JP4862884B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP4862884B2
JP4862884B2 JP2008317210A JP2008317210A JP4862884B2 JP 4862884 B2 JP4862884 B2 JP 4862884B2 JP 2008317210 A JP2008317210 A JP 2008317210A JP 2008317210 A JP2008317210 A JP 2008317210A JP 4862884 B2 JP4862884 B2 JP 4862884B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
pulling
silicon
pulling speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008317210A
Other languages
Japanese (ja)
Other versions
JP2010042977A (en
Inventor
明浩 木村
亮二 星
将 園川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008317210A priority Critical patent/JP4862884B2/en
Publication of JP2010042977A publication Critical patent/JP2010042977A/en
Application granted granted Critical
Publication of JP4862884B2 publication Critical patent/JP4862884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)により、シリコン種結晶を使用してネッキング(減径部の形成)を行い、シリコン単結晶棒を成長させるシリコン単結晶の製造方法に関するものである。   The present invention relates to a method for producing a silicon single crystal in which a silicon single crystal rod is grown by necking (forming a reduced diameter portion) using a silicon seed crystal by a Czochralski method (hereinafter referred to as “CZ method”). It is about.

従来、CZ法によるシリコン単結晶の製造においては、単結晶シリコンを種結晶として用いて、これをシリコン融液に接触させた後、回転させながらゆっくりと引き上げることで単結晶棒を成長させている。この際、種結晶をシリコン融液に接触させた後に、熱衝撃により種結晶に高密度で発生するスリップ転位から伝播する転位を消滅させるために、直径3mm程度に一旦細くして絞り部を形成するいわゆる種絞りを行い、次いで、所望の口径になるまで結晶を太らせて、無転位のシリコン単結晶を引き上げている。このような種絞りは、Dash Necking法としてCZ法でシリコン単結晶棒を引き上げる場合の常識とされている。   Conventionally, in the production of a silicon single crystal by the CZ method, a single crystal rod is grown by using single crystal silicon as a seed crystal and bringing it into contact with a silicon melt and then slowly pulling it up while rotating. . At this time, after the seed crystal is brought into contact with the silicon melt, the constriction is formed by narrowing it to about 3 mm in diameter in order to eliminate dislocations propagating from slip dislocations generated in the seed crystal at high density by thermal shock. The so-called seed squeezing is performed, and then the crystal is thickened until a desired diameter is obtained, and the dislocation-free silicon single crystal is pulled up. Such seed drawing is a common sense when pulling up a silicon single crystal rod by the CZ method as the Dash Necking method.

すなわち、従来用いられてきた種結晶の形状は、例えば直径あるいは一辺約8〜20mmの円柱状や角柱状の単結晶に種ホルダーにセットするための切り欠け部を設けたもので、最初にシリコン融液に接触する下方の先端形状は、平坦面となっている。そして、高重量の単結晶棒の重量に耐えて安全に引き上げるためには、種結晶の太さは、素材の強度からして上記以下に細くすることは難しい。   That is, the shape of the seed crystal that has been used in the past is, for example, a cylindrical or prismatic single crystal having a diameter or a side of about 8 to 20 mm provided with a notch for setting the seed holder. The lower tip shape in contact with the melt is a flat surface. In order to withstand the weight of a heavy single crystal rod and safely pull it up, it is difficult to reduce the thickness of the seed crystal below the above in view of the strength of the material.

このような形状の種結晶では、融液と接触する先端の熱容量が大きいために、種結晶が融液に接触した瞬間に結晶内に急激な温度差を生じ、スリップ転位を高密度に発生させる。従って、この転位を消去して単結晶を育成するために前記Dash Necking法による種絞りが必要になる。   In the seed crystal having such a shape, since the heat capacity of the tip contacting the melt is large, a sudden temperature difference is generated in the crystal at the moment when the seed crystal contacts the melt, and slip dislocations are generated at a high density. . Therefore, seed squeezing by the above-mentioned Dash Necking method is necessary to eliminate this dislocation and grow a single crystal.

しかし、無転位化するためには、最小直径を4〜6mmまでは絞り込む必要があり、近年のシリコン単結晶径の大口径化に伴い、高重量化した単結晶棒を支持するには強度が不十分であり、単結晶棒引き上げ中に、この細い絞り部が破断して単結晶棒が落下する等の重大な事故を生じる恐れがあった。   However, in order to eliminate dislocations, it is necessary to narrow the minimum diameter to 4 to 6 mm. With the recent increase in the diameter of silicon single crystals, the strength is required to support the heavy single crystal rods. Insufficient, and during the pulling of the single crystal rod, there was a risk of causing a serious accident such as the thin throttle portion being broken and the single crystal rod falling.

このような問題を解決するために、種結晶の先端部の形状を楔形あるいは中空部を有する形状とし、種結晶がシリコン融液に接触する時に入るスリップ転位をできるだけ低減することによって、絞り部の直径を比較的太くしても無転位化を可能とする方法が開示されている(例えば特許文献1及び特許文献2参照)。   In order to solve such a problem, the shape of the tip of the seed crystal is a wedge shape or a shape having a hollow portion, and slip dislocation that occurs when the seed crystal contacts the silicon melt is reduced as much as possible. A method is disclosed that enables dislocation-free even when the diameter is relatively large (see, for example, Patent Document 1 and Patent Document 2).

しかし、上記方法では、近年のますます大直径、長尺化し、例えば200kg以上にもなる単結晶棒の引き上げには強度が不十分となる場合があり、高重量の単結晶棒の引き上げには不向きであった。そこで、先端の尖ったシリコン種結晶を用いて、種結晶先端部を溶かし込み、絞り込み部、絞り部を形成し、ネッキング(減径部の形成)を行って、その後拡径して単結晶棒を引き上げる製造方法が開示されている(例えば特許文献3参照)。この方法により、大直径化して高重量の単結晶棒の引き上げに対応することはできるようになったが、直胴部に至る前の絞り込み部、絞り部、拡径部において、有転位化してしまう問題があった。   However, in the above-mentioned method, the diameter has become increasingly larger and longer in recent years. For example, the strength may be insufficient for lifting a single crystal rod of 200 kg or more. It was unsuitable. Therefore, using a silicon seed crystal with a sharp tip, the tip of the seed crystal is melted, a narrowed portion and a narrowed portion are formed, necking (formation of a reduced diameter portion) is performed, and then the diameter is expanded to obtain a single crystal rod Has been disclosed (see, for example, Patent Document 3). By this method, it was possible to increase the diameter and handle the lifting of a heavy single crystal rod, but in the narrowed-down portion, the narrowed portion, and the enlarged diameter portion before reaching the straight body portion, dislocations were generated. There was a problem.

一方、先端が尖った種結晶を用いて、Dash Necking法による種絞りを行うことなくシリコン単結晶を製造する方法については、種結晶の融液への溶かし込み終了後、単結晶の成長に移行する時間やその成長速度について開示されている(例えば特許文献4参照)。しかし、ネッキング(減径部の形成)を行って、単結晶棒を引き上げる製造方法において、同様の成長速度を採用すると、成長速度が速すぎるため単結晶の直径が細くなり過ぎ、近年の大直径、長尺化し、例えば200kg以上にもなる単結晶棒の引き上げには強度が不十分となり、高重量の単結晶棒の引き上げには不向きであった。   On the other hand, for a method of manufacturing a silicon single crystal using a seed crystal having a sharp tip without performing seed drawing by the Dash Necking method, the process proceeds to the growth of the single crystal after the dissolution of the seed crystal into the melt. And the growth rate is disclosed (for example, see Patent Document 4). However, in a manufacturing method in which necking (formation of a reduced diameter portion) is performed and a single crystal rod is pulled up, if the same growth rate is employed, the growth rate is too high and the diameter of the single crystal becomes too thin. However, the strength is insufficient for pulling up a single crystal rod that is long, for example, 200 kg or more, and is unsuitable for pulling up a heavy single crystal rod.

そこで、ネッキング(減径部の形成)を行った場合については、種結晶の降下を止め引上げに転じた直後から、種結晶下方に形成される結晶径の拡大が始まる間の減径部の形成では、引上速度を0.5mm/min以下として、単結晶を引上げるという、引上速度の上限値の開示がされている(例えば特許文献5参照)。しかし、この方法でも、絞り込み部および拡径部において有転位化してしまう問題があった。   Therefore, when necking (formation of reduced diameter part) is performed, formation of the reduced diameter part starts immediately after stopping the descent of the seed crystal and starting to pull up, while the expansion of the crystal diameter formed under the seed crystal begins. Then, the upper limit value of the pulling speed is disclosed in which the pulling speed is set to 0.5 mm / min or less and the single crystal is pulled (see, for example, Patent Document 5). However, even this method has a problem of causing dislocations in the narrowed portion and the enlarged diameter portion.

特開平5−139880号公報Japanese Patent Laid-Open No. 5-139880 特願平9−255485号公報Japanese Patent Application No. 9-255485 特開平11−292688号公報JP-A-11-292688 特開平11−240793号公報JP-A-11-240793 国際公開第WO03/091483号パンフレットInternational Publication No. WO03 / 091483 Pamphlet

本発明は、CZ法によりネッキング(減径部の形成)を行い、単結晶を製造する際に、絞り込み部および拡径部において、無転位化率を低下させることなく、単結晶棒を成長させて、大直径化して高重量の単結晶棒の生産性を向上させるシリコン単結晶の製造方法を提供することを目的としている。   In the present invention, when a single crystal is produced by carrying out necking (formation of a reduced diameter portion) by the CZ method, a single crystal rod is grown without reducing the dislocation-free rate in the narrowed portion and the enlarged diameter portion. Thus, an object of the present invention is to provide a method for producing a silicon single crystal that increases the diameter and improves the productivity of a heavy single crystal rod.

上記課題を解決するため、本発明は、チョクラルスキー法により、先端の尖ったシリコン種結晶を用いて、先端から所定の直径の位置までシリコン融液に溶かし込み、ネッキングを行って絞り込み部を形成し、その後拡径して拡径部、直胴部を形成して単結晶棒を引き上げるシリコン単結晶の製造方法において、前記種結晶の溶かし込みが終了し、該種結晶を上方に引き上げ始める引上開始までにヒーターパワーの制御により前記シリコン融液の温度を下げ始め、前記引上開始から前記単結晶の直胴部が形成され始めるまでの引上速度を少なくとも二段階以上とし、該引上速度は、前記引上開始時は0.3mm/min未満であり、その後、前記絞り込み部の直径が最小となる時間に対して、120%以上か、または、50%以上75%未満の範囲のタイミングで0.3mm/min以上0.7mm/min以下に増加することを特徴とするシリコン単結晶の製造方法を提供する。(請求項1)。   In order to solve the above-mentioned problem, the present invention uses a Czochralski method to dissolve a silicon melt from a tip to a position of a predetermined diameter using a silicon seed crystal having a sharp tip, and performs necking to narrow the narrowed portion. In the silicon single crystal manufacturing method in which the seed crystal is formed and then expanded to form a diameter-expanded portion and a straight body portion and the single crystal rod is pulled up, the melting of the seed crystal is completed, and the seed crystal starts to be pulled upward The temperature of the silicon melt begins to be lowered by controlling the heater power before the start of pulling, and the pulling speed from the start of pulling to the start of formation of the straight body of the single crystal is set to at least two stages. The upper speed is less than 0.3 mm / min at the start of the pulling, and then 120% or more, or 50% or more and less than 75% with respect to the time when the diameter of the narrowed portion becomes the minimum. To be increased in the range of timing below 0.3 mm / min or more 0.7 mm / min to provide a method for manufacturing a silicon single crystal according to claim. (Claim 1).

このように、引上開始までにシリコン融液の温度を下げ始めることで、その後に引上速度を制御して所望の結晶直径へと拡径することができる。そして、引上開始から単結晶の直胴部が形成され始めるまでの引上速度を少なくとも二段階以上とし、途中で引上速度を増加することで、生産性良く、高重量の単結晶を引き上げることができる。その際、所定の引上速度で引き上げをした後、所定のタイミングで引上速度を高速化することにより、絞り込み部において拡径するということや拡径部において減径するということがないため、有転位化することなく、単結晶を製造することができる。
ここで、本発明における「ネッキング」とは、先端の尖ったシリコン種結晶を用いて、先端から所定の直径の位置までシリコン融液に溶かし込んだ後、単結晶の成長を開始する際に、一旦直径を僅かに減径させることを意味しており、転位を消去するため一旦3mm程度に非常に細くする、いわゆるDash Necking法における種絞りとは異なるものであり、もともと無転位のものをわずかに減径させるものである。
In this way, by starting to lower the temperature of the silicon melt before the start of pulling, the pulling speed can be controlled thereafter to expand to the desired crystal diameter. Then, the pulling speed from the start of pulling to the start of formation of the straight body of the single crystal is set to at least two stages, and by increasing the pulling speed in the middle, the single crystal with high productivity is pulled up with high productivity. be able to. In that case, after pulling up at a predetermined pulling-up speed, by increasing the pulling-up speed at a predetermined timing, it does not increase in diameter in the narrowed-down part or decrease in diameter in the expanded part, A single crystal can be produced without causing dislocation.
Here, `` necking '' in the present invention, when using a silicon seed crystal with a sharp tip, after being dissolved in the silicon melt from the tip to a position of a predetermined diameter, when starting the growth of a single crystal, This means that the diameter is slightly reduced once, which is different from the seed drawing in the so-called Dash Necking method in which the diameter is once reduced to about 3 mm in order to eliminate dislocations. The diameter is reduced.

また、本発明の製造方法では、前記タイミングは、前記引上開始時の引上速度を0.3mm/min未満に固定して前記単結晶の試作を行い、前記絞り込み部の直径が最小となる時間を求め、前記引上速度の増加のタイミングを決定することが好ましい(請求項2)。
このように、引上速度を固定して単結晶の試作を行うことにより、絞り込み部の直径が最小となる時間を正確に把握することができる。そして、求められた時間から引上速度を増加するタイミングが事前に決定できる。従って、引上速度の制御とヒーターパワーの制御との関係を事前に導き出すことができるため、単結晶の製造を確実に自動化することができ、単結晶の生産性を向上することができる。
Further, in the manufacturing method of the present invention, the timing is such that the pulling speed at the start of pulling is fixed to less than 0.3 mm / min, the single crystal is prototyped, and the diameter of the narrowed portion is minimized. It is preferable to determine the timing of increasing the pulling speed by obtaining time.
In this way, by performing a trial manufacture of a single crystal with the pulling speed fixed, it is possible to accurately grasp the time when the diameter of the narrowed-down portion is minimum. And the timing which increases pulling speed from the calculated | required time can be determined in advance. Therefore, since the relationship between the pulling speed control and the heater power control can be derived in advance, the production of the single crystal can be surely automated, and the productivity of the single crystal can be improved.

また、本発明の製造方法では、前記絞り込み部は、前記単結晶の直径が成長途中で増加することなく減少し続けることにより形成され、該絞り込み部の下方に形成される拡径部は、その後成長される直胴部に至るまで前記単結晶の直径が成長途中で減少することなく増加し続けることにより形成されることが好ましい(請求項3)。
このことにより、絞り込み部および拡径部は、それぞれの成長途中で減径や拡径を繰り返すことがないため、絞り込み部および拡径部における有転位化を防止して、シリコン単結晶を製造することができる。
Further, in the manufacturing method of the present invention, the narrowed portion is formed by continuously decreasing the diameter of the single crystal without increasing during the growth, and the enlarged diameter portion formed below the narrowed portion is thereafter It is preferable that the diameter of the single crystal is continuously increased without decreasing during the growth until reaching the straight body portion to be grown (claim 3).
As a result, the narrowed portion and the enlarged diameter portion do not repeat the diameter reduction or diameter expansion in the middle of their growth, so that dislocations in the narrowed portion and the enlarged diameter portion are prevented and a silicon single crystal is produced. be able to.

以上説明したように、本発明では、CZ法により先端が尖った種結晶を用いて、ネッキング(減径部の形成)を行って単結晶を製造する方法において、引上速度を決められたタイミングで増加することで、絞り込み部および拡径部の有転位化を防止して、シリコン単結晶を製造することができる。また、単結晶の引き上げ途中で引上速度が増加することで、生産性良く、高重量の単結晶を製造することができる。   As described above, in the present invention, the timing at which the pulling speed is determined in the method of manufacturing a single crystal by necking (forming a reduced diameter portion) using a seed crystal having a sharp tip by the CZ method. As a result of the increase, the dislocation of the narrowed portion and the enlarged diameter portion can be prevented and a silicon single crystal can be produced. In addition, since the pulling speed increases during the pulling of the single crystal, it is possible to manufacture a single crystal with high productivity and high weight.

以下、本発明についてより具体的に説明する。
前述のように、大直径化して高重量の単結晶棒の引き上げに対応するために、先端の尖ったシリコン種結晶を用いて、ネッキングを行って、絞り込み部、絞り部、拡径部を形成して直胴部を有する単結晶棒を引き上げる方法が開示されたが、直胴部に至る前の絞り込み部、絞り部、拡径部の形状が原因となり、特に、絞り込み部が単調な減径ではなくその一部が拡径している場合、また、絞り部に続く拡径部においてその一部が減径している場合に有転位化してしまうことがわかった。
Hereinafter, the present invention will be described more specifically.
As mentioned above, in order to cope with the pulling up of a single crystal rod with a large diameter and a heavy weight, necking is performed using a silicon seed crystal with a sharp tip to form a narrowed portion, a narrowed portion, and a large diameter portion. The method of pulling up the single crystal rod having the straight body portion was disclosed, but due to the shape of the narrowed portion, the narrowed portion, and the enlarged diameter portion before reaching the straight body portion, in particular, the narrowed portion has a monotonous diameter reduction. However, it has been found that dislocation occurs when a part of the diameter is expanded, or when a part of the diameter-expanded part following the throttle part is reduced.

一方、種結晶の融液への溶かし込み終了後、種結晶を上方に引き上げ始める時間やその引上速度の上限値について開示されているが、途中で引上速度を変化させると絞り込み部や拡径部の形状が拡径と減径を繰り返してしまい、これが原因となり、有転位化してしまうことがわかった。   On the other hand, after the completion of the dissolution of the seed crystal into the melt, the time for starting to pull the seed crystal upward and the upper limit value of the pulling speed are disclosed. It has been found that the shape of the diameter portion repeatedly expands and decreases, which causes dislocations.

そこで、絞り込み部や拡径部における有転位化を防止するためには、絞り込み部や拡径部の形状が重要であり、絞り込み部および拡径部は、それぞれの成長途中で減径や拡径を繰り返すことがないことが必要である。   Therefore, in order to prevent dislocation from occurring in the narrowed portion and the enlarged diameter portion, the shapes of the narrowed portion and the enlarged diameter portion are important. It is necessary not to repeat.

しかし、先端の尖ったシリコン種結晶を用いて、ネッキングを行って絞り込み部を形成した後、拡径部を形成して単結晶棒を引き上げる製造方法において、絞り込み部や拡径部の形状を拡径と減径とを繰り返さないように形成することは、絞り込み部や拡径部の直径と引上速度の変更の適切なタイミングが明らかになっていないために困難であることがわかった。   However, in a manufacturing method in which a narrowed portion is formed by performing necking using a silicon seed crystal having a sharp tip, and then a single crystal rod is pulled up by forming a large diameter portion, the shape of the narrowed portion or the large diameter portion is expanded. It has been found that it is difficult to form the diameter and the diameter so as not to be repeated because the appropriate timing for changing the diameter of the narrowed portion or the enlarged portion and the pulling-up speed is not clear.

そこで、本発明者らは、種結晶を上方に引き上げ始める引上開始までにシリコン融液の温度を下げ始め、引上開始時の引上速度は低速とし、その後、絞り込み部の直径が最小となる時間に対して引上速度を増加させるタイミングを決めて、適切なタイミングで引上速度を増加して高速化することにより所望形状を有する単結晶を製造することを試みた。   Therefore, the present inventors started to lower the temperature of the silicon melt by the start of pulling up when the seed crystal starts to be pulled upward, the pulling speed at the start of pulling is set to be low, and then the diameter of the narrowed portion is minimized. An attempt was made to produce a single crystal having a desired shape by determining the timing for increasing the pulling speed with respect to a certain time and increasing the pulling speed at an appropriate timing to increase the speed.

その結果、引上速度を引上開始時の低速から、その後、絞り込み部の直径が最小となる時間に対して120%以上の範囲のタイミングで増加することで、拡径部の直径が成長途中で減径しないことを発見した。   As a result, the diameter of the expanded part is increased during the growth by increasing the pulling speed from the low speed at the start of the pulling up to a timing in the range of 120% or more with respect to the time when the diameter of the narrowed part becomes the minimum after that. It was discovered that the diameter was not reduced.

さらに、引上速度を引上開始時の低速から、その後、絞り込み部の直径が最小となる時間に対して50%以上75%未満の範囲のタイミングで増加することで、絞り込み部と拡径部の形状は、途中で拡径と減径とを繰り返すことがないことを発見した。   Further, the pulling-up portion and the diameter-expanding portion are increased by increasing the pulling-up speed from a low speed at the start of pulling up to a timing within a range of 50% or more and less than 75% with respect to the time when the diameter of the narrowing-down portion is minimized. It has been found that the shape of does not repeat the diameter expansion and the diameter reduction in the middle.

一方、引上速度を引上開始時の低速から、その後、絞り込み部の直径が最小となる時間に対して50%未満の範囲のタイミングで増加した場合には、絞り込み部の減径量が大きくなり過ぎて、高重量の単結晶棒を成長させることができなくなってしまうこと、また、増加するタイミングが絞り込み部の直径が最小となる時間に対して75%以上120%未満の範囲の場合には、絞り込み部と拡径部の形状は、途中で拡径と減径を繰り返してしまい、製造させたシリコン単結晶は有転位化してしまうことを発見した。   On the other hand, when the pulling speed is increased from a low speed at the start of pulling up and then at a timing of less than 50% with respect to the time when the diameter of the narrowed portion becomes the minimum, the amount of reduction in the narrowed portion is large. When it becomes too large to be able to grow a heavy single crystal rod, and the increase timing is in the range of 75% or more and less than 120% with respect to the time when the diameter of the narrowed portion becomes the minimum. Discovered that the shape of the narrowed-down portion and the enlarged-diameter portion repeatedly expanded and reduced in the middle, and the produced silicon single crystal was converted to dislocations.

また、引上速度は、引上開始の低速時には、0.3mm/min未満とし、その後、高速時には、0.3mm/min以上0.7mm/min以下に増加することで、単結晶の直径が細くなり過ぎることはなく、かつ途中で高速化して単結晶を成長させることで、生産性良く、高重量の単結晶を引き上げることができることも発見した。   In addition, the pulling speed is less than 0.3 mm / min when the pulling start is slow, and then increases to 0.3 mm / min or more and 0.7 mm / min or less when the pulling speed is high. It was also discovered that a single crystal can be raised with high productivity by increasing the speed at a midpoint and growing the single crystal with high productivity.

本発明は、上記の発見に基づいて完成されたものであり、以下、本発明について図面を参照しながらさらに詳細に説明するが、本発明はこれらに限定されるものではない。
図2は本発明により製造された単結晶の絞り込み部と拡径部の形状を示す概略図である。先端が尖った種結晶1の先端2を図示しないシリコン融液に溶かし込み、ネッキングを行って形成されたのが絞り込み部3である。そして、絞り込み部3の下方に続けて形成されているのが拡径部4および直胴部5である。
The present invention has been completed based on the above findings, and the present invention will be described in more detail below with reference to the drawings. However, the present invention is not limited to these.
FIG. 2 is a schematic view showing the shape of the narrowed portion and the enlarged diameter portion of the single crystal manufactured according to the present invention. The narrowed portion 3 is formed by melting the tip 2 of the seed crystal 1 having a sharp tip in a silicon melt (not shown) and performing necking. And it is the enlarged diameter part 4 and the straight trunk | drum 5 which are formed below the narrowing-down part 3 continuously.

本発明においては、CZ法により、先端の尖ったシリコン種結晶1を用いて、先端2から所定の直径の位置までシリコン融液に溶かし込み、ネッキングを行って絞り込み部3を形成し、その後拡径して単結晶棒を引き上げるシリコン単結晶の製造方法において、種結晶1の溶かし込みが終了し、種結晶1を上方に引き上げ始める引上開始までにヒーターパワーの制御によりシリコン融液の温度を下げ始める。このことにより、その後の引上速度を制御して単結晶の直径を所望の値へ減径する絞り込み部を形成し、次に拡径する拡径部を形成することができる。   In the present invention, the silicon seed crystal 1 having a sharp tip is used to dissolve the silicon melt from the tip 2 to a predetermined diameter by the CZ method, and necking is performed to form the narrowed portion 3, and then the expansion is performed. In the method of manufacturing a silicon single crystal in which the single crystal rod is pulled up in diameter, the temperature of the silicon melt is controlled by controlling the heater power before the start of the pulling up of the seed crystal 1 after the melting of the seed crystal 1 is finished. Start to lower. This makes it possible to control the subsequent pulling speed to form a narrowed portion that reduces the diameter of the single crystal to a desired value, and then to form an enlarged portion that is then expanded.

ここで、図1は本発明におけるシリコン単結晶の製造における引上速度、ヒーターパワー、単結晶の直径の関係を示した図である。上記のように種結晶の溶かし込みが終了し、種結晶を上方に引き上げ始める引上開始までにヒーターパワーのダイヤル値を下げて、その後、本発明のように引上速度を制御することで、単結晶の直径が絞り込み部で減少し、拡径部で増加をしていることがわかる。   Here, FIG. 1 is a diagram showing the relationship between pulling speed, heater power, and single crystal diameter in the production of a silicon single crystal according to the present invention. As described above, the melting of the seed crystal is finished, the dial value of the heater power is lowered by the start of pulling up to start pulling the seed crystal upward, and then the pulling speed is controlled as in the present invention. It can be seen that the diameter of the single crystal decreases at the narrowed portion and increases at the expanded portion.

次に、本発明の製造方法では、引上開始時の引上速度を0.3mm/min未満の低速にしてネッキングを行い、絞り込み部3を形成する。このように、引上速度を0.3mm/min未満にすることにより、結晶の成長が追いつかずに結晶直径が細くなり過ぎることがなく、高重量の単結晶を引き上げることができる。
そして、その後、単結晶の直胴部5が形成され始めるまでの間に引上速度を途中で0.3mm/min以上0.7mm/min以下に増加する。このように、引上速度が増加したことにより、高速化して単結晶を成長させることができ、生産性良く、高重量の単結晶を引き上げることができる。
Next, in the manufacturing method of the present invention, the narrowing portion 3 is formed by performing necking at a pulling speed at the start of pulling at a low speed of less than 0.3 mm / min. Thus, by making the pulling speed less than 0.3 mm / min, the crystal growth does not catch up and the crystal diameter does not become too thin, and a heavy single crystal can be pulled up.
Then, the pulling speed is increased to 0.3 mm / min or more and 0.7 mm / min or less in the middle until the single crystal straight body portion 5 starts to be formed. As described above, the increase in the pulling speed enables the single crystal to be grown at a high speed, and the single crystal having a high weight can be pulled with good productivity.

また、本発明の製造方法では、絞り込み部3の直径が最小直径Wとなる時間に対して、120%以上の範囲のタイミングで引上速度を増加する。このことにより、単結晶は既に拡径部を形成していて、シリコン融液の温度も充分に低下しているため、引上速度を増加しても直径が細くなることは無く、形成される拡径部は拡径するのみである。従って、絞り込み部および拡径部における有転位化を防止して、単結晶棒を成長させることができる。   Moreover, in the manufacturing method of this invention, with respect to the time when the diameter of the narrowing-down part 3 becomes the minimum diameter W, the pulling-up speed is increased at a timing in the range of 120% or more. As a result, the single crystal has already formed a diameter-expanded portion, and the temperature of the silicon melt is sufficiently lowered, so that the diameter does not become thin even if the pulling speed is increased. The expanded diameter portion only expands. Therefore, it is possible to grow single crystal rods while preventing dislocations in the narrowed portion and the enlarged diameter portion.

ここで、図1を参照すると、上記のように、引上速度を0.3mm/min未満にして絞り込み部を形成し、絞り込み部の直径が最小となった時間(約20分)に対して120%以上となるタイミング(約25分)で、引上速度を0.3mm/min以上0.7mm/min以下に増加している。そして、このときの単結晶の直径について注目すると、絞り込み部を形成し始めてから、最小値に至るまで、途中で直径が増加していることはない。また、最小値から拡径部の形成に移行した際にも、途中で直径が減少していることはないことがわかる。従って、上記のようなタイミングで、引上速度を増加することで、絞り込み部および拡径部における有転位化を防止して、単結晶棒を成長させることができる。
なお、引上開始時の引上速度は、例えば、引上開始直後に引上速度を瞬間的に高速として、その後、減少させて一定の引上速度にして絞り込み部を形成するというように、引上速度が0.3mm/min未満の範囲であれば変動させても構わない。
Here, referring to FIG. 1, as described above, with respect to the time (about 20 minutes) in which the narrowing portion is formed with the pulling speed less than 0.3 mm / min and the diameter of the narrowing portion is minimized. At a timing of about 120% or more (about 25 minutes), the pulling speed is increased to 0.3 mm / min or more and 0.7 mm / min or less. When attention is paid to the diameter of the single crystal at this time, the diameter does not increase on the way from the formation of the narrowed portion to the minimum value. It can also be seen that the diameter does not decrease during the transition from the minimum value to the formation of the enlarged diameter portion. Therefore, by increasing the pulling speed at the timing as described above, it is possible to prevent dislocations in the narrowed portion and the enlarged diameter portion and to grow a single crystal rod.
In addition, the pulling speed at the start of pulling is, for example, the pulling speed is instantaneously increased immediately after the pulling start, and then reduced to form a narrowed portion with a constant pulling speed. The pulling speed may be varied as long as it is in a range of less than 0.3 mm / min.

一方、引上速度を増加するタイミングを絞り込み部3の直径が最小直径Wとなる時間に対して、50%以上75%未満の範囲とする場合にも、単結晶は絞り込み部3を形成し始めているため、引上速度を増加することによる結晶の減径により絞り込み部が形成され、その後に最小直径になった後、拡径部を形成しても減径と拡径を交互に繰り返すことなく、絞り込み部および拡径部における有転位化を防止して、単結晶棒を成長させることができる。   On the other hand, when the timing for increasing the pulling speed is within the range of 50% or more and less than 75% with respect to the time when the diameter of the narrowed portion 3 becomes the minimum diameter W, the single crystal starts to form the narrowed portion 3. Therefore, the narrowed portion is formed by reducing the diameter of the crystal by increasing the pulling speed, and after it reaches the minimum diameter, the reduced diameter and expanded diameter are not repeated alternately even if the enlarged diameter portion is formed. In addition, it is possible to grow single crystal rods by preventing dislocation from occurring in the narrowed portion and the enlarged diameter portion.

この場合、本発明の製造方法では、引上開始時の引上速度を0.3mm/min未満に固定して単結晶の試作を行い、絞り込み部の直径が最小となる時間を事前に求めて、引上速度を増加するタイミングを決定することが好ましい。
このように、予め引上速度を固定して、安定的に単結晶を成長させて試作を行うことで絞り込み部の直径が最小となる時間を正確に把握することができるため、引上速度を増加して高速化するタイミングを事前に決定することができる。そして、シリコン融液の温度を下げるために必要なヒーターパワーと引上速度との関係が図1のようになることを事前に導き出すことができるため、正確に両者を制御することができる。従って、確実に単結晶の製造を自動化することができ、効率化を促進して生産性をより向上することができる。
In this case, in the manufacturing method of the present invention, the pulling speed at the start of pulling is fixed to less than 0.3 mm / min, a single crystal is prototyped, and the time during which the diameter of the narrowed portion is minimized is obtained in advance. It is preferable to determine the timing for increasing the pulling speed.
In this way, it is possible to accurately grasp the time when the diameter of the narrowed-down portion is minimized by making the trial production by fixing the pulling speed in advance and stably growing the single crystal. The timing for increasing the speed can be determined in advance. And since it can be derived in advance that the relationship between the heater power and the pulling speed required for lowering the temperature of the silicon melt is as shown in FIG. 1, both can be controlled accurately. Therefore, the production of the single crystal can be surely automated, the efficiency can be promoted, and the productivity can be further improved.

また、本発明の製造方法では、絞り込み部は、単結晶の直径が成長途中で増加することなく減少し続けることにより形成され、また、拡径部は、前記単結晶の直径が成長途中で減少することなく増加し続けることにより形成させることができる。
このように絞り込み部および拡径部は、それぞれの成長途中で減径や拡径を繰り返すことがなく、単結晶の直径の急激な変化が起こらないため、この変化による有転位化も発生しない上に、成長時間の短縮をすることができる。従って、絞り込み部および拡径部における有転位化を防止して、高い生産性でシリコン単結晶を製造することができる。
Further, in the manufacturing method of the present invention, the narrowed portion is formed by continuously decreasing the diameter of the single crystal without increasing during the growth, and the expanded diameter portion is decreased by increasing the diameter of the single crystal during the growth. It can be formed by continuing to increase without doing.
In this way, the narrowed portion and the enlarged diameter portion do not repeat diameter reduction or diameter expansion in the middle of each growth, and a sudden change in the diameter of the single crystal does not occur. In addition, the growth time can be shortened. Therefore, it is possible to produce a silicon single crystal with high productivity by preventing dislocations in the narrowed portion and the enlarged diameter portion.

次に本発明の実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
まず、CZ法により直径300mmのシリコン単結晶を成長させるため、1辺20mmの角柱状で先端が尖った先端部を有する種結晶をシリコン融液に溶かし込んだ。この際、シリコン融液に種結晶の溶かし込みを開始してから10分後にヒーターパワーのダイヤル値を下げてシリコン融液の温度を下げ始めた。そして、種結晶の先端部の直径が8.0mmになった段階で引上速度を0.1mm/minに固定して種結晶を上方に引き上げ始め、試作としての単結晶の引き上げを開始した。そして、単結晶の直径が目標の最小直径6.0mmとなる時間(以下、「X」という)が引上開始より20分後であることを確認した。
そして、表1に示すように、要因として引上速度を増加するタイミング(A〜F)と引上速度(a〜c)とを変更して、実施例および比較例のシリコン単結晶を製造した。
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
First, in order to grow a silicon single crystal having a diameter of 300 mm by the CZ method, a seed crystal having a prismatic shape with a side of 20 mm and a sharp tip was dissolved in the silicon melt. At this time, the dial value of the heater power was lowered and the temperature of the silicon melt was started to decrease 10 minutes after the start of the dissolution of the seed crystal into the silicon melt. Then, when the diameter of the tip of the seed crystal reached 8.0 mm, the pulling speed was fixed at 0.1 mm / min and the seed crystal was pulled upward, and the pulling of the single crystal as a prototype was started. Then, it was confirmed that the time (hereinafter referred to as “X”) for the diameter of the single crystal to reach the target minimum diameter of 6.0 mm was 20 minutes after the start of pulling.
And as shown in Table 1, the timing (AF) which raises pulling speed as a factor, and pulling speed (ac) were changed, and the silicon single crystal of the Example and the comparative example was manufactured. .

Figure 0004862884
Figure 0004862884

(実施例1)(要因B,a)
CZ法により直径300mmのシリコン単結晶を成長させるため、試作と同様の条件で、種結晶をシリコン融液に溶かし込み、種結晶の直径が8.0mmになった段階で引上速度を0.1mm/minに固定して種結晶を上方に引き上げを開始した。その後、引上速度を増加するタイミングを引上開始より10分後(Xの50%)として、引上速度を0.3mm/minに増加して、単結晶を成長させた。
そして、この条件で20回、シリコン単結晶を製造して、絞り込み部および拡径部における無転位化率と減径、拡径の切替回数を確認した。
(Example 1) (Factor B, a)
In order to grow a silicon single crystal having a diameter of 300 mm by the CZ method, the seed crystal was dissolved in a silicon melt under the same conditions as in the trial production, and when the diameter of the seed crystal reached 8.0 mm, the pulling speed was set to 0. The seed crystal was started to be pulled upward while being fixed at 1 mm / min. Thereafter, the timing for increasing the pulling speed was 10 minutes after starting pulling (50% of X), and the pulling speed was increased to 0.3 mm / min to grow a single crystal.
Then, a silicon single crystal was manufactured 20 times under these conditions, and the dislocation-free rate, the diameter reduction, and the number of times of diameter expansion were confirmed in the narrowed portion and the diameter-enlarged portion.

(実施例2および実施例3)(要因C,aおよび要因F,a)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を増加するタイミングを引上開始より14分後(Xの75%未満)とした場合および24分後(Xの120%)とした場合についても、実施例1と同様の評価を行った。
(Example 2 and Example 3) (Factor C, a and Factor F, a)
In the method for producing a silicon single crystal of Example 1 above, the timing for increasing the pulling speed is 14 minutes after the pulling start (less than 75% of X) and 24 minutes after (120% of X). The same evaluation as in Example 1 was also performed.

(実施例4)(要因B,b)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を0.7mm/minに増加した場合についても、実施例1と同様の評価を行った。
(Example 4) (Factors B and b)
In the method for producing a silicon single crystal of Example 1 above, the same evaluation as in Example 1 was performed when the pulling rate was increased to 0.7 mm / min.

(実施例5および実施例6)(要因C,bおよび要因F,b)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を0.7mm/minに増加し、引上速度を増加するタイミングを引上開始より14分後(Xの75%未満)とした場合および24分後(Xの120%)とした場合についても、実施例1と同様の評価を行った。
(Example 5 and Example 6) (Factor C, b and Factor F, b)
In the silicon single crystal manufacturing method of Example 1 above, the pulling speed is increased to 0.7 mm / min, and the timing for increasing the pulling speed is 14 minutes after the pulling start (less than 75% of X). The same evaluation as in Example 1 was also performed in the case of the above and after 24 minutes (120% of X).

(比較例1および比較例2)(要因D,aおよび要因E,a)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を増加するタイミングを引上開始より15分後(Xの75%)とした場合および23分後(Xの120%未満)とした場合についても、実施例1と同様の評価を行った。
(Comparative Example 1 and Comparative Example 2) (Factor D, a and Factor E, a)
In the silicon single crystal manufacturing method of Example 1 above, when the timing for increasing the pulling speed is 15 minutes after starting pulling (75% of X) and after 23 minutes (less than 120% of X) The same evaluation as in Example 1 was also performed.

(比較例3および比較例4)(要因D,bおよび要因E,b)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を0.7mm/minに増加し、引上速度を増加するタイミングを引上開始より15分後(Xの75%)とした場合および23分後(Xの120%未満)とした場合についても、実施例1と同様の評価を行った。
(Comparative Example 3 and Comparative Example 4) (Factor D, b and Factor E, b)
In the method for producing a silicon single crystal of Example 1 above, the pulling speed was increased to 0.7 mm / min, and the timing for increasing the pulling speed was 15 minutes after starting pulling (75% of X). The same evaluation as in Example 1 was performed for the case and after 23 minutes (less than 120% of X).

(比較例5〜比較例7)(要因A,a〜c)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を増加するタイミングを引上開始より9分後(Xの50%未満)とし、引上速度を0.3mm/min、0.7mm/min、0.8mm/minとした場合についても、それぞれ実施例1と同様の評価を行った。
(Comparative Example 5 to Comparative Example 7) (Factor A, ac)
In the method for producing a silicon single crystal of Example 1 described above, the timing for increasing the pulling speed is 9 minutes after the pulling start (less than 50% of X), the pulling speed is 0.3 mm / min. The same evaluation as in Example 1 was performed for the cases of 7 mm / min and 0.8 mm / min.

(比較例8〜比較例12)(要因B〜F,c)
上記の実施例1のシリコン単結晶の製造方法において、引上速度を0.8mm/minに増加し、引上速度を増加するタイミングを引上開始より10分後、14分後、15分後、23分後、24分後(Xの50%、75%未満、75%、120%未満、120%)とした場合についても、それぞれ実施例1と同様の評価を行った。
(Comparative Examples 8 to 12) (Factors B to F, c)
In the method for producing a silicon single crystal of Example 1 above, the pulling speed is increased to 0.8 mm / min, and the timing for increasing the pulling speed is 10 minutes, 14 minutes, and 15 minutes after the start of pulling. , 23 minutes and 24 minutes later (50% of X, less than 75%, 75%, less than 120%, 120%), the same evaluation as in Example 1 was performed.

表1より、全ての実施例において、高い無転位化率を得ることができることがわかる。しかし、ほとんどの比較例においては、無転位化率が非常に低かった。   From Table 1, it can be seen that a high dislocation-free rate can be obtained in all Examples. However, in most comparative examples, the dislocation-free rate was very low.

また、絞り込み部および拡径部における減径、拡径の切替回数については、全ての実施例で絞り込み部から拡径部への切り替えだけの1回であった。また、比較例5〜比較例9、比較例12についても1回であったが、比較例1〜比較例4、比較例10、比較例11では、3回であった。   Further, the number of times of switching between diameter reduction and diameter expansion in the narrowed portion and the enlarged diameter portion was only one time of switching from the narrowed portion to the enlarged diameter portion in all the examples. Moreover, although it was once also about Comparative Example 5-Comparative Example 9 and Comparative Example 12, it was 3 times in Comparative Example 1-Comparative Example 4, Comparative Example 10, and Comparative Example 11.

なお、単結晶の最小直径については、実施例1および4は、平均6.5mm、実施例2および5は、平均6.6mm、実施例3および6は、平均7.2mmとなり、高重量の単結晶を引き上げることができた。しかし、比較例5〜7においては、単結晶の直径が目標の最小直径6.0mmよりも細くなりすぎて、高重量の単結晶を成長させることはできなかった。   As for the minimum diameter of the single crystal, Examples 1 and 4 had an average of 6.5 mm, Examples 2 and 5 had an average of 6.6 mm, and Examples 3 and 6 had an average of 7.2 mm. The single crystal could be pulled up. However, in Comparative Examples 5 to 7, the diameter of the single crystal was too thin than the target minimum diameter of 6.0 mm, and it was not possible to grow a high-weight single crystal.

以上のことから、本発明のシリコン単結晶の製造方法によれば、絞り込み部および拡径部において、減径または拡径を繰り返すことなく、目標とする単結晶の最小の直径を有することで、高重量の単結晶棒を成長させることができる。また、絞り込み部および拡径部における有転位化を防止して、高い無転位化率の単結晶を製造することができる。さらに、引上速度を可能な限り高速化することで効率良く単結晶を育成することができるため、高い生産性でシリコン単結晶を製造することができる。   From the above, according to the method for producing a silicon single crystal of the present invention, in the narrowed-down portion and the diameter-expanded portion, without having to repeat the diameter reduction or diameter expansion, by having the minimum diameter of the target single crystal, High weight single crystal rods can be grown. In addition, it is possible to prevent dislocations in the narrowed portion and the enlarged diameter portion, and to produce a single crystal having a high dislocation-free rate. Furthermore, since the single crystal can be efficiently grown by increasing the pulling speed as much as possible, the silicon single crystal can be manufactured with high productivity.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明におけるシリコン単結晶の製造における引上速度、ヒーターパワー、単結晶の直径の関係を示した図である。It is the figure which showed the relationship between the pulling-up speed in the manufacture of the silicon single crystal in this invention, heater power, and the diameter of a single crystal. 本発明により製造された単結晶の絞り込み部と拡径部の形状を示す概略図である。It is the schematic which shows the shape of the narrowing-down part and enlarged diameter part of the single crystal manufactured by this invention.

符号の説明Explanation of symbols

1…種結晶、 2…先端、 3…絞り込み部、 4…拡径部、 5…直胴部、 W…最小直径。   DESCRIPTION OF SYMBOLS 1 ... Seed crystal, 2 ... Tip, 3 ... Restriction part, 4 ... Expanded diameter part, 5 ... Straight trunk | drum, W ... Minimum diameter.

Claims (3)

チョクラルスキー法により、先端の尖ったシリコン種結晶を用いて、先端から所定の直径の位置までシリコン融液に溶かし込み、ネッキングを行って絞り込み部を形成し、その後拡径して拡径部、直胴部を形成して単結晶棒を引き上げるシリコン単結晶の製造方法において、前記種結晶の溶かし込みが終了し、該種結晶を上方に引き上げ始める引上開始までにヒーターパワーの制御により前記シリコン融液の温度を下げ始め、前記引上開始から前記単結晶の直胴部が形成され始めるまでの引上速度を少なくとも二段階以上とし、該引上速度は、前記引上開始時は0.3mm/min未満であり、その後、前記絞り込み部の直径が最小となる時間に対して、120%以上か、または、50%以上75%未満の範囲のタイミングで0.3mm/min以上0.7mm/min以下に増加することを特徴とするシリコン単結晶の製造方法。   Using the Czochralski method, a silicon seed crystal with a sharp tip is used to dissolve in the silicon melt from the tip to a position of a predetermined diameter, necking is performed to form a narrowed portion, and then the diameter is expanded to expand the diameter portion. In the method for producing a silicon single crystal in which a straight body portion is formed and the single crystal rod is pulled up, the melting of the seed crystal is completed, and the seed crystal starts to be pulled up to start the pulling up by controlling the heater power. The temperature of the silicon melt starts to decrease, and the pulling speed from the start of pulling to the start of formation of the straight body of the single crystal is at least two stages, and the pulling speed is 0 at the start of pulling. 0.3 mm / m at a timing within a range of 120% or more or 50% or more and less than 75% with respect to the time when the diameter of the narrowed-down portion becomes the minimum after that. Method for manufacturing a silicon single crystal, characterized by increased below n or 0.7 mm / min. 前記タイミングは、前記引上開始時の引上速度を0.3mm/min未満に固定して前記単結晶の試作を行い、前記絞り込み部の直径が最小となる時間を求め、前記引上速度の増加のタイミングを決定することを特徴とする請求項1に記載のシリコン単結晶の製造方法。   The timing is that the pulling speed at the start of the pulling is fixed to less than 0.3 mm / min, the single crystal is prototyped, the time when the diameter of the narrowed portion is minimized is determined, and the pulling speed is 2. The method for producing a silicon single crystal according to claim 1, wherein an increase timing is determined. 前記絞り込み部は、前記単結晶の直径が成長途中で増加することなく減少し続けることにより形成され、該絞り込み部の下方に形成される拡径部は、その後成長される直胴部に至るまで前記単結晶の直径が成長途中で減少することなく増加し続けることにより形成されることを特徴とする請求項1または請求項2に記載のシリコン単結晶の製造方法。   The narrowed portion is formed by continuously decreasing the diameter of the single crystal without increasing during the growth, and the expanded diameter portion formed below the narrowed portion reaches the straight body portion to be grown thereafter. 3. The method for producing a silicon single crystal according to claim 1, wherein the diameter of the single crystal is continuously increased without decreasing during the growth.
JP2008317210A 2008-05-21 2008-12-12 Method for producing silicon single crystal Active JP4862884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317210A JP4862884B2 (en) 2008-05-21 2008-12-12 Method for producing silicon single crystal

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008133086 2008-05-21
JP2008133086 2008-05-21
JP2008184503 2008-07-16
JP2008184503 2008-07-16
JP2008317210A JP4862884B2 (en) 2008-05-21 2008-12-12 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2010042977A JP2010042977A (en) 2010-02-25
JP4862884B2 true JP4862884B2 (en) 2012-01-25

Family

ID=42014689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317210A Active JP4862884B2 (en) 2008-05-21 2008-12-12 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4862884B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848067B2 (en) * 1991-11-12 1999-01-20 信越半導体株式会社 Seed crystal of silicon single crystal
JP2937112B2 (en) * 1996-03-13 1999-08-23 住友金属工業株式会社 Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
JP3402210B2 (en) * 1997-12-27 2003-05-06 信越半導体株式会社 Method for producing silicon single crystal
JP3440819B2 (en) * 1998-04-07 2003-08-25 信越半導体株式会社 Method for producing silicon single crystal
US6506251B1 (en) * 2000-02-25 2003-01-14 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal
EP1498517B1 (en) * 2002-04-24 2016-08-31 Shin-Etsu Handotai Co., Ltd. Method of manufacturing silicon single crystal
JP4857920B2 (en) * 2006-06-07 2012-01-18 株式会社Sumco Method for producing silicon single crystal

Also Published As

Publication number Publication date
JP2010042977A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
EP0854211B1 (en) Method of manufacturing silicon monocrystal, and seed crystal used in the method
US6869477B2 (en) Controlled neck growth process for single crystal silicon
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP4165068B2 (en) Method for producing silicon single crystal
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
TW201002877A (en) Method of shoulder formation in growing silicon single crystals
JP5660020B2 (en) Method for producing silicon single crystal
JP4862884B2 (en) Method for producing silicon single crystal
JPH09249482A (en) Method for pulling up single crystal
EP1259664A2 (en) Controlled neck growth process for single crystal silicon
JP3440802B2 (en) Method for producing silicon single crystal
JPH1112082A (en) Production of silicon single crystal and retention of the same crystal
JP5907045B2 (en) Method of pulling silicon single crystal
JP3440819B2 (en) Method for producing silicon single crystal
JP3402210B2 (en) Method for producing silicon single crystal
JP4215249B2 (en) Method for producing silicon seed crystal and silicon single crystal
JP2010275137A (en) Method for producing silicon single crystal
JP4785762B2 (en) Single crystal manufacturing method
JP6308138B2 (en) Method for producing silicon single crystal
JP3690680B2 (en) Method for producing silicon single crystal
JP5053426B2 (en) Silicon single crystal manufacturing method
JP2010030817A (en) Method for manufacturing silicon single crystal
JP5217981B2 (en) Method for producing silicon single crystal
JPH11209197A (en) Production of silicon single crystal
JP6070626B2 (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250