) * 2003-03-11 2004-09-30 Mekku:Kk Apparatus for manufacturing solar battery cell
JP2005191259A (en) * 2003-12-25 2005-07-14 Sharp Corp Process and apparatus for producing solar cell module
JP2005191491A (en) * 2003-12-26 2005-07-14 Sharp Corp Process and apparatus for producing solar cell module
JP2005235971A (en) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc Solder device of tab lead for solar battery containing flux coating function
JP2006278695A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell module
JP2006332264A (en) * 2005-05-25 2006-12-07 Kyocera Corp Method of manufacturing solar cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237059A (en) * 2012-05-14 2013-11-28 Eco & Engineering Co Ltd Joining device and joining method for interconnector and solar battery element
EP2911206A3 (en) * 2014-02-24 2015-11-25 LG Electronics Inc. Solar cell module and method for manufacturing the same
US9553226B2 (en) 2014-02-24 2017-01-24 Lg Electronics Inc. Solar cell module and method for manufacturing the same
US10475944B2 (en) 2014-02-24 2019-11-12 Lg Electronics Inc. Solar cell module and method for manufacturing the same
US11538952B2 (en) 2014-02-24 2022-12-27 Shangrao Jinko Solar Technology Development Co., Ltd. Solar cell module and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2010119950A1 (en) 2012-10-22
WO2010119950A1 (en) 2010-10-21
KR20120022863A (en) 2012-03-12

Similar Documents

Publication Publication Date Title
JP4885331B2 (en) Solar cell element connection method and correction method, and devices thereof
JP6996698B2 (en) Solar cell interconnect
JP5101409B2 (en) Method and apparatus for connecting solar cell elements
JP5377019B2 (en) Manufacturing method of solar cell module
JP2006310798A (en) Solar cell module and method of manufacturing the same
JP5604236B2 (en) Solar cell module manufacturing method, solar cell connection device, solar cell module
US20100043860A1 (en) Solar cell module
CN112404779A (en) Solar cell string welding method, cell module and welding device
JP2013237059A (en) Joining device and joining method for interconnector and solar battery element
JP2011151334A (en) Method of manufacturing solar cell module
WO2012029813A1 (en) Solar battery module manufacturing device and solar battery module manufacturing method
JP2013084726A (en) Solar cell bus bar wiring apparatus and wiring method
CN102324442A (en) Back electrode solar cell module and electrode welding method thereof
JP5061035B2 (en) Solar cell with interconnector and method for manufacturing the same
JP2007273830A (en) Method for manufacturing solar battery device
JP2012143805A (en) Heating head, and connection devices for solar cell and solar cell string using the heating head
JP2012099576A (en) Connection method of crystal system solar cells and crystal system solar cell module assembly apparatus
JP4738147B2 (en) Solar cell module and manufacturing method thereof
WO2012018110A1 (en) Solar cell element connecting apparatus
JP5274326B2 (en) Manufacturing method of solar cell module
JP2014175618A (en) Tab lead bending mechanism and connection device for solar cell with tab lead bending mechanism
JP5016800B2 (en) Manufacturing method of solar cell module
JP2011132295A (en) Method for pasting adhesive film and method for producing solar cell module
WO2013125673A1 (en) Solar cell module
CN212062449U (en) Flexible silicon-based battery module that can curl

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees