JP4810719B2 - Protective clothing cooling system - Google Patents

Protective clothing cooling system Download PDF

Info

Publication number
JP4810719B2
JP4810719B2 JP2000158850A JP2000158850A JP4810719B2 JP 4810719 B2 JP4810719 B2 JP 4810719B2 JP 2000158850 A JP2000158850 A JP 2000158850A JP 2000158850 A JP2000158850 A JP 2000158850A JP 4810719 B2 JP4810719 B2 JP 4810719B2
Authority
JP
Japan
Prior art keywords
air
cooling
layer
protective clothing
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000158850A
Other languages
Japanese (ja)
Other versions
JP2001288605A (en
Inventor
昌三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000158850A priority Critical patent/JP4810719B2/en
Publication of JP2001288605A publication Critical patent/JP2001288605A/en
Application granted granted Critical
Publication of JP4810719B2 publication Critical patent/JP4810719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は暑熱環境下で作業する際に身体を冷却するために装着する冷却用材、より具体的には衣服または装具に関するものである。特に作業環境の熱、薬品、放射線等から身体を守る保護衣着用時に涼風を得ることができず、体温上昇と多量発汗が伴う場合に保護衣の内に着用又は装着するものに関するものである。
【0002】
【従来の技術】
製鉄や精鋼現場での作業者、ガラスやその他の窯業関係の作業者等の暑熱環境で作業する作業者は輻射熱で身体温度が上昇すると共に多量発汗する。あるいは原子力施設等などの被爆危険性のある環境下で作業する作業者は放射線防護用のシール性の高い密閉型保護衣を着用するので暑く発汗量も高い。また、汗から生ずる不快な臭気などが防護衣内にこもる。
【0003】
これらに対処すべく身体を冷却する方法が、いくつか提案されている。例えば以下に示すような技術が挙げられる。特開昭55-106171に示されるようなCO2等の冷却媒体を衣服内に収納する方法。特開平2-145801に示されるような携帯冷却ユニットで冷却した冷風を作業服内に送風する方法。特開平4-209807に示されるような衣服内にパイプを張り巡らしパイプ内の冷媒を循環させる方法。特開平4-209809に示されるような冷風通路を有し内側にはっ水性多孔材を配して冷風を該多孔から身体に吹き出す方法。特開平6-220705に示されるような電子冷却素子をユニット化して用いる方法などがある。
【0004】
冷却媒体を衣服内に収納する方法の場合、ドライアイスの他、氷嚢や冷媒のアイスパックを冷蔵庫等で冷却した後衣服内に挿入する。この場合冷却媒体の準備保管に装置設備を要することや、気化または液化した冷却媒体の処理対応、冷却可能時間に制限があること、冷却温度の制御が困難といった問題点がある。
【0005】
冷風を送気する方法は冷却システムに別途装置設備を要すること、また気密型の保護衣を着用した場合等は送風により衣服内が余圧となり衣服が膨れ上がるために作業性が低下するといった問題がある。
【0006】
衣服に配備したパイプ内の冷媒を循環させる方法は上記と同様に別途冷却装置設備を要すること、冷却媒体を循環するためのポンプを要することあるいはパイプの可とう性が低い場合は動作の支障となり作業性が低下するといった問題がある。
【0007】
冷風通路を経由してはっ水性多孔材から冷風を送る方法では冷却装置や作業環境外の空気を送る装置が必要となること、あるいは、はっ水性多孔材が身体から発生する汗やその他汚れにより目詰まりするといった問題がある。
【0008】
電子冷却素子を用いる方法では素子の加熱側に送風等で別途冷却する機構を設ける必要があり、電源を含めた装置自体が大掛かりとなり作業性が劣ることや加熱側の産熱の処理といった問題が生じる。いずれの場合も、装置の大型化、冷却効率の低さ、更に装着した時の作業性などが劣り、暑熱環境下での作業に適するものではない。
【0009】
また、いずれのものも,水分吸着後に発生する臭気については言及されておらず、再着用した時などに不愉快な匂いが発生する対策はなされていない。
【0010】
【発明が解決しようとする課題】
本発明は上記の従来技術における問題を解決しようとするものである。すなわち、暑熱により多量発汗するような作業環境下に於いて、作業者の身体を冷却し、長時間作業が可能であり多くの特別な付属装置や送気ラインを具備することなく、作業性の低下が小さい冷却用材及び冷却システムを提供しようとするものである。特にJIS T 8115:1998で区分されている気密形防護服あるいは密閉形防護服のうち送気式でない防護服に適した冷却用材であり、かつ防護服内の空気あるいは、防護服外の空気を小型の送風機で循環、送入することを特徴とするものである。更に、再使用する場合についても不快感を伴わない防護衣を提供するものである。
【0011】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討の結果本発明に至った。すなわち、本発明は、人体の肌に接する方から(1)水分移行層、(2)空気通過層および(3)空気遮断層の3層に積層された構造からなる冷却用材である。(1)の水分が(2)で蒸発し、その時気化熱として奪われ温度低下することを特徴とする。また(1)水分移行層を構成する繊維が抗菌性繊維からなり、更に該冷却用材の(2)に空気を送り込む機構を備えることにより更に冷却効率を向上させる冷却システムである。
【0012】
暑熱環境下での作業とくに気密型防護服あるいは密閉型防護服等の保護衣を着用しての作業時には熱ストレスが甚だしく、体温上昇も激しい。生理学的には、深部体温が42℃以上になると長時間耐えることができず生命維持に危険が生じると言われており、体温低下のために多量の発汗作用が起こる。また最大発汗量は、諸説もあるが1000ml/時間以上に達することもあると言われている。
【0013】
本発明は発汗による身体の冷却機構に着目したものである。すなわち、発汗で生じた水分を素早く蒸発させ、その蒸発潜熱を奪うことで冷却しようとするものである。水分移行層(1)とは、身体から発散した汗水分を吸収すると共にその水分が蒸発する部位である。
【0014】
従って、水分移行層は汗水分を吸収移行しやすい素材が良く、例えば綿、麻等の天然繊維、レーヨン、ポリノジック、リオセル等の再生繊維、アセテート、トリアセテート、プロミックス等の半合成繊維といった元来親水性繊維から成る繊維集合体が挙げられる。また、本来疎水性であるポリエステル、ナイロン、ポリプロピレン、ポリエチレンなどの合成繊維でもよいが、原糸改質や表面加工により濡れ性を高めたり、極細化や異型断面、親水性モノマーを共重合とすることで水分移行性を高めたりしたポリエステル、ナイロン、ポリプロピレン、ポリエチレン等やその共重合体、その他合成繊維の繊維集合体が更に好ましい。またこれらの混合品や複合化したり、混繊した糸条から成る繊維集合体等も挙げられる。繊維集合体の形状としては通常の衣料用の織物、編物、または不織布、紙およびこれらを組み合わせたものである。
【0015】
更にこれらの繊維に抗菌性を付与したものである。抗菌性の付与の方法はいろいろ古くから知られている(特開昭54-86584、特開昭61-245378、特開昭4-814365)。本発明に供する抗菌繊維は特にいずれの方法で処理されたもので充分である。特に、ホスホニウム塩を主鎖および/または側鎖に結合した高分子物質と親水性物質を含むものが、耐久性もよく好ましい。抗菌性を付与することにより、使用後の菌の発生もなく、消臭効果が得られる。
【0016】
空気通過層とは、水分移行層に保持された汗水分が蒸発すべき空間を意味する。ここで汗水分が蒸発すると共に蒸発潜熱が奪われて(1)の温度が低下する。水分の蒸発を促すために(2)に含まれる空気が定量的に移動することが好ましく、そのために送風機構を備えるとさらに良い。
【0017】
(2)は水分移行層の表面に沿って空気が容易に移動するよう連続した空間が存在する構造が必要である。このような構造として厚さが2mm以上100mm以下、かさ高性が 2cm3/g以上200 cm3/g以下である空気通過層が本技術の目的を達成することができる。その材料の例としては特開平7−68061に示される熱可塑性樹脂の三次元ランダム接合した網状構造体、あるいは20dtex以上200dtex以下程度のエステル、ナイロン、ポリプロピレン、ポリエチレンなどの合成繊維モノフィラメントを用いたダブルラッセル編物等が挙げられる。
【0018】
空気通過層の厚さが2mm未満の場合は充分な空間を得られず、空気の流通が妨げられて、水分移行層に含まれる水を蒸発させることができない。また、100mmを超える場合は水分移行層表面での空気の流速が低くなると共に、衣服として着用することを考慮すると大きくなりすぎ作業性が低下する。
【0019】
空気通過層のかさ高性が2cm3/g未満の場合は繊維等の充填率が上がり、空気の流れの抵抗となるために冷却効果が劣る。また200cm3/gを超える場合は充分な空間が得られるものの、衣服として着用した際に作業動作によって変形が生じ空気の流通を妨げることとなる。
【0020】
空気処断層とは、(1)より(2)に移動した空気が、この(2)の層を流れやすくするために設けた層である。(3)は一般のフィルムまたは、高密度織物、織編物・不織布へ樹脂などをラミネートまたはコーティングしたもので、特に指定はされない。
【0021】
3層の積層体は、水分移行層に空気通過層の材を貼り合わせて、縫い糸でとめるか、部分的に接着剤を塗布して固定してもよい。また、この貼り合わせたものの空気通過層側にフィルムまたは高密度織物、織編物・不織布へ樹脂などをコーティングしたものを合わせて、糸で縫いとめるか接着剤にて固定して構成される。
【0022】
この冷却用材は人体にそのまま着用してもよいが、暑熱環境下などで作業する時の密閉型防護服を着用する際には、更にその冷却効果を発揮する。
【0023】
ここで図面で本発明を説明する。第1図は本発明による冷却用材の構成図であり、(1)は水分移行層、(2)は空気通過層、(3)は空気遮断層をそれぞれ示し、(4)は(1)〜(3)を積層してなる冷却用材を示す。第2図は本発明における冷却システムであり、(23)の送風機より発生した気流を(22)の送風管を通じて、(4)の冷却用材に配置した送風ノズルより送り込む機構であることを示す。
【0024】
本発明による冷却用材は必要に応じた形状として、例えばチョッキ、腹巻き、襟巻き、全身または半身を覆う衣服等の任意の形状で身体の冷却に供することができる。本発明による冷却用材を装着した上に保護衣を着用する場合、防護服内に存在する空気を送風機によって循環させて冷却用材の空気通過層に送り込むことが可能である。また、防護服外の空気を送り込む場合には外気の汚染物質が侵入しないよう送風機の空気取り入れ口に粒子ろ過フィルターやガス吸着フィルターを併用しても構わない。
【0025】
【実施例】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例はこの発明を制限するものではなく、前・後記の主旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
【0026】
以下の実施例で評価した各項目の測定法は下記の通りである。
厚さ:7gf/cm3の荷重を掛けた際の厚さを測定した。
かさ高性:試料を15cm×15cmの大きさに切断し、4か所の高さを測定し、体積を求め、試料の体積を重さで除した値で示す。(n=4の平均値)
【0027】
冷却性:以下に本発明の目的とする冷却性の測定方法について詳細に説明する。尚、試験環境は25℃±1℃で行った。
(1)ホットプレート(井内盛栄堂;ECホットプレート、EC−1200)の上に湿潤紙(20cm×20cmのろ紙に300g/mで水を含ませる)を置く。
これを身体の産熱と発汗のモデルとする。
(2)湿潤紙の上に熱伝対温度計の温度検出端を置く。
(3)その上に試料(15cm×15cm)を重ねて置く。
(4)ホットプレートを40℃に設定し加熱する。
(5)約40℃で安定したらホットプレートの電源を切る。
(6)経時時間毎の温度を計測し、電源を切った時点での表示温度t0と各時間における表示温度tの差を低下温度Tとする。20分後の低下温度をT20(℃)とする
(7)ホットプレートのみ単独で40℃に加温した後に電源を切り、(6)と同様に温度計測し、20分後の低下温度をT0(℃)とする。
(8)冷却性を次の式で求める。
冷却性(℃/20分)=T0−T20
【0028】
抗菌性:JIS L 1902-1998で制定の繊維製品の抗菌性試験法(統一法)マニュアルに準じた。即ち、密閉容器の底部に予めサンプルを2gを置き、このサンプルの上に予め培養した1/50ブロースで希釈した黄色ブドウ球菌をの菌液0.2mlを蒔きね37℃のインキュベーター内に18時間静置した後、20mlのSCDLP培地を添加して充分振とうして菌を洗い落とす。これを普通寒天培地に置き24時間後に菌数を計測し、同時に実施した無加工試料布による菌数と比較して抗菌性を判断し、同時に臭気を嗅いで判断した。
【0029】
実施例1
水分移行層(1)としてキュプラフィラメントタフタ織物(A)(繊度;66dtex×82.5d、織密度;278本/5cm×176本/5cm、質量;65g/m)を用いた。このタフタにニッカノンRB 20g/l(第四級アンモニウム塩系抗菌、日華化学株式会社製)を付与させた。
空気遮断層(2)として0.03mm厚さのポリエチレンフィルム(C)を用いた。空気通過層としてポリエステル系エラストマーの連続線条ランダムループを有する網状弾性体を15cm×15cm切り出して試験片(B)とした。その厚さは32.3mm、かさ高性は22.7cm3/gである。(A)と(C)を各々両面に配した袋状として(B)を挟み込んで端部を糸で布つけて固定し、冷却用材−1を作成した。この冷却用材−1の一方の端部に内径8mmのポリエチレンチューブをスリットして作成した溝空きタイプの送風ノズルを取り付けた。このノズルにポリエチレンチューブを介して送風ポンプと接続した。
上記に基づいて冷却性を測定した。その際、試料の配置は下方からホットプレート、湿潤紙、温度検出端、冷却用材−1とし、冷却用材−1は下方湿潤紙側に(A)が配置されるよう置いた。さらに、この測定系全体を0.04mm厚さのポリエチレンフィルム(D)で覆った。これは、防護服を最外層に着用することを想定してそのモデルとして使用した。温度検出端の温度が40℃で安定した後ホットプレートの電源を停止すると共に、送風機より6Lt/分で空気を送った。温度変化を第5図に示すと共に、冷却性を第1表に示した。
【0030】
実施例2
空気通過層として地糸としてポリエステルフィラメント糸(55dtex、24フィラメント:5-スルホイソフタル酸ジメチルエステルのトリ-n-ブチルヘキサデシルホスホニウム塩3mol%を共重合したもの)をパイル糸としてナイロンフィラメント糸(66dtexモノフィラメント)から成るダブルラッセル編物(B2)を用いた以外は実施例1と同様の構成とした。ここでB2の厚さは3.4mm、かさ高性は10.3g/cm3である。
実施例1と同様に冷却性を測定し、その結果を第5図に示すと共に、冷却性を第1表に示した。
【0031】
ホットプレートのみで40℃に安定し、電源停止20分後の表面温度を測定した。この時の温度をT0とした。
比較例1
ホットプレートに湿潤紙を重ね、更に実施例1と同様に測定系を0.04mm厚さのポリエチレンフィルム(D)で覆った場合を比較例1とした。
比較例2
空気を送り込まないこと以外は実施例1と同じとした。
比較例3
空気を送り込まないこと、水分移行層には抗菌処理なし以外は実施例2と同じとした。
【0032】
【表1】

Figure 0004810719
【0033】
【発明の効果】
以上の説明より本発明に係る冷却用材および冷却システムにあたっては、(1)抗菌機能を付与した水分移行層、(2)空気通過層、(3)空気遮断層が積層された3層構造からなることにより、(1)の水分が(2)で熱を奪われて温度低下することから、またさらに該冷却用材の(2)に空気を送り込む機構を備えた冷却システムであることからより一層冷却効果が上がる。従って長時間の暑熱環境下で作業するにあたり、密閉形防護服の下に着用する場合は、特に優れた冷却効果とともに、作業性にも優れて安全性、衛生的かつ効率性に寄与するものである。
【図面の簡単な説明】
【図1】 本発明による冷却用材の構成図例
【図2】 本発明における冷却用システム例
【図3】 送風ノズル例
【図4】 本発明の実施例における評価装置の断面図例
【図5】 実施例の温度低下の結果
【符号の簡単な説明】
1 水分移行層
2 空気通過層
3 空気遮断層
4 冷却用材
21 送風ノズル
22 送風管
23 送風機
3−a 孔空きタイプ
3−b 溝空きタイプ
40 空気の流れ
41 湿潤紙(発汗した模擬皮膚)
42 ホットプレート
43 ポリエチレンフィルム
44 温度検出端[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling material to be worn for cooling the body when working in a hot environment, and more specifically to clothes or a brace. In particular, the present invention relates to an object to be worn or worn in a protective garment when it is impossible to obtain a cool breeze when wearing a protective garment that protects the body from heat, chemicals, radiation, or the like in the work environment, and a body temperature rise and sweating occur.
[0002]
[Prior art]
Workers working in a hot environment, such as workers on the steelmaking and steelmaking sites, glass and other ceramic industry-related workers, etc., sweat a lot as the body temperature rises due to radiant heat. Alternatively, workers who work in an environment with a risk of being exposed to radiation such as a nuclear facility wear hot sealed protective clothing for radiation protection, and are hot and sweaty. In addition, unpleasant odors and the like resulting from sweat accumulate in the protective clothing.
[0003]
Several methods have been proposed to cool the body to deal with these. For example, the following techniques are listed. A method of storing a cooling medium such as CO2 in clothes as disclosed in JP-A-55-106171. A method of blowing cold air cooled by a portable cooling unit as disclosed in JP-A-2-145801 into work clothes. A method in which a pipe is stretched around clothes as shown in JP-A-4-209807 and the refrigerant in the pipe is circulated. A method having a cold air passage as disclosed in JP-A-4-209809 and disposing a water-repellent porous material on the inside to blow cold air from the porous body to the body. There is a method of using an electronic cooling element as a unit as disclosed in JP-A-6-220705.
[0004]
In the case of the method of storing the cooling medium in the clothes, in addition to dry ice, the ice pack or the ice pack of the refrigerant is cooled in a refrigerator or the like and then inserted into the clothes. In this case, there are problems such as requiring equipment for preparing and storing the cooling medium, handling of the vaporized or liquefied cooling medium, limiting the cooling time, and difficulty in controlling the cooling temperature.
[0005]
The method of supplying cool air requires a separate equipment for the cooling system, and when wearing airtight protective clothing, etc. There is.
[0006]
The method of circulating the refrigerant in the pipes installed in clothing requires a separate cooling device, as described above, requires a pump to circulate the cooling medium, or if the pipe has low flexibility, it hinders operation. There is a problem that workability is lowered.
[0007]
The method of sending cold air from the water-repellent porous material through the cold air passage requires a cooling device or a device that sends air outside the work environment, or the water-repellent porous material is sweat or other dirt generated from the body. There is a problem of clogging.
[0008]
In the method using the electronic cooling element, it is necessary to provide a mechanism for separately cooling the element on the heating side by air blowing, etc., and the apparatus itself including the power source becomes large and the workability is inferior and the problem of heat treatment on the heating side is caused. Arise. In either case, the size of the apparatus, the cooling efficiency is low, and the workability when mounted is inferior, so that it is not suitable for work in a hot environment.
[0009]
In addition, none of them mentions the odor generated after moisture adsorption, and no measures are taken to generate an unpleasant odor when worn again.
[0010]
[Problems to be solved by the invention]
The present invention seeks to solve the above-described problems in the prior art. In other words, in a work environment that sweats due to heat, the worker's body can be cooled, work can be performed for a long time, and workability can be reduced without having many special accessories and air supply lines. It is an object of the present invention to provide a cooling material and a cooling system with low degradation. In particular, it is a cooling material suitable for non-air-feeding protective clothing of airtight protective clothing or sealed protective clothing classified in JIS T 8115: 1998, and air inside the protective clothing or air outside the protective clothing. It is characterized in that it is circulated and sent by a small blower. Furthermore, the present invention provides a protective garment that does not cause discomfort even when it is reused.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have arrived at the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention is a cooling material having a structure in which three layers of (1) a moisture transfer layer, (2) an air passage layer, and (3) an air blocking layer are stacked from the side in contact with the human skin. The water in (1) evaporates in (2) and is then taken away as heat of vaporization, resulting in a temperature drop. In addition, (1) the cooling system further improves the cooling efficiency by providing a mechanism in which the fibers constituting the moisture transfer layer are made of antibacterial fibers and further sending air into the cooling material (2).
[0012]
When working in hot environments, especially when wearing protective clothing such as airtight protective clothing or sealed protective clothing, heat stress is severe and body temperature rises severely. Physiologically, it is said that when the deep body temperature is 42 ° C. or higher, it cannot be endured for a long time, resulting in a risk of life maintenance, and a large amount of sweating occurs due to a decrease in body temperature. The maximum sweating amount is said to reach 1000ml / hour or more, although there are various theories.
[0013]
The present invention focuses on a body cooling mechanism by sweating. That is, the water generated by perspiration is quickly evaporated and the latent heat of vaporization is taken away for cooling. The moisture transfer layer (1) is a part that absorbs sweat moisture emanating from the body and evaporates the moisture.
[0014]
Therefore, the moisture transfer layer is preferably made of a material that easily absorbs and transfers sweat moisture, such as natural fibers such as cotton and hemp, regenerated fibers such as rayon, polynosic, and lyocell, and semi-synthetic fibers such as acetate, triacetate, and promix. Examples thereof include a fiber assembly composed of hydrophilic fibers. Synthetic fibers such as polyester, nylon, polypropylene, polyethylene, etc., which are inherently hydrophobic, may be used, but wetting is improved by modifying the yarn and surface treatment, and ultrafine, atypical cross sections, and hydrophilic monomers are copolymerized. More preferred are polyester, nylon, polypropylene, polyethylene, etc., copolymers thereof, and other fiber assemblies of synthetic fibers that have improved moisture migration. Moreover, the fiber aggregate etc. which consist of these mixed goods, a compounded, or mixed fiber are mentioned. The shape of the fiber assembly is a woven fabric, a knitted fabric, or a nonwoven fabric for ordinary clothing, paper, and a combination thereof.
[0015]
Furthermore, antibacterial properties are imparted to these fibers. Various methods for imparting antibacterial properties have been known for a long time (JP 54-86584, JP 61-245378, JP 4-814365). The antibacterial fiber to be used in the present invention is particularly sufficient to be treated by any method. In particular, those containing a high molecular weight substance having a phosphonium salt bonded to the main chain and / or side chain and a hydrophilic substance are preferable because of their good durability. By imparting antibacterial properties, there is no generation of bacteria after use, and a deodorizing effect can be obtained.
[0016]
The air passage layer means a space where sweat moisture held in the moisture transfer layer should evaporate. Here, the sweat moisture evaporates and the latent heat of vaporization is lost, and the temperature of (1) decreases. In order to promote the evaporation of moisture, it is preferable that the air contained in (2) moves quantitatively, and it is even better to provide a blower mechanism for this purpose.
[0017]
(2) requires a structure in which a continuous space exists so that air easily moves along the surface of the moisture transfer layer. As such a structure, an air passage layer having a thickness of 2 mm to 100 mm and a bulkiness of 2 cm 3 / g to 200 cm 3 / g can achieve the object of the present technology. Examples of the material include a three-dimensional random-bonded network structure of thermoplastic resin disclosed in JP-A-7-68061, or a double fiber using a synthetic fiber monofilament such as ester, nylon, polypropylene, polyethylene, etc. of 20 dtex or more and 200 dtex or less. Examples include raschel knitted fabrics.
[0018]
When the thickness of the air passage layer is less than 2 mm, sufficient space cannot be obtained, the air flow is hindered, and water contained in the moisture transfer layer cannot be evaporated. Moreover, when exceeding 100 mm, while the flow velocity of the air on the surface of a moisture transfer layer becomes low, when it considers wearing as clothes, it will become large too much and workability | operativity will fall.
[0019]
When the bulkiness of the air passage layer is less than 2 cm 3 / g, the filling rate of fibers and the like is increased, and the air flow resistance becomes poor, so the cooling effect is inferior. In addition, when it exceeds 200 cm 3 / g, a sufficient space can be obtained, but when worn as clothes, deformation occurs due to work operation and obstructs air circulation.
[0020]
The air treatment fault is a layer provided so that the air moved from (1) to (2) can easily flow through the layer of (2). (3) is a general film or a high-density woven fabric, woven / knitted fabric / nonwoven fabric laminated with a resin or the like, and is not particularly specified.
[0021]
The three-layer laminate may be fixed by attaching the material of the air passage layer to the moisture transfer layer and fastening with a sewing thread, or by partially applying an adhesive. In addition, a film, a high-density woven fabric, a woven / knitted fabric / non-woven fabric coated with a resin or the like is combined on the air passage layer side of the bonded material, and the material is sewn with a thread or fixed with an adhesive.
[0022]
This cooling material may be worn on the human body as it is, but when the sealed protective clothing is worn when working in a hot environment, the cooling effect is further exhibited.
[0023]
The invention will now be described with reference to the drawings. FIG. 1 is a configuration diagram of a cooling material according to the present invention, (1) shows a moisture transfer layer, (2) shows an air passage layer, (3) shows an air barrier layer, and (4) shows (1) to The cooling material formed by laminating (3) is shown. FIG. 2 shows a cooling system according to the present invention, which shows a mechanism for sending an air flow generated from the blower of (23) through a blower pipe of (22) from a blower nozzle arranged in the cooling material of (4).
[0024]
The cooling material according to the present invention can be used for cooling the body in an arbitrary shape such as a waistcoat, a belly wrap, a collar wrap, or a clothing covering the whole body or half of the body as required. When wearing a protective garment on which the cooling material according to the present invention is mounted, the air present in the protective clothing can be circulated by a blower and sent into the air passage layer of the cooling material. In addition, when air outside the protective garment is fed, a particle filtration filter or a gas adsorption filter may be used in combination with the air intake of the blower so that contaminants in the outside air do not enter.
[0025]
【Example】
Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention, and all modifications made without departing from the gist of the preceding and following descriptions are all included in the technical scope of the present invention.
[0026]
The measuring method of each item evaluated in the following examples is as follows.
Thickness: The thickness when a load of 7 gf / cm 3 was applied was measured.
Bulkiness: A sample is cut into a size of 15 cm × 15 cm, heights at four locations are measured, a volume is obtained, and a value obtained by dividing the volume of the sample by the weight is shown. (Average value of n = 4)
[0027]
Coolability: The method for measuring the coolability as an object of the present invention will be described in detail below. The test environment was 25 ° C. ± 1 ° C.
(1) A wet paper (20 g × 20 cm filter paper containing water at 300 g / m 2 ) is placed on a hot plate (Iuchi Seieido; EC hot plate, EC-1200).
This is a model of body heat generation and sweating.
(2) Place the temperature detection end of the thermocouple thermometer on the wet paper.
(3) A sample (15 cm × 15 cm) is placed thereon.
(4) Set the hot plate at 40 ° C. and heat.
(5) When stable at about 40 ° C., turn off the hot plate.
(6) The temperature for each elapsed time is measured, and the difference between the display temperature t0 when the power is turned off and the display temperature t at each time is defined as a decrease temperature T. The temperature drop after 20 minutes is set to T20 (° C). (7) Only the hot plate is heated to 40 ° C alone, the power is turned off, and the temperature is measured in the same manner as in (6). (° C).
(8) The cooling property is obtained by the following formula.
Coolability (° C / 20 minutes) = T0-T20
[0028]
Antibacterial properties: Conforms to the antibacterial test method (unified law) manual for textile products established in JIS L 1902-1998. That is, 2 g of a sample is placed in advance on the bottom of a sealed container, 0.2 ml of a bacterial solution of Staphylococcus aureus diluted with 1/50 broth previously cultured on this sample is sprinkled and placed in an incubator at 37 ° C. for 18 hours. Then, 20 ml of SCDLP medium is added and shaken thoroughly to wash off the bacteria. This was placed on a normal agar medium, and the number of bacteria was counted 24 hours later. The antibacterial property was judged by comparing with the number of bacteria by the unprocessed sample cloth, which was carried out at the same time.
[0029]
Example 1
A cupra filament taffeta fabric (A) (fineness: 66 dtex × 82.5 d, weave density: 278/5 cm × 176/5/5, mass: 65 g / m 2 ) was used as the moisture transfer layer (1). Nittanon RB 20 g / l (quaternary ammonium salt antibacterial, manufactured by Nikka Chemical Co., Ltd.) was imparted to this taffeta.
A 0.03 mm thick polyethylene film (C) was used as the air barrier layer (2). A reticulated elastic body having a continuous filament random loop of polyester elastomer as an air passage layer was cut out to 15 cm × 15 cm to obtain a test piece (B). Its thickness is 32.3 mm and its bulkiness is 22.7 cm 3 / g. (A) and (C) were each formed into a bag shape arranged on both sides, and (B) was sandwiched between the ends, and the ends were clothed and fixed with a thread to prepare a cooling material-1. A grooved air blowing nozzle prepared by slitting a polyethylene tube having an inner diameter of 8 mm was attached to one end of the cooling material-1. The nozzle was connected to a blower pump via a polyethylene tube.
Coolability was measured based on the above. At that time, the sample was placed from the lower side with a hot plate, wet paper, temperature detection end, cooling material-1 and the cooling material-1 was placed so that (A) was placed on the lower wet paper side. Further, the entire measurement system was covered with a polyethylene film (D) having a thickness of 0.04 mm. This was used as a model, assuming that protective clothing would be worn on the outermost layer. After the temperature at the temperature detection end was stabilized at 40 ° C., the hot plate was powered off and air was sent from the blower at 6 Lt / min. The temperature change is shown in FIG. 5 and the cooling performance is shown in Table 1.
[0030]
Example 2
Polyester filament yarn (55 dtex, 24 filament: copolymerized with 3 mol% of tri-n-butylhexadecylphosphonium salt of 5-sulfoisophthalic acid dimethyl ester) as a yarn yarn as an air passage layer Nylon filament yarn (66 dtex) as a pile yarn The structure was the same as in Example 1 except that a double raschel knitted fabric (B2) made of monofilament was used. Here, the thickness of B2 is 3.4 mm, and the bulkiness is 10.3 g / cm 3 .
The cooling performance was measured in the same manner as in Example 1. The results are shown in FIG. 5 and the cooling performance is shown in Table 1.
[0031]
The temperature was stabilized at 40 ° C. with only a hot plate, and the surface temperature after 20 minutes of power shutdown was measured. The temperature at this time was T0.
Comparative Example 1
A case in which wet paper was stacked on a hot plate and the measurement system was covered with a polyethylene film (D) having a thickness of 0.04 mm in the same manner as in Example 1 was designated as Comparative Example 1.
Comparative Example 2
The same as Example 1 except that air was not sent.
Comparative Example 3
Example 2 was the same as Example 2 except that air was not sent and the moisture transfer layer was not subjected to antibacterial treatment.
[0032]
[Table 1]
Figure 0004810719
[0033]
【The invention's effect】
From the above description, the cooling material and cooling system according to the present invention has a three-layer structure in which (1) a moisture transfer layer imparted with an antibacterial function, (2) an air passage layer, and (3) an air blocking layer are laminated. As a result, the water in (1) is deprived of heat in (2) and the temperature drops, and the cooling system further includes a mechanism for sending air to (2) of the cooling material. The effect goes up. Therefore, when working under a long-time hot environment, when worn under sealed protective clothing, it contributes to safety, hygiene and efficiency with excellent cooling performance and workability. is there.
[Brief description of the drawings]
1 is a structural diagram example of a cooling material according to the present invention. FIG. 2 is a cooling system example according to the present invention. FIG. 3 is a blow nozzle example. FIG. 4 is a sectional view of an evaluation apparatus according to an embodiment of the present invention. ] Results of temperature drop in Examples [Brief description of symbols]
DESCRIPTION OF SYMBOLS 1 Moisture transfer layer 2 Air passage layer 3 Air blocking layer 4 Cooling material 21 Blowing nozzle 22 Blowing pipe 23 Blower 3-a Perforated type 3-b Grooved type 40 Air flow 41 Wet paper (sweated simulated skin)
42 Hot plate 43 Polyethylene film 44 Temperature detection end

Claims (2)

少なくとも水分移行層、厚さが2mm以上100mm以下、かさ高性が22.7〜200cm/gであるポリエステル系エラストマーの連続線条ランダムループを有する網状構造体からなる空気通過層、および空気遮断層からなり、水分移行層の水分が空気通過層で空気の循環・送入により熱を奪われ、温度低下することを特徴とする防護衣服用冷却システム。Least moisture migration layer is also thick Saga 2mm or less than 100mm, the air passage layer made of a net-like structure having a continuous filament random loops of polyester elastomer bulkiness is 22.7~200cm 3 / g, and air consists blocking layer, water moisture migration layer is deprived of heat by the circulation-pumped air in the air passage layer, protective clothes cooling system, characterized in that the reduction temperature. 水分移行層が抗菌性の繊維からなることを特徴とする請求項1に記載の防護衣服用冷却システム。  The cooling system for protective clothing according to claim 1, wherein the moisture transfer layer is made of antibacterial fibers.
JP2000158850A 2000-01-31 2000-05-29 Protective clothing cooling system Expired - Fee Related JP4810719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158850A JP4810719B2 (en) 2000-01-31 2000-05-29 Protective clothing cooling system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000022424 2000-01-31
JP2000022424 2000-01-31
JP2000-22424 2000-01-31
JP2000158850A JP4810719B2 (en) 2000-01-31 2000-05-29 Protective clothing cooling system

Publications (2)

Publication Number Publication Date
JP2001288605A JP2001288605A (en) 2001-10-19
JP4810719B2 true JP4810719B2 (en) 2011-11-09

Family

ID=26584512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158850A Expired - Fee Related JP4810719B2 (en) 2000-01-31 2000-05-29 Protective clothing cooling system

Country Status (1)

Country Link
JP (1) JP4810719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124593B2 (en) * 2003-09-02 2006-10-24 Steve Feher Temperature conditioning apparatus for the trunk of a human body
AU2003296118A1 (en) * 2003-12-25 2005-07-21 Seft Development Laboratory Co., Ltd. Air-conditioned garment
JP5397828B2 (en) * 2008-10-07 2014-01-22 株式会社セフト研究所 Refrigerator for protective clothing
JP2012219410A (en) * 2011-04-11 2012-11-12 Toyobo Co Ltd Cooling material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836646B1 (en) * 1969-02-04 1973-11-06
JPS62292110A (en) * 1986-06-11 1987-12-18 松下電器産業株式会社 Beddings
JP3136622B2 (en) * 1991-02-28 2001-02-19 ダイキン工業株式会社 Cooling clothes
JPH0541464U (en) * 1991-11-15 1993-06-08 ダイワボウ・クリエイト株式会社 Breathable rug
JPH0870960A (en) * 1994-09-01 1996-03-19 Yasuki Yoshimura Aeration mattress (futon)
JPH11266968A (en) * 1998-03-19 1999-10-05 Aisin Seiki Co Ltd Bedding with cool and warm blow

Also Published As

Publication number Publication date
JP2001288605A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US9834874B2 (en) Textile fabric
RU2740697C2 (en) Cooling cloth
CN1688232B (en) Blanket, preferably a quilt
US20040128747A1 (en) Personal hydration and cooling system
JP7134706B2 (en) wearable body cooling device
JP2007314924A (en) Cooling or heat insulating clothes
US7735149B2 (en) Microclimate regulating garment and composite structure
JP2021155907A (en) Air-conditioning garment
JP2020029624A (en) Cooling equipment
TW202027635A (en) Cooling aid
JP4810719B2 (en) Protective clothing cooling system
ES2219824T3 (en) ANTI-ALLERGEN FABRICS PERMEABLE TO THE AIR, DURABLE AND COMFORTABLE.
US20040121678A1 (en) Liquid impervious and pathogen impervious laminate having antistatic properties
JP5054596B2 (en) Cloth for clothing
TWI841761B (en) Cool Clothes
WO2008053227A1 (en) Material cooling system
JP2012219410A (en) Cooling material
JPH11241211A (en) Inner for clothes and clothes comprising the same
CN216733293U (en) Waterproof ventilative composite nonwoven
JPH07184761A (en) Plural layer laid body
CN215096193U (en) Knitted fabric with efficient heat preservation effect
JP2883181B2 (en) Futon for mites
CN212097814U (en) Novel compound moisture absorption oxford
CN219544204U (en) Environment-friendly polyester cloth
CN218571465U (en) Dehumidification structure based on medical gauze mask of ordinary protection type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4810719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees