JP4803429B2 - 地中空洞の施工方法 - Google Patents

地中空洞の施工方法 Download PDF

Info

Publication number
JP4803429B2
JP4803429B2 JP2006037921A JP2006037921A JP4803429B2 JP 4803429 B2 JP4803429 B2 JP 4803429B2 JP 2006037921 A JP2006037921 A JP 2006037921A JP 2006037921 A JP2006037921 A JP 2006037921A JP 4803429 B2 JP4803429 B2 JP 4803429B2
Authority
JP
Japan
Prior art keywords
roof
shield
construction
tunnel
roof shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006037921A
Other languages
English (en)
Other versions
JP2007217911A (ja
Inventor
幸一 浜口
Original Assignee
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社 filed Critical 清水建設株式会社
Priority to JP2006037921A priority Critical patent/JP4803429B2/ja
Publication of JP2007217911A publication Critical patent/JP2007217911A/ja
Application granted granted Critical
Publication of JP4803429B2 publication Critical patent/JP4803429B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は地中に空洞やトンネルを施工するための工法に係わり、特にたとえば大深度・大断面の道路トンネルの構築に際してその分岐合流部を施工するために適用して好適な地中空洞の施工方法に関する。

周知のように、トンネルを構築するためのトンネル工法としてはNATM(New Austrian Tunneling Method)あるいはシールド工法が代表的であるが、未固結地盤の都市圏における道路トンネルの施工に際しては、地表および地中の既存構造物に対する悪影響を回避するべく地山に対する高度の支保性能が要求され、また施工中および完成後の止水性能と地下水保全性能が高度に要求されることから、シールド工法の採用が最も一般的である。
また、近年においては様々な新工法も提案され、たとえば特許文献1には本坑掘削に先立って導坑から人工地山アーチを先行施工するという鯨骨工法(WBR工法)が提案されている。
特開平11−159275号公報

ところで、道路トンネルをシールド工法により施工するに際しては本線トンネルの他にランプトンネルを設け、それら双方のトンネルを要所にて接合して分岐合流部を施工する必要があるが、そのような分岐合流部の施工は必ずしも容易ではない。
すなわち、本線トンネルおよびランプトンネルはそれぞれ在来のシールド工法により地山を安定に支保し、また止水性を確保しつつ支障なく施工できるが、分岐合流部では断面を漸次変化させつつ双方のシールドトンネルどうしを接合する必要があることから、分岐合流部の施工に際しては在来のシールド工法をそのまま適用できるものではなく、何らかの補助工法の採用が不可欠である。

そのため、分岐合流部の施工に際してたとえば特許文献1に示される鯨骨工法を適用することも考えられるが、その鯨骨工法のようにセメント系注入材による人工地山アーチを単に分岐合流部の施工予定位置の上方に造成することのみでは、必ずしも万全の支保効果が得られないことも想定される。

上記事情に鑑み、本発明はシールド工法によるトンネル施工に際してその分岐合流部を効率的に施工することが可能であることはもとより、そのような分岐合流部のみならず各種用途の大規模な地中空洞を施工する場合一般に広く適用することが可能な有効適切な工法を提供することを目的とする。

請求項1の発明の地中空洞の施工方法は、地中を掘削して地中空洞を施工するに際し、地中空洞の施工予定位置の外側に、複数のルーフシールドトンネルを所定間隔で配列した状態で施工して、施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置にルーフシールドトンネルの延在方向に対して斜め前方もしくは斜め後方に凍結管を打設して凍結ゾーンを形成し、該凍結ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、該本設覆工壁の内側を掘削して地中空洞を完成させることを特徴とする。

請求項1の発明の地中空洞の施工方法によれば、地中空洞の掘削に先だってその施工予定位置をシールドルーフ先受工で取り囲み、隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーンを形成し、凍結ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、その先行覆工壁の内側を掘削して地中空洞を完成させるので、地山に対する充分な支保性能や止水性能を確保しつつ地中空洞を安全かつ効率的に掘削し施工することが可能であり、地表あるいは地中の既存構造物に対する万全な沈下防止と周辺の地下水保全を図ることができる。
特に、シールドルーフ先受工は複数のルーフシールドトンネルを所定間隔で配列した構造であるので、大規模な先受工としての所望剛性を充分に確保できることはもとより、その施工は在来のシールド工法により容易にかつ精度良く施工できるものであるし、施工するべき地中空洞の形態や規模に応じてルーフシールドトンネルの本数やその配列を設定することによって、最適な形態、構造のシールドルーフ先受工を自由に構築することができる。
しかも、各ルーフシールドトンネル内から、隣り合うルーフシールドトンネル間接合予定位置に、ルーフシールドトンネルの延在方向に対して斜め前方もしくは斜め後方に凍結管を打設することによりその周囲地山を凍結して凍結ゾーンを形成した後、さらにその凍結ゾーンを掘削してそこに本設覆工壁を先行施工するので、地中空洞の掘削に際してはシールドルーフ先受工と本設覆工壁の全体とによって万全の支保効果が得られる。

本発明の地中空洞の施工方法を未固結地盤の都市圏における大深度・大断面の道路トンネルの施工に適用する場合の一実施形態を図1〜図9を参照して説明する。
本実施形態では、図1〜図2にその概要を示すように、本線シールドトンネル1とランプシールドトンネル2とをいずれも在来のシールド工法により施工するとともに、それらの分岐合流部には予めシールドルーフ先受工3と凍結ゾーン8を施工したうえで本設覆工壁4を先行施工していき、その内側を掘削することで分岐合流部となる地中空洞を掘削することを主眼とするものである。
なお、本実施形態では本線シールドトンネル1の直径がたとえば16m程度、ランプシールドトンネル2の直径がたとえば11m程度であることを想定している。また、本実施形態における分岐合流部の全体の断面形状は、図2〜図3に示されるように手前側(図3(a)参照)から前方側(図3(b)参照)に向かって漸次縮小するような横長楕円形状とされ、上述のように本実施形態ではそのような分岐合流部の断面形状に合致する本設覆工壁4を内部の掘削に先立って先行施工することを主眼とするものである。

具体的には、本実施形態においては本線シールドトンネル1よりもランプシールドトンネル2を先行掘進し、図2に示すようにランプシールドトンネル2が分岐合流部の施工予定位置に達した時点で(あるいは分岐合流部に所定距離進入した時点で)掘進を停止させる。そして、ランプシールドトンネル2の先端部付近の側壁部からルーフシールド機5を発進させ、分岐合流部の施工予定位置の外側に複数(図示例では16本)のルーフシールドトンネル6を分岐合流部の輪郭に沿って所定間隔で配列した状態で施工し、それら複数のルーフシールドトンネル6の全体によって上記のシールドルーフ先受工3を構成するものである。

それらルーフシールドトンネル6の間隔とその配列は、後工程により形成する凍結ゾーン8が、隣り合うルーフシールドトンネル6間で周辺地山に対する支保機能および止水機能を有効に発揮し得るように地盤条件等を勘案して設定するものであり、本実施形態では図3に示したようにそれら16本のルーフシールドトンネル6を分岐合流部の輪郭に沿って充分に密に配列している。

各ルーフシールドトンネル6は、小径(たとえば直径4m程度)のルーフシールド機5を図2に示すようにランプシールドトンネル2の先端部付近のトンネル側壁部から発進させた後に、前方に向けて旋回させて分岐合流部の延長方向(トンネル軸方向)に沿うように施工されるものであるが、本実施形態では上述のように分岐合流部は前方に向かって漸次断面形状が縮小されていくことから、図2〜図3に示すように分岐合流部の断面形状に対応して各ルーフシールドトンネル6の相互間隔も前方にいくほど狭めていって、シールドルーフ先受工3の全体形状を全体として先細り形状としている。

各ルーフシールドトンネル6の施工に際しては、ルーフシールド機5を1台ないし数台程度用意し、それをランプシールドトンネル2から順次発進させていき、分岐合流部の先端部に達したらスキンプレートおよびカッター装置等の外殻装置を残置して内部装置のみを回収し、回収した内部装置をランプシールドトンネル2内、もしくは地上ヤードにおいて新たな外殻装置に組み込むことで新たなルーフシールド機5を組み立て、それを再び発進させれば良い。たとえば、本実施形態では全16本のルーフシールドトンネル6を設けることから、4台のルーフシールド機5を用意してそれぞれ4回ずつ転用することが考えられる。
勿論、可能であれば全てのルーフシールドトンネル6をそれぞれ独立のルーフシールド機5により同時に施工することでも良いし、あるいは、分岐合流部の先端部に達したルーフシールド機5をそこからUターンさせて他のルーフシールドトンネル6を逆方向に連続的に施工することも考えられる。
また、ランプシールドトンネル2の側壁部からルーフシールド機5を発進させるための手法としては、在来のシールドトンネルの側壁部からのシールド機の発進手法、および在来のシールドトンネルどうしのT字接合技術をそのまま採用可能である。

上記のシールドルーフ先受工3の施工後、隣り合うルーフシールドトンネル間接合予定位置を含むその周囲に凍結工法による地山改良手段としての凍結管を図3〜図4に示すように設置して凍結ゾーン8を形成する。この地山改良手段としての凍結ゾーン8の具体的な形成時期は、全16本のルーフシールドトンネル6の施工が完了している必要はなく、ルーフシールドトンネル6が隣り合って施工されているところがあれば、その施工がされているところから順次形成していくようにすれば良い。
その具体的な施工方法としては、各ルーフシールドトンネル6の内部からそれに隣り合っているルーフシールドトンネル6の上部および下部に向けてそれぞれ斜め後方(斜め前方でも良い)に長尺の放射凍結管9aをたとえば1m程度の間隔で密に多数打ち込むとともに、各ルーフシールドトンネル6内には埋込凍結管9bを取り付け、それらの凍結管によって周囲地山を凍結させることによって、シールドルーフ先受工3の内外の全体を覆うような凍結ゾーン8を形成する。凍結ゾーン8の厚みは地山状況やルーフシールドトンネル6間の間隔等を考慮して設定すれば良いが、たとえば1m程度で充分である。
凍結管9aを斜め方向に打設するのは、ルーフシールドトンネル6に対して直交方向に打設する場合に比して1本あたりの打設長さは長くなるが、一方でルーフシールドトンネル6からの打設間隔が大きくなるために打設本数が少なくなるので、結果的に施工効率が良くなりコスト低減が図れるからである。

そして、図5に示すようにシールドルーフ先受工3の手前側の端部に対しては、ルーフシールドトンネル6内からその内側の地山に妻部凍結管9cを打ち込んでランプシールドトンネル2および本線シールドトンネル1の周囲を凍結させることにより、分岐合流部の手前側(大径側)の妻部の位置にその周囲の凍結ゾーン8と一体に妻部凍結ゾーン10を形成する。
なお、分岐合流部の前方側(小径側)の妻部に対しては、図3(b)に示したように上記の凍結ゾーン8を本線シールドトンネル1の周囲にも形成することで充分であるが、必要であればそこにも上記と同様に妻部凍結管9cを打ち込んで妻部凍結ゾーン10をさらに形成することでも良い。

以上により、分岐合流部の施工位置で、少なくとも隣り合うルーフシールド間の接合予定位置に凍結ゾーン8が形成されるので、その接合予定位置の安定性が増すとともに止水性も確保される。そこで、接合予定位置でルーフシールドトンネル6どうしを連結する形態で分岐合流部の本設覆工壁4を先行施工する。

すなわち、図1に示されているようにルーフシールドトンネル6のセグメントを一部撤去してその外側の地山を掘削することにより、隣り合っているルーフシールドトンネル6間に空洞を形成し、図6〜図7に示すようにその空洞内において鉄筋20を組み立てるとともに、必要に応じて補剛材(支柱、桁、屋根などの地山崩落防止枠)21を組み立て、かつ型枠22を設置してその内部に覆工コンクリートを打設充填することによって、隣り合うルーフシールドトンネル6どうしを連結する形態で覆工体23を施工する。なお、補剛材21に型枠22の機能を持たせてそれらを兼用しても良い。
そのような覆工体23を全てのルーフシールドトンネル6間に形成していき、ルーフシールドトンネル6間の覆工体23の形成が済んだところから順次、各ルーフシールドトンネル6の内部にも同様に鉄筋20を組み立てるとともに必要に応じて補剛材21を組み立てて覆工コンクリートを打設することによって同様の覆工体23を相互に連結しつつ形成していき、最終的には図8〜図9に示すように各ルーフシールドトンネル6間および各ルーフシールドトンネル6内に、全体として剛に連結されたリング状断面の一連の本設覆工壁4を施工する。

上記の本設覆工壁4を効率的に施工するためには、図1に示しているように、各ルーフシールドトンネル6のセグメントとして、主桁と横桁とをフレーム状に組んだ鋼製フレームに対して鋼板製のスキンプレートを取り付けた鋼製セグメント30を用いることとして、ルーフシールドトンネル6間の掘削に際しては鋼製フレームを残して支保効果を損なうことなく鋼製スキンプレートのみを撤去すると良い。
また、ルーフシールドトンネル6間の掘削は、ルーフシールドトンネル6内からその側方を掘削することで行えば良いが、分岐合流部の手前側ではルーフシールドトンネル6間に充分な間隔があるので、図1に示すようにそこでは簡易なルーフシールド35を設置してその内側を小形ロードヘッダー等の掘削機36を用いてオープンシールド工法の手法で掘進することも可能である。
いずれにしても、その掘削に際しては隣り合っているルーフシールドトンネル6自体を作業通路として有効に利用して資材や掘削土の搬送を効率的に行うことができ、ルーフシールドトンネル6内への覆工体23の施工はそのような作業通路としての供用が完了したものから順次行えば良い。

以上のようにして本設覆工壁4を先行施工した後、本線シールドトンネル1を掘進してシールドルーフ先受工3の内側を通過させる。(なお、シールドルーフ先受工3や凍結ゾーン8の施工と並行して本線シールドトンネル1を掘進してシールドルーフ先受工3の内側を通過させるようにしても良い。)
そして、図8に示すようにその内側全体を掘削して大断面の分岐合流部を完成させる。その掘削は、分岐合流部の内側を通過している本線シールドトンネル1のセグメントを解体してその周囲を拡幅していくことで行えば良く、その際には細かな加背割を行う必要はないので、大型重機を支障なく使用して効率的な掘削作業を行うことができる。
なお、分岐合流部を掘削することでその内面側に各ルーフシールドトンネル6のセグメントが露出することになるが、図8に示すようにそのセグメントは撤去して本設覆工壁4を露出させれば良く、それにより分岐合流部の内面を自ずと平坦面とすることができる。ただし、必ずしもそのようにする必要はなく、たとえばインバート部に位置するルーフシールドトンネル6はそのままにインバート部に埋め殺すことでも良く、その場合にはルーフシールドトンネル内全体に覆工コンクリートを充填してしまえば良い。
そして、最終的に分岐合流部の両端部に対して妻壁となる覆工壁を本設覆工壁4の内側にそれぞれ設け、手前側の妻壁には本線シールドトンネル1とランプシールドトンネル2とを接合し、前方側の妻壁には本線シールドトンネル1を接合すれば、分岐合流部の覆工全体の完成となる。

本実施形態の工法によれば、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工3を構築し、ルーフシールドトンネル6の内側から、隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーン8を形成し、該凍結ゾーン8内において隣り合うルーフシールドトンネル6間を掘削して、各ルーフシールドトンネル6間および各ルーフシールドトンネル6内に、隣り合うルーフシールドトンネル6どうしを接合する一連の本設覆工壁4を先行施工するので、分岐合流部の施工に際しては地山に対する充分な支保性能と止水性能を確保でき、地表あるいは地中の既存構造物に対する万全な沈下防止と、万全な地下水保全を図ることができる。

特に、シールドルーフ先受工3を複数のルーフシールドトンネル6を密に配列することで構築するので、それを充分に高剛性とできるばかりでなく、分岐合流部の形状に対応する最適な断面形状のシールドルーフ先受工3を自由にかつ高精度で施工することができる。
また、凍結ゾーン8の厚さの範囲内においてルーフシールドトンネル6間を掘削して覆工体23を施工するとともに、ルーフシールドトンネル6内にも同様の覆工体23を一体に連結して施工して、それら一連の覆工体23による本設覆工壁4を先行施工してからその内側を掘削するので、大規模な分岐合流部のような地中大空洞を掘削に際して万全の支保効果と止水効果が得られる。

なお、トンネル完成後には凍結ゾーン8はいずれは消失してしまうが、ルーフシールドトンネル6の一部は残置されて本設覆工壁4の一部として機能するので、シールドルーフ先受工3を単なる仮設として設ける場合よりも遙かに合理的である。

また、本実施形態では、ランプシールドトンネル2を本線シールドトンネル1に先行させることにより、そのランプシールドトンネル2が分岐合流部の施工予定位置に達した時点でそこからシールドルーフ先受工3の施工に早期着手できるとともに、それとの並行作業により本線シールドトンネル1の掘進が可能であるので、その場合には最も効率的な施工が可能であり、全体工期の短縮を充分に図ることができる。
さらに、本実施形態のトンネル工法は、基本的にはいずれも多くの実績のある在来のシールド工法や凍結工法、掘削工法を有機的に組み合わせるものであるから、安全性や信頼性に優れるばかりでなく、比較的低コストでの施工が可能であり、特に都市圏における大深度・大断面の道路トンネルを施工する際に適用して最適な工法であるといえる。

以上で本発明の実施形態を説明したが、上記実施形態はあくまで好適な一例に過ぎず、本発明は上記実施形態に限定されるものでは勿論ない。
たとえば上記実施形態は未固結地盤の都市圏における大深度・大断面の道路トンネルへの適用例であるが、本発明の地中空洞の施工方法は様々な規模、用途、形態の地中空洞を施工する場合全般に広く適用できるものであるし、施工対象の地中空洞の規模や形態に応じて、また周辺環境等の諸条件を考慮して様々な設計的変更が可能である。
すなわち、ルーフシールドトンネル6の本数やそれによるシールドルーフ先受工3全体の規模や形態は、所望の先受効果を確保できる範囲で適宜変更して良いし、シールドルーフ先受工3に一体に形成する凍結ゾーン8や妻部凍結ゾーン10の範囲、本設覆工壁4の形態やその施工方法、その他の各工程の細部についても、本発明の要旨を逸脱しない範囲で最適設計すれば良く、必要に応じて適宜の補助工法を採用しても勿論良い。

さらに、上記実施形態では、ランプシールドトンネル2からルーフシールド機5を発進するようにしたが、それに代えてルーフシールド機5を本線シールドトンネル1から発進させることとし、その他は上記実施形態と同じようにしても良い。この場合は、本線シールドトンネル1が分岐合流部の拡幅区間付近に達したら、その後方において本線シールドトンネル1の側壁部からルーフシールド機5を発進させるとともに、それに並行して本線シールドトンネル1をそのまま掘進を進めれば良い。そして、シールドルーフ先受工3を構築し、ルーフシールドトンネル6の周囲やシールドルーフ先受工3の端部内側に凍結ゾーンを形成して本設覆工壁4を形成し、ランプシールドトンネル2のシールド機が到達してから分岐合流部を掘削すれば良い。勿論、本線シールドトンネル1とランプシールドトンネル2の双方からルーフシールド機を発進させるようにしても良い。
さらに、ルーフシールド機5をランプシールドトンネル2や本線シールドトンネル1から発進させることに代えて、可能であれば別途設けた立坑から発進させたり、あるいはルーフシールド機5を発進させるための発進室を地中に設けて、そこからルーフシールド機5を発進させることも考えられる。

さらになお、上記実施形態はトンネル施工に際してその分岐合流部としての地中空洞を施工する場合の適用例であるが、本発明の地中空洞の施工方法はトンネルの分岐合流部の施工のみならず、たとえば大規模な地中タンク、地下鉄の駅舎部をはじめとする各種の地中構造物の施工に際して所望の形態、規模の地中空洞を施工する場合全般に広く適用できるものである。
この場合、地中空洞の空洞形成部の施工予定位置の外側に、上記実施形態と同様の複数のルーフシールドトンネルを所定間隔で配列して地中空洞の空洞形成部の施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーンを形成し、その凍結ゾーン内を掘削して各ルーフシールドトンネル間および各ルーフシールドトンネル内に一連の本設覆工壁を先行施工する。その後、本設覆工壁の内側を掘削して地中空洞を完成させることになる。そして、シールドルーフ先受工や凍結ゾーン、本設覆工壁の施工方法については、施工すべき地中空洞の規模や形態、地山状況、その他の状況に応じて最適に設計すれば良いことは言うまでもない。

本発明の実施形態である地中空洞の施工方法の概要を示す図である。 同、分岐合流部の平面図である。 同、分岐合流部の各部の断面図であり、(a)は図2におけるIIIa−IIIa部矢視図、(b)は図2におけるIIIb−IIIb部矢視図である。 同、分岐合流部に凍結ゾーンを形成するための凍結管の打込み状況を示す拡大図である。 同、分岐合流部の端部の断面図(図2におけるV−V部矢視図)である。 同、本設覆工壁の施工状況を示す図である。 同、拡大図である。 同、本設覆工壁を施工した状態を示す図である。 同、拡大図である。

符号の説明

1 本線シールドトンネル
2 ランプシールドトンネル
3 シールドルーフ先受工
4 本設覆工壁
5 ルーフシールド機
6 ルーフシールドトンネル
凍結ゾーン
9a 放射凍結管
9b 埋込凍結管
9c 妻部凍結管
10 妻部凍結ゾーン(改良ゾーン)
20 鉄筋
21 補剛材
22 型枠
23 覆工体
30 鋼製セグメント
35 ルーフシールド
36 掘削機

Claims (1)

  1. 地中を掘削して地中空洞を施工するに際し、
    地中空洞の施工予定位置の外側に、複数のルーフシールドトンネルを所定間隔で配列した状態で施工して、施工予定位置を取り囲むシールドルーフ先受工を構築し、
    前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置にルーフシールドトンネルの延在方向に対して斜め前方もしくは斜め後方に凍結管を打設して凍結ゾーンを形成し、
    凍結ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、
    該本設覆工壁の内側を掘削して地中空洞を完成させることを特徴とする地中空洞の施工方法。
JP2006037921A 2006-02-15 2006-02-15 地中空洞の施工方法 Active JP4803429B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037921A JP4803429B2 (ja) 2006-02-15 2006-02-15 地中空洞の施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037921A JP4803429B2 (ja) 2006-02-15 2006-02-15 地中空洞の施工方法

Publications (2)

Publication Number Publication Date
JP2007217911A JP2007217911A (ja) 2007-08-30
JP4803429B2 true JP4803429B2 (ja) 2011-10-26

Family

ID=38495490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037921A Active JP4803429B2 (ja) 2006-02-15 2006-02-15 地中空洞の施工方法

Country Status (1)

Country Link
JP (1) JP4803429B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958035B2 (ja) * 2006-05-11 2012-06-20 清水建設株式会社 シールドルーフ工法
JP5162316B2 (ja) * 2008-04-28 2013-03-13 三菱重工メカトロシステムズ株式会社 Tunnel excavation method
FR2934007B1 (fr) * 2008-07-17 2010-09-10 Ecole Polytech Procede de construction d'une galerie souterraine ou d'un puits permettant de realiser un bouchon etanche pour un stockage de dechets dangereux et notamment radioactifs.
JP5024228B2 (ja) * 2008-08-11 2012-09-12 株式会社大林組 シールドトンネルの拡幅工法
JP5316893B2 (ja) * 2010-03-05 2013-10-16 清水建設株式会社 シールドルーフ工法
JP5316894B2 (ja) * 2010-03-05 2013-10-16 清水建設株式会社 シールドルーフ工法
JP2012046951A (ja) * 2010-08-26 2012-03-08 Ohbayashi Corp 拡張部分を有する大断面トンネルの構築方法
JP6268521B2 (ja) * 2014-02-10 2018-01-31 株式会社大林組 シールドトンネルの拡幅部形成方法
JP6268522B2 (ja) * 2014-02-10 2018-01-31 株式会社大林組 シールドトンネルの拡幅部形成方法
JP6268523B2 (ja) * 2014-02-10 2018-01-31 株式会社大林組 大断面トンネルの構築方法
JP5947441B2 (ja) * 2014-11-05 2016-07-06 前田建設工業株式会社 地中拡幅部の施工方法
JP6594003B2 (ja) * 2015-03-05 2019-10-23 西松建設株式会社 シールドトンネル施工の凍結方法、及び凍結装置
JP6371244B2 (ja) * 2015-03-20 2018-08-08 株式会社奥村組 パイプルーフの連結構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418118B2 (ja) * 1984-12-10 1992-03-26 Obayashi Constr Co Ltd
JPH04319198A (en) * 1991-04-19 1992-11-10 Rikiyou:Kk Construction method of tunnel
JP3084500B2 (ja) * 1992-09-04 2000-09-04 大成建設株式会社 地下空間の構築方法
JP3003535B2 (ja) * 1995-02-20 2000-01-31 株式会社大林組 地下空間の構築方法
JPH09235983A (ja) * 1996-03-04 1997-09-09 Taisei Corp トンネルの接続工法
JP3602998B2 (ja) * 2000-01-07 2004-12-15 鹿島建設株式会社 トンネルの構築方法およびトンネル
JP2005336854A (ja) * 2004-05-27 2005-12-08 Kumagai Gumi Co Ltd シールドトンネルの拡幅対象部位の山留め方法及び山留め構造体
JP2006348718A (ja) * 2005-05-17 2006-12-28 Taisei Corp 地下構造物の構築方法および地下構造物

Also Published As

Publication number Publication date
JP2007217911A (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
CN103306687B (zh) 软岩隧道长悬臂水平旋喷变形控制施工方法
CN101408106B (zh) 小管棚超前注浆法
CN106761778B (zh) 一种适用于上软下硬地层的地铁车站暗挖施工工艺
CN106351670B (zh) 一种封闭的预支护隧道结构
CN106948833A (zh) 拼装式联络通道结构及其施工方法
CN101922293B (zh) 地下隧道施工中的防水钢板设置方法
CN102536273B (zh) 26m大跨度空间一次成型建造工法
CN104047623B (zh) 一种大跨洞室开挖施工方法
KR100984883B1 (ko) 비개착식 터널 구조물의 시공방법
CN104763435B (zh) 尾矿渣填区浅埋暗挖大断面隧道施工方法
JP5024228B2 (ja) シールドトンネルの拡幅工法
JP2004124489A (ja) 地下構造物およびその構築工法
KR100973770B1 (ko) 호형 분할 세그먼트를 이용한 비개착 가설 터널 및 관로와 그의 시공공법
CN103362513A (zh) 暗挖区间既有洞体改造施工工法
CN104675405B (zh) 一种矩形顶管机进洞的辅助结构及施工方法
CN102644467A (zh) 顶管直接切削管片隧道联络通道施工方法
CN103628885A (zh) 一种超浅埋隧道出洞盖挖施工方法
KR100562121B1 (ko) Non-adhesive tunnel structure construction method and tunnel structure
JP4687986B2 (ja) 大断面トンネルの施工方法
KR101028535B1 (ko) 근접병설터널 시공방법
JP2006348718A (ja) 地下構造物の構築方法および地下構造物
CN108533272B (zh) 一种极小净距隧道出洞施工方法
CN102359379A (zh) 环形盾构机及隧道施工方法
CN102748040A (zh) 地铁大跨度车站主体结构及其柱拱法施工方法
KR101665515B1 (ko) 원지반 절취 없는 직천공 강관다단 터널 시공방법 및 구조

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4803429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3