JP4826056B2 - 電流生成回路、電気光学装置及び電子機器 - Google Patents

電流生成回路、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP4826056B2
JP4826056B2 JP2003393951A JP2003393951A JP4826056B2 JP 4826056 B2 JP4826056 B2 JP 4826056B2 JP 2003393951 A JP2003393951 A JP 2003393951A JP 2003393951 A JP2003393951 A JP 2003393951A JP 4826056 B2 JP4826056 B2 JP 4826056B2
Authority
JP
Japan
Prior art keywords
current
gradation
data
digital
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003393951A
Other languages
English (en)
Other versions
JP2005156833A (ja
Inventor
宏明 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003393951A priority Critical patent/JP4826056B2/ja
Publication of JP2005156833A publication Critical patent/JP2005156833A/ja
Application granted granted Critical
Publication of JP4826056B2 publication Critical patent/JP4826056B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

本発明は、電流生成回路、電気光学装置及び電子機器に関する。
デジタル信号をアナログ信号に変換するデジタル・アナログ変換回路(DAC)は、各種の電子機器に広く利用されている。例えば、有機エレクトロルミネッセンス表示装置等の電気光学表示装置に用いられるDACは、デジタル信号(階調データ)をアナログ電流値に変換して画素回路に供給する電流DACが用いられている。この種の電流DACは、ゲートが共通接続された各トランジスタのβ(利得係数)比を2進加重としたカレントミラーを構成し、各トランジスタに流れる電流を加算することによってデジタル信号に対してアナログ信号(アナログ電流)を得るようになっていた。
ところで、用途によりデジタル信号に対して非線形のアナログ信号(電流)が必要な場合がある。例えば、前記電気光学装置では、γ(ガンマ)補正という信号処理がある。このγ補正は、線形で指示される階調データ(デジタル信号)に対してその階調で発光する輝度が人間の見た目に自然な階調に見えるように、その線形で指示される階調データに対して非線形特性(例えば指数的、対数的)のアナログ電流を出力させる信号処理である。
しかしながら、上記電流DACは、線形のDACであって、線形で指示される階調データに対して非線形特性のアナログ電流を生成することができなかった。そこで、階調データを均等に分割して階調帯とし、それぞれの階調帯ごとに階調データに対する出力電流の傾きの異なる線形のDACを用いることにより、擬似的に階調データに対して非線形特性となるアナログ電流を生成していた(例えば、特許文献1)。
特開2003−150115号公報
しかしながら、この種の電流DACは、階調データに対する出力電流特性の傾きが基準電流によって決定されていた。つまり、階調帯ごとにそれぞれ異なる出力電流特性の傾きを得るためには、階調帯ごとに異なる基準電流が必要であった。基準電流は、例えばそのソースが接地されたNチャネル型トランジスタのゲートに基準電圧を印加することにより生成している。従って、複数の異なる基準電流を生成するには複数の異なる基準電圧が必要であるため、多くの電源回路が必要となっており、このことは小型化、コスト低減を妨げていた。
さらに、トランジスタは非線形素子であるため、基準電圧に対する基準電流の特性は線形ではなく、基準電圧を調整して基準電流を精度良く制御することは容易ではなかった。
本発明は上記問題点を解消するためになされたものであって、その目的は、複数の異なる基準電流を、簡単な回路構成でしかも簡単な制御によって生成することができる電流生成回路、その電流生成回路を用いた電気光学装置及び電子機器を提供することにある。
上記問題点を解決するために、本発明の電流生成回路は、階調データの取り得る範囲を少なくとも3以上に分割した複数の階調帯の各々に割り当てられた複数のデジタル・アナログ変換回路を備え、前記階調データに基づいて前記複数のデジタル・アナログ変換回路の各々を駆動し、前記複数のデジタル・アナログ変換回路の各々から出力される出力電流を加算してアナログ電流を生成する電流生成回路であって、前記複数のデジタル・アナログ変換回路の各々は、第1の電流加算回路と該第1の電流加算回路に接続された第2の電流加算回路とを備え、前記複数のデジタル・アナログ変換回路の各々では、前記第1の電流加算回路は、基準電流に基づいて、大きさが互いに異なる複数の第1の副電流を生成し、前記階調帯ごとに互いに異なる前記第1の副電流を前記複数の第1の副電流のうちから選択するように予め設定されたデジタルデータである第1の選択信号に基づき、前記複数の第1の副電流の中から当該第1の選択信号に対応する前記第1の副電流を選択し、該選択された第1の副電流を加算することによって、前記デジタル・アナログ変換回路ごとに互いに異なる変換基準電流を出力し、前記第2の電流加算回路は、前記変換基準電流に基づいて、大きさが互いに異なる複数の第2の副電流を生成し、デジタルデータである前記階調データのうちで当該デジタル・アナログ変換回路に割り当てられた階調帯に対応する補正階調データに基づき、前記複数の第2の副電流の中から当該階調データに対応する前記第2の副電流を選択し、該選択された第2の副電流を加算して前記出力電流とするものであり、前記補正階調データとは、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも小さい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを非選択にさせるデータであり、且つ、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも大きい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを選択させるデータであり、且つ、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯に属する場合に、前記アナログ電流のうち、当該第2の電流加算回路以外の他の第2の電流加算回路が生成する出力電流以外である残りの電流が当該第2の電流加算回路で生成されるように、当該第2の電流加算回路では、当該階調データに対応する前記第2の副電流を選択させるデータであり、前記複数の階調帯の各々は、階調幅が2のべき乗であり、かつ、低階調側においては狭い幅に分割され高階調側に行くに従って広い幅に分割されている。
この発明によれば、第1の電流加算回路によって第1の選択信号に基づいて第1の出力電流を生成し、その第1の出力電流に基づいて、第2の電流加算回路は補正階調データに基づいた第2の出力電流を生成した。これにより、複数の基準信号なしに複数の第1の出力電流及び第2の出力電流を生成することができる。従って、装置全体を小型化するとと
もに、コストを低減することができる。
また、この発明によれば、第1の電流加算回路は、予め設定した第1の選択信号に基づいて第1の出力電流を変換基準電流として出力し、その変換基準電流に基づいて、第2の電流加算回路はデジタルデータから生成された補正階調データに基づいた第2の出力電流を生成した。これにより、複数の基準信号なしに複数の変換基準電流を生成し、その変換基準電流に基づいて、第2の電流加算回路は第2の出力電流を生成することができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、複数の基準信号なしに、第1の選択信号を変えるだけで各デジタル・アナログ変換回路ごとにそれぞれ変換基準電流の大きさを変化させることができる。従って、回路全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、デジタルデータは階調データであって、その階調データの取り得る範囲は複数の階調帯に分割される。そして、複数のデジタル・アナログ変換回路は複数の階調帯の各々に割り当てられ、各デジタル・アナログ変換回路毎に個別の階調データに基づいて生成される前記補正階調データに基づいて、第2の電流加算回路は第2の出力電流を生成した。これにより、簡単な構成で非線形特性を持つ出力電流を得ることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、複数の階調帯は、低階調側においては狭い幅に分割して高階調側に行くに従って広い幅に分割したものである。これにより、分割した範囲のうち、精度が必要な範囲のみ精度をあげることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、分割した範囲の大きさは、それぞれ2のべき乗で表現されるため、2進加重の副電流を生成する第2の電流加算回路で前記分割した範囲の出力電流を生成することができる。これにより、線形の特性を持つ第2の電流加算回路を複数用いることにより非線形の特性を持つ出力電流を得ることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
本発明の電気光学装置は、複数の走査線と、複数のデータ線と、前記複数の走査線と前記複数のデータ線との交差部に対応してそれぞれ設けられた電気光学素子を有した画素部と、前記複数の走査線を走査するための走査線駆動回路と、前記複数のデータ線を介して対応する前記画素部にアナログ電流を供給するデータ線駆動回路とを具備し、前記データ線駆動回路は、階調データの取り得る範囲を少なくとも3以上に分割した複数の階調帯の各々に割り当てられた複数のデジタル・アナログ変換回路を備え、前記階調データに基づいて前記複数のデジタル・アナログ変換回路の各々を駆動し、前記複数のデジタル・アナログ変換回路の各々から出力される出力電流を加算してアナログ電流を生成する電流生成回路において、前記複数のデジタル・アナログ変換回路の各々は、第1の電流加算回路と該第1の電流加算回路に接続された第2の電流加算回路とを備え、前記複数のデジタル・アナログ変換回路の各々では、前記第1の電流加算回路は、基準電流に基づいて、大きさが互いに異なる複数の第1の副電流を生成し、前記階調帯ごとに互いに異なる前記第1の副電流を前記複数の第1の副電流のうちから選択するように予め設定されたデジタルデータである第1の選択信号に基づき、前記複数の第1の副電流の中から当該第1の選択信号に対応する前記第1の副電流を選択し、該選択された第1の副電流を加算することによって、前記デジタル・アナログ変換回路ごとに互いに異なる変換基準電流を出力し、前記第
2の電流加算回路は、前記変換基準電流に基づいて、大きさが互いに異なる複数の第2の副電流を生成し、デジタルデータである前記階調データのうちで当該デジタル・アナログ変換回路に割り当てられた階調帯に対応する補正階調データに基づき、前記複数の第2の副電流の中から当該階調データに対応する前記第2の副電流を選択し、該選択された第2の副電流を加算して前記出力電流とするものであり、前記補正階調データとは、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも小さい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを非選択にさせるデータであり、且つ、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも大きい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを選択させるデータであり、且つ、前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯に属する場合に、前記アナログ電流のうち、当該第2の電流加算回路以外の他の第2の電流加算回路が生成する出力電流以外である残りの電流が当該第2の電流加算回路で生成されるように、当該第2の電流加算回路では、当該階調データに対応する前記第2の副電流を選択させるデータであり、前記複数の階調帯の各々は、階調幅が2のべき乗であり、かつ、階調側においては狭い幅に分割され高階調側に行くに従って広い幅に分割されている。
この発明によれば、第1の電流加算回路によって第1の選択信号に基づいて第1の出力電流を生成し、その第1の出力電流に基づいて、第2の電流加算回路は補正階調データに基づいた第2の出力電流を生成した。これにより、複数の基準信号なしに複数の第1の出力電流及び第2の出力電流を生成することができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、第1の電流加算回路は、予め設定した第1の選択信号に基づいて第1の出力電流を変換基準電流として出力し、その変換基準電流に基づいて、第2の電流加算回路はデジタルデータから生成された補正階調データに基づいた第2の出力電流を生成した。これにより、複数の基準信号なしに複数の変換基準電流を生成し、その変換基準電流に基づいて、第2の電流加算回路は第2の出力電流を生成することができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、複数の基準信号なしに、第1の選択信号を変えるだけで各デジタル・アナログ変換回路ごとにそれぞれ変換基準電流の大きさを変化させることができる。従って、回路全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、デジタルデータは階調データであって、その階調データの取
り得る範囲は複数の階調帯に分割される。そして、複数のデジタル・アナログ変換回路は複数の階調帯の各々に割り当てられ、各デジタル・アナログ変換回路毎に個別の階調データに基づいて生成される前記補正階調データに基づいて、第2の電流加算回路は第2の出力電流を生成した。これにより、簡単な構成で非線形特性を持つ出力電流を得ることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、複数の階調帯は、低階調側においては狭い幅に分割して高階調側に行くに従って広い幅に分割したものである。これにより、分割した範囲のうち、精度が必要な範囲のみ精度をあげることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
また、この発明によれば、分割した範囲の大きさは、それぞれ2のべき乗で表現されるため、2進加重の副電流を生成する第2の電流加算回路で前記分割した範囲の出力電流を生成することができる。これにより、線形の特性を持つ第2の電流加算回路を複数用いることにより非線形の特性を持つ出力電流を得ることができる。従って、装置全体を小型化するとともに、コストを低減することができる。
本発明の電気光学装置は、前記電気光学素子は、有機エレクトロルミネッセンス素子である。
これらの発明によれば、電気光学素子が有機エレクトロルミネッセンス素子である電気光学装置は、複数の異なる基準電流を、簡単な回路構成でしかも簡単な制御によって生成することができる。
本発明の電子機器は、先に記載の電気光学装置を具備する。
この発明によれば、複数の異なる基準電流を、簡単な回路構成でしかも簡単な制御によって生成する電子機器を得ることができる。
参考例
以下、本発明に関する参考例を図1〜図9に従って説明する。図1は、電気光学装置として有機エレクトロルミネッセンス素子を用いた有機エレクトロルミネッセンス表示装置の電気的構成を示すブロック回路図である。図2は、表示パネル部12の回路構成を示すブロック回路図である。図3は、画素回路20の内部構成を示す回路図である。
図1において、有機エレクトロルミネッセンス表示装置10は、制御回路11、表示パネル部12、走査線駆動回路13及びデータ線駆動回路14を備えている。尚、参考例における有機エレクトロルミネッセンス表示装置10は、アクティブマトリクス駆動方式である。
有機エレクトロルミネッセンス表示装置10の、制御回路11、走査線駆動回路13及びデータ線駆動回路14はそれぞれが独立した電子部品によって構成されていてもよい。例えば、制御回路11、走査線駆動回路13及びデータ線駆動回路14が、各々1チップの半導体集積回路装置によって構成されていてもよい。又、制御回路11、走査線駆動回路13及びデータ線駆動回路14の全部若しくは一部がプログラマブルなICチップで構成され、その機能がICチップに書き込まれたプログラムによりソフトウェア的に実現されてもよい。
(制御回路11)
制御回路11は、図示しない外部装置からクロックパルスCPが入力される。制御回路11は、クロックパルスCPに基づいて各走査線Y1〜Yn(図2参照)を順次選択するタイミングを決めるための水平同期信号HSYNC、及びフレームの基準信号である垂直同期信号VSYNCを生成する。水平同期信号HSYNCは、データ電流ID1〜IDmを対応するデータ線X1〜Xm(図2参照)にそれぞれ出力するタイミングを制御する働きも行う。制御回路11は、垂直同期信号VSYNCと水平同期信号HSYNCを走査線駆動回路13に出力するとともに、水平同期信号HSYNCをデータ線駆動回路14に出力する。
また、制御回路11は、図示しない外部装置から所定ビット(本参考例では6ビット)の階調データA(A0〜A5)が入力される。6ビットの階調データA(A0〜A5)は、表示パネル部12に画像を表示するためのデータであって、表示パネル部12に形成さ
れた後記する各画素回路20の6ビットからなる階調データA0〜A5データである。制御回路11は、この各画素回路20に対する6ビットからなる階調データA(A0〜A5)から4ビットの第1補正階調データD(D0〜D3)と1ビットの第2補正階調データDBを生成するようになっている。そして、制御回路11は、この各画素回路20に対する第1及び第2補正階調データD、DBを水平同期信号HSYNCに同期してデータ線駆動回路14に出力する。
さらに、制御回路11は、後記する予め定めた4ビットからなる基準電流生成データDI(DI0〜DI3)をデータ線駆動回路14に出力する。
(表示パネル部12)
表示パネル部12は、図2に示すように、その列方向に沿って延びるm本のデータ線X1〜Xm(mは自然数)を備えている。また、表示パネル部12は、その行方向に沿って延びるn本の走査線Y1〜Yn(nは自然数)を備えている。ここで、前記m本のデータ線X1〜Xmは、この記載した順番で図2において左から右に形成されているものとする。同様に、前記n本の走査線Y1〜Ynは、この記載した順番で図2において上から下に形成されているものとする。
そして、表示パネル部12には、前記各データ線X1〜Xmと前記各走査線Y1〜Ynとの交差部に対応した位置に画素部としての画素回路20がそれぞれ配設されている。前記各画素回路20は、それぞれ対応する前記データ線X1〜Xmを介してデータ線駆動回路14に接続されている。又、各画素回路20は、それぞれ対応する前記走査線Y1〜Ynを介して走査線駆動回路13に接続されている。なお、各画素回路20は、列方向に伸びるm本の電源線Lm(mは自然数)と接続されている。従って、前記各画素回路20は、それぞれ対応する電源線L1〜Lmを介して駆動電圧Vddが供給される。
図3は、m番目のデータ線Xmとn番目の走査線Ynとの交差部にそれぞれ対応して配設された画素回路20の内部構成を示す回路図である。画素回路20は、4個のトランジスタと1つの容量素子と1つの電気光学素子としての有機エレクトロルミネッセンス素子とから構成されている。詳述すると、画素回路20は、駆動トランジスタQd、第1のスイッチングトランジスタQsw1、第2のスイッチングトランジスタQsw2、第3のスイッチングトランジスタQsw3、保持キャパシタCo及び有機エレクトロルミネッセンス素子OLEDを備えている。駆動トランジスタQdはP型TFTであり、第1、第2及び第3のスイッチングトランジスタQsw1,Qsw2,Qsw3はN型TFTである。また、電気光学素子としての有機エレクトロルミネッセンス素子(以下、有機EL素子という)OLEDは、その発光層が有機材料で構成されており、駆動電流Ioledが供給されることによって発光する発光素子である。
駆動トランジスタQdは、そのソースが駆動電圧Vddを供給するm番目の電源線Lmに接続されている。駆動トランジスタQdのドレインは、第1のスイッチングトランジスタQsw1のドレインと、第2のスイッチングトランジスタQsw2のソースとにそれぞれ接続されている。
また、駆動トランジスタQdのゲートには、保持キャパシタCoの第1電極D01が接続されている。保持キャパシタCoの第2電極D02は電源線Lmに接続されている。駆動トランジスタQdのゲートとドレインとの間には第2のスイッチングトランジスタQsw2が接続されている。
第1のスイッチングトランジスタQsw1は、そのソースがデータ線Xmに接続されている。第1のスイッチングトランジスタQsw1のゲートは前記第2のスイッチングトランジスタQsw2のゲートとともに前記走査線Ynを構成する第1の副走査線Yn1に接続されている。第1のスイッチングトランジスタQsw1のドレインは、前記第2のスイッチングトランジスタQsw2のソースとともに第3のスイッチングトランジスタQsw3のドレインに接続されている。第3のスイッチングトランジスタQsw3のソースは、有機EL素子OLEDの陽極E1に接続されている。有機EL素子OLEDの陰極E2は接地されている。第3のスイッチングトランジスタQsw3のゲートは、前記走査線Ynを構成する第2の副走査線Yn2に接続されている。つまり、本参考例では走査線Ynは、第1の副走査線Yn1と第2の副走査線Yn2とで構成されている。
尚、本参考例においては、画素回路20を、駆動トランジスタQdと、第1のスイッチングトランジスタQsw1と、第2のスイッチングトランジスタQsw2と、第3のスイッチングトランジスタQsw3と、保持キャパシタCoと、有機EL素子OLEDとで構成したが、これに限定されるものではなく、適宜変更してもよい。また、駆動トランジスタQdと、第1のスイッチングトランジスタQsw1と、第2のスイッチングトランジスタQsw2と、第3のスイッチングトランジスタQsw3のチャネル型は、これに限定されるものではなく、適宜P又はNチャネル型を選択することが可能である。
(走査線駆動回路13)
走査線駆動回路13は、前記制御回路11からの水平同期信号HSYNCに基づいて、表示パネル部12に設けられた前記n本の走査線Ynのうち、1本の走査線を選択し、その選択された走査線に対応する走査信号SC1〜SCn(nは自然数)を出力する。詳しくは、走査線駆動回路13は、前記水平同期信号HSYNCに基づいて、第1の副走査線Yn1を介して該第1の副走査線Yn1に接続された各第1及び第2のスイッチングトランジスタQsw1,Qsw2のオン・オフ状態を制御する第1の副走査信号SC11,SC21,SC31,・・・,SCn1を生成する。また、走査線駆動回路13は、前記垂直同期信号VSYNCに基づいて、第2の副走査線Yn2を介して該第2の副走査線Yn2に接続された各第3のスイッチングトランジスタQsw3のオン・オフ状態を制御する第2の副走査信号SC12,SC22,SC32,・・・,SCn2を生成する。
そして、この第1の副走査信号SC11〜SCn1と第2の副走査信号SC12〜SCn2とで走査信号SC1〜SCnが構成されている。これら走査信号SC1〜SCnによって、選択された走査線上の画素回路20の保持キャパシタCoに対してデータ線駆動回路14から出力されるアナログ電流信号(データ電流)に応じた電荷を書き込むタイミングと有機EL素子OLEDが発光するタイミングが制御される。
(データ線駆動回路14)
データ線駆動回路14は、制御回路11から4ビットの第1補正階調データD(D0〜D3)、第2補正階調データDB、基準電流生成データDI(DI0〜DI3)及び水平同期信号HSYNCが入力される。データ線駆動回路14は、図2に示すように複数のデータドライバ25を備えている。複数のデータドライバ25の各々は対応するデータ線X1,X2,・・・,Xmに接続されている。
各データドライバ25は、各画素回路20の第1及び第2補正階調データD,DB及び基準電流生成データDIに基づいて階調データAに対応したレベルのアナログ電流信号であるデータ電流ID1,ID2,・・・,IDmを生成する。そして、データドライバ25は、前記制御回路11から出力された水平同期信号HSYNCに従って前記データ電流ID1,ID2,・・・,IDmを対応するデータ線X1,X2,・・・,Xmを介して各画素回路20に一斉に出力する。
図4は、m番目のデータ線Xmとn番目の走査線Ynとの交差部に対応して配設された画素回路20の動作を示すタイミングチャートである。ここでは、第1の副走査線Yn1を介して入力される第1の副走査信号SCn1と、第2の副走査線Yn2を介して入力さ
れる第2の副走査信号SCn2と、データ線Xmを介して入力されるデータ電流IDmと、有機EL素子OLEDに流れる駆動電流Ioledとが示されている。
1フレーム期間Tcは、全ての走査線が一巡して選択され終わる期間である。プログラミング期間Tprはプログラム期間であって、有機EL素子OLEDの発光輝度を画素回路20内に設定する期間であり、第1の副走査線Yn1を介して入力される第1の副走査信号SCn1によって決定される。Tleは発光期間であって、有機EL素子OLEDが発光する期間であり、第2の副走査線Yn2を介して入力される第2の副走査信号SCn2によって決定される。
プログラミング期間Tprでは、データ線駆動回路14のデータドライバ25が、データ線Xm上に階調データA(第1及び第2補正階調データD,DB)に応じたデータ電流IDmを出力しながら、走査線駆動回路13が、第1の副走査線Yn1上の第1の副走査信号SCn1をHレベルにする。すると、第1のスイッチングトランジスタQsw1及び第2のスイッチングトランジスタQsw2は、それぞれオン状態に設定される。そして、駆動トランジスタQdはそのゲートとドレインが互いに接続されたダイオード接続に設定される。このとき、データ線駆動回路14のデータドライバ25は、階調データAに応じたデータ電流IDmを流す定電流源として機能する。そして、データドライバ25に基づくデータ電流IDmが、駆動トランジスタQd、第1のスイッチングトランジスタQsw1、データ線Xmという経路で流れる。そして、保持キャパシタCoには、データ電流IDmに対応した電荷が保持され、プログラミング期間Tprは終了する。この結果、駆動トランジスタQdのソース・ゲート間には、保持キャパシタCoに記憶された電圧が保持される。
プログラミング期間Tprが終了すると、第1の副走査信号SCn1がLレベル、すなわち第1の副走査線Yn1が非選択状態となり、第1のスイッチングトランジスタQsw1及び第2のスイッチングトランジスタQsw2はオフ状態に設定される。また、データ線駆動回路14はその画素回路20のためのデータ電流IDmの供給を停止する。
続いて、発光期間Tleでは、走査線駆動回路13が、第1の副走査信号SCn1をLレベルに維持して、第1のスイッチングトランジスタQsw1及び第2のスイッチングトランジスタQsw2をオフ状態に保ったままにする。そして、そのLレベルとなった第1の副走査信号SCn1に対応した第2の副走査線Yn2上の第2の副走査信号SCn2をHレベル、すなわち第2の副走査線Yn2を選択状態にして、第3のスイッチングトランジスタQsw3をオン状態に設定する。このとき、保持キャパシタCoにおける電荷の蓄積状態は変化しないので、駆動トランジスタQdのゲート電圧は、プログラミング期間Tprにおいてデータ電流IDmが流れた時の電圧に保持される。プログラミング期間Tprでは、駆動トランジスタQdはダイオード接続に設定された状態であるため、そのソース・ゲート間の電圧とそのソース・ドレイン間の電圧が等しい。すなわち、駆動トランジスタQdは、そのゲート電圧によらず、常に飽和領域である。従って、発光期間Tleにおいて、駆動トランジスタQdのソース・ドレイン間に、そのゲート電圧に応じた大きさで流れる駆動電流Ioledは、以下の関係となる。
Ioled=1/2×μ0×Cg×W0/L0×(Vgs−Vth)
ここで、μ0はキャリアの移動度、Cgはゲート容量、W0はチャネル幅、L0はチャネル長、Vgsは駆動トランジスタQdのゲート・ソース間の電圧、Vthは駆動トランジスタQdのしきい電圧である。
そして、この駆動電流Ioledは電源線L1〜Lm、駆動トランジスタQd、第3のスイッチングトランジスタQsw3、有機EL素子OLEDという経路で流れる。このこ
とによって、有機EL素子OLEDが前記駆動電流Ioled(データ電流の値)に応じた輝度階調で発光する。以降、各走査線Y1,Y2,・・・,Ynが順次選択されることで各画素回路20にデータ電流ID1,ID2,・・・,IDmが供給され、各有機EL素子OLEDが駆動電流Ioledの電流レベルに応じた輝度で発光する。このようにすることで表示パネル部12上に階調データA(第1及び第2補正階調データD,DB)に応じた画像が表示される。
図5は、各データ線X1〜Xmに対応して設けたデータドライバ25の内部構成を説明するための図である。各データドライバ25は、入力されるデータが相違するだけで構成が同じであるので、図5は、説明の便宜上、データ線Xmに対応したデータドライバ25だけを示す。
データドライバ25は、前記4ビットの第1補正階調データD及び1ビットの第2補正階調データDBを入力して、その第1及び第2補正階調データD,DBに対応する6ビットの階調データA(A0〜A5)をアナログ電流に変換する電流出力型のデジタル・アナログ変換回路である。データドライバ25は、第1〜第4のデジタル・アナログ変換回路31〜34を備えている。第1〜第4のデジタル・アナログ変換回路31〜34は、図9に示すように、6ビットの階調データAに対するアナログ電流(データ電流IDm)を均等に4分割してできた4つの第1〜第4階調帯GB1〜GB4にそれぞれ対応して割り当てられている。
つまり、データドライバ25は、図9に示すように、6ビットの階調データAに対するデータ電流IDmが、高階調になるほど指数関数的(非線形)に増大するアナログ電流を生成する回路である。そして、第1〜第4階調帯GB1〜GB4において、それぞれ階調データAに対するデータ電流IDmの傾きを、第1階調帯GB1から第4階調帯GB4に向かって順番に急にすることによって、階調データAに対するデータ電流IDmを擬似的に非線形特性にする。因みに、第1階調帯GB1は、「0」〜「15」の階調データAに対するデータ電流IDmの領域である。第2階調帯GB2は、「16」〜「31」の階調データAに対するデータ電流IDmの領域である。第3階調帯GB3は、「32」〜「47」の階調データAに対するデータ電流IDmの領域である。第4階調帯GB4は、「48」〜「63」の階調データAに対するデータ電流IDmの領域である。
そして、第1階調帯GB1では、第1のデジタル・アナログ変換回路31のみ駆動させて第1階調帯GB1におけるデータ電流IDmを生成する。また、第2階調帯GB2では、第1のデジタル・アナログ変換回路31と第2のデジタル・アナログ変換回路32とを駆動させて第2階調帯GB2におけるデータ電流IDmを生成する。さらに、第3階調帯GB3では、第1〜第3のデジタル・アナログ変換回路31〜33を駆動させて第3階調帯GB3におけるデータ電流IDmを生成する。さらにまた、第4階調帯GB4では、第1〜第4のデジタル・アナログ変換回路31〜34を駆動させて第4階調帯GB4におけるデータ電流IDmを生成する。
この、第1〜第4階調帯GB1〜GB4における、第1〜第4のデジタル・アナログ変換回路31〜34の選択は、第1〜第4のデジタル・アナログ変換回路31〜34にそれぞれ出力される後記する4ビットの第1補正階調データD及び1ビットの第2補正階調データDBに基づいて行われる。
ここで、第1及び第2補正階調データD,DBについて説明する。4ビットの第1補正階調データD及び1ビットの第2補正階調データDBは、制御回路11において6ビットの階調データA(A0〜A5)に基づいて作成される。6ビットの階調データA(A0〜A5)は、「0」〜「63」階調を指定するデータであって、階調データA0〜A5が「
0,0,0,0,0,0」を「0」階調とし、ビット値が大きくなるに従って高階調となり「1,1,1,1,1,1」で「63」階調となる。
このことから、階調データA(A0〜A5)の上位2ビットのA5,A4が、第1〜第4階調帯GB1〜GB4を指定するデータであることがわかる。そして、階調データA(A0〜A5)の上位2ビットのA5,A4が「0,0」のとき、第1階調帯GB1であって第1のデジタル・アナログ変換回路31を選択するための第1及び第2補正階調データD,DBが作成される。また、階調データA(A0〜A5)の上位2ビットのA5,A4が「0,1」のとき、第2階調帯GB2であって第1及び第2のデジタル・アナログ変換回路31,32を選択するための第1及び第2補正階調データD,DBが作成される。さらに、階調データA(A0〜A5)の上位2ビットのA5,A4が「1,0」のとき、第3階調帯GB3であって第1〜第3のデジタル・アナログ変換回路31〜33を選択するための第1及び第2補正階調データD,DBが作成される。さらにまた、階調データA(A0〜A5)の上位2ビットのA5,A4が「1,1」のとき、第4階調帯GB4であって第1〜第4のデジタル・アナログ変換回路31〜34を選択するための第1及び第2補正階調データD,DBが作成される。
詳述すると、階調データA(A0〜A5)の上位2ビットのA5,A4が「0,0」のとき、第1のデジタル・アナログ変換回路31に対して、階調データA(A0〜A5)の下位4ビットのA0〜A3を4ビットの第1補正階調データD(D0〜D3)として出力する。このとき、第2〜第4のデジタル・アナログ変換回路32〜34に対して、非選択のための「0,0,0,0」の第1補正階調データD(D0〜D3)を出力するとともに、「0」の第2補正階調データDBを出力する。
階調データA(A0〜A5)の上位2ビットのA5,A4が「0,1」のとき、第2のデジタル・アナログ変換回路32に対して、階調データA(A0〜A5)の下位4ビットのA0〜A3を4ビットの第1補正階調データD(D0〜D3)として出力するとともに、「1」の第2補正階調データDBを出力する。このとき、第1のデジタル・アナログ変換回路31に対して、選択のための「1,1,1,1」の第1補正階調データD(D0〜D3)を出力する。また、第3及び第4のデジタル・アナログ変換回路33,34に対して、非選択のための「0,0,0,0」の第1補正階調データD(D0〜D3)を出力するとともに、「0」の第2補正階調データDBを出力する。
階調データA(A0〜A5)の上位2ビットのA5,A4が「1,0」のとき、第3のデジタル・アナログ変換回路33に対して、階調データA(A0〜A5)の下位4ビットのA0〜A3を4ビットの第1補正階調データD(D0〜D3)として出力するとともに、「1」の第2補正階調データDBを出力する。このとき、第1のデジタル・アナログ変換回路31に対して、選択のための「1,1,1,1」の第1補正階調データD(D0〜D3)を出力する。また、第2のデジタル・アナログ変換回路32に対して、選択のための「1,1,1,1」の第1補正階調データD(D0〜D3)を出力するとともに、「1」の第2補正階調データDBを出力する。さらに、第4のデジタル・アナログ変換回路34に対して、非選択のための「0,0,0,0」の第1補正階調データD(D0〜D3)を出力するとともに、「0」の第2補正階調データDBを出力する。
階調データA(A0〜A5)の上位2ビットのA5,A4が「1,1」のとき、第4のデジタル・アナログ変換回路34に対して、階調データA(A0〜A5)の下位4ビットのA0〜A3を4ビットの第1補正階調データD(D0〜D3)として出力するとともに、「1」の第2補正階調データDBを出力する。このとき、第1のデジタル・アナログ変換回路31に対して、選択のための「1,1,1,1」の第1補正階調データD(D0〜D3)を出力する。また、第2及び第3のデジタル・アナログ変換回路32,33に対し
て、選択のための「1,1,1,1」の第1補正階調データD(D0〜D3)を出力するとともに、「1」の第2補正階調データDBを出力する。
なお、本参考例では、第1のデジタル・アナログ変換回路31に対しては第2補正階調データDBを出力しないようになっている。これは、第1のデジタル・アナログ変換回路31が、後記する第2〜第4のデジタル・アナログ変換回路32〜34と若干相違するからである。
そして、第1〜第4のデジタル・アナログ変換回路31〜34は、それぞれ基準電流生成部31a〜34aと電流変換部31b〜34bとを備えている。
(各基準電流生成部31a〜34a)
各基準電流生成部31a〜34aは、対応する電流変換部31b〜34bに第1〜第4変換基準電流Iref1〜Iref4を供給する回路であって、前記制御回路11からの4ビットからなる基準電流生成データDI(DI0〜DI3)の内容が相違するだけで、その回路構成は同じである。各基準電流生成部31a〜34aは、図6に示すように、変換トランジスタQc1、基準電流源IR、第1〜第4のスイッチングトランジスタQsa0〜Qsa3、第1〜第4の駆動トランジスタQda0〜Qda3及び第1〜第4の電流ラインLaa0〜Laa3を備えている。
変換トランジスタQc1は、そのソースが駆動電圧Vddに接続されている。変換トランジスタQc1のドレインは、基準電流源IRに接続されている。変換トランジスタQc1はダイオード接続されており、変換トランジスタQc1のゲートは第1〜第4の駆動トランジスタQda0〜Qda3のそれぞれのゲートに接続されている。つまり、変換トランジスタQc1と第1〜第4の駆動トランジスタQda0〜Qda3のそれぞれとはカレントミラー回路を構成している。第1〜第4の駆動トランジスタQda0〜Qda3のそれぞれのソースは駆動電圧Vddに接続されており、それぞれのドレインは並列に配列された第1〜第4の電流ラインLaa0〜Laa3にそれぞれ接続されている。第1〜第4の電流ラインLaa0〜Laa3は、それぞれ対応する第1〜第4のスイッチングトランジスタQsa0〜Qsa3の各ドレインに接続されている。
第1〜第4のスイッチングトランジスタQsa0〜Qsa3は、その各ゲートに前記制御回路11からの基準電流生成データDI0〜DI3がそれぞれ入力される。また、第1〜第4のスイッチングトランジスタQsa0〜Qsa3の各ソースは出力電流ラインLo1に接続されている。第1〜第4のスイッチングトランジスタQsa0〜Qsa3は、4ビットの基準電流生成データDI0〜DI3に応じてオン・オフ制御されるスイッチング素子として機能するトランジスタである。この基準電流生成データDI0〜DI3は、前記制御回路11からの第1及び第2補正階調データD,DBと関係ないデータ値が各基準電流生成部31a〜34a毎に出力される。
ちなみに、本参考例では、第1のデジタル・アナログ変換回路31の基準電流生成部31aには、第1のスイッチングトランジスタQsa0のみがオン状態になる基準電流生成データDI0〜DI3が入力される。また、第2のデジタル・アナログ変換回路32の基準電流生成部32aには、第2のスイッチングトランジスタQsa1のみがオン状態になる基準電流生成データDI0〜DI3が入力される。さらに、第3のデジタル・アナログ変換回路33の基準電流生成部33aには、第3のスイッチングトランジスタQsa2のみがオン状態になる基準電流生成データDI0〜DI3が入力される。さらにまた、第4のデジタル・アナログ変換回路34の基準電流生成部34aには、第4のスイッチングトランジスタQsa3のみがオン状態になる基準電流生成データDI0〜DI3が入力される。なお、これら基準電流生成データDI0〜DI3は、例えば、工場出荷時の検査工程で有機エレクトロルミネッセンス表示装置10の特性に合わせて個別に設定するよいうにしている。
なお、図6の例では変換トランジスタQc1、第1〜第4の駆動トランジスタQda0〜Qda3はPチャネル型トランジスタであり、第1〜第4のスイッチングトランジスタQsa0〜Qsa3はNチャネル型トランジスタである。
ここで、第1〜第4の駆動トランジスタQda0〜Qda3の利得係数βの比は、1:2:4:8に設定されている。本参考例では、例えば、変換トランジスタQc1の利得係数βは、第1の駆動トランジスタQda0と等しく設定されているが、これを変換トランジスタQc1と第1の駆動トランジスタQda0とで異なる利得係数βが設定されるようにしてもよい。ここで、利得係数βは、β=M×β0=(μ×C×W/L)で定義され、Mは相対値、β0は所定の定数、μはキャリアの移動度、Cはゲート容量、Wはチャネル幅、Lはチャネル長である。第1〜第4の駆動トランジスタQda0〜Qda3の利得係数βは、基準電流生成データDI0〜DI3の各ビットの重みに対応づけられた値にそれぞれ設定されている。例えば、最下位ビットの基準電流生成データDI0は、利得係数βが最も小さな第1の駆動トランジスタQda0に接続されている第1のスイッチングトランジスタQsa0に供給される。そして、最上位ビットの基準電流生成データDI3は、利得係数βが最も大きな第4の駆動トランジスタQda3に接続されている第4のスイッチングトランジスタQsa3に供給される。
また、トランジスタの電流駆動能力は利得係数βに比例するので、変換トランジスタQc1、第1〜第4の駆動トランジスタQda0〜Qda3の電流駆動能力の比は、1:1:2:4:8である。従って、第1〜第4の電流ラインLaa0,Laa1,Laa2,Laa3に流れる第1〜第4のアナログ電流Ia0,Ia1,Ia2,Ia3の電流レベル比は、1:2:4:8となる。また、基準電流源IRに流れる共通基準電流Iref0と第1の電流ラインLaa0を流れる第1のアナログ電流Ia0の電流レベル比は、1:1となる。本参考例では、例えば、各基準電流生成部に入力される基準信号は、基準電流源IRに流れる共通基準電流Iref0である。これを基準電流源IR及び変換トランジスタQc1を設けずに基準電圧源を設け、第1〜第4の駆動トランジスタQda0〜Qda3のゲートに、その基準電圧源から供給される基準電圧が基準信号として入力されるようにしてもよい。
そして、各基準電流生成部31a〜34aに共通基準電流Iref0が入力されると、変換トランジスタQc1には共通基準電流Iref0が流れる。そして、制御回路11から各基準電流生成部31a〜34aにそれぞれ対応する4ビットの基準電流生成データDI0〜DI3が入力されると、各基準電流生成部31a〜34aはその基準電流生成データDI0〜DI3に基づいて、第1〜第4のスイッチングトランジスタQsa0〜Qsa3がオン状態となる。
そして、オン状態となった第1〜第4のスイッチングトランジスタQsa0〜Qsa3に接続された第1〜第4の電流ラインLaa0〜Laa3には第1〜第4の駆動トランジスタQda0〜Qda3の電流駆動能力に応じた、すなわち2進加重された電流が流れる。そして、第1〜第4の電流ラインLaa0〜Laa3に流れる電流の総和は入力される基準電流生成データDI0〜DI3に比例しており、出力電流ラインLo1には共通基準電流Iref0に対して2進加重された第1〜第4変換基準電流Iref(Iref1〜Iref4)が流れる。第1〜第4変換基準電流Iref(Iref1〜Iref4)は以下の関係となる。
Iref(Iref1〜Iref4)
=(1×DI0+2×DI1+4×DI2+8×DI3)×Iref0…(1)
つまり、共通基準電流Iref0を基に、入力される基準電流生成データDI0〜DI3に対して線形のアナログ電流出力である第1〜第4変換基準電流Iref(Iref1〜Iref4)が得られる。
従って、第1のデジタル・アナログ変換回路31の基準電流生成部31aは、第1のスイッチングトランジスタQsa0のみがオン状態になる基準電流生成データDI0〜DI3が入力されることから、基準電流生成部31aで生成される第1変換基準電流Iref1は以下のようになる。
Iref1=1×Iref0
また、第2のデジタル・アナログ変換回路32の基準電流生成部32aには、第2のスイッチングトランジスタQsa1のみがオン状態になる基準電流生成データDI0〜DI3が入力されることから、基準電流生成部32aで生成される第2変換基準電流Iref2は以下のようになる。
Iref2=2×Iref0
さらに、第3のデジタル・アナログ変換回路33の基準電流生成部33aには、第3のスイッチングトランジスタQsa2のみがオン状態になる基準電流生成データDI0〜DI3が入力されることから、基準電流生成部33aで生成される第3変換基準電流Iref3は以下のようになる。
Iref3=4×Iref0
さらにまた、第4のデジタル・アナログ変換回路34の基準電流生成部34aには、第4のスイッチングトランジスタQsa3のみがオン状態になる基準電流生成データDI0〜DI3が入力されることから、基準電流生成部34aで生成される第4変換基準電流Iref4は以下のようになる。
Iref4=8×Iref0
このように、第1〜第4のデジタル・アナログ変換回路31〜34の各基準電流生成部31a〜34aは、対応する電流変換部31b〜34bに対してそれぞれ第1〜第4変換基準電流Iref1〜Iref4を供給する。
(各電流変換部31b〜34b)
図7は、第1〜第4のデジタル・アナログ変換回路31〜34の電流変換部31b〜34bを説明するための回路図を示す。各電流変換部31b〜34bは、第1変換部41と第2変換部42を有している。第1変換部41と第2変換部42とはデータ線Xmに対して並列に接続されている。
第1変換部41は、前記4ビットの第1補正階調データD(D0〜D3)が入力され、第2変換部42は、前記1ビットの第2補正階調データDBが入力されるようになっている。尚、第1のデジタル・アナログ変換回路31に設けた電流変換部31bには、第1変換部41のみ有し、第2変換部42を有していない。従って、各電流変換部32b〜34bを説明することで、第1のデジタル・アナログ変換回路31の電流変換部31bのその詳細な説明は省略する。
(第1変換部41)
第1〜第4のデジタル・アナログ変換回路31〜34の第1変換部41は、図7に示すように、変換トランジスタQc2、第1〜第4のスイッチングトランジスタQsb0〜Qsb3、第1〜第4の駆動トランジスタQdb0〜Qdb3及び第1〜第4の電流ラインLab0〜Lab3を備えている。
変換トランジスタQc2は、そのドレインが対応する前記基準電流生成部31a〜34aの出力である出力電流ラインLo1にそれぞれ接続されており、そのソースは接地されている。
つまり、電流変換部31bの第1変換部41の変換トランジスタQc2は、基準電流生成部31aから第1変換基準電流Iref1(=1×Iref0)が入力される。また、電流変換部32bの第1変換部41の変換トランジスタQc2は、基準電流生成部32aから第2変換基準電流Iref2(=2×Iref0)が入力される。さらに、電流変換部33bの第1変換部41の変換トランジスタQc2は、基準電流生成部33aから第3変換基準電流Iref3(=4×Iref0)が入力される。さらにまた、電流変換部34bの第1変換部41の変換トランジスタQc2は、基準電流生成部34aから第4変換基準電流Iref4(=8×Iref0)が入力される。
変換トランジスタQc2はダイオード接続されており、変換トランジスタQc2のゲートは第1〜第4の駆動トランジスタQdb0〜Qdb3のそれぞれのゲートに接続されている。つまり、変換トランジスタQc2と第1〜第4の駆動トランジスタQdb0〜Qdb3のそれぞれとはカレントミラー回路を構成している。第1〜第4の駆動トランジスタQdb0〜Qdb3のそれぞれのソースは接地されており、それぞれのドレインは並列に配列された第1〜第4の電流ラインLab0〜Lab3にそれぞれ接続されている。第1〜第4の電流ラインLab0〜Lab3は、それぞれ対応する第1〜第4のスイッチングトランジスタQsb0〜Qsb3の各ソースに接続されている。
第1〜第4のスイッチングトランジスタQsb0〜Qsb3は、その各ゲートには、制御回路11から入力される第1補正階調データD(D0〜D3)の各ビットが入力される。また、第1〜第4のスイッチングトランジスタQsb0〜Qsb3の各ドレインは出力ライン(データ線)Xmに接続されている。第1〜第4のスイッチングトランジスタQsb0〜Qsb3は、第1補正階調データD(D0〜D3)に応じてオン・オフ制御されるスイッチング素子として機能するトランジスタである。
なお、図7の例では変換トランジスタQc2、第1〜第4の駆動トランジスタQdb0〜Qdb3、第1〜第4のスイッチングトランジスタQsb0〜Qsb3はNチャネル型トランジスタである。
ここで、第1〜第4の駆動トランジスタQdb0〜Qdb3の利得係数βの比は、1:2:4:8に設定されている。つまり、第1〜第4の駆動トランジスタQdb0〜Qdb3の利得係数βは、4ビットの第1補正階調データDの各ビットであるD0〜D3の重みに対応づけられた値にそれぞれ設定されている。例えば、最下位ビットの第1補正階調データD0は、利得係数βが最も小さな第1の駆動トランジスタQdb0に接続されている第1のスイッチングトランジスタQsb0に供給される。そして、最上位ビットの第1補正階調データD3は、利得係数βが最も大きな第4の駆動トランジスタQdb3に接続されている第4のスイッチングトランジスタQsb3に供給される。また、変換トランジスタQc2の利得係数βは、第1の駆動トランジスタQdb0と等しく設定されている。従って、変換トランジスタQc2、第1〜第4の駆動トランジスタQdb0〜Qdb3の電流駆動能力の比は、1:1:2:4:8である。本参考例では、例えば、変換トランジスタQc2の利得係数βは、第1の駆動トランジスタQdb0と等しく設定されているが、これを変換トランジスタQc2と第1の駆動トランジスタQdb0とで異なる利得係数βが設定されるようにしてもよい。
次に、第1変換部41の前記第1〜第4の電流ラインLab0,Lab1,Lab2,Lab3のそれぞれに流れる第1〜第4のアナログ電流Ib0,Ib1,Ib2,Ib3
は、それぞれの利得係数βに比例する。従って、第1〜第4の電流ラインLab0,Lab1,Lab2,Lab3に流れる第1〜第4のアナログ電流Ib0,Ib1,Ib2,Ib3の電流レベル比は、1:2:4:8となる。また、第1〜第4変換基準電流Iref(Iref1〜Iref4)と第1の電流ラインLab0を流れる第1のアナログ電流Ib0の電流レベル比は、1:1となる。
そして、各電流変換部31b〜34bの第1変換部41に、それぞれ対応する前記第1〜第4変換基準電流Iref1〜Iref4が基準電流として入力されると、各変換トランジスタQc2には前記第1〜第4変換基準電流Iref1〜Iref4がそれぞれ流れる。そして、制御回路11から各電流変換部31b〜34bの第1変換部41に4ビットの第1補正階調データDが入力されると、その第1補正階調データDに基づいて第1〜第4のスイッチングトランジスタQsb0〜Qsb3がオン状態となる。そして、オン状態となった第1〜第4のスイッチングトランジスタQsb0〜Qsb3に接続されている第1〜第4の電流ラインLab0〜Lab3には第1〜第4の駆動トランジスタQdb0〜Qdb3の駆動能力に応じた、すなわち2進加重された電流が流れる。そして、第1〜第4の電流ラインLab0〜Lab3に流れる電流の総和が合成電流Ikとして出力される。合成電流Ikは以下の関係となる。
Ik=(1×D0+2×D1+4×D2+8×D3)×Iref …(2)
式(1)より、第1〜第4変換基準電流Iref(Iref1〜Iref4)は、入力される基準電流生成データDI0〜DI3に対して線形のアナログ電流出力であるから、基準電流生成データDI0〜DI3を変えて第1〜第4変換基準電流Iref(Iref1〜Iref4)を変更することにより、合成電流Ikの傾きは簡単に制御できる。すなわち、基準電流生成データDI0〜DI3の値が小さい場合は合成電流Ikの傾きが緩くなり、一方、基準電流生成データDI0〜DI3の値が大きい場合は合成電流Ikの傾きが急になる。また、合成電流Ikは第1補正階調データD0〜D3が全て「0」の場合から全て「1」の場合まで、すなわち十進数で表現すると第1補正階調データDが「0」〜「15」の場合に対応したアナログ電流である。
第2変換部42は、1ビットの第2補正階調データDBに対応する電流を生成する回路であり、同第2変換部42により生成された電流は、第1変換部41の出力電流に加算される。図7に示すように、第2変換部42は、第5のスイッチングトランジスタQsb4、第5の駆動トランジスタQdb4及び第5の電流ラインLab4を備えている。
詳しくは、第5の駆動トランジスタQdb4のゲートは前記第1変換部41に備えられた変換トランジスタQc2及び第1〜第4の駆動トランジスタQdb0〜Qdb3のそれぞれのゲートに接続されている。つまり、第5の駆動トランジスタQdb4と変換トランジスタQc2とはカレントミラー回路を構成している。第5の駆動トランジスタQdb4のソースは接地されており、そのドレインは前記第1〜第4の電流ラインLab0〜Lab3と並列に配列された第5の電流ラインLab4に接続されている。第5の電流ラインLab4は、第5のスイッチングトランジスタQsb4のソースに接続されている。
第5のスイッチングトランジスタQsb4は、そのゲートには1ビットの第2補正階調データDBが入力される。また、第5のスイッチングトランジスタQsb4のドレインは出力ライン(データ線)Xmに接続されている。第5のスイッチングトランジスタQsb4は、第2補正階調データDBに応じてオン・オフ制御されるスイッチング素子として機能するトランジスタである。
なお、図7の例では第5の駆動トランジスタQdb4、第5のスイッチングトランジスタQsb4はNチャネル型トランジスタである。
ここで、第5の駆動トランジスタQdb4の利得係数βは、前記第1の駆動トランジスタQdb0と等しく設定されている。従って、第5の駆動トランジスタQdb4、前記第1〜第4の駆動トランジスタQdb0〜Qdb3の電流駆動能力の比は、1:1:2:4:8である。
次に、前記第1の電流ラインLab0、第5の電流ラインLab4のそれぞれに流れる第1及び第5のアナログ電流Ib0,Ib4は、それぞれの利得係数βに比例する。従って、第1の電流ラインLab0、第5の電流ラインLab4に流れる第1及び第5のアナログ電流Ib0,Ib4の電流レベル比は、1:1となる。そして、制御回路11から1ビットの第2補正階調データDBが入力されると、その第2補正階調データDBに基づいてオン状態となった第5のスイッチングトランジスタQsb4に接続されている第5の電流ラインLab4には第5の駆動トランジスタQdb4の駆動能力に応じた電流が流れ、第5のアナログ電流Ib4として出力される。出力電流(第5のアナログ電流)Ib4は以下の関係となる。
Ib4=1×DB×Iref …(3)
式(2)と同様に、第1〜第4変換基準電流Iref(Iref1〜Iref4)は、入力される基準電流生成データDI0〜DI3に対して線形のアナログ電流出力である。そのため、基準電流生成データDI0〜DI3を変えて第1〜第4変換基準電流Iref(Iref1〜Iref4)を変更することにより、出力電流(第5のアナログ電流)Ib4の傾きは簡単に制御できる。すなわち、基準電流生成データDI0〜DI3の値が小さい場合は出力電流(第5のアナログ電流)Ib4の傾きが緩くなり、一方、基準電流生成データDI0〜DI3の値が大きい場合は出力電流(第5のアナログ電流)Ib4の傾きが急になる。また、第2補正階調データDBが「1」の場合、出力電流(第5のアナログ電流)Ib4は、「0,0,0,1」の第1補正階調データDが入力された第1変換部41の合成電流Ikと同じである。
そして、電流変換部31b〜34bの合成電流Ikは第1変換部41の各出力電流(第1〜第4のアナログ電流)Ib0〜Ib3と第2変換部42の出力電流(第5のアナログ電流)Ib4の和であるから、式(2)と式(3)より、合成電流Ikは以下の関係となる。
Ik=(1×D0+2×D1+4×D2+8×D3)×Iref
+1×DB×Iref
=(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref
…(4)
この場合も式(2)と同様に、第1〜第4変換基準電流Iref(Iref1〜Iref4)は、入力される基準電流生成データDI0〜DI3に対して線形のアナログ電流出力である。そのため、基準電流生成データDI0〜DI3を変えて第1〜第4変換基準電流Iref(Iref1〜Iref4)を変更することにより、合成電流Ikの傾きは簡単に制御できる。すなわち、基準電流生成データDI0〜DI3の値が小さい場合は合成電流Ikの傾きが緩くなり、一方、基準電流生成データDI0〜DI3の値が大きい場合は合成電流Ikの傾きが急になる。
このように構成された第1〜第4のデジタル・アナログ変換回路31〜34は、前記したように、図8に示すように、第1階調帯GB1〜第4階調帯GB4にそれぞれ1つずつ割り当てられ、階調データAに対する第1及び第2補正階調データD,DBに基づいてデジタル・アナログ変換する。それにより、データドライバ25全体として第1〜第4のデジタル・アナログ変換回路31〜34にそれぞれ出力される第1及び第2補正階調データD,DBに対応するアナログ電流(データ電流IDm)が出力される。
詳しくは、階調データAが「0」〜「15」の範囲は第1階調帯GB1であり、第1のデジタル・アナログ変換回路31が割り当てられ、階調データAが「16」〜「31」の範囲は第2階調帯GB2であり、第1及び第2のデジタル・アナログ変換回路31,32が割り当てられている。また、階調データAが「32」〜「47」の範囲は第3階調帯GB3であり、第1〜第3のデジタル・アナログ変換回路31〜33が割り当てられ、階調データAが「48」〜「63」の範囲は第4階調帯GB4であり、第1〜第4のデジタル・アナログ変換回路31〜34が割り当てられている。
階調データAが「0,0,0,0,0,0」〜「0,0,1,1,1,1」、即ち、「0」〜「15」階調の場合、第1のデジタル・アナログ変換回路31のみが選択される。第1のデジタル・アナログ変換回路31には、階調データAの下位4ビットの「0,0,0,0」〜「1,1,1,1」が第1補正階調データD(D0〜D3)として入力される。そして、第2〜第4のデジタル・アナログ変換回路32〜34には、非選択の「0,0,0,0」の第1補正階調データD及び「0」の第2補正階調データDBが入力される。
従って、階調データAが「0」〜「15」階調の場合、第1〜第4のデジタル・アナログ変換回路31〜34から出力される合成電流Ik1〜Ik4及びデータ線Xmに出力されるデータ電流IDmは以下のようになる。
Ik1=(1×D0+2×D1+4×D2+8×D3)×Iref1
Ik2=Ik3=Ik4=0
IDm=Ik1=(1×D0+2×D1+4×D2+8×D3)×Iref1
また、階調データAが「0,1,0,0,0,0」〜「0,1,1,1,1,1」、即ち、「16」〜「31」階調の場合、第1及び第2のデジタル・アナログ変換回路31,32が選択される。そして、第1のデジタル・アナログ変換回路31には、「1,1,1,1」の第1補正階調データD(D0〜D3)が入力される。第2のデジタル・アナログ変換回路32には、階調データAの下位4ビットの「0,0,0,0」〜「1,1,1,1」が第1補正階調データD(D0〜D3)として入力されるとともに、「1」の第2補正階調データDBが入力される。第3及び第4のデジタル・アナログ変換回路33,34には、非選択の「0,0,0,0」の第1補正階調データD及び「0」の第2補正階調データDBが入力される。
従って、階調データAが「16」〜「31」階調の場合、第1〜第4のデジタル・アナログ変換回路31〜34から出力される合成電流Ik1〜Ik4及びデータ線Xmに出力されるデータ電流IDmは以下のようになる。
Ik1=15×Iref1
Ik2=(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref2
Ik3=Ik4=0
IDm=Ik1+Ik2
=15×Iref1
+(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref2
さらに、階調データAが「1,0,0,0,0,0」〜「1,0,1,1,1,1」、即ち、「32」〜「47」階調の場合、第1〜第3のデジタル・アナログ変換回路31〜33が選択される。そして、第1及び第2のデジタル・アナログ変換回路31,32には、「1,1,1,1」の第1補正階調データD(D0〜D3)が入力される。また、第2のデジタル・アナログ変換回路32には、「1」の第2補正階調データDBが入力される。また、第3のデジタル・アナログ変換回路33には、階調データAの下位4ビットの「0,0,0,0」〜「1,1,1,1」が第1補正階調データD(D0〜D3)として入力されるとともに、「1」の第2補正階調データDBが入力される。第4のデジタル・ア
ナログ変換回路34には、非選択の「0,0,0,0」の第1補正階調データD及び「0」の第2補正階調データDBが入力される。
従って、階調データAが「32」〜「47」階調の場合、第1〜第4のデジタル・アナログ変換回路31〜34から出力される合成電流Ik1〜Ik4及びデータ線Xmに出力されるデータ電流IDmは以下のようになる。
Ik1=15×Iref1
Ik2=16×Iref2
Ik3=(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref3
Ik4=0
IDm=Ik1+Ik2+Ik3
=15×Iref1+16×Iref2
+(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref3
さらに、階調データAが「1,1,0,0,0,0」〜「1,1,1,1,1,1」、即ち、「48」〜「63」階調の場合、第1〜第4のデジタル・アナログ変換回路31〜34が選択される。そして、第1〜第3のデジタル・アナログ変換回路31〜33には、「1,1,1,1」の第1補正階調データD(D0〜D3)が入力される。また、第2及び第3のデジタル・アナログ変換回路32,33には、「1」の第2補正階調データDBが入力される。また、第4のデジタル・アナログ変換回路34には、階調データAの下位4ビットの「0,0,0,0」〜「1,1,1,1」が第1補正階調データD(D0〜D3)として入力されるとともに、「1」の第2補正階調データDBが入力される。
従って、階調データAが「48」〜「63」階調の場合、第1〜第4のデジタル・アナログ変換回路31〜34から出力される合成電流Ik1〜Ik4及びデータ線Xmに出力されるデータ電流IDmは以下のようになる。
Ik1=15×Iref1
Ik2=16×Iref2
Ik3=16×Iref3
Ik4=(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref4
IDm=Ik1+Ik2+Ik3+Ik4
=15×Iref1+16×Iref2+16×Iref3
+(1×D0+2×D1+4×D2+8×D3+1×DB)×Iref4
そして、このように第1及び第2補正階調データD,DBが入力されたデータドライバ25は、図9に示すように、擬似的に非線形のデータ電流IDmを出力することができる。さらに、第1〜第4変換基準電流Iref1〜Iref4をそれぞれ変更することによって、第1〜第4階調帯GB1〜GB4のそれぞれのデータ電流IDmの傾きを個別に変更できるため、非線形のデータ電流IDmのカーブを変更できる。
尚、特許請求の範囲に記載の基準信号は、例えば、本参考例においては、共通基準電流Iref0に対応している。また、特許請求の範囲に記載の第1の副電流は、例えば、本参考例においては、第1〜第4のアナログ電流Ia0〜Ia3に対応している。また、特許請求の範囲に記載の第1の選択信号は、例えば、本参考例においては基準電流生成データDI(DI0〜DI3)に対応している。また、特許請求の範囲に記載の第1の出力電流は、例えば、本参考例においては、第1〜第4変換基準電流Iref(Iref1〜Iref4)に対応している。また、特許請求の範囲に記載の第1の電流加算回路は、例えば、本参考例においては、基準電流生成部31a〜34aに対応している。また、特許請求の範囲に記載の第2の副電流は、例えば、本参考例においては、第1〜第5のアナログ電流Ib0〜Ib4に対応している。また、特許請求の範囲に記載のデジタルデータは、例えば、本参考例においては、階調データAに対応している。また、特許請求の範囲に記載の第2の選択信号は、例えば、本参考例においては第1補正階調データD(D0〜D3)、第2補正階調データDBに対応している。また、特許請求の範囲に記載の第2の出力電流は、例えば、本参考例においては、合成電流Ik(Ik1〜Ik4)に対応している。また、特許請求の範囲に記載の第2の電流加算回路は、例えば、本参考例においては、電流変換部31b〜34bに対応している。また、特許請求の範囲に記載のデジタル・アナログ変換回路は、例えば、本参考例においては、第1〜第4のデジタル・アナログ変換回路31〜34に対応している。また、特許請求の範囲に記載の第3の出力電流は、例えば、本参考例においては、データ電流IDmに対応している。また、特許請求の範囲に記載の変換基準電流は、例えば、本参考例においては、第1〜第4変換基準電流Iref(Iref1〜Iref4)に対応している。
さらに、特許請求の範囲に記載の階調データは、例えば、本参考例においては、階調データAに対応している。また、特許請求の範囲に記載の階調帯は、例えば、本参考例においては、第1〜第4階調帯GB1〜GB4に対応している。また、特許請求の範囲に記載の電流生成回路は、例えば、本参考例においてはデータドライバ25に対応している。さらに、特許請求の範囲に記載の電気光学装置は、例えば、本参考例においては有機エレクトロルミネッセンス表示装置10に対応している。
上記参考例によれば、以下のような効果を得ることができる。
(1)上記参考例では、データドライバ25は、その内部に第1〜第4階調帯GB1〜GB4ごとにそれぞれデータ電流IDmの傾きの異なる4ビットの電流出力型の第1〜第4のデジタル・アナログ変換回路31〜34を備えている。第1〜第4のデジタル・アナログ変換回路31〜34は、それぞれ基準電流生成部31a〜34aと電流変換部31b〜34bとを備えており、各基準電流生成部31a〜34aはそれぞれ異なる第1〜第4変換基準電流Iref1〜Iref4を生成して各電流変換部31b〜34bに供給している。第1〜第4のデジタル・アナログ変換回路31〜34に備えられたそれぞれの基準電流生成部31a〜34aは、基準電流生成データDI0〜DI3をアナログ電流に変換する電流出力型のデジタル・アナログ変換回路であり、共通基準電流Iref0からそれぞれ異なる電流値である第1〜第4変換基準電流Iref1〜Iref4を生成する。
これにより、デジタル信号である基準電流生成データDI0〜DI3を変化させることだけで、それぞれ異なる電流値である第1〜第4変換基準電流Iref1〜Iref4をそれぞれ個別に変化させることができる。従って、デジタル信号を変化させるだけの簡単な制御で第1〜第4階調帯GB1〜GB4ごとにデータ電流IDmの傾きを容易に制御できる。
(2)上記参考例では、第1〜第4のデジタル・アナログ変換回路31〜34に備えられたそれぞれの基準電流生成部31a〜34aは、基準電流生成データDI0〜DI3をアナログ電流に変換する電流出力型のデジタル・アナログ変換回路である。そして、基準電流生成部31a〜34aは、共通基準電流Iref0からそれぞれ異なる電流値である第1〜第4変換基準電流Iref1〜Iref4を生成する。そのため、複数の基準電圧、すなわち複数の電圧源なしに複数の基準電流を生成することができる。従って、装置全体を小型化するとともに、コストを低減することができる。
(3)上記参考例では、階調データAを分割して第1〜第4階調帯GB1〜GB4とし、第1〜第4階調帯に対応する第1〜第4のデジタル・アナログ変換回路31〜34で階調データAに対する第1及び第2補正階調データD,DBに基づいて合成電流Ikを生成した。第1〜第4のデジタル・アナログ変換回路31〜34に備えられたそれぞれの基準電流生成部31a〜34aは、基準電流生成データDI0〜DI3をアナログ電流に変換する電流出力型のデジタル・アナログ変換回路であり、共通基準電流Iref0からそれ
ぞれ異なる電流値である第1〜第4変換基準電流Iref1〜Iref4を生成する。そのため、デジタル信号入力を変更するだけで、第1〜第4変換基準電流Iref1〜Iref4を変更することができ、第1〜第4階調帯GB1〜GB4ごとに備えられた第1〜第4のデジタル・アナログ変換回路31〜34の合成電流Ikの傾きをそれぞれ個別に変更することができる。従って、簡単な制御でγ特性等の非線形特性のデータ電流IDmのカーブを変更することができる。
(第実施形態)
本発明を具体化した第実施形態について説明する。本実施形態では、上記参考例で説明した第1〜第4階調帯GB1〜GB4の分割を不均等にし、低階調側を細かく分割し、高階調側を粗く分割したことに特徴を有する。従って、説明の便宜上、第1〜第4階調帯GB1〜GB4とそれらに割り当てられた第1〜第4のデジタル・アナログ変換回路31〜34について図10及び図11に従って説明する。
データドライバ25は、第1〜第4のデジタル・アナログ変換回路31〜34を備えている。本実施形態においては、第1及び第2のデジタル・アナログ変換回路31,32は3ビットのデジタル・アナログ変換回路である。また、第3のデジタル・アナログ変換回路33は4ビットのデジタル・アナログ変換回路であり、第4のデジタル・アナログ変換回路34は5ビットのデジタル・アナログ変換回路である。
このように構成された第1〜第4のデジタル・アナログ変換回路31〜34は、図10に示すように、本実施形態においては階調データAを不均等に4分割した第1階調帯GB1〜第4階調帯GB4にそれぞれ1つずつ割り当てられ、それぞれ割り当てられた範囲の階調データAをデジタル・アナログ変換する。すなわち、第1及び第2のデジタル・アナログ変換回路31,32は階調データAの下位3ビットを第1補正階調データD(D0〜D2)としてデジタル・アナログ変換する。また、第3のデジタル・アナログ変換回路33は階調データAの下位4ビットを第1補正階調データD(D0〜D3)としてデジタル・アナログ変換し、第4のデジタル・アナログ変換回路34は階調データAの下位5ビットを第1補正階調データD(D0〜D4)としてデジタル・アナログ変換する。それにより、データドライバ25全体として6ビットの階調データAに対応するデータ電流IDmを得るようにしている。
詳しくは、階調データAが「0」〜「7」の範囲は第1階調帯GB1であり、第1のデジタル・アナログ変換回路31が割り当てられ、階調データAが「8」〜「15」の範囲は第2階調帯GB2であり、第1及び第2のデジタル・アナログ変換回路31,32が割り当てられている。また、階調データAが「16」〜「31」の範囲は第3階調帯GB3であり、第1〜第3のデジタル・アナログ変換回路31〜33が割り当てられ、階調データAが「32」〜「63」の範囲は第4階調帯GB4であり、第1〜第4のデジタル・アナログ変換回路31〜34が割り当てられている。
そして、階調データAの上位3ビットが「0,0,0」の場合(「0」〜「7」の階調の場合)は、第1のデジタル・アナログ変換回路31には、階調データAの下位3ビットの内容が第1補正階調データDとして入力される。第2〜第4のデジタル・アナログ変換回路32〜34には、全て「0」の第1及び第2補正階調データD,DBが入力される。
階調データAの上位3ビットが「0,0,1」の場合(「8」〜「15」の階調の場合)は、第1のデジタル・アナログ変換回路31には、全て「1」の第1補正階調データDが入力される。第2のデジタル・アナログ変換回路32には、階調データAの下位3ビットの内容が第1補正階調データDとして入力されるとともに「1」の第2補正階調データDBが入力される。第3及び第4のデジタル・アナログ変換回路33,34には、全て「0」の第1及び第2補正階調データD,DBが入力される。
階調データAの上位2ビットが「0,1」の場合(「16」〜「31」の階調の場合)は、第1のデジタル・アナログ変換回路31には、全て「1」の第1補正階調データDが入力される。また、第2のデジタル・アナログ変換回路32には、全て「1」の第1及び第2補正階調データD,DBが入力される。第3のデジタル・アナログ変換回路33には、階調データAの下位4ビットの内容が第1補正階調データDとして入力されるとともに「1」の第2補正階調データDBが入力される。第4のデジタル・アナログ変換回路34には、全て「0」の第1及び第2補正階調データD,DBが入力される。
階調データAの上位1ビットが「1」の場合(「32」〜「63」の階調の場合)は、第1のデジタル・アナログ変換回路31には、全て「1」の第1補正階調データDが入力される。また、第2及び第3のデジタル・アナログ変換回路32,33には、全て「1」の第1及び第2補正階調データD,DBが入力される。第4のデジタル・アナログ変換回路34には、階調データAの下位5ビットの内容が第1補正階調データDとして入力されるとともに「1」の第2補正階調データDBが入力される。
そして、このように第1及び第2補正階調データD,DBが入力されたデータドライバ25は、図11に示すように、低階調側の精度が高く、一方、高階調側の精度が低い擬似的に非線形のアナログ電流出力を得ることができる。さらに、第1〜第4変換基準電流Iref1〜Iref4をそれぞれ変更することによって、第1〜第4階調帯GB1〜GB4のそれぞれのデータ電流IDmの傾きを個別に変更できる。従って、簡単な制御でγ特性等の非線形特性の出力電流のカーブを変更することができる。
上記実施形態によれば、上記参考例の効果に加えて以下のような効果を得ることができる。
(1)上記実施形態では、第1〜第4階調帯GB1〜GB4の分割を不均等にし、低階調側を細かく分割し、高階調側を粗く分割した。そして、第1〜第4階調帯GB1〜GB4に対応して第1〜第4のデジタル・アナログ変換回路31〜34のうちいずれか1つを選択して、デジタル・アナログ変換をした。これにより、人間の目が敏感な低階調側の精度が上げながらも、人間の目が敏感でない高階調側の精度を落とした。従って、装置全体を小型化するとともに、コストを低減することができる。
(第実施形態)
次に、上記参考例及び第1実施形態で説明した電気光学装置としての有機EL素子を用いた有機エレクトロルミネッセンス表示装置10の電子機器への適用について図12に従って説明する。有機エレクトロルミネッセンス表示装置10は、モバイル型パーソナルコンピュータ、携帯電話、ビューワ、ゲーム機等の携帯情報端末、電子書籍、電子ペーパー等種々の電子機器に適用できる。また、有機エレクトロルミネッセンス表示装置10は、ビデオカメラ、デジタルスチルカメラ、カーナビゲーション、カーステレオ、運転操作パネル、パーソナルコンピュータ、プリンタ、スキャナ、テレビ、ビデオプレーヤー等種々の電子機器に適用できる。
図12は、モバイル型パーソナルコンピュータの構成を示す斜視図を示す。図12において、モバイル型パーソナルコンピュータ100は、キーボード101を備えた本体部102と、有機エレクトロルミネッセンス表示装置10を用いた表示ユニット103とを備えている。この場合においても、有機エレクトロルミネッセンス表示装置10を用いた表示ユニット103は前記第1及び2実施形態と同様な効果を発揮する。この結果、モバイル型パーソナルコンピュータ100は、表示品位の優れた表示を実現することができる。
なお、上記各実施形態は以下のように変更してもよい。
○上記実施形態では、低階調側の階調帯を細かく分割し、高階調側の階調帯になるに従って階調帯を粗く分割した。これを、低階調側では細かく分割し、階調データAが大きくなるに従って徐々に階調帯の分割を粗くするが、高階調側の階調帯は一定の階調にしてもよい。こうすることで、高階調側の精度を保ちながらも低階調側の精度を上げることができる。
○上記実施形態では、階調帯を4分割としたが、分割数は3分割以上であればよい。
○上記実施形態では、制御回路11により第1〜第4のデジタル・アナログ変換回路31〜34に入力する第1及び第2補正階調データD,DBを決めていた。これをLUT(ルックアップテーブル)を用いて、第1〜第4のデジタル・アナログ変換回路31〜34に入力する第1及び第2補正階調データD,DBを決めても良い。
○上記実施形態では、データ電流IDmの傾き、すなわち第1〜第4変換基準電流Iref1〜Iref4を基準電流生成部31a〜34aを用いて調整した後に、電流変換部31b〜34bで第1及び第2補正階調データD,DBに基づいてデータ電流IDmに変換した。これを、基準電流生成部31a〜34aにおいて第1及び第2補正階調データD,DBを電流に変換した後に、電流変換部31b〜34bでデータ電流IDmの傾きを調整してもよい。
○上記実施形態では、6ビットの階調データAをアナログ電流に変換するデータドライバ25に適用したが、これを5ビット以下、あるいは7ビット以上の階調データAをアナログ電流に変換するデータドライバ25に適用してもよい。
○上記実施形態では、第1〜第4の駆動トランジスタQda0〜Qda3、第1〜第5の駆動トランジスタQdb0〜Qdb4は、それぞれ異なる利得係数βを持つトランジスタであった。これを、同じ利得係数βを持つトランジスタを複数個並列接続し、その並列接続する個数を変えることにより、第1〜第4の駆動トランジスタQda0〜Qda3、第1〜第5の駆動トランジスタQdb0〜Qdb4をそれぞれ等価的に異なる利得係数βにしてもよい。
○上記実施形態では、基準電流生成データDI0〜DI3は工場出荷時の検査工程で有機エレクトロルミネッセンス表示装置10の特性に合わせて個別に基準電流生成データDI0〜DI3を設定するようにした。これを、例えば基準電流調整の機能がICチップに書き込まれたプログラムによって基準電流生成データDI0〜DI3を設定し、基準電流値を表示画像に応じてリアルタイムに可変させてもよい。
○上記実施形態では、有機エレクトロルミネッセンス表示装置10に適用して好適な結果を得た。これを有機エレクトロルミネッセンス表示装置以外に、例えばモデム等のそれぞれ異なる基準電流が必要とされる複数のデジタル・アナログ変換回路を搭載した装置に適用してもよい。
○上記実施形態では、画素回路20に具体化して好適な効果を得たが、有機EL素子OLED以外の例えばLEDやFED等の発光素子のような電流駆動素子を駆動する単位回路に具体化してもよい
○上記実施形態では、電流駆動素子として有機EL素子OLEDについて具体化したが、無機エレクトロルミネッセンス素子に具体化してもよい。つまり、無機エレクトロルミ
ネッセンス素子からなる無機エレクトロルミネッセンス表示装置に応用しても良い。
○上記実施形態では、有機EL素子を用いた場合を例に説明したが、本発明はこれに限定されるものではなく、液晶素子、デジタルマイクロミラーデバイス(DMD)、FED(Field Emission Display)やSED(Surface−Conduction Electron−Emitter Display)等にも適用可能である。
参考例の有機エレクトロルミネッセンス表示装置の電気的構成を示すブロック回路図。 同じく、表示パネル部の回路構成を示すブロック回路図。 同じく、画素回路の回路図。 同じく、画素回路の動作を示すタイミングチャート。 同じく、データドライバの構成を示すブロック回路図。 同じく、基準電流生成部の構成を示すブロック回路図。 同じく、電流変換部の構成を示すブロック回路図。 同じく、第1〜第4階調帯と第1〜第4のデジタル・アナログ変換回路の関係を説明するための表。 同じく、第1〜第4階調帯とデータ電流の関係を説明するためのグラフ。 実施形態の第1〜第4階調帯と第1〜第4のデジタル・アナログ変換回路の関係を説明するための表。 同じく、第1〜第4階調帯とデータ電流の関係を説明するためのグラフ。 実施形態を説明するためのモバイル型パーソナルコンピュータの構成を示す斜視図。
符号の説明
Co…保持キャパシタ、A,A0〜A5…階調データ、D,D0〜D3…第1補正階調データ、DB…第2補正階調データ、DI,DI0〜DI3…基準電流生成データ、GB1〜GB4…第1〜第4階調帯、Iref0…共通基準電流、Iref1〜Iref4…第1〜第4変換基準電流、Xm…データ線、Yn…走査線、Y11〜Yn1…第1の副走査線、Y12〜Yn2…第2の副走査線、SC1〜SCn…走査信号、SC11〜SCn1…第1の副走査信号、SC12〜SCn2…第2の副走査信号、OLED…有機EL素子、Qsw1〜Qsw3…第1〜第3のスイッチングトランジスタ、Qda0〜Qda3…第1〜第4の駆動トランジスタ、Qdb0〜Qdb4…第1〜第5の駆動トランジスタ、Qsa0〜Qsa3…第1〜第4のスイッチングトランジスタ、Qsb0〜Qsb4…第1〜第5のスイッチングトランジスタ、10…有機エレクトロルミネッセンス表示装置、11…制御回路、12…表示パネル部、13…走査線駆動回路、14…データ線駆動回路、20…画素回路、25…データドライバ、31〜34…第1〜第4のデジタル・アナログ変換回路、31a〜34a…基準電流生成部、31b〜34b…電流変換部、41…第1変換部、42…第2変換部、100…モバイル型パーソナルコンピュータ。

Claims (4)

  1. 階調データの取り得る範囲を少なくとも3以上に分割した複数の階調帯の各々に割り当てられた複数のデジタル・アナログ変換回路を備え、前記階調データに基づいて前記複数のデジタル・アナログ変換回路の各々を駆動し、前記複数のデジタル・アナログ変換回路の各々から出力される出力電流を加算してアナログ電流を生成する電流生成回路であって、
    前記複数のデジタル・アナログ変換回路の各々は、第1の電流加算回路と該第1の電流加算回路に接続された第2の電流加算回路とを備え、
    前記複数のデジタル・アナログ変換回路の各々では、
    前記第1の電流加算回路は、
    基準電流に基づいて、大きさが互いに異なる複数の第1の副電流を生成し、前記階調帯ごとに互いに異なる前記第1の副電流を前記複数の第1の副電流のうちから選択するように予め設定されたデジタルデータである第1の選択信号に基づき、前記複数の第1の副電流の中から当該第1の選択信号に対応する前記第1の副電流を選択し、該選択された第1の副電流を加算することによって、前記デジタル・アナログ変換回路ごとに互いに異なる変換基準電流を出力し、
    前記第2の電流加算回路は、
    前記変換基準電流に基づいて、大きさが互いに異なる複数の第2の副電流を生成し、デジタルデータである前記階調データのうちで当該デジタル・アナログ変換回路に割り当てられた階調帯に対応する補正階調データに基づき、前記複数の第2の副電流の中から当該階調データに対応する前記第2の副電流を選択し、該選択された第2の副電流を加算して前記出力電流とするものであり、
    前記補正階調データとは、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも小さい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを非選択にさせるデータであり、且つ、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも大きい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを選択させるデータであり、且つ、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯に属する場合に、前記アナログ電流のうち、当該第2の電流加算回路以外の他の第2
    の電流加算回路が生成する出力電流以外である残りの電流が当該第2の電流加算回路で生成されるように、当該第2の電流加算回路では、当該階調データに対応する前記第2の副電流を選択させるデータであり、
    前記複数の階調帯の各々は、階調幅が2のべき乗であり、かつ、低階調側においては狭い幅に分割され高階調側に行くに従って広い幅に分割されている
    ことを特徴とする電流生成回路。
  2. 電気光学装置において、
    複数の走査線と、複数のデータ線と、前記複数の走査線と前記複数のデータ線との交差部に対応してそれぞれ設けられた電気光学素子を有した画素部と、前記複数の走査線を走査するための走査線駆動回路と、前記複数のデータ線を介して対応する前記画素部にアナログ電流を供給するデータ線駆動回路とを具備し、
    前記データ線駆動回路は、
    階調データの取り得る範囲を少なくとも3以上に分割した複数の階調帯の各々に割り当てられた複数のデジタル・アナログ変換回路を備え、前記階調データに基づいて前記複数のデジタル・アナログ変換回路の各々を駆動し、前記複数のデジタル・アナログ変換回路の各々から出力される出力電流を加算してアナログ電流を生成する電流生成回路において、
    前記複数のデジタル・アナログ変換回路の各々は、第1の電流加算回路と該第1の電流加算回路に接続された第2の電流加算回路とを備え、
    前記複数のデジタル・アナログ変換回路の各々では、
    前記第1の電流加算回路は、
    基準電流に基づいて、大きさが互いに異なる複数の第1の副電流を生成し、前記階調帯ごとに互いに異なる前記第1の副電流を前記複数の第1の副電流のうちから選択するように予め設定されたデジタルデータである第1の選択信号に基づき、前記複数の第1の副電流の中から当該第1の選択信号に対応する前記第1の副電流を選択し、該選択された第1の副電流を加算することによって、前記デジタル・アナログ変換回路ごとに互いに異なる変換基準電流を出力し、
    前記第2の電流加算回路は、
    前記変換基準電流に基づいて、大きさが互いに異なる複数の第2の副電流を生成し、デジタルデータである前記階調データのうちで当該デジタル・アナログ変換回路に割り当てられた階調帯に対応する補正階調データに基づき、前記複数の第2の副電流の中から当該階調データに対応する前記第2の副電流を選択し、該選択された第2の副電流を加算して前記出力電流とするものであり、
    前記補正階調データとは、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも小さい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを非選択にさせるデータであり、且つ、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯よりも大きい階調帯に属する場合に、当該デジタル・アナログ変換回路の第2の電流加算回路に、前記複数の第2の副電流の全てを選択させるデータであり、且つ、
    前記階調データで示される階調が当該デジタル・アナログ変換回路に割り当てられた階調帯に属する場合に、前記アナログ電流のうち、当該第2の電流加算回路以外の他の第2の電流加算回路が生成する出力電流以外である残りの電流が当該第2の電流加算回路で生成されるように、当該第2の電流加算回路では、当該階調データに対応する前記第2の副
    電流を選択させるデータであり、
    前記複数の階調帯の各々は、階調幅が2のべき乗であり、かつ、階調側においては狭い幅に分割され高階調側に行くに従って広い幅に分割されている
    ことを特徴とする電気光学装置。
  3. 請求項に記載の電気光学装置において、
    前記電気光学素子は、有機エレクトロルミネッセンス素子であることを特徴とする電気光学装置。
  4. 請求項2または3に記載の電気光学装置を具備することを特徴とする電子機器。
JP2003393951A 2003-11-25 2003-11-25 電流生成回路、電気光学装置及び電子機器 Expired - Fee Related JP4826056B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393951A JP4826056B2 (ja) 2003-11-25 2003-11-25 電流生成回路、電気光学装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393951A JP4826056B2 (ja) 2003-11-25 2003-11-25 電流生成回路、電気光学装置及び電子機器

Publications (2)

Publication Number Publication Date
JP2005156833A JP2005156833A (ja) 2005-06-16
JP4826056B2 true JP4826056B2 (ja) 2011-11-30

Family

ID=34720164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393951A Expired - Fee Related JP4826056B2 (ja) 2003-11-25 2003-11-25 電流生成回路、電気光学装置及び電子機器

Country Status (1)

Country Link
JP (1) JP4826056B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068492B2 (ja) * 2005-08-18 2012-11-07 三星電子株式会社 表示装置のデータドライバの駆動方法、表示装置のデータドライバ、および、表示装置
JP4983319B2 (ja) * 2007-03-07 2012-07-25 ミツミ電機株式会社 発光ダイオード駆動回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950988B2 (ja) * 2000-12-15 2007-08-01 エルジー フィリップス エルシーディー カンパニー リミテッド アクティブマトリックス電界発光素子の駆動回路
JP2003186442A (ja) * 2001-12-14 2003-07-04 Sony Corp 半導体装置およびカラー表示装置
JP2003216100A (ja) * 2002-01-21 2003-07-30 Matsushita Electric Ind Co Ltd El表示パネルとel表示装置およびその駆動方法および表示装置の検査方法とel表示装置のドライバ回路
JP4102088B2 (ja) * 2002-03-27 2008-06-18 松下電器産業株式会社 階調制御用出力回路
JP3868836B2 (ja) * 2002-03-27 2007-01-17 ローム株式会社 有機el駆動回路および有機el表示装置
JP3866606B2 (ja) * 2002-04-08 2007-01-10 Necエレクトロニクス株式会社 表示装置の駆動回路およびその駆動方法
JP4088098B2 (ja) * 2002-04-26 2008-05-21 東芝松下ディスプレイテクノロジー株式会社 El表示パネル
JP2003332910A (ja) * 2002-05-10 2003-11-21 Toshiba Matsushita Display Technology Co Ltd ドライバー回路とそれを用いたel表示装置

Also Published As

Publication number Publication date
JP2005156833A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
KR100842511B1 (ko) 화상 표시 장치
JP3979377B2 (ja) 電流生成回路、電気光学装置及び電子機器
JP4205629B2 (ja) デジタル/アナログ変換回路、電気光学装置及び電子機器
KR20180025514A (ko) 표시장치 및 그의 구동방법
KR100692455B1 (ko) 데이터선 구동 회로, 전기 광학 장치 및 전자 기기
KR101391157B1 (ko) 전자기기
US20180158409A1 (en) Display device and driving method thereof
KR102130142B1 (ko) 감마기준전압 발생회로 및 이를 포함하는 표시장치
KR100807233B1 (ko) 전기 광학 장치, 전자 기기 및 전기 광학 장치의 구동 방법
JP4107240B2 (ja) 駆動回路、電気光学装置及び電気光学装置の駆動方法、並びに電子機器
KR20180072910A (ko) 표시장치 및 그의 구동방법
WO2004054114A1 (ja) 半導体装置、デジタル・アナログ変換回路及びそれらを用いた表示装置
JP2007163580A (ja) 表示装置
JP4802963B2 (ja) 電気光学装置及び電子機器
JP5498648B2 (ja) 表示装置の駆動方法
JP4826056B2 (ja) 電流生成回路、電気光学装置及び電子機器
JP2009048202A (ja) 画像表示装置
JP5305105B2 (ja) 表示装置およびその駆動方法ならびに電子機器
JP3969422B2 (ja) 基準電圧発生回路、表示駆動回路及び表示装置
JP2007011101A (ja) 電気光学装置および電子機器
JP2005122033A (ja) 電流生成回路、電気光学装置及び電子機器
JP2012053479A (ja) 表示装置
JP2008090328A (ja) データ線駆動回路、電気光学装置および電子機器
JP4803164B2 (ja) 電気光学装置、その駆動方法、データ線駆動回路、信号処理回路および電子機器
JP4496469B2 (ja) 表示駆動装置及び表示装置並びにその駆動制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees