JP4881000B2 - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP4881000B2
JP4881000B2 JP2005380349A JP2005380349A JP4881000B2 JP 4881000 B2 JP4881000 B2 JP 4881000B2 JP 2005380349 A JP2005380349 A JP 2005380349A JP 2005380349 A JP2005380349 A JP 2005380349A JP 4881000 B2 JP4881000 B2 JP 4881000B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion device
thermocouple
conductor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005380349A
Other languages
Japanese (ja)
Other versions
JP2007180455A (en
Inventor
進 杉山
巨樹 渡部
洋 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Tokai Rika Co Ltd
Original Assignee
Ritsumeikan Trust
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Tokai Rika Co Ltd filed Critical Ritsumeikan Trust
Priority to JP2005380349A priority Critical patent/JP4881000B2/en
Publication of JP2007180455A publication Critical patent/JP2007180455A/en
Application granted granted Critical
Publication of JP4881000B2 publication Critical patent/JP4881000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、基板上に第1導体と第2導体を交互に設けて熱電対を構成した熱電変換デバイスに関するものである。 The present invention relates to a thermoelectric conversion device in which the first conductor and the second conductor constitutes a thermocouple is provided alternately on the substrate.

温度差により発電するゼーベック効果を利用した熱電変換デバイスは、電子デバイスの供給電源や補助電源、及び、温度センサや赤外線センサ等として利用可能である。特許文献1には、可撓性を有する基板と、当該基板上に設けられた第1金属体と第2金属体とからなる熱電対と、熱電対が形成された基板を挟持する第1シート状部材および第2シート状部材とを備える熱電変換デバイスが提示されている。   A thermoelectric conversion device using the Seebeck effect that generates power due to a temperature difference can be used as a power supply or auxiliary power supply for an electronic device, a temperature sensor, an infrared sensor, or the like. In Patent Document 1, a flexible substrate, a thermocouple composed of a first metal body and a second metal body provided on the substrate, and a first sheet sandwiching the substrate on which the thermocouple is formed. A thermoelectric conversion device comprising a sheet-like member and a second sheet-like member is presented.

より具体的には、図5に示すように、熱電対131が配置された電気絶縁性シート111が断面波形状に折り曲げられるとともに、電気絶縁性シート111は、第1シート状部材141及び第2シート状部材142により挟持されている。また、電気絶縁性シート111は、複数の頂部111aおよび複数の底部111bからなる屈曲部を備えており、屈曲部を挟む電気絶縁性シート111の斜傾部111c及び斜傾部111dと、第2シート状部材142の上面142aとの成す角が斜めになっている。   More specifically, as shown in FIG. 5, the electrically insulating sheet 111 on which the thermocouple 131 is disposed is bent into a cross-sectional wave shape, and the electrically insulating sheet 111 includes the first sheet-like member 141 and the second sheet member. It is clamped by the sheet-like member 142. The electrical insulating sheet 111 includes a bent portion including a plurality of top portions 111a and a plurality of bottom portions 111b. The inclined portion 111c and the inclined portion 111d of the electrically insulating sheet 111 sandwiching the bent portion, and a second inclined portion 111d. The angle formed by the upper surface 142a of the sheet-like member 142 is slanted.

熱電対131は電気絶縁性シート111に直列接続されており、熱電対の第1金属体121と第2金属体122との接続点である第1接点137と、隣り合う熱電対131同士の接続点である第2接点138とを有している。熱電対131の第1接点137の各々は電気絶縁性シート111の頂部111aに位置するように配置され、熱電対131の第2接点138の各々は電気絶縁性シート111の底部111bに位置するように配置されている。   The thermocouple 131 is connected in series to the electrically insulating sheet 111, and the first contact point 137 that is a connection point between the first metal body 121 and the second metal body 122 of the thermocouple and the connection between the adjacent thermocouples 131. It has the 2nd contact 138 which is a point. Each of the first contacts 137 of the thermocouple 131 is disposed so as to be located at the top 111 a of the electrically insulating sheet 111, and each of the second contacts 138 of the thermocouple 131 is located at the bottom 111 b of the electrically insulating sheet 111. Is arranged.

このような構造の熱電変換デバイスにおいて、第1金属体及び第2金属体は蒸着により電気絶縁性シートに形成されているが、蒸着は断面波形状に折り曲げられた電気絶縁性シートの表面に行うには、マスキング処理を行う必要があることから困難である。そのため、電気絶縁性シートの表面に第1金属体及び第2金属体を蒸着した後に、電気絶縁性シートを断面波形状に折り曲げるようにしている。
特開2005−209718号公報
In the thermoelectric conversion device having such a structure, the first metal body and the second metal body are formed on the electrically insulating sheet by vapor deposition, but the vapor deposition is performed on the surface of the electrically insulating sheet bent into a cross-sectional wave shape. However, it is difficult to perform masking processing. Therefore, after vapor-depositing the first metal body and the second metal body on the surface of the electrical insulating sheet, the electrical insulating sheet is bent into a cross-sectional wave shape.
JP 2005-209718 A

しかしながら、電気絶縁性シートの表面に第1金属体及び第2金属体を蒸着した後に、電気絶縁性シートを折り曲げるようにした場合、屈曲部に配置された第1金属体及び第2金属体には曲げ応力がかかる。第1金属体及び第2金属体を曲げ応力によって断線させないためには、曲げ応力を緩和する必要があり、そのためには電気絶縁性シートを折り曲げる角度を小さくする必要がある。その結果、電気絶縁性シートの屈曲部各々の間の距離d1が長くなる傾向にあり、熱電変換デバイスの集積度を上げる上でのボトルネックとなっていた。   However, when the electrical insulating sheet is bent after the first metal body and the second metal body are deposited on the surface of the electrical insulating sheet, the first metal body and the second metal body disposed in the bent portion Is subject to bending stress. In order not to break the first metal body and the second metal body due to the bending stress, it is necessary to relax the bending stress, and for that purpose, it is necessary to reduce the angle at which the electrical insulating sheet is bent. As a result, the distance d1 between the bent portions of the electrical insulating sheet tends to be long, which has become a bottleneck in increasing the degree of integration of thermoelectric conversion devices.

本発明は上記の問題に鑑みてなされたものであり、熱電対の断線を防止するとともに、熱電対の集積度の向上を図ることができる熱電変換デバイスを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoelectric conversion device capable of preventing disconnection of a thermocouple and improving the integration degree of the thermocouple.

上記課題を解決するために、請求項1に記載の発明は、基板上に第1導体と第2導体とを交互に設けて熱電対を構成した熱電変換デバイスにおいて、前記基板は複数あり、複数の基板は夫々面対向するように並べられ、前記第1導体と前記第2導体とは、第1導体及び第2導体に比して導電性の高い導電性部材を介して電気的に接続され、前記導電性部材のうち、隣り合う熱電対同士を接続する導電性部材は、前記第1導体及び前記第2導体に比して薄く形成され、前記基板において、前記薄く形成された導電性部材に対応する部分には、スリットが形成され、さらに、前記熱電対が形成された基板の周囲は断熱性を有する断熱性部材によって覆われているとともに、当該断熱性部材は、熱伝導性を有する熱伝導性部材によって覆われていることを要旨とする。 In order to solve the above-described problem, the invention described in claim 1 is a thermoelectric conversion device in which the first conductor and the second conductor are alternately provided on the substrate to form a thermocouple. The first conductor and the second conductor are electrically connected via a conductive member having higher conductivity than the first conductor and the second conductor. Among the conductive members, the conductive member that connects adjacent thermocouples is formed thinner than the first conductor and the second conductor, and the conductive member formed thin in the substrate. In addition, a slit is formed in the portion corresponding to , and the periphery of the substrate on which the thermocouple is formed is covered with a heat insulating member having a heat insulating property, and the heat insulating member has a heat conductive property. It is covered by the thermally conductive member The gist of the door.

同構成によれば、従来の熱電変換デバイスの製造時に熱電対が形成された基板を折り曲げる際に生ずる曲げ応力を考慮する必要がないため、基板を並べる際に隣り合う基板との距離を小さくさせていっても熱電対の断線のおそれはなく、結果として、熱電対の断線を防止できるとともに、熱電変換デバイスの集積度を向上させることができる。
また、導電性部材における電気抵抗値を低くすることで、熱電変換デバイスが発電した電圧からより多くの電流を発生させることができ、熱電変換デバイスの熱電変換効率が上昇する。
さらに、熱源に熱電変換デバイスを近づけた場合、熱源から発せられた熱は、熱源から遠い側の冷接点に伝導する場合には、熱源から近い側の温接点に伝導する場合に比してより長い距離、断熱性部材を移動しなければならない。従って、断熱性部材は熱を伝えにくいため、冷接点と温接点との温度差は大きくなり、熱電変換デバイスのゼーベック効果による発電の効率を高めることができる。
また、直接外部と接触する部分が熱伝導性を有する熱伝導性部材により覆われているため、熱源に当該熱電変換デバイスを近づけた場合、熱源側の熱伝導性部材は熱を熱電変換デバイスに取り込み、熱源から離間した側の熱伝導性部材は熱を放熱する。その結果、冷接点と温接点との温度差は大きくなり、熱電変換デバイスのゼーベック効果による発電の効率を高めることができる。
According to this configuration, it is not necessary to consider bending stress generated when a substrate on which a thermocouple is formed during the manufacture of a conventional thermoelectric conversion device, so that the distance between adjacent substrates can be reduced when arranging the substrates. However, there is no fear of disconnection of the thermocouple, and as a result, disconnection of the thermocouple can be prevented and the degree of integration of the thermoelectric conversion device can be improved.
Moreover, by making the electrical resistance value in the conductive member low, more current can be generated from the voltage generated by the thermoelectric conversion device, and the thermoelectric conversion efficiency of the thermoelectric conversion device is increased.
Furthermore, when the thermoelectric conversion device is brought closer to the heat source, the heat generated from the heat source is more conductive when conducted to the cold junction on the side farther from the heat source than when conducted to the hot junction on the side closer to the heat source. The heat insulating member must be moved a long distance. Therefore, since the heat insulating member is difficult to transfer heat, the temperature difference between the cold junction and the hot junction becomes large, and the efficiency of power generation by the Seebeck effect of the thermoelectric conversion device can be increased.
In addition, since the portion directly in contact with the outside is covered with a heat conductive member having heat conductivity, when the thermoelectric conversion device is brought close to the heat source, the heat conductive member on the heat source side transfers heat to the thermoelectric conversion device. The heat conductive member on the side that is taken in and separated from the heat source dissipates heat. As a result, the temperature difference between the cold junction and the hot junction increases, and the power generation efficiency due to the Seebeck effect of the thermoelectric conversion device can be increased.

請求項2に記載の発明は、請求項1に記載の構成に加え、前記複数の基板が、夫々平行に並べられていることを要旨とする。
同構成によれば、隣り合う基板が平行になっているため、隣り合う基板の距離をより小さくすることができ、熱電変換デバイスの集積度を一層向上させることができる。
The gist of the invention described in claim 2 is that, in addition to the configuration described in claim 1, the plurality of substrates are arranged in parallel.
According to this configuration, since the adjacent substrates are parallel, the distance between the adjacent substrates can be further reduced, and the degree of integration of the thermoelectric conversion devices can be further improved.

本発明の熱電変換デバイスは、熱電対の断線を防止できるとともに、熱電変換デバイスの集積度を向上させることができる。   The thermoelectric conversion device of the present invention can prevent disconnection of the thermocouple and can improve the integration degree of the thermoelectric conversion device.

本発明に係る熱電変換デバイスの実施形態を図1〜図4を参照して説明する。図1〜図3に記載のX軸はY−Z平面に対し垂直であり、Y軸はX−Z平面に対し垂直であり、Z軸はX−Y平面に対し垂直である。   An embodiment of a thermoelectric conversion device according to the present invention will be described with reference to FIGS. 1 to 3, the X axis is perpendicular to the YZ plane, the Y axis is perpendicular to the XZ plane, and the Z axis is perpendicular to the XY plane.

図1(c)に示すように、基板である複数の電気絶縁性シート11がX軸方向に等間隔になるよう並べられている。また、図1(b)に示すように、Y軸方向に長く形成された電気絶縁性シート11には、スリット12が形成されている。なお、電気絶縁性シート11は、例えばポリミドフィルムにより形成されている。また、図2(b)に示すように、隣り合う電気絶縁性シート11は、面11aと面11bが対向するとともに、平行になるように並べられている。   As shown in FIG.1 (c), the some electric insulation sheet | seat 11 which is a board | substrate is located in a line at equal intervals in the X-axis direction. Moreover, as shown in FIG.1 (b), the slit 12 is formed in the electrically insulating sheet | seat 11 formed long in the Y-axis direction. The electrically insulating sheet 11 is formed of, for example, a polyimide film. Moreover, as shown in FIG.2 (b), the adjacent electrical insulating sheet | seat 11 is arranged so that the surface 11a and the surface 11b may oppose and it may become parallel.

図1(b)に示すように、面対向するように並べられた複数の電気絶縁性シート11の各々には、蛇行状をなす熱電対群13〜17が直列接続されて設けられている。そして、図1(a)、(b)に示すように、電気絶縁性シート11のY軸方向における左側端部に配置されている熱電対群13は、隣接する電気絶縁性シート11に形成されている熱電対群13と延性を有する導体からなるコネクタ18を介して電気的に接続されている。また、電気絶縁性シート11のY軸方向における右側端部に配置されている熱電対群17は、隣接する電気絶縁性シート11に形成されている熱電対群17とコネクタ18を介して電気的に接続されている。   As shown in FIG. 1B, each of the plurality of electrically insulating sheets 11 arranged so as to face each other is provided with serpentine thermocouple groups 13 to 17 connected in series. And as shown to FIG. 1 (a), (b), the thermocouple group 13 arrange | positioned at the left end part in the Y-axis direction of the electrical insulating sheet 11 is formed in the adjacent electrical insulating sheet 11. The thermocouple group 13 is electrically connected through a connector 18 made of a ductile conductor. Further, the thermocouple group 17 disposed at the right end portion in the Y-axis direction of the electrical insulating sheet 11 is electrically connected to the thermocouple group 17 formed on the adjacent electrical insulating sheet 11 via the connector 18. It is connected to the.

次に、熱電対群13〜17の詳細な構成を図2(a)、(b)を参照して説明する。熱電対群13〜17は同じ構成であるので熱電対群14についてのみ説明する。図2(a)は、図1(b)において1点破線で囲んだ箇所の部分拡大図である。   Next, the detailed configuration of the thermocouple groups 13 to 17 will be described with reference to FIGS. Since the thermocouple groups 13 to 17 have the same configuration, only the thermocouple group 14 will be described. FIG. 2A is a partially enlarged view of a portion surrounded by a one-dot broken line in FIG.

図2(a)に示すように、熱電対群14は、熱電対31〜34を備えている。熱電対31、32、33、34は、Y軸方向の左方から右方へ向けて順番に直列接続されている。各熱電対31〜34は、p型ビスマステルルからなる第1導体31a〜34aと、n型ビスマステルルからなる第2導体31b〜34bとを夫々備えている。また、熱電対31〜34は、第1導体31a〜34aと第2導体31b〜34bとを電気的に接続する第1導電性部材31c〜34cと第1導体31a〜34aと第2導体31b〜34bとを電気的に接続する第2導電性部材31d〜34dとを夫々備えている。第1導電性部材31c〜34cと第2導電性部材31d〜34dは、第1導体31a〜34a及び第2導体31b〜34bより導電性の高い金属(例えば金)により構成されるとともに、図2(b)に示すように、第1導体31a〜34a及び第2導体31b〜34bに比べ厚さの薄い膜状に形成されている。   As illustrated in FIG. 2A, the thermocouple group 14 includes thermocouples 31 to 34. The thermocouples 31, 32, 33, and 34 are connected in series in order from the left to the right in the Y-axis direction. Each of the thermocouples 31 to 34 includes first conductors 31a to 34a made of p-type bismuth tellurium and second conductors 31b to 34b made of n-type bismuth tellurium, respectively. In addition, the thermocouples 31 to 34 include first conductive members 31c to 34c, first conductors 31a to 34a, and second conductors 31b to 31 that electrically connect the first conductors 31a to 34a and the second conductors 31b to 34b. Second conductive members 31d to 34d that are electrically connected to 34b. The first conductive members 31c to 34c and the second conductive members 31d to 34d are made of a metal (for example, gold) having higher conductivity than the first conductors 31a to 34a and the second conductors 31b to 34b, and FIG. As shown in (b), it is formed in a thin film shape compared to the first conductors 31a to 34a and the second conductors 31b to 34b.

第1導体31a〜34aと第2導体31b〜34bは、Z軸方向に向いて配置されているとともに、第1導電性部材31c〜34cと第2導電性部材31d〜34dはY軸方向に向いて配置されている。また、第1導体31aは、他の第1導体32a〜34aに比してZ軸方向において短く形成されているとともに、第2導体34bは、他の第2導体31b〜33bに比してZ軸方向において短く形成されている。また、第2導電性部材34dは、電気絶縁性シート11においてスリット12が形成されている部分に配置されている。これらの構成は熱電対群13〜17において共通する。   The first conductors 31a to 34a and the second conductors 31b to 34b are arranged in the Z-axis direction, and the first conductive members 31c to 34c and the second conductive members 31d to 34d are oriented in the Y-axis direction. Are arranged. The first conductor 31a is formed shorter in the Z-axis direction than the other first conductors 32a to 34a, and the second conductor 34b is Z compared to the other second conductors 31b to 33b. It is formed short in the axial direction. Further, the second conductive member 34d is disposed in a portion where the slit 12 is formed in the electrically insulating sheet 11. These configurations are common to the thermocouple groups 13-17.

図2(a)、(b)に示すように、熱電対31〜34が形成された電気絶縁性シート11の周囲は透明シリコーンゴムからなる断熱性部材35によって覆われているとともに、断熱性部材35は、透明シリコーンゴムにグラファイトを混入してある熱伝導性部材36によって覆われている。断熱性部材35は、熱電対31〜34を被膜する密封性部材としても機能する。なお、第1導体31a〜34a及び第2導体31b〜34bと第1導電性部材31c〜34cとの接続部分を夫々第1接点37として示すとともに、第1導体31a〜34a及び第2導体31b〜34bと第2導電性部材31d〜34dとの接続部分を夫々第2接点38として示す。   As shown in FIGS. 2A and 2B, the periphery of the electrically insulating sheet 11 on which the thermocouples 31 to 34 are formed is covered with a heat insulating member 35 made of transparent silicone rubber, and a heat insulating member. 35 is covered with a heat conductive member 36 in which graphite is mixed in transparent silicone rubber. The heat insulating member 35 also functions as a sealing member that coats the thermocouples 31 to 34. In addition, while showing the connection part of the 1st conductors 31a-34a and 2nd conductors 31b-34b, and the 1st electroconductive members 31c-34c as the 1st contact 37, respectively, the 1st conductors 31a-34a and the 2nd conductors 31b- Connection portions between 34b and the second conductive members 31d to 34d are shown as second contacts 38, respectively.

図2(a)、(b)に示すように、熱源40に熱電変換デバイスを近づけた場合、電気絶縁性シート11において、第1接点37と第2接点38とに温度差が生じ、熱電変換デバイスのゼーベック効果による発電が行われる。   As shown in FIGS. 2A and 2B, when a thermoelectric conversion device is brought close to the heat source 40, a temperature difference is generated between the first contact 37 and the second contact 38 in the electrically insulating sheet 11, and the thermoelectric conversion is performed. Electricity is generated by the Seebeck effect of the device.

次に、本実施形態のように構成された熱電変換デバイスの製造方法について図3、図4を参照して説明する。熱電変換デバイスは、第1〜第6工程を行うことにより製造されている。   Next, the manufacturing method of the thermoelectric conversion device comprised like this embodiment is demonstrated with reference to FIG. 3, FIG. The thermoelectric conversion device is manufactured by performing the first to sixth steps.

まず、初めに、図3に示すように、平板としての電気絶縁性シート10に第1導体31a〜34aと第2導体31b〜34bとを、第1導電性部材31c〜34c又は第2導電性部材31d〜34dを介して交互に直列に形成して、熱電対群13〜17を設ける。こうして直列に形成された熱電対群13〜17を熱電対列19と示す。同様にして、電気絶縁性シート10に、熱電対列19を並列に複数形成する。   First, as shown in FIG. 3, the first conductors 31 a to 34 a and the second conductors 31 b to 34 b and the first conductive members 31 c to 34 c or the second conductive material are provided on the electrically insulating sheet 10 as a flat plate. Thermocouple groups 13 to 17 are provided alternately in series via members 31d to 34d. The thermocouple groups 13 to 17 thus formed in series are referred to as a thermocouple array 19. Similarly, a plurality of thermocouple arrays 19 are formed in parallel on the electrically insulating sheet 10.

次に、第1工程について説明する。
図4(a)に示すように、第1工程においては、透明シリコーンゴムに架橋材を混入してある流動性の熱硬化性樹脂(樹脂部材)84を所定量流入して樹脂層を張る。流入する熱硬化性樹脂84の量は、製造する熱電変換デバイスの規格に応じて適宜変更する。
Next, the first step will be described.
As shown in FIG. 4A, in the first step, a predetermined amount of fluid thermosetting resin (resin member) 84 in which a crosslinking material is mixed in transparent silicone rubber is introduced to stretch the resin layer. The amount of the thermosetting resin 84 that flows in is appropriately changed according to the standard of the thermoelectric conversion device to be manufactured.

次に、第2工程について説明する。
図4(b)に示すように、第2工程においては、熱電対列19が複数並列に設けられた電気絶縁性シート10を、第1過程において張られた樹脂層の上方に重ねる。
Next, the second step will be described.
As shown in FIG. 4B, in the second step, the electrically insulating sheet 10 provided with a plurality of thermocouple arrays 19 is placed over the resin layer stretched in the first process.

次に、第3工程について説明する。
図4(c)に示すように、第3工程は、第1工程及び第2工程を所定回数繰り返した後最後に第1工程を行い、その後に行う。第3工程においては、積層された熱硬化性樹脂84及び電気絶縁性シート10に対し、積層方向に圧縮する。
Next, the third step will be described.
As shown in FIG. 4C, in the third step, the first step and the second step are repeated a predetermined number of times, the first step is finally performed, and then the third step is performed. In the third step, the laminated thermosetting resin 84 and the electrical insulating sheet 10 are compressed in the lamination direction.

次に、第4工程について説明する。
第4工程においては、積層された熱硬化性樹脂84及び電気絶縁性シート10を加熱し、熱硬化性樹脂84を硬化させる。
Next, the fourth step will be described.
In the fourth step, the laminated thermosetting resin 84 and the electrical insulating sheet 10 are heated to cure the thermosetting resin 84.

次に、第5工程について説明する。
図4(d)に示すように、積層された熱硬化性樹脂84及び電気絶縁性シート10を隣り合う熱電対列19の間、つまり、図3に2点破線で示す線に沿って切断する。その結果、図4(e)に示すような隣接する電気絶縁性シート10が夫々、面対向すると共に平行となる熱電変換デバイスが製造される。
Next, the fifth step will be described.
As shown in FIG. 4D, the laminated thermosetting resin 84 and the electrically insulating sheet 10 are cut between the adjacent thermocouple rows 19, that is, along a line indicated by a two-dot broken line in FIG. . As a result, the thermoelectric conversion devices in which the adjacent electrically insulating sheets 10 as shown in FIG. 4E face each other and are parallel to each other are manufactured.

以上に説明した本実施形態の熱電変換デバイスにおいては、以下に示す効果を得ることができる。
(1)熱電対群13〜17が形成された複数の電気絶縁性シート11を、夫々面対向するように並べるようにした。従って、従来の熱電変換デバイスの製造時に熱電対が形成された電気絶縁性シートを折り曲げる際に生ずる曲げ応力を考慮する必要がない。そのため、電気絶縁性シート11を並べる際に隣り合う電気絶縁性シート11との距離を小さくさせていっても熱電対群13〜17の断線のおそれはなく、結果として、熱電対群13〜17の断線を防止できるとともに、熱電変換デバイスの集積度を向上させることができる。
In the thermoelectric conversion device of the present embodiment described above, the following effects can be obtained.
(1) The plurality of electrically insulating sheets 11 on which the thermocouple groups 13 to 17 are formed are arranged so as to face each other. Therefore, it is not necessary to consider the bending stress that occurs when the electrically insulating sheet on which the thermocouple is formed is bent during the manufacture of the conventional thermoelectric conversion device. Therefore, there is no fear of disconnection of the thermocouple groups 13 to 17 even if the distance between the adjacent electrical insulating sheets 11 is reduced when arranging the electrical insulating sheets 11, and as a result, the thermocouple groups 13 to 17 are arranged. Can be prevented, and the degree of integration of thermoelectric conversion devices can be improved.

(2)隣り合う電気絶縁性シート11が平行になっているため、隣り合う電気絶縁性シート11との距離をより小さくすることができ、熱電変換デバイスの集積度を一層向上させることができる。   (2) Since the adjacent electrical insulating sheets 11 are parallel, the distance from the adjacent electrical insulating sheets 11 can be further reduced, and the degree of integration of the thermoelectric conversion devices can be further improved.

(3)第1導体31a〜34aと第2導体31b〜34bが、第1導体31a〜34a及び第2導体31b〜34bより導電性の高い第1導電性部材31c〜34c及び第2導電性部材31d〜34dを介して電気的に接続されることとした。そのため、第1導電性部材31c〜34c及び第2導電性部材31d〜34dにおける電気抵抗値が低くなり、熱電変換デバイスが発電した電圧からより多くの電流を発生させることができ、熱電変換デバイスの熱電変換効率が上昇する。   (3) The first conductive members 31 a to 34 c and the second conductive members 31 b to 34 b are higher in conductivity than the first conductors 31 a to 34 a and the second conductors 31 b to 34 b and the second conductive members. Electrical connection is made through 31d to 34d. Therefore, the electrical resistance values in the first conductive members 31c to 34c and the second conductive members 31d to 34d are reduced, and more current can be generated from the voltage generated by the thermoelectric conversion device. Increases thermoelectric conversion efficiency.

(4)熱電対31〜34は、電気絶縁性シート11と断熱性部材35とにより被膜されため、熱電対31〜34が断熱性部材35により覆われて直接外気に触れないため、例えば、風、温度、湿度、パーティクル等の外部環境の影響を受けにくくなり、熱電変換デバイスの長寿命化や、稼動の安定化を図ることができる。   (4) Since the thermocouples 31 to 34 are coated with the electrical insulating sheet 11 and the heat insulating member 35, the thermocouples 31 to 34 are covered with the heat insulating member 35 and do not directly touch the outside air. It becomes difficult to be affected by the external environment such as temperature, humidity, and particles, so that the life of the thermoelectric conversion device can be extended and the operation can be stabilized.

(5)また、熱電変換デバイスにおけるスリット12を設けた部分は、熱電変換デバイスの他の部分に比して撓みやすくなっているため、応力が加わる可能性が高くなっている。電気絶縁性シート11においてスリット12が形成されている部分には第2導電性部材34dを配置した。第2導電性部材34dは第1導体31a〜34aや第2導体31b〜34bに比して薄く形成されているため、延性が向上しており断線が起こる可能性が抑制されることとなる。   (5) Moreover, since the part which provided the slit 12 in the thermoelectric conversion device becomes easy to bend compared with the other part of the thermoelectric conversion device, possibility that stress will be added is high. A second conductive member 34d is disposed in a portion of the electrical insulating sheet 11 where the slit 12 is formed. Since the second conductive member 34d is formed thinner than the first conductors 31a to 34a and the second conductors 31b to 34b, the ductility is improved and the possibility of disconnection is suppressed.

(6)熱源40に熱電変換デバイスを近づけた場合、熱源40から発せられた熱は、第2接点38に伝導する場合には、第1接点37に伝導する場合に比してより長い距離、断熱性部材35を移動しなければならない。断熱性部材35は熱を伝えにくいため、第1接点37と第2接点38との温度差は大きくなり、熱電変換デバイスのゼーベック効果による発電の効率を高めることができる。   (6) When the thermoelectric conversion device is brought close to the heat source 40, when the heat generated from the heat source 40 is conducted to the second contact 38, a longer distance than when conducted to the first contact 37, The heat insulating member 35 must be moved. Since the heat insulating member 35 is difficult to transmit heat, the temperature difference between the first contact 37 and the second contact 38 is increased, and the efficiency of power generation due to the Seebeck effect of the thermoelectric conversion device can be increased.

(7)直接外部と接触する部分が熱伝導性を有する熱伝導性部材36により覆われているため、熱源40に当該熱電変換デバイスを近づけた場合、熱源40側の熱伝導性部材36は熱を熱電変換デバイスに取り込み、熱源から離間した側の熱伝導性部材36は熱を放熱する。その結果、第1接点37と第2接点38との温度差は大きくなり、熱電変換デバイスのゼーベック効果による発電の効率を高めることができる。   (7) Since the portion directly in contact with the outside is covered with the heat conductive member 36 having heat conductivity, when the thermoelectric conversion device is brought close to the heat source 40, the heat conductive member 36 on the heat source 40 side is heated. The heat conductive member 36 on the side away from the heat source dissipates heat. As a result, the temperature difference between the first contact 37 and the second contact 38 becomes large, and the power generation efficiency due to the Seebeck effect of the thermoelectric conversion device can be increased.

(8)熱電対列19が並列に配置された電気絶縁性シート10と、熱硬化性樹脂84を交互に積層して熱電変換デバイスを製造することとした。従って、電気絶縁性シート10の間隔を狭くするとともに流入する熱硬化性樹脂84の量を少なくすることで、同一容量内に配置される電気絶縁性シート10の数を増加することができ、また、熱電対列19が形成された電気絶縁性シート10をそれぞれ平行になるように積層していくことができるため、容易に集積度の高い熱電変換デバイスを製造できる。また、製造過程において、電気絶縁性シート10に形成された熱電対列19に曲げ応力がかからないため、製造時における熱電対列19の断線を抑制することができる。   (8) The thermoelectric conversion device is manufactured by alternately laminating the electrically insulating sheets 10 in which the thermocouple arrays 19 are arranged in parallel and the thermosetting resin 84. Therefore, the number of the electrically insulating sheets 10 arranged in the same capacity can be increased by narrowing the interval between the electrically insulating sheets 10 and reducing the amount of the thermosetting resin 84 that flows in. Since the electrically insulating sheets 10 on which the thermocouple arrays 19 are formed can be laminated so as to be parallel to each other, a highly integrated thermoelectric conversion device can be easily manufactured. In addition, since no bending stress is applied to the thermocouple array 19 formed on the electrical insulating sheet 10 during the manufacturing process, disconnection of the thermocouple array 19 during manufacturing can be suppressed.

なお、本実施形態の構成要素は以下のように変更可能である。
・ 本実施形態においては、断熱性部材35は透明シリコーンゴムにより形成したが、これは他の断熱性を有する材料に変更可能であり、例えば発泡ウレタン等であってもよい。
In addition, the component of this embodiment can be changed as follows.
In the present embodiment, the heat insulating member 35 is made of transparent silicone rubber, but this can be changed to another heat insulating material, such as urethane foam.

・ 本実施形態においては、電気絶縁性シート11および熱電対群13〜17の周囲を断熱性部材35及び熱伝導性部材36により覆う構成を示したが、これは従来の熱電変換デバイスのように、電気絶縁性シート11を2枚のシート状部材で挟持する構成に変更してもよい。   -In this embodiment, although the structure which covers the circumference | surroundings of the electrically insulating sheet | seat 11 and the thermocouple groups 13-17 with the heat insulating member 35 and the heat conductive member 36 was shown, this is like the conventional thermoelectric conversion device. The electrical insulating sheet 11 may be changed to a configuration in which it is sandwiched between two sheet-like members.

・ 第1導電性部材31c〜34c及び第2導電性部材31d〜34dを介さずに第1導体31a〜34aと第2導体31b〜34bとを直接接続する構成にしてもよい。
・ 電気絶縁性シート11をポリミドフィルムにより形成したが、これは他の絶縁性を有する材料に変更してもよい。
The first conductors 31a to 34a and the second conductors 31b to 34b may be directly connected without passing through the first conductive members 31c to 34c and the second conductive members 31d to 34d.
-Although the electrically insulating sheet | seat 11 was formed with the polyimide film, you may change this into the material which has another insulating property.

・ 第1導体31a〜34aと第2導体31b〜34bの材料は、熱電対として機能するものであれば他の材料を採用してもよい。すなわち、第1導体31a〜34aと第2導体31b〜34bは、互いに異なる材料で熱電変換が行える材料であればどのような材料を採用してもよい。特に、ゼーベック係数の差が大きな2種類の材料を用いるほど、熱電対の出力電圧(熱電変換効率)は大きくなる。また、熱電対を構成する一方の材料および他方の材料は、金属、半導体、合金、酸化物でもよい。   -The material of the 1st conductor 31a-34a and the 2nd conductor 31b-34b may employ | adopt another material, if it functions as a thermocouple. That is, any material may be used for the first conductors 31a to 34a and the second conductors 31b to 34b as long as they can perform thermoelectric conversion using different materials. In particular, the output voltage (thermoelectric conversion efficiency) of the thermocouple increases as the two types of materials having a larger difference in Seebeck coefficient are used. One material and the other material constituting the thermocouple may be a metal, a semiconductor, an alloy, or an oxide.

次に、上記実施形態およびその態様の変更から把握できる技術的思想について以下に追記する。
(イ)基板上に第1導体と第2導体とを交互に設けて熱電対を構成した熱電変換デバイスにおいて、前記第1導体と前記第2導体とは、第1導体及び第2導体に比して導電性の高い導電性部材を介して電気的に接続されていることを特徴とする熱電変換デバイス。
Next, a technical idea that can be grasped from the above-described embodiment and changes in the aspect will be described below.
(A) In the thermoelectric conversion device in which the first conductor and the second conductor are alternately provided on the substrate to constitute the thermocouple, the first conductor and the second conductor are compared with the first conductor and the second conductor. The thermoelectric conversion device is electrically connected through a conductive member having high conductivity.

同構成によれば上記(3)に準ずる効果を奏することができる。
(ロ)基板上に第1導体と第2導体とを交互に設けて熱電対を構成した熱電変換デバイスにおいて、前記熱電対が形成された基板の周囲は断熱性を有する断熱性部材によって覆われているとともに、当該断熱性部材は、熱伝導性を有する熱伝導部材によって覆われていることを特徴とする熱電変換デバイス。
According to this configuration, it is possible to achieve an effect equivalent to the above (3).
(B) In the thermoelectric conversion device in which the first conductor and the second conductor are alternately provided on the substrate to constitute the thermocouple, the periphery of the substrate on which the thermocouple is formed is covered with a heat insulating member having heat insulating properties. In addition, the heat insulating member is covered with a heat conductive member having thermal conductivity.

同構成によれば上記(6)、(7)に準ずる効果を奏することができる。   According to this configuration, it is possible to achieve the same effects as the above (6) and (7).

(a)は熱電変換デバイスの斜視図であり、(b)はA−Aにおける断面図であり、(c)はYの方向から見た熱電変換デバイスの正面図である。(A) is a perspective view of a thermoelectric conversion device, (b) is a sectional view in AA, and (c) is a front view of the thermoelectric conversion device viewed from the Y direction. (a)は図1(b)の部分拡大図であり、(b)はB−Bにおける断面図である。(A) is the elements on larger scale of FIG.1 (b), (b) is sectional drawing in BB. 熱電変換デバイスの正面図である。It is a front view of a thermoelectric conversion device. (a)〜(e)は、熱電変換デバイスの製造方法を示す工程図である。(A)-(e) is process drawing which shows the manufacturing method of a thermoelectric conversion device. 従来の熱電変換デバイスの正面図である。It is a front view of the conventional thermoelectric conversion device.

符号の説明Explanation of symbols

11…電気絶縁性シート、31〜34…熱電対、31a〜34a…第1導体、31b〜34b…第2導体、31c〜34c…第1導電性部材、31d〜34d…第2導電性部材、35…断熱性部材(密封性部材)、36…熱伝導性部材、84…熱硬化性樹脂。   DESCRIPTION OF SYMBOLS 11 ... Electrical insulation sheet, 31-34 ... Thermocouple, 31a-34a ... 1st conductor, 31b-34b ... 2nd conductor, 31c-34c ... 1st electroconductive member, 31d-34d ... 2nd electroconductive member, 35 ... heat insulating member (sealing member), 36 ... heat conductive member, 84 ... thermosetting resin.

Claims (2)

基板上に第1導体と第2導体とを交互に設けて熱電対を構成した熱電変換デバイスにおいて、前記基板は複数あり、前記複数の基板は夫々面対向するように並べられ、
前記第1導体と前記第2導体とは、第1導体及び第2導体に比して導電性の高い導電性部材を介して電気的に接続され、
前記導電性部材のうち、隣り合う熱電対同士を接続する導電性部材は、前記第1導体及び前記第2導体に比して薄く形成され、
前記基板において、前記薄く形成された導電性部材に対応する部分には、スリットが形成され
さらに、前記熱電対が形成された基板の周囲は断熱性を有する断熱性部材によって覆われているとともに、当該断熱性部材は、熱伝導性を有する熱伝導性部材によって覆われていることを特徴とする熱電変換デバイス。
In the thermoelectric conversion device in which the first conductor and the second conductor are alternately provided on the substrate to configure the thermocouple, the substrate is plural, and the plural substrates are arranged to face each other,
The first conductor and the second conductor are electrically connected via a conductive member having higher conductivity than the first conductor and the second conductor,
Among the conductive members, the conductive member connecting adjacent thermocouples is formed thinner than the first conductor and the second conductor,
In the substrate, a slit is formed in a portion corresponding to the thinly formed conductive member ,
Further, the periphery of the substrate on which the thermocouple is formed is covered with a heat insulating member having heat insulating properties, and the heat insulating member is covered with a heat conductive member having heat conductivity. A thermoelectric conversion device.
請求項1に記載の熱電変換デバイスにおいて、
前記複数の基板は、夫々平行に並べられていることを特徴とする熱電変換デバイス。
The thermoelectric conversion device according to claim 1,
The thermoelectric conversion device, wherein the plurality of substrates are arranged in parallel.
JP2005380349A 2005-12-28 2005-12-28 Thermoelectric conversion device Expired - Fee Related JP4881000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005380349A JP4881000B2 (en) 2005-12-28 2005-12-28 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005380349A JP4881000B2 (en) 2005-12-28 2005-12-28 Thermoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2007180455A JP2007180455A (en) 2007-07-12
JP4881000B2 true JP4881000B2 (en) 2012-02-22

Family

ID=38305309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380349A Expired - Fee Related JP4881000B2 (en) 2005-12-28 2005-12-28 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4881000B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602646B2 (en) * 1986-09-18 1997-04-23 セイコー電子工業株式会社 Manufacturing method of thermoelectric element for electronic watch
CN1052345C (en) * 1994-05-16 2000-05-10 时至准钟表股份有限公司 Mfr. of thermoelectric power generation unit
JPH11225490A (en) * 1997-12-05 1999-08-17 Seiko Instruments Inc Thermoelectric conversion module and electronic apparatus
JPH11177154A (en) * 1997-12-09 1999-07-02 Murata Mfg Co Ltd Thermoelectric conversion substrate and electric circuit device using the substrate
JP4345279B2 (en) * 2002-09-13 2009-10-14 ソニー株式会社 Method for manufacturing thermoelectric conversion device
JP2004253426A (en) * 2003-02-18 2004-09-09 Sony Corp Thermoelectric conversion device, its manufacturing method and energy conversion device
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method

Also Published As

Publication number Publication date
JP2007180455A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US10600949B2 (en) Thermoelectric converter
US6314741B1 (en) Thermoelectric device
US7745928B2 (en) Heat dissipation plate and semiconductor device
US8258393B2 (en) Nanowire thermoelectric device
JP4422548B2 (en) Thermoelectric conversion device
JP6035970B2 (en) Thermoelectric conversion device and manufacturing method thereof
US20100263701A1 (en) Thermoelectric device, manufacturing method for manufacturing thermoelectric device, control system for controlling thermoelectric device, and electronic appliance
KR20130033865A (en) Thermoelectric module and manufacturing method for theremoelectric module
JP4334878B2 (en) Thermoelectric conversion device unit
US20140073078A1 (en) Device for converting energy and method for manufacturing the device, and electronic apparatus with the device
JP2008192970A (en) Thermoelectric conversion device and method for manufacturing the same
US10566515B2 (en) Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2008130718A (en) Thermoelectric conversion device and manufacturing method thereof
JP4881000B2 (en) Thermoelectric conversion device
JP2008130594A (en) Thermoelectric conversion device and manufacturing method thereof
EP4350788A1 (en) Thermoelectric power generation device, thermoelectric power generation device component, and manufacturing method therefor
JP2012532468A (en) Module having a plurality of thermoelectric elements
JP4496094B2 (en) Semiconductor device and semiconductor integrated circuit
US10930835B2 (en) Thermoelectric module sheet and thermoelectric module assembly including the same
US10367131B2 (en) Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
EP3428981B1 (en) Thermoelectric conversion module
JP2020025047A (en) Thermoelectric conversion device
US20210249580A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees