JP4807299B2 - Electrophoresis apparatus and DNA analysis method using the apparatus - Google Patents

Electrophoresis apparatus and DNA analysis method using the apparatus Download PDF

Info

Publication number
JP4807299B2
JP4807299B2 JP2007083926A JP2007083926A JP4807299B2 JP 4807299 B2 JP4807299 B2 JP 4807299B2 JP 2007083926 A JP2007083926 A JP 2007083926A JP 2007083926 A JP2007083926 A JP 2007083926A JP 4807299 B2 JP4807299 B2 JP 4807299B2
Authority
JP
Japan
Prior art keywords
electrophoresis
sample
separation
analysis
separation channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007083926A
Other languages
Japanese (ja)
Other versions
JP2008241523A (en
Inventor
徹 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007083926A priority Critical patent/JP4807299B2/en
Publication of JP2008241523A publication Critical patent/JP2008241523A/en
Application granted granted Critical
Publication of JP4807299B2 publication Critical patent/JP4807299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として生化学、分子生物学、臨床医学、特にDNAやタンパク質の解析分野等で利用されるに好適な電気泳動装置、及び該装置を用いたDNA解析方法に関する。   The present invention relates to an electrophoresis apparatus suitable for use mainly in biochemistry, molecular biology, clinical medicine, especially in the field of DNA and protein analysis, and a DNA analysis method using the apparatus.

キャピラリ電気泳動法(CE)は、ペプチド、タンパク質、DNA、糖類等の生体成分の分析のほか、光学分割、同位体の分離等、構造が類似している成分を分離するのに適した方法であり、臨床医学や医薬品、環境物質のモニタリング等の用途に広く利用されている。特に、フォトリソグラフィ技術等を利用して微小流路を形成したマイクロチップ型の装置(マイクロチップ電気泳動装置)は取扱いが非常に容易であり、近年、DNAの解析等に盛んに利用されるようになっている(例えば非特許文献1など参照)。   Capillary electrophoresis (CE) is a method suitable for separating structurally similar components, such as optical resolution and isotope separation, as well as analysis of biological components such as peptides, proteins, DNA, and sugars. Yes, it is widely used for applications such as clinical medicine, pharmaceuticals, and monitoring of environmental substances. In particular, a microchip type apparatus (microchip electrophoresis apparatus) in which microchannels are formed using photolithography technology or the like is very easy to handle, and has recently been actively used for DNA analysis and the like. (See, for example, Non-Patent Document 1).

マイクロチップ電気泳動装置では、試料を成分分離するために、ガラス板、石英ガラス板などの基板に分離流路を形成した電気泳動チップが用いられる。従来の電気泳動チップでは、例えば特許文献1などに開示されているように、試料が供給されるサンプルウエル(サンプルリザーバ)に1本の分離流路が接続され、該分離流路を通過する際に分離された試料成分が検出器で検出される構成となっている。サンプルウエルに注入された試料は分離流路の両端に印加された泳動電圧により分離流路に導入され分析に供されるが、実際に分析に利用される試料の量は僅かであってもサンプルウエルには或る程度の量の試料を注入する必要がある。   In a microchip electrophoresis apparatus, an electrophoresis chip in which a separation channel is formed on a substrate such as a glass plate or a quartz glass plate is used to separate components of a sample. In a conventional electrophoresis chip, as disclosed in, for example, Patent Document 1, a single separation channel is connected to a sample well (sample reservoir) to which a sample is supplied, and when passing through the separation channel. In this configuration, the sample components separated in (1) and (2) are detected by a detector. The sample injected into the sample well is introduced into the separation channel by the electrophoresis voltage applied to both ends of the separation channel and used for analysis. Even if the amount of sample actually used in the analysis is small, It is necessary to inject a certain amount of sample into the well.

例えば上記のような電気泳動装置を用いてDNAの配列の解析を行う場合、分離流路に充填される分離媒体の特性の制約から或る程度の領域の解析しか行えない。従って、広い領域に亘る配列の解析を行いたい場合には、分離特性の相違する分離媒体を使用して複数回の分析を行う必要がある。ところが1回の分析毎にそれぞれ上述したような量の試料をサンプルウエルに注入する必要があるため、分析回数分だけの試料を用意しなければならず分析者にとって大きな負担であった。また、生体由来のタンパク質などの試料を分析する場合には試料の量が限られており、そのために複数回の分析が行えずに十分に正確な結果が得られないような場合もあり得る。   For example, when analyzing the DNA sequence using the electrophoresis apparatus as described above, only a certain region can be analyzed due to the restriction of the characteristics of the separation medium filled in the separation channel. Therefore, when it is desired to analyze the arrangement over a wide area, it is necessary to perform analysis a plurality of times using separation media having different separation characteristics. However, since it is necessary to inject the amount of the sample as described above into the sample well for each analysis, it is necessary to prepare samples for the number of times of analysis, which is a heavy burden on the analyst. In addition, when analyzing a sample such as a protein derived from a living body, the amount of the sample is limited. For this reason, a plurality of analyzes cannot be performed and a sufficiently accurate result may not be obtained.

さらにまた複数回の分析を行うのに十分な量の試料を用意できる場合でも、1回の分析毎に分離流路中の分離媒体を入れ替えたり分離流路内を洗浄したりする必要があるために、分析に時間が掛かりスループットを向上するのが難しく、作業も繁雑であった。   Furthermore, even when a sufficient amount of sample can be prepared for performing multiple analyzes, it is necessary to replace the separation medium in the separation channel or clean the inside of the separation channel for each analysis. In addition, it took time to analyze and it was difficult to improve the throughput, and the work was complicated.

特開2002−323477号公報JP 2002-323477 A 荒井ほか6名、「マイクロチップ電気泳動装置MCE-2010の開発とその応用例」、[online]、2002年3月、株式会社島津製作所、[平成19年3月20日検索]、インターネット<http://www.shimadzu-biotech.jp/datahall/mce/sr58-101.pdf>Arai et al., “Development of Microchip Electrophoresis Device MCE-2010 and Application Examples”, [online], March 2002, Shimadzu Corporation, [March 20, 2007 Search], Internet <http : //www.shimadzu-biotech.jp/datahall/mce/sr58-101.pdf>

本発明は上記課題に鑑みて成されたものであり、その主たる目的とするところは、分析に必要な試料の量を減らすことができるとともに、省力化、作業効率の向上を図ることができる電気泳動装置を提供することにある。また、本発明の他の目的は、そうした電気泳動装置を利用して効率的にDNAの配列の解析を行うことができるDNA解析方法を提供することにある。   The present invention has been made in view of the above problems, and the main object of the present invention is to reduce the amount of a sample necessary for analysis and to save electricity and improve work efficiency. It is to provide an electrophoresis apparatus. Another object of the present invention is to provide a DNA analysis method capable of efficiently analyzing a DNA sequence using such an electrophoresis apparatus.

上記課題を解決するために成された本発明に係る電気泳動装置は、
a)一端が共通の試料導入口に接続された複数本の分離流路を有し、該複数本の分離流路中にそれぞれ分離特性の相違する分離媒体を充填して成る電気泳動部材と、
b)前記試料導入口と前記複数本の分離流路の他端との間にそれぞれ泳動電圧を印加する電圧印加手段と、
c)前記電圧印加手段による泳動電圧の印加により前記複数本の分離流路内でそれぞれ分離された試料成分を検出する検出手段と、
d)前記試料導入口に導入された同一のDNA試料を前記複数本の分離流路中で電気泳動させて得られた検出信号を前記検出手段から収集し、該検出信号に基づいてそれぞれ異なる領域の塩基配列を解析し、その領域の重複部分を探索して該重複部分で結合した広い領域における塩基配列の決定を行うデータ処理部と、
を備えたことを特徴としている。
The electrophoresis apparatus according to the present invention, which has been made to solve the above problems,
a) an electrophoretic member having a plurality of separation channels connected at one end to a common sample inlet, and each of the plurality of separation channels filled with a separation medium having different separation characteristics;
b) voltage application means for applying an electrophoretic voltage between the sample introduction port and the other ends of the plurality of separation channels;
c) detection means for detecting sample components separated in the plurality of separation channels by application of the electrophoresis voltage by the voltage application means;
d) Collecting detection signals obtained by electrophoresis of the same DNA sample introduced into the sample introduction port in the plurality of separation channels from the detection means, and different regions based on the detection signals A data processing unit that analyzes the base sequence of the region, searches for the overlapping portion of the region, and determines the base sequence in a wide region joined by the overlapping portion;
It is characterized by having.

本発明に係る電気泳動装置では、電気泳動部材にあって試料導入口に分析対象の試料が注入されると、前記電圧印加手段により印加される泳動電圧により複数本の分離流路にそれぞれ適宜量の試料が導入される。複数本の分離流路における試料の導入は同時であってもなくてもよい。その後に、泳動電圧により試料を分離流路中で試料導入口側から反対方向に移動させ、その移動に伴って分離媒体の作用により試料成分を分離させる。複数本の分離流路において試料成分の分離は同時に行ってもよいし同時でなくてもよい。複数本の分離流路に充填されている分離媒体の分離特性はそれぞれ異なるため、同一の試料を成分分離してもその分離の態様は異なる。その結果、検出手段でそれぞれ検出される信号は異なるものとなる。   In the electrophoresis apparatus according to the present invention, when the sample to be analyzed is injected into the sample introduction port in the electrophoresis member, the amount is appropriately set in each of the plurality of separation channels by the electrophoresis voltage applied by the voltage applying means. Samples are introduced. Samples may be introduced into the plurality of separation channels simultaneously or not. After that, the sample is moved in the opposite direction from the sample introduction port side in the separation channel by the electrophoresis voltage, and the sample components are separated by the action of the separation medium along with the movement. In the plurality of separation channels, the sample components may or may not be separated at the same time. Since the separation characteristics of the separation media filled in the plurality of separation channels are different from each other, even if components of the same sample are separated, the separation mode is different. As a result, the signals detected by the detection means are different.

なお、検出手段としては、蛍光検出器や電気化学検出器などを用いることができる。   In addition, as a detection means, a fluorescence detector, an electrochemical detector, etc. can be used.

以上のように本発明に係る電気泳動装置によれば、試料導入口に1回だけ注入した試料を用いて複数の異なる検出結果を並行して得ることができる。具体的には、この検出結果を利用して、例えばDNAの配列解析において、それぞれ異なる領域の解析を行うことができる。また、例えばタンパク質の同定において、異なる種類のタンパク質を同定することで同定可能なタンパク質の種類を増やすことができる。このように従来であれば複数回の分析を行う必要があったものを1回の試料注入に対する分析で済ますことができるため、用意する試料の量が少なくて済む。これにより、省力化を図ることができるとともに、そのための余分なコストを削減することができる。また、生体由来の試料のように、もともと量が限られている貴重な試料についても、より正確な結果を得ることができる。また、分離特性の相違する複数の分析を行う場合でも、分離媒体の入れ替えや洗浄などの作業を省くことができるので、スループットの向上を図ることができる。   As described above, according to the electrophoresis apparatus according to the present invention, a plurality of different detection results can be obtained in parallel using the sample injected into the sample inlet only once. Specifically, by using this detection result, for example, in the DNA sequence analysis, different regions can be analyzed. For example, in protein identification, the types of proteins that can be identified can be increased by identifying different types of proteins. As described above, since it is possible to perform analysis for a single sample injection in the case where a plurality of analyzes had been required in the prior art, the amount of the prepared sample can be reduced. Thereby, labor saving can be achieved, and the extra cost for it can be reduced. In addition, more accurate results can be obtained for precious samples whose amount is originally limited, such as biological samples. Further, even when a plurality of analyzes with different separation characteristics are performed, operations such as replacement of the separation medium and washing can be omitted, so that throughput can be improved.

本発明に係る電気泳動装置の一態様として、前記複数本の分離流路の他端が共通の液溜め部に接続されている構成とすることができる。この構成によれば、共通の液溜め部にバッファ液を貯留して電圧印加手段により液溜め部と試料導入口との間に所定の泳動電圧を印加することで、複数本の分離流路の両端間に同じ泳動電圧を印加して同時並行的に分離分析を行うことができる。   As one aspect of the electrophoresis apparatus according to the present invention, the other ends of the plurality of separation channels can be connected to a common liquid reservoir. According to this configuration, the buffer liquid is stored in the common liquid reservoir, and a predetermined electrophoresis voltage is applied between the liquid reservoir and the sample inlet by the voltage applying means, so that the plurality of separation channels can be separated. Separation analysis can be performed in parallel by applying the same electrophoresis voltage between both ends.

一方、複数本の分離流路の他端に接続される液溜め部をそれぞれ分離することにより、各分離流路の両端間に異なる泳動電圧を印加する、つまり、異なる電圧値の泳動電圧の印加、或いは異なるタイミングでの泳動電圧の印加を行うことができる。   On the other hand, by separating the liquid reservoirs connected to the other ends of the plurality of separation channels, different migration voltages are applied between both ends of each separation channel, that is, application of migration voltages having different voltage values. Alternatively, the electrophoresis voltage can be applied at different timings.

また、本発明に係る電気泳動装置において、電気泳動部材はキャピラリとすることもできるが、特にマイクロチップ(電気泳動チップ)とすることで集積化を図ることができる。   Further, in the electrophoresis apparatus according to the present invention, the electrophoresis member can be a capillary, but in particular, integration can be achieved by using a microchip (electrophoresis chip).

さらにまた、本発明に係るDNA解析方法は、上記のような本発明に係る電気泳動装置を用いたDNA解析方法であって、前記導入口に導入された同一のDNA試料を分離特性が相違する複数本の分離流路中を電気泳動させてそれぞれ検出信号を収集し、該検出信号に基づいてそれぞれ異なる領域の塩基配列を解析し、その領域の重複部分を探索して該重複部分で結合した広い領域における塩基配列の決定を行うことを特徴としている。   Furthermore, the DNA analysis method according to the present invention is a DNA analysis method using the electrophoresis apparatus according to the present invention as described above, and the separation characteristics of the same DNA sample introduced into the introduction port are different. Electrophoreses in multiple separation channels, collects detection signals, analyzes base sequences of different regions based on the detection signals, searches for overlapping portions of the regions, and joins at the overlapping portions It is characterized by determining a base sequence in a wide region.

このDNA解析方法によれば、従来のように複数回の分析を繰り返すことなく、1回の試料注入に応じた分析により短鎖から長鎖までの広い領域の塩基配列の解析を行うことができる。これにより、分析所要時間を短縮しながら分析対象を広げることができる。   According to this DNA analysis method, it is possible to analyze a base sequence in a wide region from a short chain to a long chain by analysis according to one sample injection without repeating a plurality of analyzes as in the prior art. . Thereby, it is possible to expand the analysis target while shortening the time required for analysis.

本発明に係る電気泳動装置の一実施例としてマイクロチップ電気泳動装置を説明する。まず、本実施例のマイクロチップ電気泳動装置に用いられる電気泳動チップについてその構造を図1により説明する。   A microchip electrophoresis apparatus will be described as an example of the electrophoresis apparatus according to the present invention. First, the structure of an electrophoresis chip used in the microchip electrophoresis apparatus of this embodiment will be described with reference to FIG.

図1(a)はこの電気泳動チップ(本発明における電気泳動部材)10の上面平面図、図1(b)は(a)中のA−A’矢視線断面図である。電気泳動チップ10は、ガラス板、石英ガラス板などから成る一対の透明平板11a、11bを貼り合わせた細長い扁平直方体形状の基板11を有する。下側の透明平板11bの上面には、平行に延伸する2本の溝が例えばエッチングにより形成されており、上側の透明平板11aには上記2本の溝の一方の端部に対応する位置に共通の略楕円形状の貫通孔が穿孔され、また2本の溝の他端に対応する位置にそれぞれ別の略円形状の貫通孔が穿孔されている。溝部分の幅は10〜100μm程度、深さは5〜50μm程度である。   FIG. 1A is a top plan view of the electrophoresis chip 10 (electrophoretic member in the present invention), and FIG. 1B is a cross-sectional view taken along line A-A ′ in FIG. The electrophoresis chip 10 includes an elongated flat rectangular parallelepiped substrate 11 formed by bonding a pair of transparent flat plates 11a and 11b made of a glass plate, a quartz glass plate, or the like. On the upper surface of the lower transparent flat plate 11b, two grooves extending in parallel are formed by etching, for example, and the upper transparent flat plate 11a is formed at a position corresponding to one end of the two grooves. A common substantially elliptical through hole is drilled, and another substantially circular through hole is drilled at a position corresponding to the other end of the two grooves. The width of the groove portion is about 10 to 100 μm and the depth is about 5 to 50 μm.

一対の透明平板11a、11bは溝を内側にして貼り合わされる。これによって、溝の上方開放面は上側の透明平板11aの下面で閉塞され、第1流路15、第2流路16なる2本の平行な分離流路が形成される。この第1流路15、第2流路16の一端が共通に接続される略楕円形状の貫通孔の下方開放面、及び、第1流路15、第2流路16の他端にそれぞれ接続される略円形状の貫通孔の下方開放面は、それぞれ透明平板11bの上面で閉塞され、前者は試料導入口としてのサンプルウエル12となり、後者は分離媒体充填口13、14となる。このサンプルウエル12の上にはバッファ(泳動液)を貯留可能な第1バッファリザーバ17が設けられ、分離媒体充填口13、14の上には同じくバッファを貯留可能な共通の第2バッファリザーバ(本発明における液溜め部)18が設けられる。なお、図1中の符号26a(26b)の位置には流路15、16内で分離された試料成分を検出するための後述する検出器が配設される。   The pair of transparent flat plates 11a and 11b are bonded together with the grooves on the inside. As a result, the upper open surface of the groove is closed by the lower surface of the upper transparent flat plate 11a, and two parallel separation channels, the first channel 15 and the second channel 16, are formed. The first flow path 15 and the second flow path 16 are connected to the lower open surface of the substantially elliptical through-hole to which one end is connected in common and the other ends of the first flow path 15 and the second flow path 16, respectively. The lower open surfaces of the substantially circular through-holes are respectively closed by the upper surface of the transparent flat plate 11b, the former being the sample well 12 as the sample introduction port, and the latter being the separation medium filling ports 13 and. A first buffer reservoir 17 capable of storing a buffer (electrophoretic solution) is provided on the sample well 12, and a common second buffer reservoir (similarly capable of storing a buffer above the separation medium filling ports 13 and 14). A liquid reservoir 18 in the present invention is provided. In addition, a detector, which will be described later, for detecting the sample components separated in the flow paths 15 and 16 is disposed at the position of reference numeral 26a (26b) in FIG.

図2は本実施例の電気泳動装置を含む分析システム全体の要部の構成図である。試料注入部20は分析対象の試料を電気泳動チップ10のサンプルウエル12に注入するものであり、泳動電圧印加部(本発明における電圧印加手段)21は第1流路15、第2流路16の両端間に所定の泳動電圧を印加するものであり、バッファ注入部23はバッファ(泳動液)を第1、第2バッファリザーバ17、18に注入するものであり、分離媒体注入部24は分離媒体を分離媒体充填口13、14から注入するものであり、洗浄部25はサンプルウエル12やバッファリザーバ17、18などを洗浄するものである。また、蛍光検出器(本発明における検出手段)26は第1流路15、第2流路16に対してそれぞれ配設される励起光照射部26aと受光部26bとを含み、第1流路15、第2流路16中で分離された試料成分を時間経過に伴って順次検出してそれぞれ検出信号を出力する。データ処理部27はこの検出信号を受けて所定のデータ処理を実行する。制御部28は上記各部を統括的に制御することで自動分析を可能とする。なお、データ処理部27に含まれるデータ処理機能は、専用のソフトウエアを汎用のコンピュータ上で動作させることで実現することができる。   FIG. 2 is a configuration diagram of the main part of the entire analysis system including the electrophoresis apparatus of this embodiment. The sample injection unit 20 injects a sample to be analyzed into the sample well 12 of the electrophoresis chip 10, and the electrophoresis voltage application unit (voltage application means in the present invention) 21 includes the first channel 15 and the second channel 16. The buffer injection unit 23 injects a buffer (electrophoretic solution) into the first and second buffer reservoirs 17 and 18, and the separation medium injection unit 24 separates the separation medium injection unit 24. The medium is injected from the separation medium filling ports 13 and 14, and the cleaning unit 25 is for cleaning the sample well 12, the buffer reservoirs 17 and 18, and the like. Further, the fluorescence detector (detection means in the present invention) 26 includes an excitation light irradiation unit 26a and a light receiving unit 26b, which are respectively arranged with respect to the first channel 15 and the second channel 16, and the first channel. 15. The sample components separated in the second flow path 16 are sequentially detected over time, and detection signals are output respectively. The data processing unit 27 receives this detection signal and executes predetermined data processing. The control unit 28 enables automatic analysis by comprehensively controlling the above-described units. The data processing function included in the data processing unit 27 can be realized by operating dedicated software on a general-purpose computer.

次に、本実施例による電気泳動装置による分析手順の一例を、図3のフローチャートに従って説明する。まず、分離媒体注入部24により、電気泳動チップ10の第1分離媒体充填口13から分離媒体Aを注入し、第1流路15中に分離媒体Aを充填する(ステップS1)。なお、必要に応じて洗浄部25によりサンプルウエル12を洗浄して第1流路15から溢れ出た分離媒体Aを除去するとよい。次に、分離媒体注入部24により、電気泳動チップ10の第2分離媒体充填口14から分離媒体Bを注入し、第2流路16中に分離媒体Bを充填する(ステップS2)。分離媒体Aと分離媒体Bとは異なる分離特性を有する。その後、洗浄部25により、サンプルウエル12に溢れ出ている分離媒体A、Bを除去してサンプルウエル12内を洗浄する(ステップS3)。   Next, an example of the analysis procedure by the electrophoresis apparatus according to the present embodiment will be described with reference to the flowchart of FIG. First, the separation medium injection unit 24 injects the separation medium A from the first separation medium filling port 13 of the electrophoresis chip 10 and fills the first flow path 15 with the separation medium A (step S1). If necessary, the sample well 12 may be washed by the washing unit 25 to remove the separation medium A overflowing from the first flow path 15. Next, the separation medium injection unit 24 injects the separation medium B from the second separation medium filling port 14 of the electrophoresis chip 10 and fills the second flow path 16 with the separation medium B (step S2). Separation medium A and separation medium B have different separation characteristics. Thereafter, the separation medium A and B overflowing the sample well 12 is removed by the cleaning unit 25 to clean the inside of the sample well 12 (step S3).

分離媒体A、Bが分析に不都合な不要成分を含有しているおそれがある場合には、それを除去するために、バッファ注入部23により、第1、第2バッファリザーバ17、18にバッファを注入し、その状態で泳動電圧印加部21により両リザーバ17、18に貯留されたバッファに浸漬させた一対の電極の間に所定の電圧を印加し、これにより流路15、16中に存在する不要成分を移動させるようにプレランを行う。そして、所定時間プレランを行った後に、洗浄部25により両リザーバ17、18内のバッファを除去して洗浄を行う(ステップS4)。但し、分離媒体A、Bに不要成分が混じっているおそれがなければ、このステップS4の処理は省略することができる。   If there is a possibility that the separation media A and B contain unnecessary components that are inconvenient for analysis, in order to remove them, a buffer is injected into the first and second buffer reservoirs 17 and 18 by the buffer injection unit 23. In this state, a predetermined voltage is applied between the pair of electrodes immersed in the buffers stored in both the reservoirs 17 and 18 by the electrophoresis voltage application unit 21, thereby existing in the channels 15 and 16. Perform a pre-run to move unwanted components. Then, after pre-run for a predetermined time, the cleaning unit 25 removes the buffers in both the reservoirs 17 and 18 and performs cleaning (step S4). However, if there is no fear that unnecessary components are mixed in the separation media A and B, the process of step S4 can be omitted.

次いでサンプルウエル12に試料注入部20より試料を注入する一方、第2バッファリザーバ18にバッファ注入部23よりバッファを注入する(ステップS5)。そして、泳動電圧印加部21により、サンプルウエル12中の試料に浸漬させた電極と第2バッファリザーバ18中のバッファに浸漬させた電極との間に所定の泳動電圧を印加し、これにより試料を第1流路15及び第2流路16中にそれぞれ導入する(ステップS6)。つまり、1回の試料注入動作でサンプルウエル12中に保持されている試料を所定量ずつ第1流路15、第2流路16の2経路に並行して移動させる。その後、必要に応じて、洗浄部25により、サンプルウエル12内に残っている試料を除去して洗浄する(ステップS7)。   Next, a sample is injected into the sample well 12 from the sample injection unit 20, while a buffer is injected into the second buffer reservoir 18 from the buffer injection unit 23 (step S5). Then, a predetermined electrophoresis voltage is applied between the electrode immersed in the sample in the sample well 12 and the electrode immersed in the buffer in the second buffer reservoir 18 by the electrophoresis voltage application unit 21, thereby It introduce | transduces into the 1st flow path 15 and the 2nd flow path 16, respectively (step S6). That is, the sample held in the sample well 12 by one sample injection operation is moved in parallel along the two paths of the first flow path 15 and the second flow path 16 by a predetermined amount. Thereafter, if necessary, the cleaning unit 25 removes and cleans the sample remaining in the sample well 12 (step S7).

それからバッファ注入部23により第1バッファリザーバ17にバッファを注入して貯留させる(ステップS8)。このとき第2バッファリザーバ18にはステップS5で注入されたバッファが貯留された状態にある。そして、泳動電圧印加部21により、第1バッファリザーバ17中のバッファに浸漬させた電極と第2バッファリザーバ18中のバッファに浸漬させた電極との間に所定の泳動電圧を印加する。この泳動電圧により形成される電場により先に流路15、16中に保持させた試料をサンプルウエル12側から分離媒体充填口13、14に向かって移動させ、その移動の際に分離媒体A、Bと試料中の各種成分との相互作用により該成分を流路15、16の長手方向に分離させる。但し、分離媒体Aと分離媒体Bとでは分離特性が相違するから、例えば異なる種類の試料成分に対して良好に分離が行われる。   Then, a buffer is injected and stored in the first buffer reservoir 17 by the buffer injection unit 23 (step S8). At this time, the buffer injected in step S5 is stored in the second buffer reservoir 18. Then, a predetermined electrophoresis voltage is applied between the electrode immersed in the buffer in the first buffer reservoir 17 and the electrode immersed in the buffer in the second buffer reservoir 18 by the electrophoresis voltage application unit 21. The sample previously held in the flow paths 15 and 16 by the electric field formed by this electrophoresis voltage is moved from the sample well 12 side toward the separation medium filling ports 13 and 14, and the separation medium A, The components are separated in the longitudinal direction of the channels 15 and 16 by the interaction between B and various components in the sample. However, since the separation characteristics are different between the separation medium A and the separation medium B, for example, different types of sample components are favorably separated.

そうして分離した試料成分が蛍光検出器26の励起光照射部26aと受光部26bとによる測定位置を通過すると、その蛍光特性の相違が蛍光検出器26により検出され、それが反映された検出信号が得られる(ステップS9)。試料成分の検出は第1流路15、第2流路16で並行して独立に行われるから、それぞれの流路15、16に対応する2系統の検出信号がデータ処理部27に送られる。データ処理部27では検出信号をデジタル値に変換して得たデータに基づいて、例えば横軸を泳動時間としたエレクトロフェログラムを作成する。   When the separated sample components pass through the measurement positions of the excitation light irradiation unit 26a and the light receiving unit 26b of the fluorescence detector 26, the difference in the fluorescence characteristics is detected by the fluorescence detector 26, and this is reflected in the detection. A signal is obtained (step S9). Since sample components are detected independently in parallel in the first flow path 15 and the second flow path 16, two detection signals corresponding to the respective flow paths 15 and 16 are sent to the data processing unit 27. Based on the data obtained by converting the detection signal into a digital value, the data processing unit 27 creates an electropherogram with the horizontal axis as the migration time, for example.

以上のようにして、本実施例によるマイクロチップ電気泳動装置によれば、従来であれば分離流路に充填される分離媒体を入れ替えて2回の分析を行う必要があったものを、1回の試料の注入の後の1回の同時並行的な分析により結果を得ることができる。これにより、1回の試料注入分の量の試料を用意すればよいので、試料の用意に時間や手間が掛かる場合に省力化、分析の効率化を図ることができる。また、試料が高価である場合でもコスト低減を図ることができる。さらにまた、もともと微量の試料しか用意できない場合でも、異なる分離特性を利用した良好な分析を行うことができる。   As described above, according to the microchip electrophoresis apparatus according to the present embodiment, what has conventionally been necessary to perform the analysis twice by replacing the separation medium filled in the separation channel is performed once. Results can be obtained by a single concurrent analysis after injection of a sample. Thereby, since it is sufficient to prepare a sample for the amount of one sample injection, labor and labor can be saved and the efficiency of analysis can be improved when preparation of the sample takes time and labor. Moreover, even when the sample is expensive, the cost can be reduced. Furthermore, even when only a very small amount of sample can be prepared originally, a good analysis using different separation characteristics can be performed.

次に、上記マイクロチップ電気泳動装置を用いた分析システムによりDNAシーケンスの鎖長解析を行う分析手法について説明する。上記のような電気泳動により鎖長毎にDNAを分離する場合、一般に、高濃度の分離媒体では短鎖DNAは良好に分離されるものの長鎖DNAの分離は悪くなる。一方、低濃度の分離媒体では逆に長鎖DNAは良好に分離されるが、短鎖DNAの分離は悪くなる。そのため、或る1種の分離媒体だけで短鎖から長鎖までの広い領域の鎖長解析が可能なデータを取得するのは困難である。   Next, an analysis method for analyzing the length of a DNA sequence by an analysis system using the microchip electrophoresis apparatus will be described. When DNA is separated for each chain length by electrophoresis as described above, in general, short-chain DNA is well separated in a high concentration separation medium, but separation of long-chain DNA is poor. On the other hand, in a low concentration separation medium, on the contrary, long DNA is well separated, but short DNA is poorly separated. For this reason, it is difficult to acquire data that can analyze the chain length of a wide region from a short chain to a long chain with only one kind of separation medium.

そこで、上記マイクロチップ電気泳動装置において、電気泳動チップ10の第1流路15中に高濃度の分離媒体を充填し、第2流路16中には低濃度の分離媒体を充填する。そして、上述のような手法でDNA試料を分離分析し、2つの流路15、16でそれぞれ分離された成分を蛍光検出器26で検出し、データ処理部27はそれらデータを収集する。   Therefore, in the microchip electrophoresis apparatus, the first flow path 15 of the electrophoresis chip 10 is filled with a high concentration separation medium, and the second flow path 16 is filled with a low concentration separation medium. Then, the DNA sample is separated and analyzed by the above-described method, components separated by the two flow paths 15 and 16 are detected by the fluorescence detector 26, and the data processing unit 27 collects the data.

いま、図4に示すように解読の必要なDNAの鎖長が非常に広い領域に広がっている場合、例えば、第1流路15について収集したデータからは鎖長L1〜L3の領域の配列解析が行え、第2流路16について収集したデータからは鎖長L2〜L4の領域の配列解析が行える。両者の解析結果では一部領域(L2〜L3の領域)で解析された配列がオーバーラップしているから、データ処理部27ではこのオーバーラップ部分を探索し、オーバーラップ部が見い出されたならばこれを挟んで短鎖側領域と長鎖側領域とを結合し、鎖長L1〜L4に亘る広い領域の配列解析結果を得る。   Now, as shown in FIG. 4, when the length of DNA that needs to be decoded is spread over a very wide region, for example, the sequence analysis of the region of the chain length L1 to L3 from the data collected for the first channel 15 From the data collected for the second flow path 16, the sequence analysis of the region of chain lengths L2 to L4 can be performed. In both analysis results, since the sequences analyzed in a partial region (L2 to L3 region) overlap, the data processing unit 27 searches for this overlap portion, and if an overlap portion is found. The short chain side region and the long chain side region are combined with this in between, and a sequence analysis result of a wide region extending over the chain lengths L1 to L4 is obtained.

1回の分析でこのように広い領域の配列解析結果を得ようとすると、分解能が低くなったり長鎖配列解析のために時間が掛かったりするが、上記実施例のマイクロチップ電気泳動装置では2本の流路15、16でそれぞれに割り当てられた領域のみ分離できればよいので、高い分解能を得易い。また、分離条件をそれぞれに最適化することにより、配列解析時間の短縮化を図ることもできる。   When trying to obtain a sequence analysis result in such a wide area in one analysis, the resolution becomes low and it takes time for long chain sequence analysis. However, in the microchip electrophoresis apparatus of the above embodiment, 2 is required. Since it is sufficient that only the regions assigned to the respective flow paths 15 and 16 can be separated, high resolution can be easily obtained. Furthermore, the sequence analysis time can be shortened by optimizing the separation conditions.

なお、上記実施例では、分離のための流路は2本であるが、3本以上であってもよい。また、第2バッファリザーバ18を第1、第2流路15、16に対して共通にしているが、これを流路毎に分けるようにしてもよい。この第2バッファリザーバ18を分離することにより、第1流路15の両端と第2流路16の両端とに異なる泳動電圧を印加することができる。即ち、同時に異なる電圧値の泳動電圧を印加することもできるし、或いは、両流路15、16に同時ではなく時分割で、例えば第1流路15の両端に泳動電圧を印加して分離分析を行った後に、第2流路16の両端に泳動電圧を印加して分離分析を行うといったタイミングをずらした分析も可能である。   In addition, in the said Example, although the flow path for separation is two, three or more may be sufficient. Further, although the second buffer reservoir 18 is made common to the first and second flow paths 15 and 16, it may be divided for each flow path. By separating the second buffer reservoir 18, different migration voltages can be applied to both ends of the first flow path 15 and both ends of the second flow path 16. That is, it is possible to simultaneously apply electrophoresis voltages of different voltage values, or to separate analysis by applying the electrophoresis voltage to both ends of the first channel 15 in a time division manner, for example, not both at the same time. After performing the above, it is also possible to perform an analysis with a shifted timing, such as performing separation analysis by applying an electrophoresis voltage to both ends of the second flow path 16.

また、上記実施例では、2本の流路15、16の流路長は同一であるが、異なる流路長にすることもできる。それにより、各流路で最短時間で泳動を行えるような時間の調整を行ったり、流路中の電界強度の調整を行うこともできる。また泳動時間の調整は、検出器26による検出位置を流路毎に最適位置に調整することでも実現可能である。   Moreover, in the said Example, although the flow path length of the two flow paths 15 and 16 is the same, it can also be set as a different flow path length. Thereby, it is possible to adjust the time so that electrophoresis can be performed in each channel in the shortest time, and to adjust the electric field strength in the channel. Further, the adjustment of the migration time can also be realized by adjusting the detection position by the detector 26 to the optimum position for each flow path.

また、上記実施例はマイクロチップ電気泳動装置に本発明を適用したものであるが、キャピラリ電気泳動装置にも本発明を適用することができる。さらに上記実施例は本発明の一例にすぎないから、上記記載の各種の変形のほかにも、本発明の趣旨の範囲で適宜変更、修正、追加などを行っても本願特許請求の範囲に包含されることは明らかである。   Moreover, although the said Example applies this invention to a microchip electrophoresis apparatus, this invention is applicable also to a capillary electrophoresis apparatus. Further, since the above embodiment is merely an example of the present invention, in addition to the above-described various modifications, any appropriate changes, modifications, additions, etc. within the spirit of the present invention are included in the scope of the claims of the present application. Obviously it will be done.

本発明の一実施例の電気泳動装置に用いられる電気泳動チップの上面平面図(a)、及びA−A’矢視線断面図(b)。The top view (a) of the electrophoresis chip used for the electrophoresis apparatus of one Example of this invention, and A-A 'arrow line sectional drawing (b). 本実施例の電気泳動装置を含む分析システム全体の要部の構成図。The block diagram of the principal part of the whole analysis system containing the electrophoresis apparatus of a present Example. 本実施例による電気泳動装置による分析手順の一例を示すフローチャート。The flowchart which shows an example of the analysis procedure by the electrophoresis apparatus by a present Example. 本実施例による電気泳動装置を用いたDNAの鎖長解析手法の説明図。Explanatory drawing of the DNA chain length analysis method using the electrophoresis apparatus by a present Example.

符号の説明Explanation of symbols

10…電気泳動チップ
11…基板
11a、11b…透明平板
12…サンプルウエル
13…第1分離媒体充填口
14…第2分離媒体充填口
15…第1流路
16…第2流路
17…第1バッファリザーバ
18…第2バッファリザーバ
20…試料注入部
21…泳動電圧印加部
23…バッファ注入部
24…分離媒体注入部
25…洗浄部
26…蛍光検出器
26a…励起光照射部
26b…受光部
27…データ処理部
28…制御部
DESCRIPTION OF SYMBOLS 10 ... Electrophoresis chip 11 ... Board | substrate 11a, 11b ... Transparent flat plate 12 ... Sample well 13 ... 1st separation medium filling port 14 ... 2nd separation medium filling port 15 ... 1st flow path 16 ... 2nd flow path 17 ... 1st Buffer reservoir 18 ... second buffer reservoir 20 ... sample injection unit 21 ... electrophoresis voltage application unit 23 ... buffer injection unit 24 ... separation medium injection unit 25 ... washing unit 26 ... fluorescence detector 26a ... excitation light irradiation unit 26b ... light reception unit 27 ... Data processing unit 28 ... Control unit

Claims (4)

a)一端が共通の試料導入口に接続された複数本の分離流路を有し、該複数本の分離流路中にそれぞれ分離特性の相違する分離媒体を充填して成る電気泳動部材と、
b)前記試料導入口と前記複数本の分離流路の他端との間にそれぞれ泳動電圧を印加する電圧印加手段と、
c)前記電圧印加手段による泳動電圧の印加により前記複数本の分離流路内でそれぞれ分離された試料成分を検出する検出手段と、
d)前記試料導入口に導入された同一のDNA試料を前記複数本の分離流路中で電気泳動させて得られた検出信号を前記検出手段から収集し、該検出信号に基づいてそれぞれ異なる領域の塩基配列を解析し、その領域の重複部分を探索して該重複部分で結合した広い領域における塩基配列の決定を行うデータ処理部と、
を備えたことを特徴とする電気泳動装置。
a) an electrophoretic member having a plurality of separation channels connected at one end to a common sample inlet, and each of the plurality of separation channels filled with a separation medium having different separation characteristics;
b) voltage application means for applying an electrophoretic voltage between the sample introduction port and the other ends of the plurality of separation channels;
c) detection means for detecting sample components separated in the plurality of separation channels by application of the electrophoresis voltage by the voltage application means;
d) Collecting detection signals obtained by electrophoresis of the same DNA sample introduced into the sample introduction port in the plurality of separation channels from the detection means, and different regions based on the detection signals A data processing unit that analyzes the base sequence of the region, searches for the overlapping portion of the region, and determines the base sequence in a wide region joined by the overlapping portion;
An electrophoretic device comprising:
前記複数本の分離流路の他端は共通の液溜め部に接続されていることを特徴とする請求項1に記載の電気泳動装置。   2. The electrophoresis apparatus according to claim 1, wherein the other ends of the plurality of separation channels are connected to a common liquid reservoir. 前記電気泳動部材はマイクロチップであることを特徴とする請求項1又は2のいずれかに記載の電気泳動装置。   The electrophoresis apparatus according to claim 1, wherein the electrophoresis member is a microchip. 請求項1〜3のいずれかに記載の電気泳動装置を用いたDNA解析方法であって、前記試料導入口に導入された同一のDNA試料を分離特性が相違する複数本の分離流路中を電気泳動させてそれぞれ検出信号を収集し、該検出信号に基づいてそれぞれ異なる領域の塩基配列を解析し、その領域の重複部分を探索して該重複部分で結合した広い領域における塩基配列の決定を行うことを特徴とするDNA解析方法。 A DNA analysis method using the electrophoresis apparatus according to any one of claims 1 to 3, wherein the same DNA sample introduced into the sample introduction port is passed through a plurality of separation channels having different separation characteristics. Collect each detection signal by electrophoresis, analyze the base sequence of each different region based on the detection signal, search for the overlapping part of the region and determine the base sequence in the wide region joined by the overlapping part DNA analysis method characterized by performing.
JP2007083926A 2007-03-28 2007-03-28 Electrophoresis apparatus and DNA analysis method using the apparatus Expired - Fee Related JP4807299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083926A JP4807299B2 (en) 2007-03-28 2007-03-28 Electrophoresis apparatus and DNA analysis method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083926A JP4807299B2 (en) 2007-03-28 2007-03-28 Electrophoresis apparatus and DNA analysis method using the apparatus

Publications (2)

Publication Number Publication Date
JP2008241523A JP2008241523A (en) 2008-10-09
JP4807299B2 true JP4807299B2 (en) 2011-11-02

Family

ID=39913052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083926A Expired - Fee Related JP4807299B2 (en) 2007-03-28 2007-03-28 Electrophoresis apparatus and DNA analysis method using the apparatus

Country Status (1)

Country Link
JP (1) JP4807299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202805A (en) * 2011-03-25 2012-10-22 Shimadzu Corp Electrophoresis apparatus
JP6371391B2 (en) * 2013-07-30 2018-08-08 ソニー株式会社 Method for requesting activation of repeater function and user equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1693514A1 (en) * 1987-11-27 1991-11-23 Институт молекулярной биологии и биохимии АН КазССР Method of electrophoretic analysis of nucleic acids and device for its realization
WO2001038573A1 (en) * 1999-11-26 2001-05-31 Bioneer Corporation Dna sequencing method which employs various nucleotide mixtures and kit used for the same
JP2003177114A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Dna analyzing chip, dna analyzing chip driving device, and its method
JP2005291744A (en) * 2004-03-31 2005-10-20 Maruishi Kasei Kk Liquid physical property measurement chip and measuring device
JP2004361393A (en) * 2004-04-20 2004-12-24 Nippon Sheet Glass Co Ltd Electrophoretic support for separating long-chain dna, method of electrophoretic separation, and apparatus for electrophoretic separation

Also Published As

Publication number Publication date
JP2008241523A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US20020168780A1 (en) Method and apparatus for sample injection in microfabricated devices
Wainright et al. Sample pre-concentration by isotachophoresis in microfluidic devices
Hashimoto et al. Microchip capillary electrophoresis using on-line chemiluminescence detection
EP1391723B1 (en) Method and apparatus for analyzing a mixture of sample substances
Callewaert et al. Total serum protein N‐glycome profiling on a capillary electrophoresis‐microfluidics platform
US20040226822A1 (en) Multi-dimensional electrophoresis apparatus
Shortreed et al. High-throughput single-molecule DNA screening based on electrophoresis
US8986529B2 (en) Isotachophoresis having interacting anionic and cationic shock waves
AU2003228395A1 (en) Methods and apparatus for separation and isolation of components from a biological sample
JP2005502864A5 (en)
JP4442035B2 (en) Microchannel chip
JPH1010088A (en) Capillary electrophoretic device
Guzman et al. New directions for concentration sensitivity enhancement in CE and microchip technology
JPWO2008029685A1 (en) Sample analysis method by capillary electrophoresis
JPWO2008136057A1 (en) Electrophoresis chip and electrophoresis method
JP4807299B2 (en) Electrophoresis apparatus and DNA analysis method using the apparatus
WO2004079357A1 (en) Two-dimensional protein separations using chromatofocusing and multiplexed capillary gel electrophoresis
JP2013195139A (en) Analysis apparatus, analysis program and analysis method
JPH06138037A (en) Cataphoresis device
Lo et al. Microchip DNA electrophoresis with automated whole-gel scanning detection
JP2006234707A (en) Electrophoresis plate
US7294247B1 (en) Electrophoretic separating device and method for using the device
KR102064388B1 (en) Single point detection type microfluidic isoelectric focusing assay and chips using the same
JP2016176764A (en) Capillary electrophoresis device and method of sample analysis by capillary electrophoresis
Kwok et al. Characterisation of Shah convolution Fourier transform detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4807299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees