JP4828299B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4828299B2
JP4828299B2 JP2006138133A JP2006138133A JP4828299B2 JP 4828299 B2 JP4828299 B2 JP 4828299B2 JP 2006138133 A JP2006138133 A JP 2006138133A JP 2006138133 A JP2006138133 A JP 2006138133A JP 4828299 B2 JP4828299 B2 JP 4828299B2
Authority
JP
Japan
Prior art keywords
radiator
heat
heat exchanger
refrigeration cycle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006138133A
Other languages
Japanese (ja)
Other versions
JP2007309566A (en
Inventor
則幸 ▲高▼須
清 渡邉
愛一郎 加藤
祐太 野村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2006138133A priority Critical patent/JP4828299B2/en
Publication of JP2007309566A publication Critical patent/JP2007309566A/en
Application granted granted Critical
Publication of JP4828299B2 publication Critical patent/JP4828299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクルの冷媒から熱交換器を介して採熱した水熱媒で冷暖房を行なう冷暖房システムに関するものである。   The present invention relates to an air-conditioning system that performs air-conditioning with a hydrothermal medium collected from a refrigerant in a refrigeration cycle via a heat exchanger.
電気ヒータ式、石油又はガス燃焼式等の加熱器により加熱される温水加熱用の熱交換器と高温負荷と低温負荷とを温水管を介して接続し、熱交換器で生成される高温水を高温水供給用の温水管を介して高温負荷に供給し、負荷からの戻り水と高温水とを第1バイパス管を介して混ぜ合わせて作られた低温水を低温水供給用の温水管を介して低温負荷に供給する二温度式の温水暖房システムがある(例えば、特許文献1参照)。   A hot water heating heat exchanger heated by a heater such as an electric heater type, oil or gas combustion type, and a high temperature load and a low temperature load are connected via a hot water pipe, and the high temperature water generated by the heat exchanger is Supply the high temperature load through the hot water pipe for supplying high temperature water and mix the return water from the load and the high temperature water through the first bypass pipe into the low temperature water supply hot water pipe. There is a two-temperature type hot water heating system that supplies a low-temperature load via a low temperature load (see, for example, Patent Document 1).
特開2002−22193号公報JP 2002-22193 A
しかしながら、上記従来の技術は、冷凍サイクルの冷媒から熱交換器を介して採熱した水熱媒で冷暖房を行なう冷暖房システムに適用することはできない。そのため、冷凍サイクルによる複数温度式の冷暖房システムを得ることができない、という問題があった。   However, the above-described conventional technique cannot be applied to an air conditioning system that performs air conditioning with a hydrothermal medium that is collected from a refrigerant in a refrigeration cycle via a heat exchanger. Therefore, there has been a problem that it is impossible to obtain a multiple temperature type air conditioning system using a refrigeration cycle.
本発明は、上記に鑑みてなされたものであって、冷凍サイクルの冷媒から熱交換器を介して採熱した水熱媒で冷暖房を行なう複数温度式の冷暖房システムを得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the multi-temperature type air-conditioning system which air-conditions with the hydrothermal medium heat-collected from the refrigerant | coolant of the refrigerating cycle through the heat exchanger.
上述した課題を解決し、目的を達成するために、本発明は、複数の熱交換器のそれぞれの冷媒回路に、それぞれ冷媒を循環させる複数の独立した冷凍サイクルと、前記複数の熱交換器のそれぞれの冷媒回路と熱交換する前記複数の熱交換器のそれぞれの水熱媒回路、該それぞれの水熱媒回路に配管で接続された循環ポンプ、及び、前記配管の途中に接続され記それぞれの水熱媒回路を、前記循環ポンプに対して並列接続と直列接続とに切替える切替弁、を備え、前記水熱媒回路に水熱媒を循環させて前記冷媒と熱交換させる熱交換ユニットと、前記熱交換ユニットに配管接続されて前記水熱媒を前記熱交換ユニットとの間で循環させる複数の放熱器と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a plurality of independent refrigeration cycles for circulating a refrigerant in each refrigerant circuit of a plurality of heat exchangers, and the plurality of heat exchangers. wherein the plurality of each of the water heat medium circuit of the heat exchanger, the circulating pump connected by a pipe to each of the water heat medium circuit for each of the refrigerant circuit and the heat exchanger, and, Shiruso before being connected to the middle of the pipe water heating medium circuits respectively provided with a switching valve that you switch the parallel connection and the series connection to the circulation pump, wherein to refrigerant heat exchange by circulating water heat medium to the hydrothermal medium circuit A heat exchange unit and a plurality of radiators connected to the heat exchange unit by piping and circulating the hydrothermal medium between the heat exchange unit and the heat exchange unit.
この発明によれば、冷凍サイクルの冷媒から熱交換器を介して採熱した水熱媒で冷暖房を行なう複数温度式の冷暖房システムが得られる、という効果を奏する。   According to this invention, there exists an effect that the multi-temperature type air conditioning system which air-conditions with the hydrothermal medium sampled from the refrigerant | coolant of the refrigerating cycle via the heat exchanger is obtained.
以下に、本発明にかかる冷暖房システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an air conditioning system according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態
図1は、本発明にかかる冷暖房システムの実施の形態を示すシステム構成図である。
Embodiment FIG. 1 is a system configuration diagram showing an embodiment of an air conditioning system according to the present invention.
図1に示すように、ヒートポンプ式の冷温水熱源機1は、熱交換ユニット2と室外ユニット3とを備えている。冷温水熱源機1と、冷温水熱源機1に配管接続された比較的低い冷暖房能力の第1の放熱器としての前段熱交換器側放熱器15及び比較的高い冷暖房能力の第2の放熱器としての後段熱交換器側放熱器16と、で二温度式の冷暖房システム100を構成している。   As shown in FIG. 1, a heat pump type cold / hot water heat source unit 1 includes a heat exchange unit 2 and an outdoor unit 3. Cold / hot water heat source unit 1, front-stage heat exchanger-side radiator 15 as a first radiator having a relatively low cooling / heating capacity connected to piping by cold / hot water heat source unit 1, and a second radiator having a relatively high cooling / heating capacity And the latter-stage heat exchanger-side heat radiator 16 constitute a two-temperature type air conditioning system 100.
熱交換ユニット2は、水熱媒を貯留するバッファタンク4と、水熱媒を冷暖房システム100内で循環させる循環ポンプ5と、水熱媒と室外ユニット3の冷媒との間で熱交換を行う前段熱交換器61及び後段熱交換器62と、を配管で接続して筐体に収容したものである。筐体には、前記配管が接続されて水熱媒を前段熱交換器側放熱器15及び後段熱交換器側放熱器16へ吐出する往き配管接続口7、7と、水熱媒を前段熱交換器側放熱器15及び後段熱交換器側放熱器16から戻す戻り配管接続口9が備えられている。   The heat exchange unit 2 performs heat exchange between the buffer tank 4 that stores the hydrothermal medium, the circulation pump 5 that circulates the hydrothermal medium in the cooling / heating system 100, and the refrigerant of the hydrothermal medium and the outdoor unit 3. The front-stage heat exchanger 61 and the rear-stage heat exchanger 62 are connected to each other by piping and are accommodated in a housing. The pipe is connected to the casing, and forward piping connection ports 7 and 7 for discharging the water heat medium to the front heat exchanger side radiator 15 and the rear heat exchanger side radiator 16 and the water heat medium to the front heat A return pipe connection port 9 is provided to return from the exchanger-side radiator 15 and the rear-stage heat exchanger-side radiator 16.
バッファタンク4には、往き側接続口と戻り側接続口とがそれぞれ設けられていて、往き側接続口は、循環ポンプ5の吸込側に配管接続され、戻り側接続口は、戻り配管接続口9に配管接続されている。循環ポンプ5の吐出側は、分岐して、独立した2回路に分離され、水熱媒回路61bが形成された前段熱交換器61及び水熱媒回路62bが形成された後段熱交換器62のそれぞれの入口側に配管接続され、前段熱交換器61及び後段熱交換器62の出口側は、それぞれ出口配管21、22を介して往き配管接続口7、7に並列に配管接続されている。   The buffer tank 4 is provided with a forward connection port and a return connection port. The forward connection port is connected to the suction side of the circulation pump 5, and the return connection port is a return piping connection port. 9 is connected to the pipe. The discharge side of the circulation pump 5 is branched and separated into two independent circuits. The front heat exchanger 61 in which the water heat medium circuit 61b is formed and the rear heat exchanger 62 in which the water heat medium circuit 62b is formed. Pipes are connected to the respective inlet sides, and the outlet sides of the front-stage heat exchanger 61 and the rear-stage heat exchanger 62 are connected in parallel to the outgoing pipe connection ports 7 and 7 via the outlet pipes 21 and 22, respectively.
後段熱交換器62の入口側には、切替弁としての3方弁8が備えられ、3方弁8の切替えにより、前段熱交換器61及び後段熱交換器62の水熱媒回路61b、62bを、循環ポンプ5に対して並列接続(図1の矢印A方向に水冷媒が流れる。)と直列接続(図1の矢印B方向に水熱媒が流れる。)とに切替えられるようになっている。   A three-way valve 8 as a switching valve is provided on the inlet side of the rear stage heat exchanger 62, and the water heat medium circuits 61 b and 62 b of the front stage heat exchanger 61 and the rear stage heat exchanger 62 are switched by switching the three-way valve 8. Are connected to the circulation pump 5 in parallel connection (water refrigerant flows in the direction of arrow A in FIG. 1) and serial connection (hydrothermal medium flows in the direction of arrow B in FIG. 1). Yes.
水熱媒を加熱して温水を循環させるときは、前段熱交換器61及び後段熱交換器62の水熱媒回路61b、62bが直列接続となるように3方弁8を切替えると、前段熱交換器61が低温熱交換器、後段熱交換器62が高温熱交換器となる。水熱媒を冷却して冷水を循環させるときは、その逆となる。   When the hot water is circulated by heating the water heating medium, if the three-way valve 8 is switched so that the water heating medium circuits 61b and 62b of the front heat exchanger 61 and the rear heat exchanger 62 are connected in series, the front heat The exchanger 61 is a low-temperature heat exchanger, and the latter-stage heat exchanger 62 is a high-temperature heat exchanger. The opposite is true when cooling the water medium and circulating cold water.
前段熱交換器61及び後段熱交換器62の水熱媒の出口側のそれぞれの出口配管21、22には、温度検出器10、10が備えられている。出口配管21、22は、温度検出器10、10の上流側で接続管11により接続されて連通され、接続管11には、流量調整弁12が備えられていて水熱媒の混合量を調整する。   Temperature detectors 10 and 10 are provided in the outlet pipes 21 and 22 on the outlet side of the water heat medium of the front heat exchanger 61 and the rear heat exchanger 62, respectively. The outlet pipes 21 and 22 are connected to and communicated with each other via a connecting pipe 11 on the upstream side of the temperature detectors 10 and 10. The connecting pipe 11 is provided with a flow rate adjusting valve 12 to adjust the mixing amount of the hydrothermal medium. To do.
室外ユニット3には、図示はしないが、室外熱交換器、圧縮機及び冷媒流量調節弁等が備えられ、これらは、熱交換ユニット2の前段熱交換器61及び後段熱交換器62のそれぞれの冷媒回路61a、62aと冷媒管で接続される。室外ユニット3は、2機又は2系統の独立した第1の冷凍サイクルとしての前段熱交換器側冷凍サイクル31及び第2の冷凍サイクルとしての後段熱交換器側冷凍サイクル32を備えている。また、後段熱交換器側冷凍サイクル32は、前段熱交換器側冷凍サイクル31よりも冷暖房能力が高く、より高温又は低温の冷媒循環出力を出せるようになっている。冷凍サイクル31、32の冷媒と熱交換ユニット2の水熱媒とは、混じり合うことはないが、前段熱交換器61及び後段熱交換器62により熱的に接続している。   Although not shown, the outdoor unit 3 is provided with an outdoor heat exchanger, a compressor, a refrigerant flow rate control valve, and the like, which are respectively included in the front heat exchanger 61 and the rear heat exchanger 62 of the heat exchange unit 2. It connects with refrigerant circuit 61a, 62a with a refrigerant pipe. The outdoor unit 3 includes a two-stage or two-line independent first-stage heat exchanger-side refrigeration cycle 31 as a first refrigeration cycle and a second-stage heat exchanger-side refrigeration cycle 32 as a second refrigeration cycle. Further, the rear-stage heat exchanger-side refrigeration cycle 32 has a higher cooling / heating capacity than the front-stage heat exchanger-side refrigeration cycle 31, and can output a higher-temperature or lower-temperature refrigerant circulation output. The refrigerant of the refrigeration cycles 31 and 32 and the hydrothermal medium of the heat exchange unit 2 are not mixed, but are thermally connected by the pre-stage heat exchanger 61 and the post-stage heat exchanger 62.
前段熱交換器側放熱器15及び後段熱交換器側放熱器16の入口側は、2系統に分かれてそれぞれ枝配管14、14及び主配管13、13を介して往き配管接続口7、7に並列に接続されている。前段熱交換器側放熱器15及び後段熱交換器側放熱器16の出口側は、それぞれ枝配管14、14を介してヘッダー23で合流し、戻り配管接続口9に接続されている。   The inlet side of the front-stage heat exchanger side radiator 15 and the rear-stage heat exchanger side radiator 16 is divided into two systems and is connected to the outgoing pipe connection ports 7 and 7 via the branch pipes 14 and 14 and the main pipes 13 and 13, respectively. Connected in parallel. Outlet sides of the front-stage heat exchanger side radiator 15 and the rear-stage heat exchanger side radiator 16 merge at the header 23 via branch pipes 14 and 14, respectively, and are connected to the return pipe connection port 9.
第1、第2の放熱器15、16の具体的形態としては、床暖房パネル、パネルヒーター、室内空気を循環させながら加熱又は冷却して冷暖房機能を果すファンコイルユニット、浴室換気乾燥機などがある。室内空気を循環させながら空調を行う対流型放熱器で暖房を行うときは、冷風感防止のため高温水が必要とされるので、比較的高い冷暖房能力の後段熱交換器側冷凍サイクル32と熱交換する後段熱交換器62に配管接続された高い冷暖房能力の後段熱交換器側放熱器16を用いる。   Specific examples of the first and second radiators 15 and 16 include a floor heating panel, a panel heater, a fan coil unit that heats or cools the room air while circulating the room air and performs a cooling / heating function, a bathroom ventilation dryer, and the like. is there. When heating with a convective radiator that performs air conditioning while circulating room air, high-temperature water is required to prevent the feeling of cold air. The rear-stage heat exchanger-side radiator 16 having high cooling / heating capacity connected to the rear-stage heat exchanger 62 to be replaced is used.
上記の放熱器には、配管が低い冷暖房能力の前段熱交換器側配管系統に接続されているか、高い冷暖房能力の後段熱交換器側配管系統に接続されているか区別できるように、施工時にマークが付けられる。また、放熱器15、16には、運転されないとき放熱器の水熱媒回路を閉じる開閉弁が設けられている。   The above radiator is marked at the time of construction so that it can be distinguished whether the pipe is connected to the lower heat exchanger side piping system with a low air conditioning capacity or the latter heat exchanger side piping system with a high air conditioning capacity. Is attached. Further, the radiators 15 and 16 are provided with on-off valves that close the water heat medium circuit of the radiator when not in operation.
冷温水熱源機1には、循環ポンプ5や室外ユニット3の圧縮機を制御するマイクロコンピュータを含む制御装置17が搭載されている。制御装置17には、運転入/切スイッチ、温度設定を行う設定スイッチ、LEDや液晶等により運転状態等を表示する表示装置を備えたコントローラ18が、信号線により接続されている。制御装置17には、熱交換器61、62のそれぞれの出口の水熱媒温度を検出する温度検出器10、10の出力が制御情報として取込まれる。   The cold / hot water heat source unit 1 is equipped with a control device 17 including a microcomputer for controlling the circulation pump 5 and the compressor of the outdoor unit 3. The control device 17 is connected to a controller 18 having a display device for displaying an operation state or the like by an operation on / off switch, a setting switch for setting a temperature, an LED, a liquid crystal, or the like through a signal line. The control device 17 takes in the output of the temperature detectors 10 and 10 that detect the temperature of the water heat medium at the outlets of the heat exchangers 61 and 62 as control information.
制御装置17は、コントローラ18から運転情報を取込む。コントローラ18から、制御装置17に運転要求の信号が入ると、制御装置17は、温度検出器10、10で検出した放熱器15、16に送る水熱媒の温度が所定の温度になるように、コントローラ18から得た設定温度、室内温度などの情報に基づいて、室外ユニット3、流量調整弁12、3方弁8等を制御する。コントローラ18からの運転要求がないときは、冷暖房システム100は停止状態におかれる。   The control device 17 takes operation information from the controller 18. When an operation request signal is input from the controller 18 to the control device 17, the control device 17 causes the temperature of the hydrothermal medium sent to the radiators 15 and 16 detected by the temperature detectors 10 and 10 to be a predetermined temperature. The outdoor unit 3, the flow rate adjusting valve 12, the three-way valve 8, and the like are controlled based on information such as the set temperature and the room temperature obtained from the controller 18. When there is no operation request from the controller 18, the air conditioning system 100 is put into a stopped state.
低い冷暖房能力の第1の放熱器としての前段熱交換器側放熱器15のみ運転要求があるときは、運転開始直後は流量調整弁12を閉じ、室外ユニット3の低い冷暖房能力の第1の冷凍サイクルとしての前段熱交換器側冷凍サイクル31のみを運転する。運転開始時や設定温度と室内温度との差が大きいときなど、前段熱交換器側放熱器15の放熱負荷が大きく、前段熱交換器側冷凍サイクル31のみでは所定の水熱媒温度が得られないときは、流量調整弁12を開き、3方弁8を熱交換器61、62が並列接続となるようにし、前段熱交換器側冷凍サイクル31に加えて後段熱交換器側冷凍サイクル32も運転する(表1の「前段のみ」参照)。   When only the front heat exchanger side radiator 15 as the first radiator having a low cooling / heating capacity is requested to operate, the flow rate adjusting valve 12 is closed immediately after the start of the operation, and the outdoor unit 3 has the first refrigeration having a low cooling / heating capacity. Only the front-stage heat exchanger-side refrigeration cycle 31 as a cycle is operated. At the start of operation or when the difference between the set temperature and the room temperature is large, the heat radiation load of the front heat exchanger side radiator 15 is large, and a predetermined water heating medium temperature can be obtained only by the front heat exchanger side refrigeration cycle 31. If not, the flow rate adjustment valve 12 is opened and the three-way valve 8 is connected in parallel with the heat exchangers 61 and 62. In addition to the front-stage heat exchanger-side refrigeration cycle 31, the rear-stage heat exchanger-side refrigeration cycle 32 is also provided. Operate (refer to “First stage only” in Table 1).
後段熱交換器62で加熱又は冷却された水熱媒は、接続管11を通り、前段熱交換器61の出口に合流し、前段熱交換器側放熱器15へ送られる。室内が暖まり又は冷えて、前段熱交換器側冷凍サイクル31のみで所定の水熱媒温度が得られるようになると、流量調整弁12を閉じ、後段熱交換器側冷凍サイクル32を停止し、前段熱交換器側冷凍サイクル31のみの運転とする(表1の「前段のみ」参照)。   The water heating medium heated or cooled by the rear stage heat exchanger 62 passes through the connecting pipe 11, joins the outlet of the front stage heat exchanger 61, and is sent to the front stage heat exchanger side radiator 15. When the room is warmed or cooled and a predetermined hydrothermal medium temperature can be obtained only by the front-stage heat exchanger-side refrigeration cycle 31, the flow regulating valve 12 is closed and the rear-stage heat exchanger-side refrigeration cycle 32 is stopped. Only the heat exchanger-side refrigeration cycle 31 is operated (see “only the previous stage” in Table 1).
比較的高い冷暖房能力の第2の放熱器としての後段熱交換器側放熱器16のみ運転要求があるときは、運転開始直後は流量調整弁12を閉じ、3方弁8を熱交換器61、62が並列接続となるようにし、比較的高い冷暖房能力の第2の冷凍サイクルとしての後段熱交換器側冷凍サイクル32のみを運転する。運転開始時や設定温度と室内温度との差が大きいときなど、後段熱交換器側放熱器16の放熱負荷が大きく、後段熱交換器側冷凍サイクル32のみでは所定の水熱媒温度が得られないときは、流量調整弁12を閉じ、3方弁8を熱交換器61、62が直列接続となるように切替え、後段熱交換器側冷凍サイクル32に加えて前段熱交換器側冷凍サイクル31も運転する(表1の「後段のみ」参照)。   When only the rear heat exchanger side radiator 16 as the second radiator having a relatively high cooling / heating capacity is requested to operate, the flow rate adjustment valve 12 is closed immediately after the operation is started, and the three-way valve 8 is connected to the heat exchanger 61, 62 is connected in parallel, and only the second-stage heat exchanger-side refrigeration cycle 32 is operated as a second refrigeration cycle having a relatively high cooling / heating capacity. At the start of operation or when the difference between the set temperature and the room temperature is large, the heat radiation load of the rear heat exchanger side radiator 16 is large, and a predetermined water heating medium temperature can be obtained only by the rear heat exchanger side refrigeration cycle 32. If not, the flow rate adjustment valve 12 is closed, and the three-way valve 8 is switched so that the heat exchangers 61 and 62 are connected in series. In addition to the rear heat exchanger side refrigeration cycle 32, the front heat exchanger side refrigeration cycle 31 is switched. (See “Only the latter part” in Table 1).
前段熱交換器61で水熱媒を加熱又は冷却した後、更に、後段熱交換器62で加熱又は冷却して所定の水熱媒温度を得る。室内が暖まり又は冷えて、後段熱交換器側冷凍サイクル32のみで所定の水熱媒温度が得られるようになると、3方弁8を熱交換器61、62が並列接続となるよう切替え、前段熱交換器側冷凍サイクル31を停止し、後段熱交換器側冷凍サイクル32のみの運転とする。後段熱交換器側冷凍サイクル32のみで所定の水熱媒温度が得られるときは、水熱媒回路の流れ抵抗を小さくするために、熱交換器61、62を並列接続としている(表1の「後段のみ」参照)。   After heating or cooling the hydrothermal medium with the front-stage heat exchanger 61, the hydrothermal medium is further heated or cooled with the rear-stage heat exchanger 62 to obtain a predetermined hydrothermal medium temperature. When the room is warmed or cooled and a predetermined hydrothermal medium temperature is obtained only by the second-stage heat exchanger-side refrigeration cycle 32, the three-way valve 8 is switched so that the heat exchangers 61 and 62 are connected in parallel. The heat exchanger-side refrigeration cycle 31 is stopped and only the rear-stage heat exchanger-side refrigeration cycle 32 is operated. When a predetermined hydrothermal medium temperature is obtained only by the post-stage heat exchanger side refrigeration cycle 32, the heat exchangers 61 and 62 are connected in parallel in order to reduce the flow resistance of the hydrothermal medium circuit (see Table 1). (See “Only the latter part”).
第1の放熱器としての前段熱交換器側放熱器15及び第2の放熱器としての後段熱交換器側放熱器16の両方の運転要求があるときは、運転開始直後は、流量調整弁12を閉じ、3方弁8を熱交換器61、62が並列接続となるようにし、第1の冷凍サイクルとしての前段熱交換器側冷凍サイクル31と第2の冷凍サイクルとしての後段熱交換器側冷凍サイクル32の両方を運転し、所定の異なる温度の水熱媒を生成する(表1の「前段・後段同時」参照)。   When there is an operation request for both the front-stage heat exchanger side radiator 15 as the first radiator and the rear-stage heat exchanger side radiator 16 as the second radiator, the flow rate adjustment valve 12 is immediately after the start of operation. The three-way valve 8 is connected in parallel with the heat exchangers 61 and 62, and the front-stage heat exchanger side refrigeration cycle 31 as the first refrigeration cycle and the rear-stage heat exchanger side as the second refrigeration cycle Both the refrigeration cycles 32 are operated to generate a hydrothermal medium having a predetermined different temperature (see “Simultaneous pre-stage and post-stage” in Table 1).
運転開始時や設定温度と室内温度との差が大きいときなど、放熱器の放熱負荷が大きく、一方の冷凍サイクルのみでは水熱媒を所定の温度の冷温水とすることができないときは、次のように水熱倍回路を切替える。   If the heat dissipating load of the radiator is large, such as at the start of operation or when there is a large difference between the set temperature and the room temperature, and the hydrothermal medium cannot be chilled / heated at the specified temperature with only one refrigeration cycle, Switch the hydrothermal doubler circuit as
前段熱交換器側冷凍サイクル31で水熱媒を所定の温度の冷温水とすることができないときは、流量調整弁12を開け、後段熱交換器側冷凍サイクル32で加熱又は冷却した冷温水を、前段熱交換器側冷凍サイクル31で加熱又は冷却した冷温水に混合し、前段熱交換器側放熱器15へ吐出する水熱媒を所定の温度の冷温水とする。流量調整弁12は、温度検出器10が検出する水熱媒の温度が所定の温度となるように開度を調整する(表1の「前段・後段同時」参照)。   When the front heat exchanger side refrigeration cycle 31 cannot make the water heating medium into cold / hot water having a predetermined temperature, the flow rate adjusting valve 12 is opened, and the hot / cold water heated or cooled in the rear heat exchanger side refrigeration cycle 32 is supplied. The hydrothermal medium mixed with the chilled / heated water heated or cooled in the pre-stage heat exchanger-side refrigeration cycle 31 and discharged to the pre-stage heat exchanger-side radiator 15 is chilled / hot water having a predetermined temperature. The flow rate adjusting valve 12 adjusts the opening degree so that the temperature of the hydrothermal medium detected by the temperature detector 10 becomes a predetermined temperature (refer to “Simultaneous stage and rear stage” in Table 1).
後段熱交換器側冷凍サイクル32で水熱媒を所定の温度の冷温水とすることができないときは、流量調整弁12を閉じ、3方弁8を熱交換器61、62が直列接続となるように切替え、前段熱交換器側冷凍サイクル31で加熱又は冷却した水熱媒を更に後段熱交換器側冷凍サイクル32で加熱又は冷却し、後段熱交換器側放熱器16へ吐出する水熱媒を所定の温度の冷温水とする(表1の「前段・後段同時」参照)。   When the post-stage heat exchanger-side refrigeration cycle 32 cannot make the hot-water medium into cold / hot water having a predetermined temperature, the flow rate adjustment valve 12 is closed and the three-way valve 8 is connected in series with the heat exchangers 61 and 62. The hydrothermal medium heated and cooled in the first-stage heat exchanger-side refrigeration cycle 31 is further heated or cooled in the second-stage heat exchanger-side refrigeration cycle 32 and discharged to the second-stage heat exchanger-side radiator 16. Is defined as cold / hot water having a predetermined temperature (see “Simultaneous stage and back stage” in Table 1).
このとき前段熱交換器側放熱器15へは、前段熱交換器61で熱交換された後の水熱媒が送られる。一方の冷凍サイクルのみで水熱媒を所定の温度にできるようになったときは、流量調整弁12を閉じ、3方弁8を熱交換器61、62が並列接続となるように切替え、前段熱交換器側冷凍サイクル31と後段熱交換器側冷凍サイクル32の両方を運転し、水熱媒を所定の異なる温度に加熱又は冷却し、それぞれ放熱器15、16に吐出する(表1の「前段・後段同時」参照)。   At this time, the hydrothermal medium after heat exchange by the pre-stage heat exchanger 61 is sent to the pre-stage heat exchanger side radiator 15. When the water heating medium can be brought to a predetermined temperature by only one refrigeration cycle, the flow rate adjusting valve 12 is closed, and the three-way valve 8 is switched so that the heat exchangers 61 and 62 are connected in parallel. Both the heat exchanger-side refrigeration cycle 31 and the post-stage heat exchanger-side refrigeration cycle 32 are operated, and the hydrothermal medium is heated or cooled to a predetermined different temperature and discharged to the radiators 15 and 16 (see “Table 1” (Refer to “Simultaneous front and rear stages”).
前段熱交換器側冷凍サイクル31及び後段熱交換器側冷凍サイクル32の運転は、冷房運転と暖房運転とに異ならせて運転してもよいが、この場合、上述のような、一方の冷凍サイクルで能力が不足したときの能力の補完はできない。   The operations of the front-stage heat exchanger-side refrigeration cycle 31 and the rear-stage heat exchanger-side refrigeration cycle 32 may be operated differently between the cooling operation and the heating operation. In this case, one of the refrigeration cycles as described above is used. However, when the ability is insufficient, the ability cannot be supplemented.
以上説明したように、本実施の形態の冷暖房システム100は、2つの独立した冷凍サイクル31、32を備えるので、高温水が必要とされる対流型の放熱器と、床暖房のように低温水が必要とされる放熱器と、が併設された場合などに、それぞれの放熱器に適した温度の水熱媒を供給することができる。   As described above, since the cooling / heating system 100 according to the present embodiment includes the two independent refrigeration cycles 31 and 32, the convection-type radiator that requires high-temperature water and low-temperature water such as floor heating are used. For example, when a radiator that requires a heat sink is provided, a hydrothermal medium having a temperature suitable for each radiator can be supplied.
また、放熱器は、高温水が必要とされる対流型の放熱器のみ、或は、床暖房のように低温水が必要とされる放熱器のみ、としてもよく、その場合は、例えば、各放熱器の運転開始時間帯が異なる場合など、一方の放熱器の立上りは高温水が必要とされ、他方の放熱器は定常状態で低温水でよい場合などに、適切に対応することができる。   Further, the radiator may be only a convection type radiator that requires high-temperature water, or only a radiator that requires low-temperature water such as floor heating. For example, when the operation start time zone of the radiator is different, the rising of one of the radiators requires high-temperature water, and the other radiator can be appropriately handled in a steady state using low-temperature water.
また、3つの独立した冷凍サイクルを備えるようにすれば、3つの異なる温度の冷温水を供給することができる。ヒートポンプは、暖房の場合、加熱する水熱媒の温度が低いほど効率が良いが、本実施の形態によれば、従来のように、高温水放熱器に合わせた温水温度で低温水放熱器を運転するよりも、低温水化が図れるため、ヒートポンプの効率が良く、結果としてランニングコストを低減することができる。   If three independent refrigeration cycles are provided, cold / hot water having three different temperatures can be supplied. In the case of heating, the heat pump is more efficient as the temperature of the hydrothermal medium to be heated is lower, but according to this embodiment, the low-temperature water radiator is used at a hot water temperature that matches the high-temperature water radiator as in the prior art. Since low-temperature hydration can be achieved rather than driving, the efficiency of the heat pump is good, and as a result, running cost can be reduced.
また、低温水放熱器を設置した空間の温熱環境も、従来の高温水断続運転から低温水連続運転となるため、快適性が向上する。また、冷水及び温水の同時生成が可能であり、冷暖房の同時運転が可能であり、冷暖房システムの使い勝手が向上する。   Moreover, since the thermal environment of the space where the low-temperature water radiator is installed is changed from the conventional high-temperature water intermittent operation to the low-temperature water continuous operation, the comfort is improved. Moreover, cold water and hot water can be generated simultaneously, and simultaneous operation of cooling and heating is possible, improving usability of the cooling and heating system.
また、3方弁8により、2つの熱交換器61、62を並列接続と直列接続とに切替え、流量調整弁12により、2つの熱交換器61、62の出口側を合流させることにより、一方の冷凍サイクルのみでは所定の温度の冷温水が供給できない場合に、能力の補完を容易に行えるので、熱源機を大型、大容量化する必要がなく、低コスト化を図ることができる。   Further, by switching the two heat exchangers 61 and 62 between the parallel connection and the series connection by the three-way valve 8 and joining the outlet sides of the two heat exchangers 61 and 62 by the flow rate adjusting valve 12, When only the refrigeration cycle cannot supply cold / hot water having a predetermined temperature, the capacity can be easily supplemented. Therefore, it is not necessary to increase the size and capacity of the heat source unit, and the cost can be reduced.
以上のように、本発明にかかる冷暖房システムは、それぞれの放熱器に適した温度の水熱媒を供給することができ、ランニングコストを低減することができ、快適性が高く、冷暖房の同時運転が可能であって使い勝手がよく、熱源機を大型、大容量化する必要がなく、低コストの冷暖房システムとして有用である。   As described above, the air conditioning system according to the present invention can supply a hydrothermal medium having a temperature suitable for each radiator, can reduce running costs, has high comfort, and is operated simultaneously with air conditioning. However, it is useful as a low-cost air conditioning system without the need to increase the size and capacity of the heat source unit.
本発明の冷暖房システムの実施の形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of an air-conditioning system of the present invention.
符号の説明Explanation of symbols
1 冷温水熱源機
2 熱交換ユニット
3 室外ユニット
31 前段熱交換器側冷凍サイクル(第1の冷凍サイクル)
32 後段熱交換器側冷凍サイクル(第2の冷凍サイクル)
4 バッファタンク
5 循環ポンプ
61 前段熱交換器
62 後段熱交換器
61a,62a 冷媒回路
61b,62b 水熱媒回路
7 往き配管接続口
8 3方弁
9 戻り配管接続口
10 温度検出器
11 接続管
12 流量調整弁
13 主配管
14 枝配管
15 前段熱交換器側放熱器(第1の放熱器)
16 後段熱交換器側放熱器(第2の放熱器)
17 制御装置
18 コントローラ
21,22 出口配管
23 ヘッダー
100 冷暖房システム
DESCRIPTION OF SYMBOLS 1 Cold / hot water heat source machine 2 Heat exchange unit 3 Outdoor unit 31 Previous stage heat exchanger side refrigeration cycle (1st refrigeration cycle)
32 Second-stage heat exchanger side refrigeration cycle (second refrigeration cycle)
4 Buffer tank 5 Circulation pump 61 Pre-stage heat exchanger 62 Post-stage heat exchanger 61a, 62a Refrigerant circuit 61b, 62b Hydrothermal medium circuit 7 Outward piping connection port 8 3-way valve 9 Return piping connection port 10 Temperature detector 11 Connection tube 12 Flow control valve 13 Main pipe 14 Branch pipe 15 Pre-stage heat exchanger side radiator (first radiator)
16 Rear-stage heat exchanger side radiator (second radiator)
17 Control device 18 Controller 21, 22 Outlet piping 23 Header 100 Air conditioning system

Claims (8)

  1. 複数の熱交換器のそれぞれの冷媒回路に、それぞれ冷媒を循環させる複数の独立した冷凍サイクルと、
    前記複数の熱交換器のそれぞれの冷媒回路と熱交換する前記複数の熱交換器のそれぞれの水熱媒回路、該それぞれの水熱媒回路に配管で接続された循環ポンプ、及び、前記配管の途中に接続され記それぞれの水熱媒回路を、前記循環ポンプに対して並列接続と直列接続とに切替える切替弁、を備え、前記水熱媒回路に水熱媒を循環させて前記冷媒と熱交換させる熱交換ユニットと、
    前記熱交換ユニットに配管接続されて前記水熱媒を前記熱交換ユニットとの間で循環させる複数の放熱器と、
    を備えることを特徴とする冷暖房システム。
    A plurality of independent refrigeration cycles for circulating a refrigerant in each refrigerant circuit of the plurality of heat exchangers;
    Each of the plurality of heat exchangers for exchanging heat with each refrigerant circuit of the plurality of heat exchangers, a circulation pump connected to each of the water heat medium circuits by piping, and water heating medium circuit Shiruso respectively before being connected to the middle, provided with a switching valve that you switch the parallel connection and the series connection to the circulation pump to circulate the water heat medium to the hydrothermal medium circuit A heat exchange unit for exchanging heat with the refrigerant;
    A plurality of radiators piped to the heat exchange unit to circulate the water heat medium with the heat exchange unit;
    An air conditioning system comprising:
  2. 前記複数の熱交換器のそれぞれの水熱媒回路の出口側を連通させ、それぞれの水熱媒を混合させる流量調整弁が備えられていることを特徴とする請求項に記載の冷暖房システム。 2. The air conditioning system according to claim 1 , further comprising a flow rate adjusting valve that communicates the outlet side of each of the plurality of heat exchangers with the water heat medium circuit and mixes the water heat medium.
  3. 前記複数の独立した冷凍サイクルは、それぞれ単独運転と同時運転が可能であることを特徴とする請求項に記載の冷暖房システム。 The air conditioning system according to claim 2 , wherein each of the plurality of independent refrigeration cycles can be operated independently and simultaneously.
  4. 前記複数の独立した冷凍サイクルは、冷暖房能力が異なることを特徴とする請求項に記載の冷暖房システム。 The air conditioning system according to claim 3 , wherein the plurality of independent refrigeration cycles have different air conditioning capabilities.
  5. 低い冷暖房能力の第1の放熱器及び第1の冷凍サイクルのみを運転しているときであって、前記第1の放熱器の放熱負荷が大きいときは、前記流量調整弁を開き、前記複数の熱交換器のそれぞれの水熱媒回路を並列接続とし、前記複数の冷凍サイクルを同時運転し、前記複数の熱交換器から吐出される水熱媒を混合させて前記第1の放熱器に循環させることを特徴とする請求項に記載の冷暖房システム。 When only the first radiator and the first refrigeration cycle with low air-conditioning capacity are operating and the heat radiation load of the first radiator is large, the flow control valve is opened, The respective water heat medium circuits of the heat exchanger are connected in parallel, the plurality of refrigeration cycles are operated simultaneously, the water heat medium discharged from the plurality of heat exchangers is mixed and circulated to the first radiator. The cooling / heating system according to claim 4 , wherein
  6. 前記第1の放熱器及び第1の冷凍サイクルよりも高い冷暖房能力の第2の放熱器及び第2の冷凍サイクルのみを運転しているときであって、前記第2の放熱器の放熱負荷が大きいときは、前記複数の熱交換器のそれぞれの水熱媒回路を直列接続とし、前記複数の冷凍サイクルを同時運転し、前記直列接続の後段の熱交換器から吐出される水熱媒を前記第2の放熱器に循環させることを特徴とする請求項に記載の冷暖房システム。 When only the second radiator and the second refrigeration cycle having higher air conditioning capacity than the first radiator and the first refrigeration cycle are operated, and the heat radiation load of the second radiator is When it is large, each of the plurality of heat exchangers is connected in series to each other, and the plurality of refrigeration cycles are operated simultaneously, and the water heat medium discharged from the heat exchanger at the subsequent stage of the series connection is The air conditioning system according to claim 4 , wherein the air conditioning system is circulated through the second radiator.
  7. 前記第1の放熱器及び第1の冷凍サイクルと、前記第2の放熱器及び第2の冷凍サイクルの両方を運転しているときであって、前記第1の放熱器の放熱負荷が大きいときは、前記流量調整弁を開き、前記複数の熱交換器のそれぞれの水熱媒回路を並列接続とし、前記第2の冷凍サイクル側の熱交換器から吐出される水熱媒を前記第1の冷凍サイクル側の熱交換器から吐出される水熱媒に混合させて前記第1の放熱器に循環させることを特徴とする請求項に記載の冷暖房システム。 When both the first radiator and the first refrigeration cycle and the second radiator and the second refrigeration cycle are operated, and the heat radiation load of the first radiator is large. Open the flow regulating valve, connect the water heat medium circuits of the plurality of heat exchangers in parallel, and supply the water heat medium discharged from the heat exchanger on the second refrigeration cycle side to the first heat exchanger. The air-conditioning system according to claim 4 , wherein the air-conditioning system is mixed with a water heat medium discharged from a heat exchanger on a refrigeration cycle side and circulated through the first radiator.
  8. 前記第1の放熱器及び第1の冷凍サイクルと、前記第2の放熱器及び第2の冷凍サイクルの両方を運転しているときであって、前記第2の放熱器の放熱負荷が大きいときは、前記流量調整弁を閉じ、前記複数の熱交換器のそれぞれの水熱媒回路を直列接続とし、前記直列接続の後段の熱交換器から吐出される水熱媒を前記第2の放熱器に循環させることを特徴とする請求項に記載の冷暖房システム。 When both the first radiator and the first refrigeration cycle and the second radiator and the second refrigeration cycle are operated, and the heat radiation load of the second radiator is large. Closes the flow rate regulating valve, connects the respective water heat medium circuits of the plurality of heat exchangers in series, and supplies the second heat radiator as the water heat medium discharged from the heat exchanger at the subsequent stage of the series connection. The cooling / heating system according to claim 4 , wherein the cooling / heating system is recirculated.
JP2006138133A 2006-05-17 2006-05-17 Air conditioning system Expired - Fee Related JP4828299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138133A JP4828299B2 (en) 2006-05-17 2006-05-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138133A JP4828299B2 (en) 2006-05-17 2006-05-17 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2007309566A JP2007309566A (en) 2007-11-29
JP4828299B2 true JP4828299B2 (en) 2011-11-30

Family

ID=38842588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138133A Expired - Fee Related JP4828299B2 (en) 2006-05-17 2006-05-17 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4828299B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808505A (en) 1986-04-08 1989-02-28 Minolta Camera Kabushiki Kaisha Photosensitive member with enamine charge transport material
US4810609A (en) 1986-04-08 1989-03-07 Minolta Camera Kabushiki Kaisha Photosensitive member with enamine charge transport material
US4886720A (en) 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material
US4971874A (en) 1987-04-27 1990-11-20 Minolta Camera Kabushiki Kaisha Photosensitive member with a styryl charge transporting material
US5000831A (en) 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104870A1 (en) * 2010-02-26 2011-09-01 株式会社 日立製作所 Air conditioner and air-conditioning hot-water-supplying system
JP2016003783A (en) * 2014-06-13 2016-01-12 三菱電機株式会社 Heat pump device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251370B2 (en) * 1982-02-03 1987-10-29 Mitsubishi Electric Corp
JPS60232465A (en) * 1984-04-27 1985-11-19 Kubota Ltd Air-conditioning facility utilizing engine heat pump
JPH0776628B2 (en) * 1990-02-22 1995-08-16 ピーエス工業株式会社 Air-conditioning dehumidification system
JPH0414932A (en) * 1990-05-08 1992-01-20 Matsushita Electric Ind Co Ltd Carrier line characteristic measuring method
JP3583869B2 (en) * 1996-08-19 2004-11-04 株式会社エヌ・ティ・ティ ファシリティーズ Thermal storage air conditioning system device and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808505A (en) 1986-04-08 1989-02-28 Minolta Camera Kabushiki Kaisha Photosensitive member with enamine charge transport material
US4810609A (en) 1986-04-08 1989-03-07 Minolta Camera Kabushiki Kaisha Photosensitive member with enamine charge transport material
US5000831A (en) 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
US4971874A (en) 1987-04-27 1990-11-20 Minolta Camera Kabushiki Kaisha Photosensitive member with a styryl charge transporting material
US4886720A (en) 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material

Also Published As

Publication number Publication date
JP2007309566A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4828299B2 (en) Air conditioning system
US9593872B2 (en) Heat pump
EP1780476A1 (en) Hot-water supply device
JP2005069554A (en) Water heat source air conditioning system
KR20100030204A (en) Heat pump type heating and cooling apparatus
JP5611376B2 (en) Air conditioner
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
JP2005147409A (en) Heat pump type cooler/heater
JP4493889B2 (en) Air conditioning system
EP1830136A1 (en) Cooling unit for air conditioning systems
JP2008249248A (en) Heat pump type hot water supply system
JP2004132612A (en) Heating and air conditioning system, and dwelling house with heating and air conditioning system
US10436463B2 (en) Air-conditioning apparatus
CN108076653B (en) Liquid temperature adjusting device and temperature control system
KR20100024157A (en) Heat pump system and method for controlling the same
GB2548522A (en) Air-conditioning device
JP2006084084A (en) Air conditioner and its operation method
JP2004028576A (en) Air conditioning refrigerating device
KR100329472B1 (en) Multi-air conditioner for cooling and heating
CN212585249U (en) Heat exchange system and air conditioner
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
WO2019171486A1 (en) Heat source device and refrigeration cycle system
US20210215406A1 (en) Auxiliary heat source, air conditioning system with auxiliary heat source, and method therefor
JP3670731B2 (en) Air conditioning system
JP2007051795A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees