JP4835828B2 - Method for manufacturing liquid jet head - Google Patents

Method for manufacturing liquid jet head Download PDF

Info

Publication number
JP4835828B2
JP4835828B2 JP2005292855A JP2005292855A JP4835828B2 JP 4835828 B2 JP4835828 B2 JP 4835828B2 JP 2005292855 A JP2005292855 A JP 2005292855A JP 2005292855 A JP2005292855 A JP 2005292855A JP 4835828 B2 JP4835828 B2 JP 4835828B2
Authority
JP
Japan
Prior art keywords
reservoir
forming substrate
pressure generating
wall surface
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005292855A
Other languages
Japanese (ja)
Other versions
JP2007098812A (en
Inventor
佳直 宮田
健一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005292855A priority Critical patent/JP4835828B2/en
Publication of JP2007098812A publication Critical patent/JP2007098812A/en
Application granted granted Critical
Publication of JP4835828B2 publication Critical patent/JP4835828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold

Description

本発明は、液体を噴射する液体噴射ヘッドの製造方法に関し、特に、液体としてインクを吐出するインクジェット式記録ヘッドの製造方法に関する。   The present invention relates to a method for manufacturing a liquid ejecting head that ejects liquid, and more particularly, to a method for manufacturing an ink jet recording head that ejects ink as a liquid.

液体噴射ヘッドであるインクジェット式記録ヘッドとしては、例えば、ノズル開口に連通する圧力発生室とこの圧力発生室に連通する連通部が形成されると共に、その一方面側に圧電素子が設けられた流路形成基板と、流路形成基板の連通部と共にリザーバの一部を構成するリザーバ部が形成されたリザーバ形成基板(封止基板)とを具備するものがある。そして、このリザーバ形成基板としては、例えば、面方位(110)のシリコン単結晶基板が用いられ、リザーバ部は、マスクパターン等を介してこのリザーバ形成基板を異方性エッチングすることによって形成されていた(例えば、特許文献1参照)。   As an ink jet recording head that is a liquid ejecting head, for example, a flow in which a pressure generating chamber communicating with a nozzle opening and a communicating portion communicating with the pressure generating chamber are formed and a piezoelectric element is provided on one surface side thereof. Some include a path forming substrate and a reservoir forming substrate (sealing substrate) in which a reservoir portion that constitutes a part of the reservoir together with a communication portion of the flow path forming substrate is formed. As the reservoir forming substrate, for example, a silicon single crystal substrate having a plane orientation (110) is used, and the reservoir portion is formed by anisotropically etching the reservoir forming substrate via a mask pattern or the like. (For example, see Patent Document 1).

また、このリザーバ部(インクリザーバ)としては、並設された複数の圧力発生室(圧力室)に連通するように形成され、列の中央部に位置する圧力発生室と端部に位置する圧力発生室とでインク滴の吐出特性を均一化するために、リザーバ部の長手方向両端部に幅が漸小する漸小部を設けたものがある(例えば、特許文献2参照)。   The reservoir section (ink reservoir) is formed to communicate with a plurality of pressure generation chambers (pressure chambers) arranged side by side, and the pressure generation chamber located at the center of the row and the pressure located at the end In order to make the ejection characteristics of the ink droplets uniform between the generation chambers, there is one in which a gradually decreasing portion having a gradually decreasing width is provided at both longitudinal end portions of the reservoir portion (see, for example, Patent Document 2).

このような漸小部を有するリザーバ部を、上述したように異方性エッチングのみによって形成すると、漸小部の先端部には、リザーバ形成基板(シリコン単結晶基板)がリザーバ部に対向する領域内に張り出して庇状に残ってしまい、これにより、各圧力発生室の流路抵抗に差が生じ、インク吐出特性にばらつきが生じてしまうという問題がある。   When the reservoir portion having such a gradual portion is formed only by anisotropic etching as described above, a region where the reservoir formation substrate (silicon single crystal substrate) faces the reservoir portion is formed at the tip portion of the gradual portion. There is a problem in that the ink flows out and remains in a bowl shape, thereby causing a difference in flow path resistance of each pressure generating chamber and causing variation in ink ejection characteristics.

なお、このような問題は、インクを吐出するインクジェット式記録ヘッドの製造方法だけでなく、勿論、インク以外の液体を吐出する他の液体噴射ヘッドの製造方法においても 同様に存在する。   Such a problem exists not only in the manufacturing method of an ink jet recording head that discharges ink, but also in the manufacturing method of other liquid ejecting heads that discharge a liquid other than ink.

国際公開2004/007206号公報(第12図、第24〜25頁等)International Publication No. 2004/007206 (FIG. 12, pages 24-25, etc.) 特開平2003−63010号公報(第2図等)Japanese Patent Laid-Open No. 2003-63010 (FIG. 2 etc.)

本発明は、このような事情に鑑み、リザーバ形成基板に所定形状のリザーバ部を良好に形成することができる液体噴射ヘッドの製造方法を提供することを課題とする。   In view of such circumstances, it is an object of the present invention to provide a method of manufacturing a liquid ejecting head that can satisfactorily form a reservoir portion having a predetermined shape on a reservoir forming substrate.

上記課題を解決する本発明の第1の態様は、ノズル開口に連通する圧力発生室が複数並設されると共に一方面側に当該圧力発生室内に液滴を吐出させるための圧力を付与する圧力発生手段が設けられた流路形成基板と、複数の前記圧力発生室に連通すると共に前記圧力発生室の並設方向の両端部に外側に向かって幅が漸小する漸小部を有するリザーバ部が形成されたリザーバ形成基板とを有し、前記リザーバ部が、面方位(110)のシリコン単結晶基板からなる前記リザーバ形成基板を所定形状のマスクパターンを介して異方性エッチングすることによって形成され、当該リザーバ部の前記圧力発生室の長手方向に沿った壁面が(110)面に垂直な第1の(111)面で構成されると共に、他の壁面がこの第1の(111)面と70.53°の角度をなす第2の(111)面を含む面で構成された液体噴射ヘッドの製造方法であって、前記リザーバ部を形成する際、前記リザーバ形成基板をエッチングする前又はその途中に、前記リザーバ部の前記圧力発生室の長手方向に沿った壁面である前記第1の(111)面と前記圧力発生室側の壁面を構成する前記第2の(111)面との角部が鈍角となる一方の前記漸小部の先端部に、レーザ加工により当該リザーバ形成基板を厚さ方向に貫通する少なくとも一つの貫通孔を形成することを特徴とする液体噴射ヘッドの製造方法にある。
かかる第1の態様では、所定の開口形状でリザーバ形成基板を貫通するリザーバ部を良好に形成することができる。すなわち、リザーバ部となる領域にエッチング残りが生じることがない。したがって、並設された各圧力発生室の流路抵抗が一定となりインク吐出特性が均一化され、印刷品質が大幅に向上する。
A first aspect of the present invention that solves the above-described problem is a pressure in which a plurality of pressure generation chambers communicating with the nozzle openings are arranged side by side and a pressure is applied on one surface side to eject droplets into the pressure generation chamber. A flow path forming substrate provided with a generating means, and a reservoir portion having a gradually decreasing portion that is communicated with a plurality of the pressure generating chambers and gradually decreases in width toward the outside at both ends in the juxtaposed direction of the pressure generating chambers The reservoir portion is formed by anisotropically etching the reservoir forming substrate made of a silicon single crystal substrate having a surface orientation (110) through a mask pattern having a predetermined shape. And the wall surface along the longitudinal direction of the pressure generating chamber of the reservoir portion is constituted by the first (111) surface perpendicular to the (110) surface, and the other wall surface is the first (111) surface. And 70.5 A method of manufacturing a liquid jet head including a surface including a second (111) surface having an angle of °, and when forming the reservoir portion, before or during the etching of the reservoir forming substrate, A corner portion of the first (111) surface, which is a wall surface along the longitudinal direction of the pressure generating chamber, of the reservoir portion and the second (111) surface constituting the wall surface on the pressure generating chamber side is an obtuse angle. In the method of manufacturing a liquid jet head, at least one through-hole penetrating the reservoir forming substrate in the thickness direction is formed by laser processing at a tip portion of the gradually decreasing portion.
In the first aspect, it is possible to satisfactorily form the reservoir portion penetrating the reservoir forming substrate with a predetermined opening shape. That is, no etching residue is generated in the region serving as the reservoir. Accordingly, the flow resistance of the pressure generating chambers arranged in parallel is constant, the ink ejection characteristics are uniformized, and the printing quality is greatly improved.

本発明の第2の態様は、前記マスクパターンが、前記リザーバ部に対向する領域に複数の開口部を形成する補正パターンを有し、前記リザーバ部を形成する際に、前記開口部を介して前記リザーバ形成基板を異方性エッチングすることを特徴とする第1の態様の液体噴射ヘッドの製造方法にある。
かかる第2の態様では、実質的にリザーバ形成基板のエッチング速度が上昇し、比較的短時間で所定形状のリザーバ部を形成することができる。
According to a second aspect of the present invention, the mask pattern has a correction pattern that forms a plurality of openings in a region facing the reservoir, and the formation of the reservoir via the openings In the method of manufacturing a liquid jet head according to the first aspect, the reservoir forming substrate is anisotropically etched.
In the second aspect, the etching rate of the reservoir forming substrate is substantially increased, and the reservoir portion having a predetermined shape can be formed in a relatively short time.

本発明の第3の態様は、前記リザーバ部の前記一方の角部を形成する前記圧力発生室側の壁面を構成する前記第2の(111)面の長さが200μm以下となるようにすることを特徴とする第1又は第2の態様の液体噴射ヘッドの製造方法にある。
かかる第3の態様では、レーザ加工により貫通孔を形成し易くなるため、リザーバ部をさらに良好に形成することができる。
In a third aspect of the present invention, the length of the second (111) surface constituting the wall surface on the pressure generating chamber side that forms the one corner of the reservoir is 200 μm or less. The method of manufacturing the liquid jet head according to the first or second aspect is characterized by the above.
In the third aspect, since the through hole is easily formed by laser processing, the reservoir portion can be formed more satisfactorily.

以下に本発明を実施形態に基づいて詳細に説明する。
(実施形態1)
図1は、本発明の実施形態1に係る製造方法によって製造されるインクジェット式記録ヘッドを示す分解斜視図であり、図2は、図1の平面図及び断面図である。図示するように、流路形成基板10は、本実施形態では面方位(110)のシリコン単結晶基板からなり、その一方の面には予め熱酸化によって二酸化シリコンからなる厚さ0.5〜2μmの弾性膜50が形成されている。
Hereinafter, the present invention will be described in detail based on embodiments.
(Embodiment 1)
1 is an exploded perspective view showing an ink jet recording head manufactured by a manufacturing method according to Embodiment 1 of the present invention, and FIG. 2 is a plan view and a cross-sectional view of FIG. As shown in the figure, the flow path forming substrate 10 is formed of a silicon single crystal substrate having a plane orientation (110) in this embodiment, and one surface thereof is previously formed of silicon dioxide by thermal oxidation to a thickness of 0.5 to 2 μm. The elastic film 50 is formed.

流路形成基板10には、複数の圧力発生室12がその幅方向に並設されている。また、流路形成基板10の圧力発生室12の長手方向外側の領域には連通部13が形成され、連通部13と各圧力発生室12とが、圧力発生室12毎に設けられたインク供給路14を介して連通されている。連通部13は、後述するリザーバ形成基板30のリザーバ部31と連通して各圧力発生室12の共通のインク室となるリザーバ100の一部を構成する。インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧力発生室12に流入するインクの流路抵抗を一定に保持している。   A plurality of pressure generating chambers 12 are arranged in parallel in the width direction of the flow path forming substrate 10. Further, a communication portion 13 is formed in a region outside the longitudinal direction of the pressure generation chamber 12 of the flow path forming substrate 10, and the communication portion 13 and each pressure generation chamber 12 are provided for each pressure generation chamber 12. Communication is made via a path 14. The communication portion 13 constitutes a part of a reservoir 100 that communicates with a reservoir portion 31 of a reservoir forming substrate 30 described later and serves as a common ink chamber for the pressure generation chambers 12. The ink supply path 14 is formed with a narrower width than the pressure generation chamber 12, and maintains a constant flow path resistance of ink flowing into the pressure generation chamber 12 from the communication portion 13.

流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が、接着剤や熱溶着フィルム等によって固着されている。なお、ノズルプレート20は、厚さが例えば、0.01〜1mmで、線膨張係数が300℃以下で、例えば2.5〜4.5[×10-6/℃]であるガラスセラミックス、シリコン単結晶基板又はステンレス鋼などからなる。 On the opening surface side of the flow path forming substrate 10, a nozzle plate 20 having a nozzle opening 21 communicating with the vicinity of the end of each pressure generating chamber 12 on the side opposite to the ink supply path 14 is provided with an adhesive or heat. It is fixed by a welding film or the like. The nozzle plate 20 has a thickness of, for example, 0.01 to 1 mm, a linear expansion coefficient of 300 ° C. or less, for example, 2.5 to 4.5 [× 10 −6 / ° C.], glass ceramics, silicon It consists of a single crystal substrate or stainless steel.

一方、このような流路形成基板10のノズルプレート20とは反対側の面には、上述したように、厚さが例えば約1.0μmの弾性膜50が形成され、この弾性膜50上には、厚さが例えば、約0.4μmの絶縁体膜51が形成されている。さらに、この絶縁体膜51上には、厚さが例えば、約0.2μmの下電極膜60と、厚さが例えば、約1.0μmの圧電体層70と、厚さが例えば、約0.05μmの上電極膜80とが、後述するプロセスで積層形成されて、圧電素子300を構成している。ここで、圧電素子300は、下電極膜60、圧電体層70及び上電極膜80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。本実施形態では、下電極膜60を圧電素子300の共通電極とし、上電極膜80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。   On the other hand, as described above, the elastic film 50 having a thickness of, for example, about 1.0 μm is formed on the surface of the flow path forming substrate 10 opposite to the nozzle plate 20, and the elastic film 50 is formed on the elastic film 50. The insulator film 51 having a thickness of, for example, about 0.4 μm is formed. Further, on the insulator film 51, a lower electrode film 60 having a thickness of, for example, about 0.2 μm, a piezoelectric layer 70 having a thickness of, for example, about 1.0 μm, and a thickness of, for example, about 0 The upper electrode film 80 having a thickness of 0.05 μm is laminated by a process described later to constitute the piezoelectric element 300. Here, the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. In general, one electrode of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each pressure generating chamber 12. In the present embodiment, the lower electrode film 60 is used as a common electrode of the piezoelectric element 300 and the upper electrode film 80 is used as an individual electrode of the piezoelectric element 300. However, there is no problem even if this is reversed for convenience of a drive circuit and wiring.

また、このような各圧電素子300の上電極膜80には、例えば、金(Au)等の金属材料からなるリード電極90がそれぞれ接続され、このリード電極90を介して各圧電素子300に選択的に電圧が印加されるようになっている。   In addition, a lead electrode 90 made of a metal material such as gold (Au) is connected to the upper electrode film 80 of each piezoelectric element 300, and the piezoelectric element 300 is selected via the lead electrode 90. Thus, a voltage is applied.

さらに、流路形成基板10の圧電素子300側の面には、例えば、面方位(110)のシリコン単結晶基板からなり、リザーバ100の少なくとも一部を構成するリザーバ部31を有するリザーバ形成基板30が、接着剤等からなる接着層を介して接合されている。リザーバ部31は、圧力発生室の並設方向に沿って形成され、その長手方向両端部には、それぞれ外側に向かって幅が漸小する漸小部32が設けられている。これにより、本実施形態に係るリザーバ部の開口は、略台形形状となっている。そして、このリザーバ部31が、弾性膜50及び絶縁体膜51に設けられた貫通部52を介して連通部13と連通され、これらリザーバ部31及び連通部13によってリザーバ100が形成されている。   Furthermore, the surface on the piezoelectric element 300 side of the flow path forming substrate 10 is made of, for example, a silicon single crystal substrate having a plane orientation (110), and has a reservoir portion 31 that constitutes at least a part of the reservoir 100. Are bonded via an adhesive layer made of an adhesive or the like. The reservoir portion 31 is formed along the direction in which the pressure generating chambers are arranged side by side, and a gradually decreasing portion 32 whose width gradually decreases toward the outside is provided at both ends in the longitudinal direction. Thereby, the opening of the reservoir | reserver part which concerns on this embodiment becomes substantially trapezoid shape. The reservoir unit 31 communicates with the communication unit 13 through the elastic film 50 and the through-hole 52 provided in the insulator film 51, and the reservoir 100 is formed by the reservoir unit 31 and the communication unit 13.

なお、リザーバ部31の漸小部32は、各圧力発生室の流路抵抗が一定となるようにし、ノズル開口から吐出されるインク滴の吐出特性を均一化するために設けられている。   The gradually decreasing portion 32 of the reservoir portion 31 is provided in order to make the flow path resistance of each pressure generating chamber constant, and to make the discharge characteristics of the ink droplets discharged from the nozzle openings uniform.

このようなリザーバ部31を有するリザーバ形成基板30は、流路形成基板10と同一材料である面方位(110)のシリコン単結晶基板からなり、リザーバ部31は、詳しくは後述するが、リザーバ形成基板30をその両面から異方性エッチングすることによって形成されている。その結果、図3に示すように、リザーバ部31の圧力発生室の長手方向に沿った壁面33は(110)面に垂直な第1の(111)面で構成され、他の壁面はこの第1の(111)面(壁面33)と70.53°の角度をなす第2の(111)面34を含む面で構成されている。したがって、漸小部32の一方では、この壁面33と圧力発生室12側の壁面を構成する第2の(111)面34との角部の角度θは鈍角となり、他方の漸小部32では、図示しないが鋭角となっている。   The reservoir forming substrate 30 having such a reservoir portion 31 is made of a silicon single crystal substrate having a plane orientation (110) that is the same material as the flow path forming substrate 10, and the reservoir portion 31 will be described later in detail. The substrate 30 is formed by anisotropic etching from both sides. As a result, as shown in FIG. 3, the wall surface 33 along the longitudinal direction of the pressure generating chamber of the reservoir portion 31 is configured by the first (111) surface perpendicular to the (110) surface, and the other wall surfaces are the first wall surface. The first (111) surface (wall surface 33) is a surface including a second (111) surface 34 that forms an angle of 70.53 °. Therefore, on one side of the gradually decreasing portion 32, the angle θ of the corner between the wall surface 33 and the second (111) surface 34 constituting the wall surface on the pressure generating chamber 12 side is an obtuse angle. Although not shown, it has an acute angle.

なお、リザーバ形成基板30の圧電素子300に対向する領域には、圧電素子保持部35が設けられている。圧電素子300は、この圧電素子保持部35内に形成されているため、外部環境の影響を殆ど受けない状態で保護されている。なお、圧電素子保持部35は、密封されていてもよいし密封されていなくてもよい。また、リザーバ形成基板30上には、圧電素子300を駆動するための駆動IC210が実装されている。そして、各圧電素子300から圧電素子保持部35の外側まで引き出された各リード電極90の先端部と、駆動IC210とが駆動配線220を介して電気的に接続されている。   Note that a piezoelectric element holding portion 35 is provided in a region facing the piezoelectric element 300 of the reservoir forming substrate 30. Since the piezoelectric element 300 is formed in the piezoelectric element holding portion 35, it is protected in a state where it is hardly affected by the external environment. In addition, the piezoelectric element holding part 35 may be sealed or may not be sealed. A drive IC 210 for driving the piezoelectric element 300 is mounted on the reservoir forming substrate 30. Then, the leading end portion of each lead electrode 90 drawn from each piezoelectric element 300 to the outside of the piezoelectric element holding portion 35 and the driving IC 210 are electrically connected via the driving wiring 220.

さらに、リザーバ形成基板30のリザーバ部31に対応する領域上には、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。封止膜41は、剛性が低く可撓性を有する材料(例えば、厚さが6μmのポリフェニレンサルファイド(PPS)フィルム)からなり、この封止膜41によってリザーバ部31の一方面が封止されている。また、固定板42は、金属等の硬質の材料(例えば、厚さが30μmのステンレス鋼(SUS)等)で形成される。この固定板42のリザーバ100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、リザーバ100の一方面は可撓性を有する封止膜41のみで封止されている。また、コンプライアンス基板40のリザーバ部31に対向する領域には、インクカートリッジからのインクをリザーバ100内に供給するためのインク導入口44が設けられている。   Furthermore, a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is bonded onto a region corresponding to the reservoir portion 31 of the reservoir forming substrate 30. The sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 μm). The sealing film 41 seals one surface of the reservoir unit 31. Yes. The fixing plate 42 is made of a hard material such as metal (for example, stainless steel (SUS) having a thickness of 30 μm). Since the region of the fixing plate 42 facing the reservoir 100 is an opening 43 that is completely removed in the thickness direction, one surface of the reservoir 100 is sealed only with a flexible sealing film 41. Has been. In addition, an ink introduction port 44 for supplying ink from the ink cartridge into the reservoir 100 is provided in a region facing the reservoir portion 31 of the compliance substrate 40.

このような本実施形態のインクジェット式記録ヘッドでは、図示しない外部インク供給手段からインク導入口44を介してリザーバ100内にインクを取り込み、リザーバ100からノズル開口21に至るまで内部をインクで満たした後、駆動IC210からの記録信号に従い、圧力発生室12に対応するそれぞれの下電極膜60と上電極膜80との間に電圧を印加し、圧電素子300及び振動板をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインクが吐出する。   In such an ink jet recording head of this embodiment, ink is taken into the reservoir 100 from an external ink supply means (not shown) via the ink introduction port 44, and the interior is filled with ink from the reservoir 100 to the nozzle opening 21. After that, according to the recording signal from the drive IC 210, a voltage is applied between each of the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generating chamber 12 to bend and deform the piezoelectric element 300 and the diaphragm. The pressure in each pressure generating chamber 12 increases and ink is ejected from the nozzle opening 21.

以下、このようなインクジェット式記録ヘッドの製造方法、具体的には、インクジェット式記録ヘッドを構成するリザーバ形成基板の形成方法について、図4及び図5を参照して説明する。なお、図4は、圧力発生室の長手方向におけるリザーバ形成基板の断面図であり、図4(b)は図5(a)のB−B’断面に相当し、図4(c)は図5(b)のC−C’断面に相当する。   Hereinafter, a method for manufacturing such an ink jet recording head, specifically, a method for forming a reservoir forming substrate constituting the ink jet recording head will be described with reference to FIGS. 4 is a cross-sectional view of the reservoir forming substrate in the longitudinal direction of the pressure generating chamber. FIG. 4B corresponds to the BB ′ cross section of FIG. 5A, and FIG. This corresponds to the CC ′ cross section of 5 (b).

まず、図4(a)に示すように、面方位(110)のシリコン単結晶基板であるリザーバ形成基板30を約1100℃の拡散炉で熱酸化し、その表面にリザーバ部31等を形成するためのマスクとなる二酸化シリコン膜130を形成する。なお、リザーバ形成基板30の厚さは、特に限定されないが、本実施形態では、リザーバ形成基板30として、厚さが400μm程度のシリコン単結晶基板(シリコンウェハ)を用いている。   First, as shown in FIG. 4A, a reservoir forming substrate 30 which is a silicon single crystal substrate having a plane orientation (110) is thermally oxidized in a diffusion furnace at about 1100 ° C. to form a reservoir portion 31 and the like on the surface. A silicon dioxide film 130 serving as a mask is formed. Although the thickness of the reservoir forming substrate 30 is not particularly limited, in this embodiment, a silicon single crystal substrate (silicon wafer) having a thickness of about 400 μm is used as the reservoir forming substrate 30.

次に、図4(b)及び図5(a)に示すように、二酸化シリコン膜130を、レジスト膜等を介してエッチングすることによりパターニングすることで、リザーバ部31をエッチングにより形成する際のマスクとなるマスクパターン140を形成する。ここで、このマスクパターン140のリザーバ部31に対向する領域には、複数の開口部142を有する補正パターン141が設けられている。なお、図5(a)では、3つの開口部142のみ図示しているが、リザーバ部31が形成される領域(ハッチングを施した領域)全てに、このような開口部142が複数配置されている。   Next, as shown in FIGS. 4B and 5A, when the silicon dioxide film 130 is patterned by etching through a resist film or the like, the reservoir 31 is formed by etching. A mask pattern 140 to be a mask is formed. Here, a correction pattern 141 having a plurality of openings 142 is provided in a region of the mask pattern 140 facing the reservoir portion 31. In FIG. 5A, only three openings 142 are shown, but a plurality of such openings 142 are arranged in all the areas where the reservoir 31 is formed (hatched areas). Yes.

この補正パターン141の形状、すなわち、各開口部142の形状及び配置は特に限定されずリザーバ部31の形状に応じて適宜決定されればよいが、各開口部142の端面は第1の(111)面又は第2の(111)面に沿って形成する必要がある。このため、上述したようにリザーバ部31の一方の漸小部32では、壁面33と圧力発生室12側の壁面を構成する第2の(111)面34aとの角部の角度θは鈍角となっている(図3参照)。また、リザーバ部31は、壁面33と交差する第2の(111)面34aの長さは200μm以下となるように形成することが好ましい。このため、本実施形態では、補正パターン141の第2の(111)面34aに対応する部分の長さLが200μm以下となるように形成している(図5(a))。なお、本実施形態では、リザーバ部31と共に、圧電素子保持部35もエッチングによって同時に形成するため、リザーバ形成基板30の流路形成基板10との接合面側のマスクパターン140(二酸化シリコン膜130)の圧電素子保持部35に対向する領域に、開口部143を形成する。   The shape of the correction pattern 141, that is, the shape and arrangement of each opening 142 is not particularly limited, and may be determined as appropriate according to the shape of the reservoir 31, but the end surface of each opening 142 has the first (111). ) Surface or the second (111) surface. Therefore, as described above, in one gradually decreasing portion 32 of the reservoir portion 31, the angle θ of the corner portion between the wall surface 33 and the second (111) surface 34a constituting the wall surface on the pressure generating chamber 12 side is an obtuse angle. (See FIG. 3). The reservoir portion 31 is preferably formed such that the length of the second (111) surface 34a intersecting the wall surface 33 is 200 μm or less. For this reason, in this embodiment, the length L of the portion corresponding to the second (111) surface 34a of the correction pattern 141 is formed to be 200 μm or less (FIG. 5A). In this embodiment, since the piezoelectric element holding portion 35 is simultaneously formed by etching together with the reservoir portion 31, the mask pattern 140 (silicon dioxide film 130) on the bonding surface side of the reservoir forming substrate 30 with the flow path forming substrate 10 is used. An opening 143 is formed in a region facing the piezoelectric element holding portion 35.

次に、本発明では、リザーバ部31の圧力発生室12の長手方向に沿った第1の(111)面(壁面33)と、圧力発生室12側の壁面を構成する第2の(111)面34aとの角部が鈍角となる漸小部32の先端部に対応する位置に、図4(c)及び図5(b)に示すように、レーザ加工によりリザーバ形成基板30を厚さ方向に貫通する少なくとも一つの貫通孔145を形成する。例えば、本実施形態では、この漸小部32の先端部に直径30μm程度の貫通孔145を3つ形成するようにした。   Next, in the present invention, the first (111) surface (wall surface 33) along the longitudinal direction of the pressure generation chamber 12 of the reservoir section 31 and the second (111) constituting the wall surface on the pressure generation chamber 12 side. As shown in FIGS. 4 (c) and 5 (b), the reservoir forming substrate 30 is formed in the thickness direction by laser processing at a position corresponding to the tip of the gradually decreasing portion 32 where the corner with the surface 34a becomes an obtuse angle. At least one through hole 145 is formed. For example, in this embodiment, three through holes 145 having a diameter of about 30 μm are formed at the tip of the gradually decreasing portion 32.

次に、図4(d)に示すように、上述した所定形状のマスクパターン140を介してリザーバ形成基板30をその両面側からそれぞれ異方性エッチングする。これにより、リザーバ形成基板30には、リザーバ形成基板30を所定の開口形状で貫通するリザーバ部31が良好に形成され、また同時に、圧電素子保持部35が形成される。   Next, as shown in FIG. 4D, the reservoir forming substrate 30 is anisotropically etched from both sides thereof through the mask pattern 140 having the predetermined shape described above. Thereby, the reservoir forming substrate 30 is favorably formed with the reservoir portion 31 penetrating the reservoir forming substrate 30 with a predetermined opening shape, and at the same time, the piezoelectric element holding portion 35 is formed.

ここで、シリコン単結晶基板の異方性エッチングは、(110)面と約35°の角度をなす(111)面が露出されながら深さ方向にエッチングが進行する。また、上述したように、補正パターン141の各開口部142は、リザーバ形成基板30の第1の(111)面又は第2の(111)面に沿って形成する必要があるため、一方の漸小部の先端部では、これら各開口部142を比較的小さく形成しなければならない。このため、従来のように異方性エッチングのみでリザーバ部を形成しようとすると、上述した一方の漸小部の先端部に対応する領域には、リザーバ形成基板(シリコン単結晶基板)が庇状に残ってしまう虞があった。   Here, the anisotropic etching of the silicon single crystal substrate proceeds in the depth direction while the (111) plane forming an angle of about 35 ° with the (110) plane is exposed. Further, as described above, each opening 142 of the correction pattern 141 needs to be formed along the first (111) surface or the second (111) surface of the reservoir forming substrate 30, so At the tip of the small part, each of these openings 142 must be formed relatively small. For this reason, when the reservoir portion is formed only by anisotropic etching as in the prior art, the reservoir forming substrate (silicon single crystal substrate) has a bowl-like shape in the region corresponding to the tip portion of the one gradually decreasing portion described above. There was a risk of being left behind.

しかしながら、本発明のように、レーザ加工によって貫通孔145を形成しておくことで、この貫通孔145を介してリザーバ形成基板30が確実にエッチングされるため、庇状のエッチング残りが生じることなく、所定形状のリザーバ部31が良好に形成される。なお、他方の漸小部32の先端部では、開口部142の長さを比較的長くすることができるため、貫通孔145を形成しなくても、庇状のエッチング残りが生じる虞は極めて少ない。   However, as in the present invention, by forming the through-hole 145 by laser processing, the reservoir forming substrate 30 is reliably etched through the through-hole 145, so that no saddle-like etching residue occurs. The reservoir portion 31 having a predetermined shape is formed satisfactorily. In addition, since the length of the opening 142 can be made relatively long at the tip of the other gradually decreasing portion 32, there is very little possibility that a bowl-like etching residue will occur even if the through hole 145 is not formed. .

そして、このように所定形状のリザーバ部31が良好に形成されることで、並設されている各圧力発生室12の流路抵抗が一定となり、インク滴の吐出特性が均一化される。よって、印刷品質を大幅に向上することができる。   In addition, since the reservoir portion 31 having a predetermined shape is formed well in this way, the flow path resistance of the pressure generating chambers 12 arranged in parallel is made constant, and the ink droplet ejection characteristics are made uniform. Thus, the print quality can be greatly improved.

なお、このようなリザーバ部31等を有するリザーバ形成基板30は、実際には、シリコンウェハに複数一体的に形成される。すなわち、リザーバ部31等が、上述したような工程によりシリコンウェハに複数形成された後、このシリコンウェハを最終的に分割することでリザーバ形成基板30となる。   Note that a plurality of reservoir forming substrates 30 having such a reservoir portion 31 and the like are actually integrally formed on a silicon wafer. That is, after a plurality of reservoir portions 31 and the like are formed on the silicon wafer by the process as described above, the silicon wafer is finally divided to form the reservoir forming substrate 30.

(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明は、上述した実施形態に限定されるものではない。例えば、上述した実施形態では、リザーバ形成基板30をエッチングする前に、貫通孔145を形成するようにしたが、これに限定されず、マスクパターン140を介してリザーバ形成基板30をエッチングしてリザーバ部31をある程度の深さまで形成した後、レーザ加工により貫通孔を形成し、その後、さらにリザーバ形成基板30をエッチングすることによって、リザーバ部31を形成するようにしてもよい。この場合でも、勿論、所定形状のリザーバ部31を良好且つ効率的に形成することができる。
(Other embodiments)
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, the through hole 145 is formed before the reservoir forming substrate 30 is etched. However, the present invention is not limited to this, and the reservoir forming substrate 30 is etched through the mask pattern 140 to form the reservoir. After forming the portion 31 to a certain depth, the reservoir portion 31 may be formed by forming a through hole by laser processing and then further etching the reservoir forming substrate 30. Even in this case, of course, the reservoir portion 31 having a predetermined shape can be formed satisfactorily and efficiently.

また、上述の実施形態では、インク滴を吐出するための圧力発生手段として薄膜からなる圧電素子を例示したが、この圧力発生手段は、特に限定されず、例えば、発熱素子等であってもよい。   In the above-described embodiment, the piezoelectric element made of a thin film is exemplified as the pressure generating unit for ejecting the ink droplets. However, the pressure generating unit is not particularly limited, and may be, for example, a heating element. .

なお、上述した実施形態においては、液体噴射ヘッドの一例としてインクジェット式記録ヘッドを挙げて説明したが、本発明は、広く液体噴射ヘッド全般を対象としたものであり、インク以外の液体を噴射する液体噴射ヘッドの製造方法にも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンタ等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレー等のカラーフィルタの製造に用いられる色材噴射ヘッド、有機ELディスプレー、FED(面発光ディスプレー)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられる。   In the above-described embodiment, an ink jet recording head has been described as an example of a liquid ejecting head. However, the present invention is widely intended for all liquid ejecting heads and ejects liquids other than ink. Of course, the present invention can also be applied to a method of manufacturing a liquid jet head. Other liquid ejecting heads include, for example, various recording heads used in image recording apparatuses such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (surface emitting displays). Examples thereof include an electrode material ejection head used for electrode formation, a bioorganic matter ejection head used for biochip production, and the like.

実施形態1に係る記録ヘッドの分解斜視図である。FIG. 3 is an exploded perspective view of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view of the recording head according to the first embodiment. 実施形態1に係るリザーバ部の形状を示す平面図である。3 is a plan view showing a shape of a reservoir section according to Embodiment 1. FIG. 実施形態1に係るリザーバ形成基板の製造工程を示す断面図である。FIG. 6 is a cross-sectional view illustrating a manufacturing process of the reservoir forming substrate according to the first embodiment. 実施形態1に係るリザーバ形成基板の製造工程を示す平面図である。6 is a plan view illustrating a manufacturing process of the reservoir forming substrate according to Embodiment 1. FIG.

符号の説明Explanation of symbols

10 流路形成基板、 12 圧力発生室、 20 ノズルプレート、 21 ノズル開口、 30 リザーバ形成基板、 31 リザーバ部、 32 漸小部、 35 圧電素子保持部、 40 コンプライアンス基板、 50 弾性膜、 51 絶縁体膜、 60 下電極膜、 70 圧電体層、 80 上電極膜、 90 リード電極、 100 リザーバ、 210 駆動IC、 220 駆動配線、 300 圧電素子
DESCRIPTION OF SYMBOLS 10 Flow path formation board | substrate, 12 Pressure generation chamber, 20 Nozzle plate, 21 Nozzle opening, 30 Reservoir formation board | substrate, 31 Reservoir part, 32 Decrease part, 35 Piezoelectric element holding | maintenance part, 40 Compliance board | substrate, 50 Elastic film, 51 Insulator Film, 60 lower electrode film, 70 piezoelectric layer, 80 upper electrode film, 90 lead electrode, 100 reservoir, 210 drive IC, 220 drive wiring, 300 piezoelectric element

Claims (3)

ノズル開口に連通する圧力発生室が複数並設されると共に一方面側に当該圧力発生室内に液滴を吐出させるための圧力を付与する圧力発生手段が設けられた流路形成基板と、複数の前記圧力発生室に連通すると共に前記圧力発生室の並設方向の両端部に外側に向かって幅が漸小する漸小部を有するリザーバ部が形成されたリザーバ形成基板とを有し、
前記リザーバ部が、面方位(110)のシリコン単結晶基板からなる前記リザーバ形成基板を所定形状のマスクパターンを介して異方性エッチングすることによって形成され、当該リザーバ部の前記圧力発生室の長手方向に沿った壁面が(110)面に垂直な第1の(111)面で構成されると共に、他の壁面がこの第1の(111)面と70.53°の角度をなす第2の(111)面を含む面で構成された液体噴射ヘッドの製造方法であって、
前記リザーバ部を形成する際、前記リザーバ形成基板をエッチングする前又はその途中に、前記リザーバ部の前記圧力発生室の長手方向に沿った壁面である前記第1の(111)面と前記圧力発生室側の壁面を構成する前記第2の(111)面との角部が鈍角となる一方の前記漸小部の先端部に、レーザ加工により当該リザーバ形成基板を厚さ方向に貫通する少なくとも一つの貫通孔を形成することを特徴とする液体噴射ヘッドの製造方法。
A plurality of pressure generating chambers communicating with the nozzle openings, and a flow path forming substrate provided with pressure generating means for applying a pressure for ejecting droplets into the pressure generating chamber on one side; A reservoir forming substrate having a reservoir portion communicating with the pressure generation chamber and having a gradually decreasing portion whose width gradually decreases toward the outside at both ends in the juxtaposed direction of the pressure generation chambers;
The reservoir portion is formed by anisotropically etching the reservoir forming substrate made of a silicon single crystal substrate having a plane orientation (110) through a mask pattern having a predetermined shape, and the longitudinal direction of the pressure generating chamber of the reservoir portion. The wall surface along the direction is composed of the first (111) plane perpendicular to the (110) plane, and the other wall surface is a second angle forming an angle of 70.53 ° with the first (111) plane. A method of manufacturing a liquid jet head including a surface including a (111) surface,
When forming the reservoir portion, before or during the etching of the reservoir forming substrate, the first (111) surface which is a wall surface along the longitudinal direction of the pressure generating chamber of the reservoir portion and the pressure generation At least one that penetrates the reservoir forming substrate in the thickness direction by laser processing at the tip of one of the gradually decreasing portions where the corner with the second (111) surface constituting the wall surface on the chamber side becomes an obtuse angle. A method of manufacturing a liquid jet head, wherein two through holes are formed.
前記マスクパターンが、前記リザーバ部に対向する領域に複数の開口部を形成する補正パターンを有し、前記リザーバ部を形成する際に、前記開口部を介して前記リザーバ形成基板を異方性エッチングすることを特徴とする請求項1に記載の液体噴射ヘッドの製造方法。 The mask pattern has a correction pattern for forming a plurality of openings in a region facing the reservoir, and the reservoir forming substrate is anisotropically etched through the openings when the reservoir is formed. The method of manufacturing a liquid jet head according to claim 1, wherein: 前記リザーバ部の前記一方の角部を形成する前記圧力発生室側の壁面を構成する前記第2の(111)面の長さが200μm以下となるようにすることを特徴とする請求項1又は2に記載の液体噴射ヘッドの製造方法。
The length of the second (111) surface constituting the wall surface on the pressure generating chamber side forming the one corner of the reservoir portion is set to 200 μm or less. 3. A method for manufacturing a liquid jet head according to 2.
JP2005292855A 2005-10-05 2005-10-05 Method for manufacturing liquid jet head Expired - Fee Related JP4835828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292855A JP4835828B2 (en) 2005-10-05 2005-10-05 Method for manufacturing liquid jet head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292855A JP4835828B2 (en) 2005-10-05 2005-10-05 Method for manufacturing liquid jet head

Publications (2)

Publication Number Publication Date
JP2007098812A JP2007098812A (en) 2007-04-19
JP4835828B2 true JP4835828B2 (en) 2011-12-14

Family

ID=38026226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292855A Expired - Fee Related JP4835828B2 (en) 2005-10-05 2005-10-05 Method for manufacturing liquid jet head

Country Status (1)

Country Link
JP (1) JP4835828B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011761B2 (en) 2008-01-17 2011-09-06 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
JP5088487B2 (en) * 2008-02-15 2012-12-05 セイコーエプソン株式会社 Liquid ejecting head and manufacturing method thereof
KR101047486B1 (en) 2009-11-12 2011-07-08 삼성전기주식회사 SOI substrate processing method
JP2018103515A (en) * 2016-12-27 2018-07-05 セイコーエプソン株式会社 Manufacturing method for liquid discharge head

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108954B2 (en) * 1992-05-08 2000-11-13 セイコーエプソン株式会社 Method for manufacturing inkjet head, inkjet head, and inkjet printer
JP3473675B2 (en) * 1997-01-24 2003-12-08 セイコーエプソン株式会社 Ink jet recording head
WO2000050198A1 (en) * 1999-02-25 2000-08-31 Seiko Epson Corporation Method for machining work by laser beam
JP2001179992A (en) * 1999-12-24 2001-07-03 Canon Inc Method for manufacturing liquid ejection recording head
JP2002292868A (en) * 2001-03-28 2002-10-09 Ricoh Co Ltd Liquid drop ejection head, ink cartridge and ink jet recorder
JP2003145761A (en) * 2001-08-28 2003-05-21 Seiko Epson Corp Liquid jet head, its manufacturing method and liquid jet apparatus
JP2003200578A (en) * 2002-01-09 2003-07-15 Seiko Epson Corp Method for manufacturing liquid ejection head
JP4492059B2 (en) * 2003-08-05 2010-06-30 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus

Also Published As

Publication number Publication date
JP2007098812A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP3726909B2 (en) Method for manufacturing liquid jet head
JP2007118193A (en) Liquid jetting head and liquid jetting apparatus
JP4968428B2 (en) Method for manufacturing liquid jet head
JP4228239B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2005053079A (en) Liquid ejection head and liquid ejector
JP4835828B2 (en) Method for manufacturing liquid jet head
JP2009178951A (en) Liquid jet head and liquid jet device
JP2007008044A (en) Liquid ejection head and liquid ejector
JP2006218840A (en) Liquid jetting head and liquid jet apparatus
JP2006218716A (en) Liquid ejection head and liquid ejection device
JP2005053080A (en) Liquid ejecting head and liquid ejector
JP2006248166A (en) Liquid ejection head and liquid ejection device
JP4506145B2 (en) Liquid ejecting head, manufacturing method thereof, and liquid ejecting apparatus
JP2008221825A (en) Liquid jetting head and liquid jetting device
JP4457649B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2006218776A (en) Liquid injection head and liquid injection apparatus
JP4338944B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2004160947A (en) Liquid jet head, manufacturing method therefor, and liquid jet device
JP2007118265A (en) Liquid jetting head, and liquid jetting device
JP3953703B2 (en) Inkjet recording head and inkjet recording apparatus
JP2005144847A (en) Liquid jet head and liquid jet device
JP2000263778A (en) Actuator apparatus, ink jet recording head and ink jet recording apparatus
JP2006224609A (en) Method for manufacturing liquid injection head
JP3882915B2 (en) Liquid ejecting head, manufacturing method thereof, and liquid ejecting apparatus
JP2004216581A (en) Liquid injection head and liquid injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees