JP4822793B2 - Winding method of permanent magnet generator for distributed power supply - Google Patents

Winding method of permanent magnet generator for distributed power supply Download PDF

Info

Publication number
JP4822793B2
JP4822793B2 JP2005297050A JP2005297050A JP4822793B2 JP 4822793 B2 JP4822793 B2 JP 4822793B2 JP 2005297050 A JP2005297050 A JP 2005297050A JP 2005297050 A JP2005297050 A JP 2005297050A JP 4822793 B2 JP4822793 B2 JP 4822793B2
Authority
JP
Japan
Prior art keywords
permanent magnet
output
winding
coils
magnet generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005297050A
Other languages
Japanese (ja)
Other versions
JP2007110790A (en
Inventor
剛 塩田
勝利 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2005297050A priority Critical patent/JP4822793B2/en
Publication of JP2007110790A publication Critical patent/JP2007110790A/en
Application granted granted Critical
Publication of JP4822793B2 publication Critical patent/JP4822793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Description

本発明は、風車又は水車により駆動される発電機から、風速又は流速に関わらず、風又は水より得られる概略の最大出力を取り出すための分散電源用発電装置に関するものである。   The present invention relates to a power generator for a distributed power source for extracting an approximate maximum output obtained from wind or water, regardless of wind speed or flow velocity, from a generator driven by a wind turbine or water turbine.

本出願人は先に、風車又は水車に接続された永久磁石型発電機より、PWMコンバータを用いずに交流を直流に変換して概略の最大出力を取り出すために、永久磁石型発電機の異なる誘起電圧を発生する複数の巻線の出力端子にリアクトルを経て直列に整流器を接続し、この整流器の直流出力を並列接続して外部に出力する分散電源用発電装置について提案している(例えば、特許文献1参照。)。   In order to obtain an approximate maximum output from a permanent magnet generator connected to a windmill or a water turbine without using a PWM converter, the present applicant firstly uses a different permanent magnet generator. A rectifier is connected in series via a reactor to output terminals of a plurality of windings that generate an induced voltage, and a DC power output of this rectifier is connected in parallel and proposed for a distributed power generator (for example, (See Patent Document 1).

かかる先願技術を、図7の風車に接続された分散電源用発電装置を示す主回路単線結線図を参照して詳述する。
図7において、101は風車、102は先願技術の分散電源用発電装置、103は永久磁石型発電機、104、105は第1、第2のリアクトル、106,107は第1、第2の整流器、111は正側出力端子、112は負側出力端子、113はバッテリーである。
The prior application technique will be described in detail with reference to a main circuit single line connection diagram showing a power generator for a distributed power source connected to the wind turbine of FIG.
In FIG. 7, 101 is a windmill, 102 is a power generator for distributed power supply of the prior application, 103 is a permanent magnet generator, 104 and 105 are first and second reactors, and 106 and 107 are first and second reactors. A rectifier 111 is a positive output terminal, 112 is a negative output terminal, and 113 is a battery.

この永久磁石型発電機103は、絶縁され、かつ誘起電圧の異なる2種類の巻線を有し、2種類の内の巻数が少ないために誘起電圧の低い第1の巻線W1の出力端子11〜13は、第1のリアクトル104に接続され、さらに第1の整流器107に接続される。
巻数が多いために誘起電圧の高い第2の巻線W2の出力端子21〜23は、第2のリアクトル105に接続され、さらに第2の整流器108に接続される。
上記第1、第2の整流器107、108の各直流側は、正側出力端子111及び負側出力端子112に並列接続され、各巻線の合計出力がバッテリー113に接続される。
The permanent magnet generator 103 has two types of windings that are insulated and have different induced voltages. Since the number of turns of the two types is small, the output terminal 11 of the first winding W1 that has a low induced voltage. ˜13 are connected to the first reactor 104 and further connected to the first rectifier 107.
Since the number of turns is large, the output terminals 21 to 23 of the second winding W <b> 2 having a high induced voltage are connected to the second reactor 105 and further connected to the second rectifier 108.
The direct current sides of the first and second rectifiers 107 and 108 are connected in parallel to the positive output terminal 111 and the negative output terminal 112, and the total output of each winding is connected to the battery 113.

このように構成される分散電源用発電装置102より、概略の風車最大出力を得る方法を以下に示す。
図6は、風速をパラメータとした時の、風車の回転数対出力特性の概要を説明した図である。
風車は、風車の形状及び風速Uが決まると、風車回転数Nに対する風車出力Pが一義的に定まり、例えば風速Ux及びUyに対する風車出力Pは、それぞれ図6の実線で示される。そして、種々の風速に対する風車出力Pのピークは、図6の一点鎖線で示す最大出力曲線のようになる。
すなわち、図6の風車の回転数対出力特性において、風速がUxの時は、風速Uxの風車出力曲線と最大出力曲線との交点Sxに示すように、風車回転数Nxにおいて、風車最大出力Pxとなる。
又、風速がUyの時は、風車回転数Nyにおいて、風速Uyでの風車最大出力Pyとなる。
A method of obtaining a rough maximum wind turbine output from the power generator 102 for the distributed power source configured as described above will be described below.
FIG. 6 is a diagram for explaining the outline of the rotational speed versus the output characteristic of the wind turbine when the wind speed is used as a parameter.
In the windmill, when the shape of the windmill and the wind speed U are determined, the windmill output P with respect to the windmill rotational speed N is uniquely determined. For example, the windmill output P with respect to the wind speed Ux and Uy is indicated by a solid line in FIG. And the peak of the windmill output P with respect to various wind speeds becomes like the maximum output curve shown with the dashed-dotted line of FIG.
That is, when the wind speed is Ux in the wind turbine rotation speed vs. output characteristics of FIG. 6, as indicated by the intersection Sx of the wind turbine output curve of the wind speed Ux and the maximum output curve, the wind turbine maximum output Px at the wind turbine rotation speed Nx. It becomes.
When the wind speed is Uy, the windmill maximum output Py at the wind speed Uy is obtained at the windmill rotational speed Ny.

すなわち、図6の最大出力曲線を見方を変えて見ると、風から最大出力を得るためには、風車回転数Nが決まると、その時の永久磁石型発電機の出力Pを一義的に、最大出力曲線上の値に定めれば良いことを表している。   In other words, looking at the maximum output curve in FIG. 6 in order to obtain the maximum output from the wind, when the wind turbine rotation speed N is determined, the output P of the permanent magnet generator at that time is uniquely set to the maximum. This indicates that the value on the output curve may be determined.

図5は、先願技術が対象とする分散電源用発電装置102の直流出力をバッテリー等の定電圧源に接続した場合の説明図であり、分散電源用発電装置102の永久磁石型発電機103の第1、第2の巻線W1、W2の各出力は、各巻線の誘起電圧値の違い、及び各巻線内部インダクタンスと各巻線出力に接続されるリアクトルによる電圧降下のために、図5の各巻線による風車の回転数対出力特性に示すP1、P2のようになる。   FIG. 5 is an explanatory diagram in the case where the DC output of the distributed power generator 102 that is the subject of the prior application technology is connected to a constant voltage source such as a battery, and the permanent magnet generator 103 of the distributed power generator 102. The outputs of the first and second windings W1 and W2 of FIG. 5 are caused by the difference in the induced voltage value of each winding and the voltage drop due to the internal inductance of each winding and the reactor connected to each winding output. P1 and P2 shown in the rotational speed vs. output characteristics of the wind turbine by each winding are obtained.

すなわち、風車回転数Nが低い場合には、第2の巻線W2の発生電圧V2がバッテリー電圧Vbより低いために、バッテリーには充電されない。しかし、風車回転数Nが上昇して、N2付近になると、電流が流れ始めて、さらに風車回転数Nが上昇すると、内部インダクタンス等が大きいために、小さな電流が流れて小さな出力P2が取れる。
第1の巻線W1については、さらに回転数Nが上昇することにより誘起電圧が上昇して、風車回転数NがN1付近になると出力が取れ始めて、さらに風車回転数Nが上昇すると、内部インダクタンス等が小さいために、大きな電流が流れて大きな出力P1が取れる。
That is, when the wind turbine rotation speed N is low, the battery is not charged because the voltage V2 generated by the second winding W2 is lower than the battery voltage Vb. However, when the windmill rotational speed N rises and approaches N2, current starts to flow, and when the windmill rotational speed N further rises, because the internal inductance and the like are large, a small current flows and a small output P2 can be obtained.
With respect to the first winding W1, the induced voltage increases as the rotational speed N further increases, and when the wind turbine rotational speed N becomes near N1, output begins to be obtained, and when the wind turbine rotational speed N further increases, the internal inductance increases. And so on, a large current flows and a large output P1 can be obtained.

このように構成される分散電源用発電装置102のバッテリー113等の定電圧源への出力は、第1、第2の巻線の出力P1、P2を加算して得られる合計出力と同じであり、図5の実線で示す最大出力曲線Ptに近似した出力曲線で表される。
特願2002−221714号(図1)
The output to the constant voltage source such as the battery 113 of the distributed power generator 102 configured as described above is the same as the total output obtained by adding the outputs P1 and P2 of the first and second windings. The output curve is approximated to the maximum output curve Pt shown by the solid line in FIG.
Japanese Patent Application No. 2002-221714 (FIG. 1)

上記のように多種類の巻線により構成される永久磁石型発電機103においては、第2の巻線W2は、巻数が多いが小さな電流が流れるために、細い電線を多く巻かなければならない。
また第1の巻線W1は、巻数が少ないが大きな電流が流れるために、太い巻線を少なく巻かなければならない。
このように巻線構成が複雑なために、巻線の結線に誤りが生じ易く、また製作工程が多くなるために分散電源用発電装置102が高価になるということが解決しようとする問題点である。
As described above, in the permanent magnet generator 103 constituted by various types of windings, the second winding W2 has a large number of turns but a small current flows, so that a lot of thin electric wires must be wound. .
In addition, the first winding W1 has a small number of turns but a large current flows. Therefore, a small number of thick windings must be wound.
Since the winding configuration is complicated as described above, it is easy to make an error in the wiring connection of the windings, and the problem that the power generation apparatus 102 for the distributed power supply becomes expensive due to an increase in the number of manufacturing processes is a problem to be solved. is there.

本発明は上記事情に鑑みなされたものであって、風車又は水車より概略の最大出力を得るために、永久磁石型発電機内の固定子スロットに納める巻線の、線径および巻数を1種類とし、巻線端の接続方法により異なる出力電圧を外部に発生することを特徴とする分散電源用永久磁石型発電機の巻線方法である。   The present invention has been made in view of the above circumstances, and in order to obtain an approximate maximum output from a wind turbine or a water turbine, the wire diameter and the number of turns of the winding to be accommodated in the stator slot in the permanent magnet generator are set to one type. A winding method for a permanent magnet generator for a distributed power source, wherein different output voltages are generated externally depending on the connection method of the winding ends.

本発明の分散電源用発電装置102の永久磁石型発電機103は、永久磁石型発電機103内の固定子スロットに納める巻線の種類を1種類としたために、誤結線および製作工数が少なくなり、分散電源用発電装置の価格を下げることができる。   Since the permanent magnet generator 103 of the power generator 102 for distributed power supply according to the present invention uses only one type of winding to be housed in the stator slot in the permanent magnet generator 103, erroneous connection and manufacturing man-hours are reduced. The price of the power generator for the distributed power supply can be reduced.

永久磁石型発電機103内の回転子の極数を6の倍数とし、固定子スロットに納める巻線を1種類とし、巻線端の結線方法を3Y(以下、スター結線をYと称する。)および1Yの2種類とすることにより構成した巻線方法である。   The number of poles of the rotor in the permanent magnet generator 103 is a multiple of 6, one type of winding is accommodated in the stator slot, and the winding end connection method is 3Y (hereinafter, the star connection is referred to as Y). And 1Y, a winding method constituted by two types.

図1は、本発明を6極9スロットの永久磁石型発電機103に適用した場合の巻線結線方法を示す図である。
同図において、11U〜13Uは低誘起電圧のU相、11V〜13Vは低誘起電圧のV相、11W〜13Wは低誘起電圧のW相、21U〜23Uは高誘起電圧のU相、21V〜23Vは高誘起電圧のV相、21W〜23Wは高誘起電圧のW相の各固定子にそれぞれ巻かれたコイルを表す。この各コイルは、同一線径および同一巻数で構成されている。
以下、図4の6極9スロットの永久磁石型発電機103の固定子および回転子、および図7の主回路単線結線図を参照しながら、図1について説明する。
FIG. 1 is a diagram showing a winding connection method when the present invention is applied to a 6-pole 9-slot permanent magnet generator 103.
In the figure, 11U to 13U are U phase of low induced voltage, 11V to 13V are V phase of low induced voltage, 11W to 13W are W phase of low induced voltage, 21U to 23U are U phase of high induced voltage, and 21V to 23V represents the V phase of the high induced voltage, and 21W to 23W represent coils wound around the respective stators of the W phase of the high induced voltage. Each of these coils has the same wire diameter and the same number of turns.
Hereinafter, FIG. 1 will be described with reference to the stator and rotor of the permanent magnet generator 103 with 6 poles and 9 slots in FIG. 4 and the main circuit single line connection diagram in FIG.

固定子テイース301に巻かれたコイル11Uおよび21Uは、同一線径および同一巻数で構成されるために、同一の誘起電圧を発生する。他の固定子テイース304および307に巻かれたコイル12U、22U、13Uおよび23Uも上記と同一の誘起電圧を発生する。
また、別の固定子テイース302、305および308にそれぞれ巻かれたコイル11V〜13V、および21V〜23Vは、コイル11U等とは位相の異なる別の同一の誘起電圧を発生する。
さらに別の固定子テイース303、306および309にそれぞれ巻かれたコイル11W〜13W、および21W〜23Wは、コイル11U等および11V等とは位相の異なる別の同一の誘起電圧を発生する。
Since the coils 11U and 21U wound around the stator teeth 301 are configured with the same wire diameter and the same number of turns, the same induced voltage is generated. The coils 12U, 22U, 13U and 23U wound around the other stator teeth 304 and 307 also generate the same induced voltage as described above.
In addition, coils 11V to 13V and 21V to 23V wound around different stator teeth 302, 305, and 308 generate different and same induced voltages having different phases from those of coil 11U and the like.
Further, coils 11W to 13W and 21W to 23W wound respectively on other stator teeth 303, 306 and 309 generate different induced voltages having different phases from coils 11U and 11V.

コイル11U、12Uおよび13Uは、それぞれ並列に接続されて低誘起電圧のU相を生成し、コイル11V、12Vおよび13Vは、それぞれ並列に接続されて低誘起電圧のV相を生成し、およびコイル11W、12Wおよび13Wは、それぞれ並列に接続されて低誘起電圧のW相を生成する。
それぞれ並列に接続された各相コイルは、3Y結線されて、外部接続端子11,12,13より交流リアクトル104に接続される。
コイル21U、22Uおよび23Uは、直列に接続されて高誘起電圧のU相を生成し、コイル21V、22Vおよび23Vは、直列に接続されて高誘起電圧のV相を生成し、およびコイル21W、22Wおよび23Wは、直列に接続されて高誘起電圧のW相を生成する。
直列に接続された各相コイルは、1Y結線されて、外部接続端子21,22,23より交流リアクトル105に接続される。
Coils 11U, 12U and 13U are each connected in parallel to generate a U phase with low induced voltage, coils 11V, 12V and 13V are respectively connected in parallel to generate a V phase with low induced voltage, and coil 11W, 12W and 13W are respectively connected in parallel to generate a W phase with a low induced voltage.
Each phase coil connected in parallel is 3Y-connected and connected to the AC reactor 104 through the external connection terminals 11, 12, and 13.
Coils 21U, 22U and 23U are connected in series to generate a high induced voltage U phase, coils 21V, 22V and 23V are connected in series to generate a high induced voltage V phase, and coil 21W, 22W and 23W are connected in series to generate a W phase with a high induced voltage.
Each phase coil connected in series is 1Y-connected and connected to the AC reactor 105 through the external connection terminals 21, 22, and 23.

コイル21U〜コイル23Wは、1Y結線されて高誘起電圧を発生し、外部接続端子21,22,23より交流リアクトル105に接続される。この1Y結線は低回転数から発電を開始し、例えば図5の回転数対出力特性図の出力P2を出力する。従って、外部接続端子21〜23に流れる電流は少ない。
コイル11U〜コイル13Wは、3Y結線されて低誘起電圧を発生し、外部接続端子11,12,13より交流リアクトル104に接続される。この3Y結線は高回転数から発電を開始し、例えば図5の回転数対出力特性図の出力P1を出力する。従って、外部接続端子11〜13に流れる電流は多い。
Coil 21 </ b> U to coil 23 </ b> W are 1Y-connected to generate a high induced voltage, and are connected to AC reactor 105 through external connection terminals 21, 22, and 23. This 1Y connection starts power generation from a low rotational speed, and outputs, for example, an output P2 of the rotational speed versus output characteristic diagram of FIG. Therefore, the current flowing through the external connection terminals 21 to 23 is small.
Coil 11U to coil 13W are 3Y-connected to generate a low induced voltage, and are connected to AC reactor 104 through external connection terminals 11, 12, and 13. This 3Y connection starts power generation at a high rotational speed and outputs, for example, an output P1 of the rotational speed versus output characteristic diagram of FIG. Therefore, a large amount of current flows through the external connection terminals 11 to 13.

ここで、外部接続端子11〜13に流れる電流は多いが、3Y結線されているので各コイル11U〜コイル13Wに流れる電流は、外部接続端子11〜13に流れる電流の1/3になる。従って、全てのコイル11U〜コイル23Wに流せる電流を同一にすると、1Y結線の出力電流を1とすると、3Y結線の出力電流を3とすることができる。
このように、同一線径および同一巻数で構成されるコイルを1Y結線および3Y結線とすることにより、合計出力が最大出力曲線の近似を実現できる。
Here, the current flowing through the external connection terminals 11 to 13 is large, but since the 3Y connection is made, the current flowing through the coils 11U to 13W is 1/3 of the current flowing through the external connection terminals 11 to 13. Therefore, if the currents that can flow through all the coils 11U to 23W are the same, the output current of the 1Y connection can be 1, and the output current of the 3Y connection can be 3.
In this way, approximation of the maximum output curve with the total output can be realized by making the coils having the same wire diameter and the same number of turns into the 1Y connection and the 3Y connection.

図2に本発明の第2の実施例を示す。
図2は、本発明を8極12スロットの永久磁石型発電機3に適用した場合の巻線結線方法を示す図である。
同図において、11U〜14Uは低誘起電圧のU相、11V〜14Vは低誘起電圧のV相、11W〜14Wは低誘起電圧のW相、21U〜24Uは中誘起電圧のU相、21V〜24Vは中誘起電圧のV相、21W〜24Wは中誘起電圧のW相、31U〜34Uは高誘起電圧のU相、31V〜34Vは高誘起電圧のV相、31W〜34Wは高誘起電圧のW相の各固定子にそれぞれ巻かれたコイルを表す。この各コイルは、同一線径および同一巻数で構成されている。
以下、図3に示す主回路単線結線図を参照しながら、図2について説明する。
FIG. 2 shows a second embodiment of the present invention.
FIG. 2 is a diagram showing a winding connection method when the present invention is applied to an 8-pole 12-slot permanent magnet generator 3.
In the figure, 11U to 14U are U phase of low induced voltage, 11V to 14V are V phase of low induced voltage, 11W to 14W are W phase of low induced voltage, 21U to 24U are U phase of medium induced voltage, and 21V to 24V is the medium induction voltage V phase, 21W to 24W is the medium induction voltage W phase, 31U to 34U is the high induction voltage U phase, 31V to 34V is the high induction voltage V phase, and 31W to 34W is the high induction voltage. It represents a coil wound around each W-phase stator. Each of these coils has the same wire diameter and the same number of turns.
Hereinafter, FIG. 2 will be described with reference to the main circuit single-line diagram shown in FIG.

コイル11U、21Uおよび31Uは、同一線径および同一巻数で構成され、同一の固定子テイースに巻かれたるために、同一の誘起電圧を発生する。
他の固定子テイースにそれぞれ巻かれたコイル12U、22Uおよび32U、コイル13U、23Uおよび33U、およびコイル14U、24Uおよび34Uも上記と同一の誘起電圧を発生する。
Coils 11U, 21U, and 31U are configured with the same wire diameter and the same number of turns, and are wound around the same stator teeth, and therefore generate the same induced voltage.
Coils 12U, 22U and 32U, coils 13U, 23U and 33U, and coils 14U, 24U and 34U wound around the other stator teeth also generate the same induced voltage as described above.

また、別の固定子テイースにそれぞれ巻かれたコイル11V、21Vおよび31V、コイル12V、22Vおよび32V、コイル13V、23Vおよび33V、およびコイル14V、24Vおよび34Vは、同一線径および同一巻数で構成され、コイル11U等とは位相の異なる別の同一の誘起電圧を発生する。 In addition, coils 11V, 21V and 31V, coils 12V, 22V and 32V, coils 13V, 23V and 33V, and coils 14V, 24V and 34V wound around different stator teeth have the same wire diameter and the same number of turns. Then, another same induced voltage having a phase different from that of the coil 11U or the like is generated.

さらにまた、別の固定子テイースにそれぞれ巻かれたコイル11W、21Wおよび31W、コイル12W、22Wおよび32W、コイル13W、23Wおよび33W、およびコイル14W、24Wおよび34Wは、同一線径および同一巻数で構成され、コイル11U等および11V等とは位相の異なる別の同一の誘起電圧を発生する。 Furthermore, coils 11W, 21W and 31W, coils 12W, 22W and 32W, coils 13W, 23W and 33W, and coils 14W, 24W and 34W wound around different stator teeth have the same wire diameter and the same number of turns. The same induced voltage is generated that is different in phase from the coils 11U and 11V.

コイル11U、12U、13Uおよび14Uは、それぞれ並列に接続されて低誘起電圧のU相を生成し、コイル11V、12V、13Vおよび14Vは、それぞれ並列に接続されて低誘起電圧のV相を生成し、およびコイル11W、12W、13Wおよび14Wは、それぞれ並列に接続されて低誘起電圧のW相を生成する。
それぞれ並列に接続された各相コイルは、4Y結線されて、外部接続端子11,12,13より交流リアクトル104に接続される。
Coils 11U, 12U, 13U and 14U are connected in parallel to generate a low induced voltage U phase, and coils 11V, 12V, 13V and 14V are connected in parallel to generate a low induced voltage V phase, respectively. The coils 11W, 12W, 13W, and 14W are connected in parallel to generate a W phase with a low induced voltage.
Each phase coil connected in parallel is 4Y-connected and connected to the AC reactor 104 through the external connection terminals 11, 12, and 13.

コイル21Uと22U、および13Uと14Uは、それぞれ直列に接続され、さらに並列に接続されて中誘起電圧のU相を生成し、コイル11Vと12V、および13Vと14Vは、それぞれ直列に接続され、さらに並列に接続されて駐誘起電圧のV相を生成し、コイル11Wと12W、および13Wと14Wは、それぞれ直列に接続され、さらに並列に接続されて中誘起電圧のW相を生成する。
それぞれ直並列に接続された各相コイルは、2Y結線されて、外部接続端子21,22,23より交流リアクトル105に接続される。
Coils 21U and 22U, and 13U and 14U are connected in series, and are further connected in parallel to generate a U phase of a medium induced voltage. Coils 11V and 12V, and 13V and 14V are connected in series, Furthermore, it is connected in parallel to generate the V phase of the parking induced voltage, and the coils 11W and 12W and 13W and 14W are connected in series, and further connected in parallel to generate the W phase of the medium induced voltage.
Each phase coil connected in series and parallel is connected in 2Y and connected to the AC reactor 105 through the external connection terminals 21, 22, and 23.

コイル31U、32U、33Uおよび34Uは、直列に接続されて高誘起電圧のU相を生成し、コイル31V、32V、33Vおよび34Vは、直列に接続されて高誘起電圧のV相を生成し、コイル31W、32W、33Wおよび34Wは、直列に接続されて高誘起電圧のW相を生成する。
それぞれ直列に接続された各相コイルは、1Y結線されて、外部接続端子31,32,33より交流リアクトル106に接続される。
Coils 31U, 32U, 33U and 34U are connected in series to generate a U phase with high induced voltage, and coils 31V, 32V, 33V and 34V are connected in series to generate a V phase with high induced voltage, Coils 31W, 32W, 33W and 34W are connected in series to generate a W phase having a high induced voltage.
Each phase coil connected in series is 1Y-connected, and is connected to the AC reactor 106 through the external connection terminals 31, 32, 33.

コイル31U〜コイル34Wは、1Y結線されて高誘起電圧を発生し、外部接続端子31〜33より交流リアクトル106に接続される。この1Y結線は低回転数から発電を開始するが、出力は少ない。従って、外部接続端子31〜33に流れる電流は少ない。
コイル21U〜コイル24Wは、2Y結線されて中誘起電圧を発生し、外部接続端子21〜23より交流リアクトル105に接続される。この2Y結線は中回転数から発電を開始するが、出力は中位である。従って、外部接続端子21〜23に流れる電流は、外部接続端子31〜33よりは多いが中位である。
コイル11U〜コイル14Wは、4Y結線されて低誘起電圧を発生し、外部接続端子11〜13より交流リアクトル104に接続される。この4Y結線は高回転数から発電を開始し、出力は多い。従って、外部接続端子11〜13に流れる電流は一番多い。
Coil 31U to coil 34W are 1Y-connected to generate a high induced voltage, and are connected to AC reactor 106 from external connection terminals 31 to 33. This 1Y connection starts power generation at a low rotational speed, but the output is small. Therefore, the current flowing through the external connection terminals 31 to 33 is small.
Coil 21 </ b> U to coil 24 </ b> W are connected in 2Y to generate a medium induced voltage, and are connected to AC reactor 105 through external connection terminals 21 to 23. This 2Y connection starts power generation from the medium rotational speed, but the output is medium. Therefore, the current flowing through the external connection terminals 21 to 23 is higher than that of the external connection terminals 31 to 33, but is medium.
The coils 11U to 14W are 4Y connected to generate a low induced voltage, and are connected to the AC reactor 104 from the external connection terminals 11 to 13. This 4Y connection starts power generation at a high rotational speed and has a large output. Therefore, the most current flows through the external connection terminals 11 to 13.

ここで、外部接続端子11〜13に流れる電流は多いが、4Y結線されているので各コイル11U〜コイル14Wに流れる電流は、外部接続端子11〜13に流れる電流の1/4になる。
また外部接続端子21〜23に流れる電流は二番目に多いが、2Y結線されているので各コイル21U〜コイル24Wに流れる電流は、外部接続端子21〜23に流れる電流の1/2になる。
従って、全てのコイル11U〜コイル23Wに流せる電流を同一とし、1Y結線の出力電流を1とすると、2Y結線の出力電流を2、4Y結線の出力電流を4とすることができる。
このように、同一線径および同一巻数で構成されるコイルを1Y結線、2Y結線および4Y結線とすることにより、合計出力が最大出力曲線の近似を実現できる。
Here, the current flowing through the external connection terminals 11 to 13 is large, but since the 4Y connection is made, the current flowing through the coils 11U to 14W is 1/4 of the current flowing through the external connection terminals 11 to 13.
The current flowing through the external connection terminals 21 to 23 is the second largest, but since the 2Y connection is made, the current flowing through the coils 21U to 24W is ½ of the current flowing through the external connection terminals 21 to 23.
Therefore, if the currents that can be passed through all the coils 11U to 23W are the same and the output current of the 1Y connection is 1, the output current of the 2Y connection can be 2 and the output current of the 4Y connection can be 4.
In this way, approximation of the maximum output curve can be realized by setting the coils having the same wire diameter and the same number of turns to the 1Y connection, the 2Y connection, and the 4Y connection.

上記の説明では、6極9スロットおよび8極12スロットの永久磁石型発電機3に適用した場合の巻線結線方法について説明したが、これらの極数とスロット数の組合せの整数倍の永久磁石型発電機にも適用できる。さらに10極15スロット等の極数の1.5倍のスロット数を有する永久磁石型発電機にも、5Y、3Y、1Y等の結線にすることで適用できる。
また、コギングトルクを小さくするために、極数対スロット数を2対3以外としたスロットコンビネーションにおいても、固定子スロット数が9の倍数であれば、結線方法を3Y、1Yに、固定子スロット数が12の倍数であれば、結線方法を4Y,2Y,1Yにすることで適用できる。
In the above description, the winding connection method when applied to the 6-pole 9-slot and 8-pole 12-slot permanent magnet generator 3 has been described. However, the permanent magnet is an integral multiple of the combination of the number of poles and the number of slots. It can also be applied to type generators. Furthermore, the present invention can also be applied to permanent magnet generators having 1.5 times the number of poles, such as 10 poles and 15 slots, by connecting wires such as 5Y, 3Y, and 1Y.
Further, in order to reduce the cogging torque, even in a slot combination in which the number of poles versus the number of slots is other than 2 to 3, if the number of stator slots is a multiple of 9, the connection method is 3Y, 1Y, and the stator slot If the number is a multiple of 12, it can be applied by setting the connection method to 4Y, 2Y, 1Y.

本発明の分散電源用永久磁石型発電機の巻線方法によれば、風速計や高価なPWMコンバータが不要であり、さらに永久磁石型発電機内の巻線の種類を減少させたために、安価に構成することができ、前記PWMコンバータでは必要となる待機電力が不要になるので、年間を通した発電量を増加させる事ができ、実用上おおいに有用である。
上記は、風力により説明したが、例えば、水力のように水車の形状が定まれば、最大出力を取り出すときの回転数対出力特性が一義的に定まるような用途にも適用可能である。
According to the winding method of the permanent magnet generator for a distributed power source of the present invention, an anemometer and an expensive PWM converter are unnecessary, and furthermore, since the types of windings in the permanent magnet generator are reduced, it is inexpensive. Since the standby power required for the PWM converter is not necessary, the amount of power generation throughout the year can be increased, which is extremely useful in practice.
The above has been described with reference to wind power. However, for example, if the shape of a water turbine is determined like hydraulic power, the present invention can also be applied to applications in which the rotational speed versus output characteristics when the maximum output is taken out are uniquely determined.

本発明の第1の実施例であり、6極9スロットの永久磁石型発電機に適用した場合の巻線結線方法を示す図である。It is a 1st example of the present invention, and is a figure showing a winding connection method at the time of applying to a 6 pole 9 slot permanent magnet type generator. 本発明の第2の実施例であり、8極12スロットの永久磁石型発電機に適用した場合の巻線結線方法を示す図である。It is a 2nd Example of this invention, and is a figure which shows the winding connection method at the time of applying to an 8 pole 12 slot permanent magnet generator. 本発明の第2の実施例における分散電源用発電装置の主回路単線結線図である。It is a main circuit single line connection figure of the power generator for distributed power supplies in the 2nd example of the present invention. 本発明の第1の実施例における6極9スロットの永久磁石型発電機の固定子および回転子を示す図である。It is a figure which shows the stator and rotor of a 6 pole 9 slot permanent magnet type generator in 1st Example of this invention. 分散電源用発電装置の回転数対風車出力特性図である。It is a rotation speed vs. windmill output characteristic figure of the power generator for distributed power supplies. 風速をパラメータとした時の、風車の回転数対出力特性の概要を説明する図である。It is a figure explaining the outline | summary of the rotation speed versus output characteristic of a windmill when a wind speed is made into a parameter. 従来および本発明の第1の実施例における分散電源用発電装置の主回路単線結線図である。It is the main circuit single wire connection diagram of the power generator for distributed power supplies in the former and the 1st example of the present invention.

符号の説明Explanation of symbols

11U〜34U U相コイル
11V〜34V V相コイル
11W〜34W W相コイル
101 風車
102 分散電源用発電装置
103 永久磁石型発電機
104〜106 第1〜第3のリアクトル
107〜109 第1〜第3のダイオード整流器
111 正側出力端子
112 負側出力端子
113 バッテリー
301〜309 固定子テイース
































11U to 34U U-phase coil 11V to 34V V-phase coil 11W to 34W W-phase coil 101 Windmill 102 Power generator for distributed power supply 103 Permanent magnet type generators 104 to 106 First to third reactors 107 to 109 First to third Diode Rectifier 111 Positive Output Terminal 112 Negative Output Terminal 113 Batteries 301-309 Stator Taste
































Claims (2)

風車又は水車により駆動される永久磁石型発電機の交流出力を整流して直流出力する分
散電源用発電装置において、前記永久磁石型発電機の回転子の極数を6の整数倍とし、固
定子スロット数を9の整数倍とし、固定子スロットに納める2巻線を同一線径および同一巻数で構成される1種類の巻線とし、巻線端の結線方法を3Yおよび1Yの2種類とすることを特徴とする分散電源用永久磁石型発電機の巻線方法。
In a distributed power generator for rectifying the AC output of a permanent magnet generator driven by a windmill or a water turbine and outputting the DC output, the number of poles of the rotor of the permanent magnet generator is an integer multiple of 6, and the stator The number of slots is an integer multiple of 9, and the two windings housed in the stator slot are one type of winding with the same wire diameter and the same number of windings, and the winding end connection methods are two types, 3Y and 1Y. A winding method for a permanent magnet generator for a distributed power source.
前記請求項1記載の分散電源用永久磁石型発電機において、前記回転子の極数を8の整
数倍とし、前記固定子スロット数を12の整数倍とし、固定子スロットに納める3巻線を同一線径および同一巻数で構成される1種類の巻線とし、巻線端の結線方法を4Y、2Yおよび1Yの3種類とすることを特徴とする分散電源用永久磁石型発電機の巻線方法。
The permanent magnet generator for a distributed power source according to claim 1, wherein the number of poles of the rotor is an integer multiple of 8, the number of stator slots is an integer multiple of 12, and three windings are accommodated in the stator slots. Winding of a permanent magnet generator for a distributed power source, characterized in that one type of winding is configured with the same wire diameter and the same number of turns, and the winding ends are connected in three types: 4Y, 2Y and 1Y. Method.
JP2005297050A 2005-10-12 2005-10-12 Winding method of permanent magnet generator for distributed power supply Expired - Fee Related JP4822793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297050A JP4822793B2 (en) 2005-10-12 2005-10-12 Winding method of permanent magnet generator for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297050A JP4822793B2 (en) 2005-10-12 2005-10-12 Winding method of permanent magnet generator for distributed power supply

Publications (2)

Publication Number Publication Date
JP2007110790A JP2007110790A (en) 2007-04-26
JP4822793B2 true JP4822793B2 (en) 2011-11-24

Family

ID=38036200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297050A Expired - Fee Related JP4822793B2 (en) 2005-10-12 2005-10-12 Winding method of permanent magnet generator for distributed power supply

Country Status (1)

Country Link
JP (1) JP4822793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242574A (en) * 2013-06-24 2014-12-24 东元电机股份有限公司 Winding structure and method of motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868246B (en) * 2012-09-19 2015-07-22 武汉新能源接入装备与技术研究院有限公司 High-capacity low-speed permanent-magnet wind-driven generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921114A1 (en) * 1979-05-25 1980-12-04 Bosch Gmbh Robert WINDING PROCESS FOR AN ELECTRIC GENERATOR AND THREE-PHASE GENERATOR PRODUCED AFTER THIS
JPS57208849A (en) * 1981-06-15 1982-12-22 Mitsubishi Electric Corp Wind power generator
JPS62168772A (en) * 1986-12-19 1987-07-25 さくら工業株式会社 Load-carrying platform for motorcycle and manufacture thereof
JPH0199459A (en) * 1987-10-09 1989-04-18 Hitachi Ltd Armature winding for charging generator
JP3147438B2 (en) * 1991-10-28 2001-03-19 株式会社デンソー Generator motor for vehicles
JPH1084700A (en) * 1996-09-06 1998-03-31 Shinko Electric Co Ltd Generator
JPH114553A (en) * 1997-04-16 1999-01-06 Japan Servo Co Ltd Permanent magnet rotating machine with concentrated wound stator
JP2001298926A (en) * 2000-04-14 2001-10-26 Hideo Kawamura Generating device with power generation characteristics of two systems
JP2002272072A (en) * 2001-03-09 2002-09-20 Nakatomo Sangyo Kk Dc power generator and dc power supply equipment
JP3973535B2 (en) * 2002-10-24 2007-09-12 東洋電機製造株式会社 Power generator for distributed power supply
JP4544855B2 (en) * 2003-12-22 2010-09-15 東洋電機製造株式会社 Structure of permanent magnet generator for distributed power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242574A (en) * 2013-06-24 2014-12-24 东元电机股份有限公司 Winding structure and method of motor
CN104242574B (en) * 2013-06-24 2016-08-10 东元电机股份有限公司 Motor winding structure and method for winding thereof

Also Published As

Publication number Publication date
JP2007110790A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
EP2412091B1 (en) Electric motor system
EP2421123B1 (en) Power generator
US8487499B2 (en) Electric rotating machine drivable with a single three-phase inverter
JP6008473B2 (en) Generator and manufacturing method thereof
US20110025162A1 (en) Rotating Electrical Machine
US20160049838A1 (en) Synchronous machine
CN106300715A (en) Electric motor car, wheel and switched reluctance machines thereof
JP4544855B2 (en) Structure of permanent magnet generator for distributed power supply
US20030057789A1 (en) Five phase alternating current generator
JP4822793B2 (en) Winding method of permanent magnet generator for distributed power supply
JP2009148020A (en) Permanent magnet type alternator
CN108880050B (en) Brushless direct current motor stator winding method
JP5334167B2 (en) Magnet generator
JPH10225035A (en) Armature winding
CN100583596C (en) Double Y moving ten degree commutating generator
Mohammad et al. Novel five-phase permanent magnet generator systems for wind turbine applications
CN110063018A (en) Field-winding type rotating electric machine
JP4245369B2 (en) Rectifier circuit for power generator for distributed power supply
CN209982291U (en) DC stator winding of brushless generator
CN109038984B (en) Brushless direct current motor stator winding method
JP5300427B2 (en) Rectifier circuit for power generator for distributed power supply
JP5349258B2 (en) Power generator for distributed power supply
CN200959561Y (en) 2-polar convex-polar rectifying generator without casing
CN213990327U (en) High-efficiency permanent-magnet DC generator
JP2011062029A (en) Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4822793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees