JP4803421B2 - Regeneration and restoration methods of submerged plants in shallow lakes - Google Patents

Regeneration and restoration methods of submerged plants in shallow lakes Download PDF

Info

Publication number
JP4803421B2
JP4803421B2 JP2005193674A JP2005193674A JP4803421B2 JP 4803421 B2 JP4803421 B2 JP 4803421B2 JP 2005193674 A JP2005193674 A JP 2005193674A JP 2005193674 A JP2005193674 A JP 2005193674A JP 4803421 B2 JP4803421 B2 JP 4803421B2
Authority
JP
Japan
Prior art keywords
water
submerged plant
submerged
plant
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005193674A
Other languages
Japanese (ja)
Other versions
JP2007006819A (en
Inventor
邦彦 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2005193674A priority Critical patent/JP4803421B2/en
Publication of JP2007006819A publication Critical patent/JP2007006819A/en
Application granted granted Critical
Publication of JP4803421B2 publication Critical patent/JP4803421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、浅い水深の湖沼において、該湖沼に固有な生態系の保全と水質改善とが図れる沈水植物の再生・復元方法に係るものである。   The present invention relates to a method for regenerating / restoring a submerged plant capable of preserving an ecosystem unique to the lake and improving water quality in a shallow lake.

近年、浅い水深の池や沼、湖など(以降、浅い湖沼と称する)において、この浅い湖沼に流入する河川系の水質改善にも拘わらず、その水質が、改善されない事例があった。これは、浅い湖沼の汚濁のため、沈水植物群落が一旦衰退または消失してしまうと、この沈水植物群落の自己回復は非常に困難なので、該沈水植物群落の水質改善作用を復旧できずに、一旦進展した汚濁状態が解消されないためと考えられる。   In recent years, in shallow ponds, swamps, and lakes (hereinafter referred to as “shallow lakes”), there have been cases where the water quality has not been improved despite the improvement in water quality of river systems flowing into this shallow lake. This is because of the pollution of shallow lakes, once a submerged plant community declines or disappears, self-healing of this submerged plant community is very difficult, so the water quality improvement effect of the submerged plant community cannot be restored, This is thought to be because the once-developed pollution is not resolved.

たとえば流入河川水質が改善される前の汚濁物質の流入によって、浅い湖沼が汚濁され、沈水植物群落が一挙に消失してしまうことがあった。すなわち、この水質汚濁によって、浅い湖沼の透明度が低下すると、沈水植物は、浅深度の水底に位置していても、水質汚濁の影響に加えて日射不足となるので、少なくとも、衰退してしまう。そして、このように沈水植物群落が一旦衰退や消失してしまうと、水面上の風波の影響が、直接的にその水底に堆積した底泥に及んで、該底泥の巻き上げ現象が生起する。このため、底泥が水中に拡散し、この底泥から窒素やリンなどの栄養塩類の溶出が、活発化する。この結果、湖沼の富栄養化が進み、植物プランクトンが著しく増殖して、水中の植物プランクトン量が増大する。   For example, the inflow of pollutants before the quality of the inflowing river water improved, and the shallow lakes were polluted and the submerged plant community disappeared all at once. That is, when the transparency of shallow lakes is reduced by this water pollution, even if the submerged plant is located at the bottom of the shallow water, it will at least decline due to insufficient solar radiation in addition to the influence of water pollution. And once a submerged plant community declines or disappears in this way, the influence of wind waves on the water surface directly reaches the bottom mud deposited on the bottom of the water, and the phenomenon of rolling up the bottom mud occurs. For this reason, bottom mud diffuses in water, and elution of nutrients such as nitrogen and phosphorus is activated from the bottom mud. As a result, eutrophication of the lake progresses, phytoplankton grows significantly, and the amount of phytoplankton in the water increases.

このように、底泥の巻き上げ現象による底泥粒子の水中濃度と、富栄養化による植物プランクトンの水中濃度とが、共に上昇するので、湖沼の透明度が大幅に低下する。したがって、浅深度の水底でもこの水底に達する日射量は、沈水植物の自己回復や生息に適さない程度に減少する。このため、流入河川の水質が改善されても、沈水植物群落は再生または復元されず、浅い湖沼の汚濁状態は継続することになる。   In this way, both the concentration of bottom mud particles in water due to the phenomenon of rolling up the bottom mud and the concentration of phytoplankton in water due to eutrophication increase, so the transparency of the lake is greatly reduced. Therefore, the amount of solar radiation reaching this bottom even at shallow depths decreases to an extent that is not suitable for the self-healing and inhabiting of submerged plants. For this reason, even if the water quality of the inflowing river is improved, the submerged plant communities are not regenerated or restored, and the shallow lakes continue to be polluted.

そこで、このような汚濁した水域を浄化するための、各種の提案が行われている。たとえば、湖沼や池のような滞留性水域の岸に沿い、かつ、この岸から適度の間隙距離を確保して通水性を有する護岸を形成し、この護岸と岸との間に浅水深ゾーンを形成して、この浅水深ゾーンに水性植物群を植栽するとともに、護岸の外側に沿わせた状態で生物学的な水処理装置を設け、この水処理装置に水域の水を強制循環させるようにした構成の湖沼や池のような滞留性水域の水質保全システムが提案され、既に権利化されている(特許文献1)。また、この水質保全システムは、浅水深ゾーンがその深い所で30cm程度の水深とされ、この浅水深ゾーンに新たに植栽する水性植物として、例えばヨシ、アシ、マコモ、ガマ、フトイ等の大型抽水植物、ウォーターポピー、クレソン、セリ等の抽水浮葉植物、及びタヌキモ、スギモ等の沈水植物をそれぞれの生活形態に応じて組み合わせて用いるのが好ましいとされている。したがって、この水質保全システムによれば、水処理装置によって、水域から有機物などのBOD成分や、窒素、リンを除去するとともに、浅水深ゾーンの性植物群によりDO(Dissolved Oxygen:溶存酸素量)を供給することにより、自然が本来的に持つ浄化機能を増幅的に活用しているので、増大する汚染負荷にさらされている滞留性水域の水質や、既に汚染が進行してしまった滞留性水域の水質の保全、あるいは回復・保全を、自然との調和を保ちつつ効率的にできるとしている。   Therefore, various proposals have been made to purify such polluted water areas. For example, along the coast of a stagnant water area such as a lake or pond, and forming a revetment with water permeability by securing an appropriate gap distance from this shore, a shallow water depth zone is formed between this revetment and the shore. Form and plant aquatic plants in this shallow water depth zone, install a biological water treatment device along the outside of the revetment, and force this water treatment device to circulate water in the water area A water quality conservation system for a stagnant water area such as a lake or pond having the above structure has been proposed and has already been granted a patent (Patent Document 1). In addition, this water quality conservation system has a shallow water depth zone with a depth of about 30 cm, and as water plants newly planted in this shallow water depth zone, for example, reeds, reeds, makomo, gama, futoi, etc. It is said that it is preferable to use a combination of water-extracted plants such as water-drawn plants, water poppies, watercress and seri and submerged plants such as tanukimo and sugimo. Therefore, according to this water quality conservation system, BOD components such as organic substances, nitrogen and phosphorus are removed from the water area by the water treatment device, and DO (Dissolved Oxygen: dissolved oxygen amount) is generated by the sex plant group in the shallow water zone. By supplying amplifying the purification function inherent in nature, the water quality of the stagnant water area exposed to the increasing pollution load and the stagnant water area where the contamination has already progressed It is said that it is possible to efficiently maintain, restore, and maintain water quality while maintaining harmony with nature.

また、汚濁水域の深層や水底に光の透過しない暗い水域において、この水域に提体や膜体で囲い締め切る「水域のうつろ」構成し、この水域の水の透明度を高め、この水を媒体として、大量の太陽光を汚濁水域の温度躍層以下の深層や水底に透過させ、観光や娯楽を可能にするとともに、深層や水底での光合成作用を活発にして、深層や水底で大量の溶存酸素を供給し、生態環境や水底のヘドロを浄化するように構成した「水域のうつろ」によるサンライトホ−ルを利用した底質や深層環境の改善方法が提案され、既に権利化されている(特許文献2)。また、この改善方法において、その「水域のうつろ」の透明度を高めるために具体的には、1)公知の浄化装置を利用して「水域のうつろ」内の水の透明度を高めるか、2)透明度を高い水を「水域のうつろ」内に投入するか、3)「水域のうつろ」内の濁った水を強制排出するか、4)「水域のうつろ」内に浄化剤を投入することによって汚濁水を浄化するか、のいずれかを用いて、または適宜、これらを組合せて用いており、この改善方法によれば、ランニングコストが少なく、生態環境保全や底質環境保全効果が大きいとしている。   In addition, in the deep layers of polluted water areas and dark water areas where light does not pass through the bottom of the water, the water area is made up of draped and filmed bodies, and the water in the water area is made more transparent, and this water is used as a medium. A large amount of dissolved oxygen in the deep layer and the bottom of the water, allowing a large amount of sunlight to penetrate the deep layer and the bottom of the polluted water temperature and the bottom of the water, enabling tourism and entertainment, as well as activating photosynthesis in the deep layer and the bottom of the water. A method for improving the bottom sediment and deep environment using sun light holes using the “water area depression” configured to purify the ecological environment and sludge in the bottom of the water has been proposed and has already been granted a patent (Patent Literature) 2). Moreover, in this improvement method, in order to increase the transparency of the “water area”, specifically, 1) increase the transparency of the water in the “water area” using a known purification device, or 2) Either by putting water with high transparency into the “water area”, 3) forcibly discharging the muddy water in the “water area”, or 4) by introducing a purifier into the “water area” Purify polluted water, or use them in combination as appropriate. According to this improvement method, running costs are low, and ecological environment conservation and sediment environment conservation effects are large. .

さらに、常時水を貯留した止水域と、この止水域の周囲に設けた水位変動域と、この水位変動域の周囲に設けた冠水しない水際域とを、調整池か遊水池かのいずれか一方、または双方に設けた構成の人工緑化区域を形成し、止水域から水位変動域にかけて、所定の冠水頻度に応じた複数域に区分し、これらの複数域に、冠水頻度に応じた冠水耐性を有する植物を、植生の移りゆきが見られるように植栽して植物推移帯を形成した人工緑化方法が知られている(たとえば、特許文献3)。また、この人工緑化方法においては、その複数域を、常時冠水域と頻繁冠水域と稀冠水域とに区分して、常時冠水域には、浮葉植物か沈水植物かのいずれか一方または双方を植え、頻繁冠水域には、沈水植物か湿性植物かのいずれか一方または双方を植えて、段階的に植生が移りゆく構成としているので、より自然に近い配置構成が達成でき、種が定着し易く、長期間安定した生態系の構成を促進できるとされている。また、このように植物推移帯を設けているので、植生配置に強く影響される小動物はその棲み分けが促進され、結果として定着性の強い動植物相が構成され、多様な生態系を内包した優れたビオトープを創出できるとしている。   Furthermore, the water stop area where water is constantly stored, the water level fluctuation area provided around this water stop area, and the non-flooding water area provided around this water level fluctuation area, either the regulating pond or the recreational pond. Or an artificial greening area with a configuration provided on both sides, and divided into a plurality of areas according to a predetermined inundation frequency from the water stop area to the water level fluctuation area, and these multiple areas have inundation resistance according to the inundation frequency. There is known an artificial greening method in which a plant transition zone is formed by planting a plant having the plant so that the vegetation can be seen (for example, Patent Document 3). In this artificial revegetation method, the multiple areas are divided into a constantly flooded area, a frequently flooded area and a rare flooded area, and either a floating plant or a submerged plant is included in the constantly flooded area. Planting, frequent submerged areas are planted with either or both submerged plants and wet plants, and the vegetation moves in stages, so a more natural arrangement can be achieved and the seeds settled. It is said that it is easy to promote long-term stable ecosystem composition. In addition, because the plant transition zone is provided in this way, small animals that are strongly influenced by vegetation arrangement are promoted to segregate, and as a result, a highly stable flora and fauna are formed, which excels in diverse ecosystems. A biotope can be created.

さらに、湖沼本体に連続して浅い小池を設けると共に、該小池に多数の水草を配し、湖沼本体と小池との間に、水を通過させるが、水草の通過を遮る仕切りを設置した構成の湖沼の浄化装置が知られている(たとえば、特許文献4)。この浄化装置では、小池の水中及び岸辺に、睡蓮、菱、蘆、真菰、浮草等の水草を多数配することが望ましいとされ、また湖沼本体の周囲に複数の小池を設けたり、水を環流させる風車駆動のポンプを設けたりしている。したがって、この浄化装置によれば、水草の水質浄化作用という自然の力を利用して湖沼の水を浄化するので、大がかりな装置やこの装置用の電気等のエネルギー及び特殊な薬品が不要であり、環境破壊等を引き起こす心配が無く、コストも低廉で済むとされている。   In addition, a shallow pond is continuously provided in the lake body, and a large number of aquatic plants are arranged in the pond, and water is passed between the lake body and the pond, but a partition that blocks passage of water plants is installed. A lake purification device is known (for example, Patent Document 4). In this purification device, it is desirable to arrange a large number of aquatic plants such as water lilies, rhombuses, cormorants, red sea breams, floating grasses in the pond underwater and on the shore. A windmill-driven pump is installed. Therefore, according to this purification device, the water in the lake is purified by utilizing the natural power of water plant water purification, so there is no need for large-scale devices, energy such as electricity and special chemicals for this device. It is said that there is no concern about causing environmental destruction and the cost is low.

特許第2849020号公報Japanese Patent No. 2849020 特許第3644523号公報Japanese Patent No. 3644523 特開2001−224243号公報JP 2001-224243 A 特開2003−19493号公報JP 2003-19493 A

しかしながら、上記の構成や方法では、たとえ水生植物群を形成していても、該水域に固有な沈水植物を明確に再生・復元していないので、必ずしも、その湖沼生態系の保全が図れないという問題が生じる。   However, in the above configuration and method, even if an aquatic plant group is formed, the submerged plants unique to the water area have not been clearly regenerated and restored, so that it is not necessarily possible to preserve the lake ecosystem. Problems arise.

すなわち、上記の水質保全システムでは、新たに形成した浅水深ゾーンに、同様に水性植物群を新たに植栽しており、また上記の底質や深層環境の改善方法では、深層や水底での光合成作用を活発させるとだけして、少なくとも、水生植物群に関する明確な記載はなく、さらに上記の人工緑化方法では、その生態系を長期安定化するため、所定に植生が推移する植物推移帯を人為的な地形の造成および植栽配置で形成しており、また上記の湖沼の浄化装置では、湖沼本体に新たに小池を付設して、この小池に同様に水生植物群を新たに形成している。いずれにしても、水域に固有な沈水植物を、積極的に再生または復元していない。   That is, in the above water quality conservation system, a new group of aqueous plants is planted in the newly formed shallow water depth zone, and in the above-mentioned method for improving the bottom quality and deep environment, There is no clear description of the aquatic plant group at least when the photosynthetic action is activated, and the above-mentioned artificial tree planting method uses a plant transition zone where vegetation changes regularly in order to stabilize the ecosystem for a long period of time. It is formed by artificial terrain creation and planting arrangement, and in the above lake purification device, a new pond is attached to the lake body, and aquatic plants are newly formed in this pond as well. Yes. In any case, the submerged plants inherent in the water area are not actively regenerated or restored.

また、上記従来の構成や方法では、上述した沈水植物の衰退または消失に伴って浅い湖沼で生じる底泥の巻き上げ現象に起因した汚濁状態を、根本的に解消していない。すなわち、汚濁した湖沼水を、対症療法的に、たとえ水生植物で浄化することが期待できても、この汚濁の原因となる底泥の巻き上げ自体を抑制するという観点は、欠落している。このため、上記の従来例では、謂わば、底泥の巻き上げに起因した汚濁力よりも、水生植物による浄化力が上回り、かつこの力関係が維持される必要がある。したがって、水質汚濁の改善は、その進行が遅く、長期化することが予測される。   Moreover, in the said conventional structure and method, the pollution state resulting from the winding-up phenomenon of the bottom mud which arises in a shallow lake with the decline or disappearance of the above-mentioned submerged plant is not fundamentally eliminated. That is, even if it can be expected that the polluted lake water is purified by symptomatic treatment with aquatic plants, there is a lack of the viewpoint of suppressing the rolling up of the bottom mud that causes this pollution. For this reason, in the above-described conventional example, the so-called so-called polluting power resulting from the rolling up of the bottom mud needs to have a greater purification power by aquatic plants, and this power relationship needs to be maintained. Therefore, the improvement of water pollution is expected to be slow and prolonged.

そこでこの発明は、前記従来のものの問題点を解決し、水域に固有な衰退または消失した沈水植物を再生または復元し、かつ該水域の水質改善が図れる浅い湖沼における沈水植物の再生・復元方法を提供することを目的とする。   Accordingly, the present invention provides a method for regenerating / restoring a submerged plant in a shallow lake that solves the problems of the prior art, regenerates or restores a submerged plant that has declined or disappeared inherent to a water region, and improves the water quality of the water region. The purpose is to provide.

前記課題を解決するために、請求項1に記載の発明は、外部から流入した汚濁物質のため、水域の水質汚濁が進展して、少なくとも、該水域に固有な沈水植物群落が衰退または消失し、前記汚濁物質の流入が減少しても、汚濁状態が解消されない浅い湖沼において、前記水域の風波に起因する底泥の巻き上げを抑制して水中濁度を低減させ、該水域の水底に透過光を到達させる濁度低下手段を形成し、前記沈水植物群落が衰退または消失した水域に、前記固有な沈水植物群落を再生または復元させるとともに、再生または復元させた沈水植物群落が水底を覆うことで前記底泥の巻き上げの抑制効果を高め、沈水植物群落の再生または復元をさらに促進させ、該水域の水質を改善する。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that the water pollution of the water area progresses due to the pollutant flowing from the outside, and at least the submerged plant community peculiar to the water area declines or disappears. the even inflow of contaminants is reduced, in shallow lakes pollution condition persists, reduce water turbidity by suppressing winding mud caused by wind waves of the body of water, the transmitted light in the sea bed of the body of water The turbidity lowering means is formed so as to regenerate or restore the inherent submerged plant community in the water area where the submerged plant community has declined or disappeared, and the regenerated or restored submerged plant community covers the bottom of the water. The effect of suppressing the rolling up of the bottom mud is enhanced, the regeneration or restoration of submerged plant communities is further promoted, and the water quality of the water area is improved.

請求項2に記載の発明は、請求項1において、前記濁度低下手段は、浮葉植物を所定に分布させて形成する。   According to a second aspect of the present invention, in the first aspect, the turbidity reducing means is formed by distributing floating leaf plants in a predetermined manner.

請求項3に記載の発明は、請求項1において、前記濁度低下手段は、前記水底を、マットで覆って形成する。   According to a third aspect of the present invention, in the first aspect, the turbidity reducing means is formed by covering the water bottom with a mat.

請求項4に記載の発明は、請求項1において、前記濁度低下手段は、前記水底の周囲を、シート状部材を垂下した浮体枠で囲んで形成する。   According to a fourth aspect of the present invention, in the first aspect, the turbidity reducing means is formed by surrounding the bottom of the water with a floating frame in which a sheet-like member is suspended.

請求項5に記載の発明は、請求項1ないし4のいずれかにおいて、前記沈水植物群落を再生または復元させる箇所に、少なくとも、既存の浮葉植物が進入することを防止する隔離部材を設けた。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, an isolation member that prevents at least an existing floating leaf plant from entering a portion where the submerged plant community is regenerated or restored is provided.

請求項6に記載の発明は、外部から流入した汚濁物質のため、水域の水質汚濁が進展して、少なくとも、該水域に固有な沈水植物群落が消失し、前記汚濁物質の流入が減少しても、汚濁状態が解消されない浅い湖沼において、前記消失した沈水植物群落を形成していた沈水植物の埋土種子を前記水域内から採取し、この採取した埋土種子によって、該水域に固有な沈水植物群落を復元させるとともに、復元させた沈水植物群落が水底を覆うことで該水域における底泥の巻き上げを抑制し、該水域の水底に透過光を到達させて沈水植物群落の復元をさらに促進させ、該水域の水質を改善する。 The invention according to claim 6 is a pollutant substance flowing in from the outside, so that water pollution in the water area progresses, at least the submerged plant community inherent in the water area disappears, and the inflow of the pollutant substance decreases. However, in shallow lakes where the pollution state cannot be resolved, the buried seeds of the submerged plants that formed the lost submerged plant communities were collected from within the water area, and the submerged seeds inherent to the water area were collected by the collected buried seeds. In addition to restoring the plant community, the restored submerged plant community covers the bottom of the water and suppresses the rolling up of the bottom mud in the body of water, allowing transmitted light to reach the bottom of the body of water and further promoting the restoration of the submerged plant community. , Improve the water quality of the water area.

請求項7に記載の発明は、請求項6において、前記採取した埋土種子を発芽させて、所定に生長させた再生株を大量培養し、この再生株の生長に適した箇所を、前記水域から選定し、この選定した箇所の水底に透過光を到達させる濁度低下手段を設け、この透過光を確保した水底に、所定数の再生株を移植して定着させ、沈水植物群落として生長させる。   A seventh aspect of the present invention is the method according to the sixth aspect, wherein the regenerated strain obtained by allowing the collected buried seeds to germinate and growing to a predetermined extent is cultured in a large amount, and a location suitable for the growth of the regenerated strain is defined in the water area. The turbidity reducing means is provided to allow the transmitted light to reach the bottom of the water at the selected location, and a predetermined number of regenerated strains are transplanted and fixed on the bottom of the water where the transmitted light is secured to grow as a submerged plant community. .

請求項8に記載の発明は、請求項において、前記再生株は、所定容器に収容して、前記水底に設置しており、前記容器は、少なくとも、その底面が多孔質に形成されている。 The invention according to claim 8 is the invention according to claim 7 , wherein the regenerated strain is accommodated in a predetermined container and installed on the bottom of the water, and the bottom of the container is formed to be porous. .

請求項9に記載の発明は、請求項6ないし8のいずれかにおいて、前記水域の地形、水文および気象状況に基づいて、水底における底泥擾乱や流速分布を定量的に評価する流動モデルを作成し、該流動モデルを用いて前記埋土種子の採取地点を選定する。 A ninth aspect of the present invention is the method according to any one of the sixth to eighth aspects, wherein the flow model for quantitatively evaluating the bottom mud disturbance and the flow velocity distribution in the bottom of the water based on the topography, hydrology, and weather conditions of the water area is created. Then, the collection point of the buried seed is selected using the flow model.

請求項10に記載の発明は、請求項7または8のいずれかにおいて、前記水域の地形、水文および気象状況に基づいて、水底における底泥擾乱や流速分布を定量的に評価する流動モデルを作成し、該流動モデルを用いて前記再生株の生長に適した箇所を選定する。 A tenth aspect of the present invention is the method according to any one of the seventh or eighth aspects, wherein the flow model for quantitatively evaluating the bottom mud disturbance and the flow velocity distribution in the bottom of the water based on the topography, hydrology and weather conditions of the water area is created. Then, using the flow model, a location suitable for the growth of the regenerated strain is selected.

この発明は、前記のような構成であるから、浅い湖沼の水質向上や保全が図れるとともに、沈水植物群落の衰退または消失に伴い減少または消滅した各種の水生生物を含めた生態系も、浅い湖沼に復活させて再現する可能性を高めることができる。すなわち、沈水植物を群落として、一旦回復または復元させて定着させれば、この沈水植物群落が風波に起因した底泥の巻き上げを抑制して、水中に拡散する底泥粒子および水中プランクトンによる水中の濁りを低下できる。このため、透明度の高い水質が向上した浅い湖沼を回復することが可能となる。特に、透明度の上昇と、これによる沈水植物の生体活動の活発化とが相互に連携しあって推進されるので、水質が向上する傾向を促進できる。他方、沈水植物が過去に提供していた生息環境を回復できるので、該環境を利用していた水生生物を優先的に回帰させることが可能となる。   Since the present invention is configured as described above, it is possible to improve and maintain the water quality of shallow lakes and marine ecosystems including various aquatic organisms that have decreased or disappeared due to the decline or disappearance of submerged plant communities. It is possible to increase the possibility of reviving and reproducing. In other words, once a submerged plant is recovered and restored and settled, the submerged plant community suppresses the rolling up of the bottom mud caused by the wind wave, and the underwater mud particles and underwater plankton underwater Turbidity can be reduced. For this reason, it becomes possible to recover shallow lakes with improved water quality. In particular, since the increase in transparency and the increase in the biological activity of the submerged plant are promoted in cooperation with each other, it is possible to promote the tendency to improve water quality. On the other hand, since the habitat environment that the submerged plant has provided in the past can be recovered, it is possible to preferentially return aquatic organisms that have used the environment.

図1は、この発明の沈水植物の再生・復元方法を用いた第1の実施形態を示し、(a)は、沈水植物が衰退し、浮葉植物が繁茂している状態を示す概略図、(b)は、沈水植物を回復させるために浮葉植物を所定に刈り取った状態を示す概略図、(c)は、沈水植物の回復を開始または回復途中の状態を示す概略図、(d)は、沈水植物を群落として再生した状態を示す概略図である。   FIG. 1 shows a first embodiment using the method for regenerating / restoring a submerged plant of the present invention, and (a) is a schematic diagram showing a state in which a submerged plant has declined and a floating leaf plant has grown. b) is a schematic diagram showing a state in which a floating leaf plant has been cut in order to recover a submerged plant, (c) is a schematic diagram showing a state in which recovery of a submerged plant is started or in the middle of recovery, and (d) It is the schematic which shows the state reproduced | regenerated as a submerged plant.

この第1の実施形態は、外部から流入した汚濁物質のため、少なくとも、その水域に固有な沈水植物群落が衰退し、外部からの汚濁物質の流入が減少しても、水質汚濁が解消されない浅い湖沼に対処した沈水植物の再生・復元方法であり、その水域の全域あるいは特定の一部箇所に浮葉植物が繁茂していることを前提としている。   In this first embodiment, because of pollutants flowing in from the outside, even if at least the submerged plant communities inherent in the water area decline and the inflow of pollutants from the outside decreases, the water pollution is not eliminated It is a method for regenerating and restoring submerged plants that has coped with lakes and marshes, and it is assumed that floating leaf plants are flourishing throughout the water area or at a specific part.

すなわち、図1(a)に示すように、水域内の所定箇所Pで、浮葉植物Bが繁茂している場合、たとえばヒシなど葉が水面に浮いており、その水中根で湖底に活着している浮葉植物Bが繁茂している場合には、このような場所では、風波が抑制されることで、底泥の巻き上げは、既に抑制されている。しかし、水面を覆う葉が、光や酸素の供給を妨げることから、この第1の実施形態では、これらの浮葉植物Bの一部分のみを所定に刈り取ることで、その消波効果は残しながら、光が湖底にまで到達する箇所Pを、所定に創出するようにした。なお、この箇所Pは、少なくとも、沈水植物の生息に適した水深を有した箇所が、選定されている。   That is, as shown in FIG. 1 (a), when a floating leaf plant B is prosperous at a predetermined place P in the water area, for example, a leaf such as a horsetail floats on the surface of the water and settles on the bottom of the lake with its underwater roots. In the case where the floating leaf plant B is prosperous, the wind wave is suppressed in such a place, and the rolling up of the bottom mud is already suppressed. However, since the leaves covering the water surface hinder the supply of light and oxygen, in this first embodiment, only a part of these floating leaf plants B is cut in a predetermined manner, leaving the wave-dissipating effect, and light. A point P that reaches the bottom of the lake is created in a predetermined manner. In addition, as this location P, at least a location having a water depth suitable for the inhabiting of submerged plants is selected.

すなわち、このように浮葉植物Bが繁茂している場合には、これらの浮葉植物Bの葉が、その繁茂箇所Pの水底に、水面からの透過光や酸素が到達することを妨げている。このため、たとえ、その水底に沈水植物Aが残存していても、その生育は未発達なものに留まり、また同水底に沈水植物Aの種子が残存していても、種子が発芽する可能性は極めて低くなる。したがって、その水域に固有な沈水植物Aは衰退しており、本来、その場所がこの沈水植物Aの成育に適した優性種となる場所であっても、沈水植物群落AAとして回復し再生しないことになる。   That is, when the floating plant B is prospering in this way, the leaves of these floating plant B prevent the transmitted light and oxygen from the water surface from reaching the bottom of the proliferating portion P. For this reason, even if the submerged plant A remains on the bottom of the water, the growth remains undeveloped, and the seed may germinate even if the seed of the submerged plant A remains on the bottom of the water. Is extremely low. Therefore, the submerged plant A inherent to the water area has declined, and even if the place becomes a dominant species suitable for the growth of the submerged plant A, it will not recover and regenerate as a submerged plant community AA. become.

そこで、この第1の実施形態は、図1(b)に示すように、浮葉の除去に留まることなく、繁茂している浮葉植物Bから、いくつかの浮葉植物B自体を、所定に間引くように刈り取ることにより、この刈り取らずに残した浮葉植物B同士の間に、沈水植物Aが回復可能な所定面積の水底部分を形成するようにしている。換言すれば、湖沼の水質環境低下に対してある程度の耐性を有したと実証されたことになる既存の繁茂している浮葉植物Bを、その繁茂場所の水面から水底への光の透過を過剰に妨害しない程度に分布させるように整備し、このように分布させた浮葉植物Bを濁度低下手段1としている。   Therefore, in the first embodiment, as shown in FIG. 1 (b), a number of floating leaf plants B themselves are thinned out to a predetermined degree from a prosperous floating leaf plant B without being limited to removal of floating leaves. In this way, a water bottom portion having a predetermined area where the submerged plant A can recover is formed between the floating leaf plants B left without being cut. In other words, the existing overgrown floating plant B, which has been proven to have some degree of resistance to the deterioration of the water quality of the lake, has excessive light transmission from the water surface to the bottom of the overgrowth place. The floating leaf plant B distributed in this way is used as the turbidity lowering means 1.

したがって、このように残存させた浮葉植物B同士の間には、水中に露出された水底部分が形成され、かつ、この水底部分は、その水底部分から水面までの妨害物のない直線的な経路が確保されるので、水面からの透過光や酸素の供給量を充分に確保できる。このため、水底部分に残存した生育不良な沈水植物Aは、その順調な成体への生長が可能となる。他方、水底部分に残存した沈水植物Aの種子は、発芽して生長する機会が与えられることになる。すなわち、浮葉植物Bの繁茂状況によってはその大部分の日射が遮られていた場合、ある程度の日射光量が、水底部分に到達するので、発芽条件を満たす照度まで上昇することが期待できる。   Therefore, a bottom portion exposed in water is formed between the remaining floating leaf plants B, and this bottom portion is a straight path free from obstructions from the bottom portion to the water surface. Therefore, the amount of transmitted light and oxygen supplied from the water surface can be sufficiently secured. For this reason, the submerged submerged plant A remaining in the bottom of the water can grow into a smooth adult. On the other hand, the seed of the submerged plant A remaining in the bottom of the water is given an opportunity to germinate and grow. That is, depending on the prosperity of the floating leaf plant B, when most of the solar radiation is blocked, a certain amount of solar radiation reaches the bottom of the water, so that it can be expected to increase to illuminance that satisfies the germination condition.

また、このように、繁茂している浮葉植物Bの一部分を水底部分の日射を確保できるように刈り取っても、その周囲に残存した浮葉植物Bが、この刈り取った箇所Pに再侵入することが予測される。そこで、この刈り取った箇所Pに、再侵入防止手段5を設置して、新たな浮葉植物Bが侵入することを防止している。すなわち、刈り取り箇所Pを、オイルフェンスと同様に、周囲から隔離するシート6を浮体7から吊り下げて配置し、浮葉植物Bの再侵入を防ぐようにしている。   In addition, even if a part of the proliferating floating leaf plant B is cut so as to secure solar radiation at the bottom of the water, the floating leaf plant B remaining in the surrounding area may re-enter the cut portion P. is expected. Therefore, the re-entry prevention means 5 is installed in the cut portion P to prevent the new floating plant B from entering. That is, in the same manner as the oil fence, the cutting portion P is arranged by suspending the sheet 6 that is isolated from the surroundings from the floating body 7 so as to prevent re-entry of the floating plant B.

この再侵入防止手段5は、浮体7と、この浮体7から吊下された隔離部材であるシート6とを主体に構成され、刈り取り箇所Pとこの刈り取り箇所Pの周囲に残存した浮葉植物Bとの間を区画した境界線上における適宜の範囲に渡って、設置されている。すなわち、これらの両者P,Bの間に、スクリーン状にシート6が展張され、両者P,Bを分離している。   This re-entry prevention means 5 is mainly composed of a floating body 7 and a sheet 6 which is a separating member suspended from the floating body 7, and a cutting plant P and a floating leaf plant B remaining around the cutting plant P It is installed over an appropriate range on the boundary line dividing the space. That is, the sheet 6 is stretched between the two P and B in a screen shape to separate the two P and B.

浮体7は、浮標などに類似した所定形状に形成されて、発泡体や中空体を主体にした構成とされ、シート6を吊下して水面に留まれる程度の浮力が確保されている。シート6は、浮体7に吊下されて所定箇所Pに設置された場合に、その下端が、着底できる程度の垂下方向の長さが確保されている。   The floating body 7 is formed in a predetermined shape similar to a buoy or the like, and is mainly composed of a foam or a hollow body. Sufficient buoyancy is secured to suspend the sheet 6 and stay on the water surface. When the seat 6 is suspended from the floating body 7 and installed at a predetermined location P, the lower end of the seat 6 has a length in the hanging direction so that the bottom can be settled.

したがって、この再侵入防止手段5は、所定に設置されたシート6によって、浮葉植物Bなどが、刈り取り箇所Pに進入して繁茂することを防止する。すなわち、再侵入防止手段5を所定箇所Pに設置する場合に、その浮体7が、その垂下したシート6の下端を水底に埋設して固定され、または、図示しないワイヤなどで所定に係留され、その設置された位置を維持する。このため、オイルフェンスと同様にして、周囲から所定箇所Pを隔離し、周囲に残存した浮葉植物Bが再進入することを防止する。   Therefore, the re-entry preventing means 5 prevents the floating leaf plant B and the like from entering the cut portion P and growing over by the sheet 6 installed in a predetermined manner. That is, when the re-entry prevention means 5 is installed at a predetermined location P, the floating body 7 is fixed by burying the lower end of the suspended sheet 6 in the bottom of the water, or is moored in a predetermined manner with a wire (not shown), Maintain its installed position. For this reason, in the same manner as the oil fence, the predetermined portion P is isolated from the surroundings, and the floating plant B remaining in the surroundings is prevented from re-entering.

なお、再侵入防止手段5は、所定箇所Pの全周囲を取り囲む必要はなく、所定箇所Pの周りに残存した浮葉植物Bの繁茂状況や水底の地勢などを、適宜、勘案して、必要な箇所に設置するものとする。また、この再侵入防止手段5は、図1(b)に示すように、2重壁状に設けてもよく、これによって、防止効果をより高めるようにしてもよい。   The re-entry prevention means 5 does not have to surround the entire periphery of the predetermined place P, and is necessary by appropriately taking into account the prosperity of the floating leaf plant B remaining around the predetermined place P and the topography of the water bottom. It shall be installed at the location. Further, the re-entry preventing means 5 may be provided in a double wall shape as shown in FIG. 1 (b), thereby further enhancing the prevention effect.

したがって、このようにして、沈水植物Aの回復が開始されると、水中濁度を低減させる方向の変化を、促進し加速する正のフィードバックが得られる。すなわち、沈水植物Aの生長に伴い、この生長の阻害要因である水中濁度が低減されるので、該生長を活発化でき、これに連係して水中濁度を低減させる変化傾向を、さらに大きくできる。   Therefore, when recovery of the submerged plant A is started in this manner, positive feedback that accelerates and accelerates the change in the direction of reducing the turbidity in water is obtained. That is, with the growth of the submerged plant A, the turbidity in water, which is an inhibition factor for this growth, is reduced, so that the growth can be activated and the change tendency to reduce the turbidity in water in conjunction with this is further increased. it can.

より詳細には、風波による底泥の巻き上げを、該底泥の表面を覆うように生長する沈水植物Aが、緩和し抑制する。このため、該底泥からの窒素やリンなどの栄養塩類の水中への溶出が抑制される。したがって、該水中に溶存した栄養塩類の濃度が低下する。このため、該栄養塩類を吸収していた該水中の植物プランクトンの生体活動が低下する。これらの結果、該水中植物プランクトン量が減少すると同時に、巻き上げられて水中に浮遊する底泥粒子の量も減少し続けることになる。   More specifically, the submerged plant A that grows so as to cover the surface of the bottom mud mitigates and suppresses the rolling up of the bottom mud by wind waves. Therefore, elution of nutrient salts such as nitrogen and phosphorus from the bottom mud into water is suppressed. Therefore, the concentration of nutrients dissolved in the water is reduced. For this reason, the biological activity of the phytoplankton in the water that has absorbed the nutrients is reduced. As a result, the amount of the underwater phytoplankton decreases, and at the same time, the amount of the bottom mud particles that are wound up and float in the water continues to decrease.

このように、植物プランクトンの減少による透明度の上昇と、底泥巻き上げ量の減少による濁度の低下と、を同時に生起できるので、沈水植物Aの付近では、水中の濁りを大幅に低下できる。すなわち、沈水植物A付近に位置した、植物プランクトン濃度と、底泥粒子の濃度と、を同時的に低下できる。   In this way, an increase in transparency due to a decrease in phytoplankton and a decrease in turbidity due to a decrease in the amount of rolled up bottom mud can occur at the same time, so that the turbidity in water can be greatly reduced in the vicinity of the submerged plant A. That is, the concentration of phytoplankton and the concentration of bottom mud particles located in the vicinity of the submerged plant A can be decreased simultaneously.

そして、このように濁度が低下して、沈水植物Aが位置した水底に到達する透過光量が増加するので、この透過光を受けた沈水植物Aの生長活動や繁殖活動が活発化する。すなわち、所定箇所Pに移植した沈水植物Aは、その発芽した枝葉に、必要な透過光が確保されるとともに、その発根した毛根で、所定箇所Pの底泥から窒素やリンなどの栄養塩類を直接摂取できるので、充分に安定して生長し定着できる。   And since turbidity falls in this way and the transmitted light amount which reaches | attains the water bottom in which the submerged plant A was located increases, the growth activity and breeding activity of the submerged plant A which received this transmitted light become active. That is, the submerged plant A transplanted to the predetermined location P has the necessary transmitted light secured to the germinated branches and leaves, and the roots of the submerged plant A are nutrients such as nitrogen and phosphorus from the bottom mud of the predetermined location P. Can be taken directly, so it can grow and settle sufficiently stably.

このように、風波に起因した泥土の巻き上げを沈水植物Aが抑制し、泥土粒子の発生量を低減させかつこれに伴い植物プランクトンの発生要因を削減して、水中濁度を低下させ、沈水植物Aへの透過光量が増加して、沈水植物Aの生長が促進され、該沈水植物Aによる抑制効果が高まり、水中濁度の低下傾向が増大するという正のフィードバック作用を得ることができる。   In this way, the submerged plant A suppresses the rolling of mud caused by wind waves, reduces the amount of mud particles generated, and reduces the generation factor of phytoplankton, thereby reducing the turbidity in water, The amount of transmitted light to A is increased, the growth of the submerged plant A is promoted, the suppression effect by the submerged plant A is increased, and a positive feedback action that the tendency to decrease the turbidity in water increases can be obtained.

したがって、上記の結果として、図1(c)に示すように、浮葉植物Bと混在して共存させた形態で、徐々にその湖沼固有の沈水植物群落AAを回復し、そして沈水植物帯を再生することができる。   Therefore, as a result of the above, as shown in FIG. 1 (c), the submerged plant community AA inherent to the lake is gradually recovered and the submerged plant zone is regenerated in a form coexisting with the floating leaf plant B. can do.

すなわち、同図1(c)中に示すように、沈水植物Aが群落として、ある程度の個体数や生育量を確保して安定した生息状態となった場合には、この沈水植物群落AAは、その周囲からの浮葉植物Bの侵入を阻止できるので、再侵入防止手段5を撤去している。したがって、水域内に人工物を残留させずに済む。このため、植物体以外の生物にも影響を与えずに済み、生態系の復活に好ましい環境となる。   That is, as shown in FIG. 1 (c), when the submerged plant A has become a community and has secured a certain number of individuals and a stable growth state, this submerged plant community AA is: Since the invasion of the floating plant B from the surroundings can be prevented, the re-entry prevention means 5 is removed. Therefore, it is not necessary to leave an artifact in the water area. For this reason, it does not affect living organisms other than the plant body, and it becomes a favorable environment for the restoration of the ecosystem.

そして、同図1(d)中に示すように、沈水植物Aが定着し、安定的かつ持続的に自生が可能な程度に生長した場合には、適宜、浮葉植物Bを取り除く。たとえば、まずこれらの生長した沈水植物A同士の間から、刈り取らずに残存させた浮葉植物Bを、除去して排除する。このため、沈水植物Aだけからなる群落に、発展させることができる。すなわち、成体となった沈水植物Aの個体数を順調に増加できるとともに、その幼体を含めた植生密度を高めることができる。このため、沈水植物群落AAによる底泥巻き上げを阻止する作用を強化できる。この結果、沈水植物群落AAは安定して生息できる。   Then, as shown in FIG. 1D, when the submerged plant A has settled and has grown to such an extent that it can grow stably and continuously, the floating plant B is appropriately removed. For example, first, the floating leaf plant B left without being cut is removed and removed from between the grown submerged plants A. For this reason, it can be developed into a community consisting only of the submerged plant A. That is, the number of submerged plants A that have become adults can be steadily increased, and the vegetation density including the juveniles can be increased. For this reason, the effect | action which prevents the bottom mud rolling by the submerged plant community AA can be strengthened. As a result, the submerged plant community AA can live stably.

このようにして、複数の沈水植物群落AAを自生可能に回復させて再生し、これらの沈水植物群落AA自身の生長作用で、その群落の植生範囲を拡充させて、相互に連絡させれば、連続的な沈水植物帯として再生できる。すなわち、このように再生されて安定的な生長が確保された沈水植物群落AAは、自らの繁殖作用で、その周辺領域へ拡充することが期待できる。   In this way, a plurality of submerged plant communities AA can be recovered and regenerated in a self-sustaining manner, the vegetation range of these communities can be expanded by the growth action of these submerged plant communities AA, and contacted with each other. It can be regenerated as a continuous submerged plant zone. That is, it is expected that the submerged plant community AA that has been regenerated in this way and has secured stable growth can be expanded to its surrounding area by its reproductive action.

なお、この第1の実施形態の他の例として、外部から流入した汚濁物質のため、その水域に固有な沈水植物群落が衰退しただけではなく、浮葉植物が衰退または消失し、外部からの汚濁物質の流入が減少しても、水質汚濁が解消されない場合には、まず所定に浮葉植物を復元し、次に上記と同様にして、沈水植物群落を回復するようにしてもよい。   As another example of the first embodiment, because of pollutants flowing in from the outside, not only the submerged plant communities inherent in the water area have declined, but the floating leaf plants have declined or disappeared, and external pollution has occurred. If the water pollution is not eliminated even if the inflow of the substance is reduced, the floating leaf plant may be restored first, and then the submerged plant community may be restored in the same manner as described above.

すなわち、この他の例では、特に図示しないが、上記のように両植物が衰退または消失し、かつ沈水植物群落を回復させる予定箇所に、その水域内の他の箇所に繁茂している上記の耐性が保証された成体の浮葉植物を移植するか、該水域の現状の水質汚濁環境に対してある程度の耐性を有した浮葉植物を、水域外部から導入して移植するか、のいずれか、またはこれらの両者を適宜、組み合わせて、予定箇所にその水面の風波を抑制し、かつ、その水底への透過光を過剰に低下させないように、浮葉植物を分布させた構成の濁度低下手段を設け、次に、上記の再進入防止手段を適宜設け、上記した正のフィードバック作用を得た水生植物群落の回復サイクルを開始させ、最終的に水生植物帯が得られるようにしている。   That is, in this other example, although not shown in particular, the above-mentioned plant where both plants have declined or disappeared as described above, and where the submerged plant community is to be restored, has grown in other parts of the water area. Either transplanting an adult floating leaf plant with guaranteed resistance, or introducing a floating leaf plant having a certain level of resistance to the current water pollution environment of the water area from the outside of the water area, or transplanting, or The turbidity lowering means with a configuration in which floating leaf plants are distributed is provided by combining both of these as appropriate to suppress wind waves on the water surface at the planned location and not to excessively reduce the transmitted light to the bottom of the water. Next, the above-mentioned re-entry prevention means is appropriately provided to start the recovery cycle of the aquatic plant community that has obtained the positive feedback action as described above, so that the aquatic plant zone is finally obtained.

したがって、この他の例によれば、沈水植物群落を回復させる箇所は、浮葉植物が繁茂している水域内の箇所に制約されずに済むので、その選択幅が広がる。このため、沈水植物Aの生育に適した箇所を選定して、より早期に沈水植物群落を回復させることが可能となる。他方、底泥の巻き上げ現象が多く見られる箇所を選定して、この箇所に沈水植物群落を回復させれば、より早期に水質汚濁の改善させる、つまりより早期に水質向上を図ることも可能となる。   Therefore, according to this other example, the place where the submerged plant community is restored need not be restricted to the place in the water area where the floating leaf plant is prosperous, so the selection range is expanded. For this reason, the location suitable for the growth of the submerged plant A can be selected, and the submerged plant community can be recovered earlier. On the other hand, if a place where a lot of bottom mud roll-up phenomenon is seen and a submerged plant community is recovered at this place, it is possible to improve water pollution earlier, that is, to improve water quality earlier. Become.

以上説明したように、この第1の実施形態の沈水植物の再生・復元方法によれば、衰退した沈水植物の回復と水質改善とを、同時に生起させて、並行的に進行させるとともに、沈水植物を群落として回復しかつ群落を拡大的に発展させることが期待できる。   As described above, according to the method for regenerating / restoring a submerged plant of the first embodiment, recovery and water quality improvement of a submerged submerged plant are caused to occur at the same time and proceed in parallel. Can be expected to recover as a community and expand the community in an expanded manner.

すなわち、この沈水植物の再生・回復方法によれば、水質汚濁が維持された状態から、水質を変化させる状態に移行でき、しかもこの変化状態として、植物体の自然的かつ自発的な生長に伴なって、水質を改善する方向に変化させる正のフィードバック作用を得て、なんら維持や保守整備のコストを要さずに、持続的かつ拡大発展的に、水質改善させることが可能となる。このため、水質改善に向う正のフィードバック・ループ・サイクルを継続できるだけではなく、この正のフィードバック方向への変化を、加速させることができる。   That is, according to this method for regenerating and recovering a submerged plant, it is possible to shift from a state in which water pollution is maintained to a state in which the water quality is changed, and this change state is accompanied by the natural and spontaneous growth of the plant body. Thus, it is possible to obtain a positive feedback action that changes the water quality in the direction of improvement, and to improve the water quality in a sustainable and expanding manner without requiring any maintenance and maintenance costs. Thus, not only can the positive feedback loop cycle continue to improve water quality, but also the change in this positive feedback direction can be accelerated.

また、底泥の巻き上げ抑制に適した沈水植物、この底泥の巻き上げ防止用の沈水植物の一種として、特に車軸藻類を回復できれば、この車軸藻類は、その細かな分枝が底泥を覆うので、これらが充分に生長して繁茂していれば、底泥の巻き上げを、充分かつ確実に抑制する効果が得られることになる。したがって、このように回復させる沈水植物の種類が、底泥の巻き上げ防止に適していれば、この種類の沈水植物の回復を起点にして、底泥の巻き上げ抑制に適さない他の種類の沈水植物を回復させることも可能となる。   Also, as a submerged plant suitable for restraining the rolling up of the bottom mud, and a kind of submerged plant for preventing the rolling up of the bottom mud, especially if the axle algae can be recovered, the axle algae will have its fine branches covering the bottom mud. If these are sufficiently grown and prosperous, an effect of sufficiently and reliably suppressing the rolling up of the bottom mud can be obtained. Therefore, if the type of submerged plant to be recovered in this manner is suitable for preventing the bottom mud from rolling up, other types of submerged plants that are not suitable for restraining the bottom mud from starting from the recovery of this type of submerged plant. Can also be recovered.

他方、沈水植物を再生させる生息環境を整えるために、既存の浮葉植物を所定に分布させて濁度低下手段として用い、少なくとも、沈水植物群落が再生するにつれて、この濁度低下手段とした浮葉植物が徐々に減少するため、この再生箇所では、別種であっても水生植物の生息が維持される。換言すれば、既存の浮葉植物群落と徐々に代替する形で、固有な沈水植物群落を再生している。このため、再生前後の水域における生態系を、断絶させたり大きく乱したりせずに、連続性を確保しながら、固有な沈水植物群落が再生した状態に移行できる。   On the other hand, in order to prepare a habitat for regenerating submerged plants, existing floating leaf plants are distributed in a predetermined manner and used as turbidity lowering means, and at least as the submerged plant community regenerates, the floating leaf plants used as this turbidity lowering means Since this is gradually reduced, aquatic plants are maintained in this regenerated area even if they are of different species. In other words, a unique submerged plant community is being regenerated by gradually replacing the existing floating plant community. For this reason, the ecosystem in the water area before and after the regeneration can be shifted to a state where the unique submerged plant community has been regenerated while ensuring continuity without disrupting or greatly disturbing the ecosystem.

これらの結果、水質の改善とともに、湖沼の生物多様性の保全に寄与することが期待できる。このように、衰退した沈水植物群落を回復して自己完結的かつ持続的に保全することができ、水生植物以外の該湖沼に固有な水生生物を含めた生態系の再現が可能となる。すなわち、回復した沈水植物群落によって、該湖沼に固有な水生生物に適した生息環境を整えられるので、単なる水中生物の回帰ではなく、該湖沼に固有な水生生物を優先的に生息させることができる。他方、たとえば、沈水植物群落を回復させる箇所として、陸上に近い水域内の地点、つまり水際域を選定できれば、より多くの生物種の生息域としての水際域を、再生することができるので、より生物多様性の保全に寄与できる。なお、この水生生物としては、一時的に沈水植物群落を利用する生物を含めることとする。   As a result, it is expected to contribute to the conservation of biodiversity in lakes and marshes as well as improving water quality. In this way, it is possible to recover the declined submerged plant community and conserve it in a self-contained manner, and it is possible to reproduce an ecosystem including aquatic organisms unique to the lake other than aquatic plants. In other words, the recovered submerged plant community can prepare a habitat suitable for aquatic organisms unique to the lake, so that it is not just a return of aquatic organisms, but aquatic organisms unique to the lake can be preferentially inhabited. . On the other hand, for example, if a point in the water area close to land, that is, a waterfront area, can be selected as a place to recover a submerged plant community, the waterfront area as a habitat for more species can be regenerated. It can contribute to the conservation of biodiversity. The aquatic organisms include organisms that temporarily use submerged plant communities.

このように、その湖沼特有の水生植物群落を回復できれば、この湖沼の水域をその一部として含んだ地域全体の生態系や、水文化を含めた社会的な文化の再生や活性化に貢献することが期待できる。   In this way, if the aquatic plant communities peculiar to the lake can be restored, it will contribute to the regeneration and activation of the entire ecosystem including the water area of this lake and social culture including water culture. I can expect that.

次に、この発明の第2の実施形態を説明する。なお、上記した第1の実施形態と同一の構成の部材には、同一の符号を付して、説明を省略または簡略化することにする。すなわち、上記の第1の実施形態と異なる部分を中心に説明し、この第2の実施形態では説明しない構成や、上記の作業手順などの方法、およびこれらにより得られる作用は、上記の第1の実施形態と同一とする。   Next explained is the second embodiment of the invention. In addition, the same code | symbol is attached | subjected to the member of the same structure as above-mentioned 1st Embodiment, and description is abbreviate | omitted or simplified. That is, the description will focus on the differences from the first embodiment, and the configuration not described in the second embodiment, the method such as the work procedure, and the action obtained by these will be described in the first embodiment. It is the same as the embodiment.

この第2の実施形態の再生・復元方法は、外部から流入した汚濁物質のため、少なくとも、その水域に固有な沈水植物群落が消失し、外部からの汚濁物質の流入が減少しても、水質汚濁が解消されない浅い湖沼に対処した沈水植物の再生・復元方法であり、その水域のどこかに、消失した沈水植物の種子が埋設されていることを前提としている。すなわち、沈水植物帯が消失しても、その種子が底泥に埋設されて休眠状態となっている可能性が高い。   The regeneration / restoration method of the second embodiment is a pollutant that has flowed from the outside, so even if at least the submerged plant community inherent in the water area disappears and the inflow of pollutants from the outside decreases, It is a method for regenerating and restoring submerged plants that deal with shallow lakes where pollution is not resolved, and assumes that seeds of lost submerged plants are buried somewhere in the water. That is, even if the submerged plant zone disappears, it is highly likely that the seeds are buried in the bottom mud and are in a dormant state.

そこで、この再生・復元方法では、発芽可能な状態で埋設された種子(以降、埋土種子と称する)を、水域内から採取し、この埋土種子から再生株を大量培養し、所定に選択した水域箇所に、濁度低下手段を設けたうえで、所定の集団サイズを確保した所定数の再生株を移植して、水域に固有な沈水植物群落を復元するようにしている。   Therefore, in this regeneration / restoration method, seeds embedded in a germinable state (hereinafter referred to as buried seeds) are collected from within the water area, and a large amount of the regenerated strain is cultured from the buried seeds and selected as desired. The turbidity reducing means is provided in the water area, and a predetermined number of regenerated strains having a predetermined population size are transplanted to restore a submerged plant community unique to the water area.

上記の埋土種子は、底泥中に平面的、鉛直的に分布していると考えられる。すなわち、沈水植物の消失時点から現時点までの経過時間(年数)の長さに依存して、埋土種子は、群落が存在した位置から離れて、より広く拡散したり、より深く埋設されると考えられる。
したがって、まず第1に、湖沼底泥中の埋土種子の分布状況を把握して、固有な沈水植物を復元するための種子としてその効率的な採取手法を開発する。
そして第2に、採取した埋土種子の発芽させ、復元用の再生株として大量培養する手法を開発する。
さらに第3に、大量培養した再生株を移植して、現地に沈水植物群落を復元するための手法を開発する。
The above-mentioned buried seeds are considered to be distributed planarly and vertically in the bottom mud. That is, depending on the length of time (years) from the disappearance of the submerged plant to the present time, the buried seeds are spread more widely or deeply embedded away from the location where the community existed Conceivable.
Therefore, first of all, we will grasp the distribution situation of buried seeds in lake bottom mud and develop an efficient harvesting technique as seeds for restoring unique submerged plants.
Secondly, a technique is developed for germinating the collected buried seeds and culturing them in large quantities as a regenerated strain for restoration.
Thirdly, we will develop a technique for transplanting the regenerated strains cultured in large quantities to restore the submerged plant communities.

より詳細に、採取手法は、3次元流動・種子拡散モデルの開発、複数地点での底泥柱状サンプル調査による地点特性別底泥性状の把握、採取地点の底泥に含まれる埋土種子の発芽実験および発芽した植物体の分析、この分析結果による埋土種子の採取地点の仮選定、この採取地点での底泥採取量と発芽種子量および種数との関係の把握、採取地点の確定、の各段階を順次、経て開発している。   In more detail, the collection method includes the development of a three-dimensional flow / seed diffusion model, the understanding of the bottom mud properties by point characteristics by the bottom mud columnar sample survey at multiple points, and the germination of buried seeds contained in the bottom mud at the sampling point Experiment and analysis of germinated plants, provisional selection of buried seed collection points based on the results of this analysis, understanding of the relationship between the amount of bottom mud collected at this collection point, the amount of germinated seeds, and the number of species, the determination of the collection point, These stages are being developed in sequence.

すなわち、種子の拡散状況の再現、底泥の堆積傾向の定量化を行うために、現地の地形、水文、気象状況に基づき、湖底における風波による底泥擾乱や流速分布を定量的に評価できる3次元流動シミュレーション・モデルおよび種子拡散モデル(以降、流動モデルと称する)を作成する。この流動モデルは、実際の水域で測定や観測して所得した地形、水文、気象データに基づいて作成された数理的な仮想モデルであり、このモデルをコンピュータで用いて、環境条件などを反映した各種のパラメータを設定して、シミュレーション・プログラムを実行すれば、このシミュレーション結果として、所定の推定データまたは予測データを得ることができる。   In other words, in order to reproduce the state of seed diffusion and to quantify the sedimentation tendency of the bottom mud, it is possible to quantitatively evaluate the bottom mud disturbance and flow velocity distribution due to wind waves on the lake bottom based on the local topography, hydrology, and weather conditions. A dimensional flow simulation model and a seed diffusion model (hereinafter referred to as a flow model) are created. This flow model is a mathematical virtual model created based on topography, hydrology, and meteorological data measured and observed in actual waters, and this model was used on a computer to reflect environmental conditions. If various parameters are set and the simulation program is executed, predetermined estimation data or prediction data can be obtained as the simulation result.

したがって、この作成した流動モデルは、地点特性別底泥性状を把握するためのサンプル採取地点の選定に用いることができる。すなわち、たとえば底泥性状および底泥の堆積傾向の特徴が、明瞭に現れる地点を、あらかじめ予測して選定できる。さらに、この流動モデルは、種子拡散モデルとしても利用できる。すなわち、過去の沈水植物群落の分布から、種子や卵胞子がどのような場所で多く堆積する可能性が高いかを、推定できる。具体的には、流動モデルを用いたコンピュータ・シミュレーションで、過去に存在した沈水植物群落の場所から、その沈水植物の種子や卵胞子が、どのように拡散して、現在のどの場所に多く堆積しているかを推測できる。   Therefore, the created flow model can be used for selecting sampling points for grasping the bottom mud properties by point characteristics. That is, for example, a point where the characteristics of bottom mud property and sedimentation tendency of the bottom mud clearly appear can be predicted and selected in advance. Furthermore, this flow model can also be used as a seed diffusion model. That is, it can be estimated from the past distribution of submerged plant communities where seeds and follicular spores are likely to accumulate. Specifically, in a computer simulation using a flow model, how the seeds and follicles of the submerged plant diffuse from the location of the submerged plant community that existed in the past, and accumulate in many present locations. I can guess.

なお、種子拡散モデルとして流動モデルに用いる種子の沈降速度パラメータは、実測値に基づき設定されている。すなわち、室内などで実物実験を行なって、あらかじめ種子の沈降特性を実測して得ている。   The seed settling velocity parameter used in the flow model as the seed diffusion model is set based on the actually measured value. In other words, a real experiment is performed in a room or the like, and the sedimentation characteristics of seeds are measured in advance.

次に、底泥性状および底泥の堆積傾向を把握するため、地点特性別底泥性状を調査する。すなわち、この底泥性状および堆積傾向は、水深、湖岸からの距離などの地形的相違や、周辺河川の有無などの特性の違いに影響される。このため、この調査方法としては、現地の数箇所で底泥の柱状サンプルを取得して分析する手法が選択されている。また、これらの箇所は、流動モデルを用いて、沈水植物の種子や卵胞子の埋設箇所を勘案しながら、底泥性状および堆積傾向の把握に最適な箇所が選定されている。   Next, in order to grasp the bottom mud properties and sedimentation tendency of the bottom mud, the bottom mud properties by site characteristics are investigated. That is, the bottom mud properties and sedimentation tendency are affected by topographical differences such as water depth and distance from the lake shore, and characteristics such as the presence or absence of surrounding rivers. For this reason, a method for obtaining and analyzing bottom mud columnar samples at several local sites has been selected as the survey method. In addition, these locations are selected using the flow model, taking into account the seeds of submerged plants and the locations where the follicles are buried, and the optimum locations for grasping the bottom mud properties and sedimentation tendency.

具体的には、図2(a)に示すように、数箇所St1,St2で湖沼底泥の不攪乱柱状サンプルSa1,Sa2を採取し、これらの柱状サンプルSa1,Sa2を、図2(b)中の左図に示すように、該柱状サンプルSa1を底泥の深さ方向にスライスして分析する。すなわち、柱状サンプルSa1の長手方向において底泥の各層に対応した箇所を、平板状に切断し、これらの切断したサンプルSa11,Sa12,Sa13をそれぞれ分析する。なお、この分析としては、たとえば層毎に含水率、酸化還元電位、強熱減量などの指標を測定する。   Specifically, as shown in FIG. 2 (a), undisturbed columnar samples Sa1 and Sa2 of lake bottom mud are collected at several points St1 and St2, and these columnar samples Sa1 and Sa2 are collected as shown in FIG. 2 (b). As shown in the left figure, the columnar sample Sa1 is sliced in the depth direction of the bottom mud and analyzed. That is, the part corresponding to each layer of the bottom mud in the longitudinal direction of the columnar sample Sa1 is cut into a flat plate shape, and these cut samples Sa11, Sa12, Sa13 are analyzed. In addition, as this analysis, indicators, such as a moisture content, oxidation-reduction potential, and ignition loss, are measured for every layer, for example.

また、分析残余のサンプルSa11〜Sa13は、発芽、培養試験用に提供する。また、この際、各層の底泥サンプルSa11〜Sa13は、一部保管し、発芽種子が多く含まれたサンプルSa12については、その年代測定を行い、埋土種子が堆積した過去の時代を解明することに用いられる。すなわち、年代ごとの埋土種子の分布状況を把握する。   Moreover, the samples Sa11 to Sa13 of the residual analysis are provided for germination and culture tests. At this time, the bottom mud samples Sa11 to Sa13 of each layer are partly stored, and for the sample Sa12 containing a lot of germinated seeds, the dating is performed to elucidate the past era when the buried seeds were deposited. Used for that. That is, the distribution situation of buried seeds for each age is grasped.

なお、これらの各地点で採取した柱状サンプルSa1,Sa2の分析から得た諸特性の実測値は、流動モデルによるシミュレーション結果の精度を検証して、流動モデル自体を修正したり、各パラメータを補正したりするために用いる。   The measured values of various characteristics obtained from the analysis of the columnar samples Sa1 and Sa2 collected at each of these points verify the accuracy of the simulation results by the flow model, correct the flow model itself, and correct each parameter. Used to do.

次に、埋土種子の発芽、培養実験を行なう。この発芽実験は、任意の環境条件が設定可能なインキュベータ(培養器)を用いて、このインキュベータ内において、採取された底泥を培地にし、およびこの培地に洗い出された埋土種子を設置し、各種の条件を設定して行われる。すなわち、図2(b)中の左図に示すように、ある採取地点で採取した泥土の柱状サンプルSa12を、その採取地点の各層ごとにスライスする。そして、図2(b)中の右図に示すように、この各層の泥土を培地にし、この培地およびその泥土から分離した埋土種子を容器に収容し、インキュベータで種々の環境条件を設定した発芽実験を行なう。   Next, germination and culture experiments of buried seeds are performed. In this germination experiment, using an incubator that can set any environmental conditions, the collected bottom mud is used as a medium in this incubator, and the buried seeds washed out in this medium are installed. This is done by setting various conditions. That is, as shown in the left diagram in FIG. 2B, the mud columnar sample Sa12 collected at a certain sampling point is sliced for each layer at the sampling point. And as shown to the right figure in FIG.2 (b), the mud of this each layer was used as the culture medium, this culture medium and the buried seed isolate | separated from the mud were accommodated in the container, and various environmental conditions were set with the incubator. Perform germination experiments.

すなわち、埋土種子が底泥中に残存しているのにも拘わらず、現状の湖沼中で沈水植物として生育できないのは、埋土種子の休眠が解除されず発芽しないか、発芽しても生長できないか、のいずれかの理由によると考えられる。すなわち、後者の理由では、発芽条件が満たされて発芽した埋土種子は、その種子内の栄養によって、ある程度、栄養生長しても、日射不足のためそれ以上生長できず、結局、死滅すると考えられる。   That is, even though the buried seed remains in the bottom mud, it cannot grow as a submerged plant in the current lakes. This is probably due to one of the reasons that it cannot grow. That is, for the latter reason, the buried seeds that germinated when the germination conditions are satisfied cannot be further grown due to lack of solar radiation due to the nutrients in the seeds, and eventually die. It is done.

したがって、この発芽実験では、現地での底泥の巻上げの影響による日射不足の阻害要因を除外できるが、温度、光、水分条件などのように、現地とは異なる諸条件の検討が必要となる。そこで、光、水分、水温、酸素濃度などの環境条件を変えて、発芽条件(あるいは休眠解除条件)を解明する。   Therefore, in this germination experiment, it is possible to exclude the factors that hinder the lack of solar radiation due to the effect of hoisting mud in the field, but it is necessary to examine various conditions such as temperature, light, moisture conditions, etc. . Therefore, germination conditions (or dormancy release conditions) are clarified by changing environmental conditions such as light, moisture, water temperature, and oxygen concentration.

また発芽した種子については、その増殖条件も解明する。特に、車軸藻は、その分岐藻体が底泥表面を覆って水中透明度の向上に有効なので、この車軸藻に着目して、発芽した植物体から種を同定する。   For germinated seeds, elucidate their growth conditions. In particular, the axle algae are effective in improving underwater transparency because the branched alga bodies cover the bottom mud surface. Therefore, the species is identified from the germinated plants by paying attention to the axle algae.

そして、ある条件下で発芽した植物種については、その分類学的研究を行って、種を同定し、またこの同定した種毎に適切な増殖条件を決定する。   And about the plant species germinated under a certain condition, the taxonomic research is performed, a species is identified, and suitable growth conditions are determined for every identified species.

上記の分析結果を総合して、発芽可能な埋土種子が多く含まれると考えられる箇所の平面的かつ深度方向の分布を解明できる。したがって、埋土種子状況を把握して、これに基づき、群落の復元に適した埋土種子が埋設されている地点を選定することができる。すなわち、保存状態が良好なつまり発芽可能な種子が多数存在するだけではなく、群落に遺伝的な多様性を確保できるように同一種でも互いに異なる系統に属した種子が、埋設されている地点を選定できる。   By combining the above analysis results, it is possible to elucidate the distribution in the planar and depth directions where it is considered that there are many germinated buried seeds. Therefore, it is possible to grasp the situation of buried seeds and to select a point where buried seeds suitable for restoration of the community are buried based on the situation. In other words, there are not only many seeds that are well-preserved, that is, germinable, but also seeds belonging to different lines of the same species so that genetic diversity can be ensured in the community. Can be selected.

具体的には、底泥の性状や、埋土種子の保存状況の分布を、図示しないGIS(Geographic Information System:地理情報システム)を用いて整理する。一般的に、このGISは、地物の位置や形状(地図)と属性(表)とを関連付けて管理するシステムであり、空間的解析や、レイヤー(異なる地図)の重ね合わせ処理、属性(表)の検索・集計などの機能を備えており、これらの機能を組み合わせて、様々な解析・統計処理を可能としている。   Specifically, the properties of the bottom mud and the distribution of storage conditions of the buried seeds are organized using a GIS (Geographic Information System) (not shown). Generally, this GIS is a system that manages the position and shape (map) of features and attributes (tables) in association with each other, and performs spatial analysis, layer (different map) overlay processing, and attributes (tables). ) Search / aggregate functions, etc., and combining these functions enables various analysis and statistical processing.

このGISに、各地点から採取した底泥を分析して得られた性状データや、底泥中の埋土種子を発芽・培養試験して得られた該埋土種子に関するデータを入力する。そして、この整理した情報を基に、底泥中に残存する埋土種子を量的に把握するとともに、採取地点の選定などのように、多数種の埋土種子を効率的に採取する手法を、決定する。   In this GIS, the property data obtained by analyzing the bottom mud collected from each point and the data related to the buried seed obtained by the germination and culture test of the buried seed in the bottom mud are input. Based on this organized information, a method for efficiently collecting a large number of types of buried seeds, such as selecting the collection point, while quantitatively grasping the buried seeds remaining in the bottom mud ,decide.

このようにして、図2(c)に示すように、過去の沈水植物群落の分布から、現在の埋土種子の所在状況を推測するだけではなく、上記の各要因を勘案して、復元用に最適な埋土種子を、効率的に採取できる地点を選定する。   In this way, as shown in FIG. 2 (c), not only the current location of buried seeds is estimated from the distribution of past submerged plant communities, but also the above factors are taken into consideration. Select a point where the best buried seed can be collected efficiently.

そして次に、底泥採取量と、発芽種子量および種数との関係を把握する。すなわち、上記のようにして判明した埋土種子の保存状態が良好な地点において、多数の底泥柱状サンプルを採取して、前記の関係を把握するために充分な量の底泥採取量を確保する。そして、この底泥を用いて、上記の発芽試験をし、前記の関係を定量的に求める。   Then, the relationship between the amount of collected bottom mud, the amount of germinated seeds and the number of species is grasped. That is, at the point where the stored state of the buried seeds found as described above is good, a large number of bottom mud columnar samples are collected, and a sufficient amount of bottom mud is collected to grasp the above relationship. To do. And using this bottom mud, said germination test is performed and the said relationship is calculated | required quantitatively.

したがって、選定地点での単位当たりの底泥採取量に対して、発芽種子量および種数が、所定に多いという結果が得られた場合には、仮に選定した採取地点を、本格的な採取地点として確定する。   Therefore, if the result shows that the amount of germinated seeds and the number of seeds is larger than the amount of collected bottom mud per unit at the selected point, the temporarily selected sampling point should be Confirm as

次に、大量培養法を開発する。この大量培養法は、採取した埋土種子から再生株を得て大量培養する手法であり、流動モデルによる復元場所の選定と並行して、開発する。   Next, a mass culture method is developed. This mass culture method is a technique for obtaining a regenerated strain from the collected buried seed and mass-cultivating it, and is developed in parallel with the selection of the restoration site by the flow model.

すなわち、採取地点の底泥における特定層に含まれた埋土種子を所定に選別し、この選別した埋土種子から生長させた再生株の大量培養技術を、開発する。たとえば埋土種子を発芽させて生長させた再生株を、胚培養などの適宜の培養技術を適用して、図3に示すように、所定に生長した再生株a1…を、大量に培養する手法を開発する。   That is, a technique for mass-cultivating a regenerated strain obtained by selectively sorting out buried seeds contained in a specific layer in the bottom mud at the collection point and growing from the selected buried seeds is developed. For example, a method of cultivating a regenerated strain a1. Develop.

次に、再生産可能な移植・復元手法を開発する。すなわち、上記した埋土種子状況の把握、および効率的採取法の開発で得られた分布の結果から、分布場所毎に埋土種子を、発芽、増殖させる。同時に、埋土種子から得た植物体が、雌雄同体か異体かなどの繁殖様式を調べ、上記と合わせて、現地での再生産が可能なように移植・復元する手法を開発する。   Next, we will develop a reproducible transplant / restore technique. That is, the seeds of germination are germinated and propagated for each distribution location based on the results of distribution obtained by grasping the situation of the seeds of the above-mentioned soil and developing an efficient sampling method. At the same time, we will investigate the breeding pattern such as whether the plant body obtained from the buried seeds is hermaphroditic or heterozygous, and in combination with the above, develop a method of transplanting and restoring so that it can be reproduced locally.

また、実際かつ現状の湖沼つまり現地において、沈水植物群落を復元するためには、以下の2つの条件を満たす必要があると考えられる。すなわち、第1の条件は、現地の地形、水文、気象、水質状況を勘案して、沈水植物群落として定着が可能な場所を選定することであり、第2の条件は、該場所で再生産可能な、ある程度のサイズ以上の初期集団サイズを確保して沈水植物を導入することである。   Moreover, it is considered that the following two conditions must be satisfied in order to restore the submerged plant community in the actual and current lakes, that is, in the field. In other words, the first condition is to select a place that can be established as a submerged plant community in consideration of the local topography, hydrology, weather, and water quality, and the second condition is to reproduce at that place. It is possible to introduce a submerged plant while ensuring an initial population size of a certain size or more.

そこで、沈水植物群を復元するために、実証実験を行なう。すなわち、図4(a)に示すように、流動モデルによるコンピュータ・シミュレーションで、埋土種子から培養して得た沈水植物Aの再生株a1が物理的に定着すると思われる場所を検討して選定し、この場所を実験区域P0に設定する。そして、この実際の湖沼における実験区域P0に、大量培養した再生株a1を導入することによって、あらかじめ予備的な現地植生再生試験を行う。
なお、この場合には、実験区域P0に浮葉植物Bが繁茂しているので、第1の実施形態と同様に浮葉植物Bを所定に間伐して、浮葉植物Bを所定に分布させて消波性と光透過性とを所定に確保した構成の濁度低下手段1を、実験区域P0に設けている。
Therefore, we will conduct a demonstration experiment to restore submerged plants. That is, as shown in FIG. 4 (a), a place where the regenerated strain a1 of the submerged plant A obtained by culturing from the buried seed is thought to be physically established is selected by computer simulation using a flow model. This place is set as the experimental area P0. Then, a preliminary local vegetation regeneration test is performed in advance by introducing the regenerated strain a1 cultured in large quantities into the experimental area P0 in this actual lake.
In this case, since the floating leaf plant B is prosperous in the experimental area P0, the floating leaf plant B is thinned to a predetermined thickness in the same manner as in the first embodiment, and the floating leaf plant B is distributed in a predetermined manner to eliminate the wave. The turbidity lowering means 1 having a configuration that secures the property and light transmittance is provided in the experimental area P0.

また、この検証実験では、初期集団サイズによる定着度、および他生物との相互作用などについて評価する。すなわち、たとえば実験区域P0内の所定領域に、集団サイズの大きさを互いに異ならせた個体数の再生株a1を、それぞれ設置する。そして、この導入した初期集団サイズの大きさと、定着度との関連性を求めたり、導入した再生株a1から生長する沈水植物Aと既存の水中生物とが相互に及ぼしあう影響を観測したりする。
さらに、流動モデルによる種子の拡散予測をし、現地における導入実験の際には、導入した場所からの種子の拡散についても予測しておく。
In this verification experiment, we evaluate the degree of colonization by the initial population size and the interaction with other organisms. That is, for example, the regenerated strains a1 having individual populations having different population sizes are installed in predetermined areas in the experimental area P0. Then, the relationship between the size of the introduced initial population size and the degree of establishment is obtained, or the influence of the submerged plant A growing from the introduced regenerated strain a1 and the existing aquatic organisms on each other is observed. .
Furthermore, seed diffusion is predicted using a flow model, and in the field introduction experiment, seed diffusion from the place of introduction is also predicted.

したがって、この導入実験によって、現地に移植した再生株a1によって生成し定着させる植物集団として、その初期集団サイズの大きさが決定できる。   Therefore, by this introduction experiment, the size of the initial population size can be determined as a plant population generated and established by the regenerated strain a1 transplanted in the field.

このように上記した各種の検討や、開発、実証実験が完了した場合には、現地に実用的な沈水植物群落AAの復元を開始する。すなわち、流動モデルにより、風波の程度が低く、かつ濁りを低減させる対策を行えば湖底まで日光が到達し、その底質が沈水植物の生育に適した、復元可能性の高い場所Pを選定する。そして、図5(a)に示すように、この実用に選定した所定箇所Pが、沈水植物群の消失に加え、浮葉植物が消失して、ほとんど裸地化している場合には、この浮葉植物の替わりに、図5(b)に示すように、無生物の手段からなる濁度低下手段11を設けている。この濁度低下手段11は、オイルフェンスのように、シート状部材12を垂らした浮体枠13を、所定に配置した構成とされ、この浮体枠13に囲まれたその内側での波の減衰を図るようにしている。   Thus, when the above-mentioned various studies, developments, and demonstration experiments are completed, the restoration of a practical submerged plant community AA is started locally. In other words, if the wind model is low and measures are taken to reduce turbidity by the flow model, sunlight will reach the bottom of the lake, and the bottom will be selected as a highly recoverable place P suitable for the growth of submerged plants. . Then, as shown in FIG. 5 (a), in the case where the predetermined place P selected for practical use is in addition to the disappearance of the submerged plant group, the floating leaf plant has disappeared and is almost bare, this floating leaf plant. Instead, as shown in FIG. 5 (b), turbidity lowering means 11 comprising inanimate means is provided. This turbidity lowering means 11 has a structure in which a floating frame 13 with a sheet-like member 12 hung down is arranged in a predetermined manner, like an oil fence, and the wave attenuation inside the floating frame 13 is reduced. I try to figure it out.

すなわち、浮体枠13は、いくつかの浮体13a,13aをその端部同士を接続して所定に組み合わせ、水面に浮かべて設置する構成とされ、任意の範囲を枠状に囲めるようしている。これらの浮体13a,13aは、所定長さの長尺形状に形成されて、発泡体や中空体を主体にした構成とされ、所定の浮力が確保されている。すなわち、各浮体13a,13aは、それぞれが水面に留まれる程度の浮力だけではなく、それぞれが吊下したシート状部材12に相当する分だけ、余分の浮力が確保されている。シート状部材12は、浮体13a,13aに吊下されて所定箇所に設置された場合に、その垂下方向の長さが、浮体枠13で囲んだ領域の外部から水中波の影響を減衰可能な長さ、およびその下端が着底できる長さが、確保されている。したがって、たとえば所定箇所Pにおける所定に区切った小区画の範囲を、シート状部材12を吊下した浮体枠13で囲むように設置すれば、この範囲内での風波の大きさを限定でき、また範囲外から伝達される波を減衰できる。   That is, the floating body frame 13 is configured such that several floating bodies 13a and 13a are connected to each other at predetermined ends and floated on the water surface, and an arbitrary range is enclosed in a frame shape. These floating bodies 13a and 13a are formed in a long shape having a predetermined length, and are mainly composed of a foam or a hollow body, and a predetermined buoyancy is ensured. That is, each floating body 13a, 13a has not only buoyancy to the extent that each floats on the water surface, but also extra buoyancy is ensured by the amount corresponding to the suspended sheet-like member 12. When the sheet-like member 12 is suspended from the floating bodies 13a and 13a and installed at a predetermined location, the length in the hanging direction can attenuate the influence of underwater waves from the outside of the area surrounded by the floating body frame 13. The length and the length that the lower end of the bottom can be secured are secured. Therefore, for example, if a range of small sections divided at a predetermined point P is set so as to be surrounded by a floating frame 13 in which the sheet-like member 12 is suspended, the magnitude of the wind wave within this range can be limited. Waves transmitted from outside the range can be attenuated.

また、再生株a1は、図4(b)に示すように、所定の容器15に収容されて、この容器15に収容されたまま、所定箇所に運搬され、該箇所の水底に安置されている。   In addition, as shown in FIG. 4 (b), the regenerated strain a1 is accommodated in a predetermined container 15, transported to a predetermined location while being accommodated in the container 15, and placed at the water bottom of the location. .

すなわち、埋土種子が発芽および発根して、所定に生長した再生株a1となってから、この再生株a1を、平皿状の所定容器15に移し替え、この再生株a1を収容した各容器15を、所定数、上記のようにして所定に選択した箇所Pの水底に、所定に配列して設置し、図4(c)に示すように、この設置した容器15に杭16を打ち込んで、該容器15を設置した箇所に固定している。   That is, after the buried seeds germinate and root to become the regenerated strain a1 that has been grown to a predetermined extent, the regenerated strain a1 is transferred to a predetermined container 15 having a flat plate shape, and each container containing the regenerated strain a1. 15 are arranged in a predetermined arrangement at the bottom of the predetermined number of places P selected as described above, and piles 16 are driven into the installed container 15 as shown in FIG. 4 (c). The container 15 is fixed at the place where it is installed.

この容器15は、上方に開口した平皿状に形成され、安定して定置できる程度の底面積が確保され、かつ、その全体形状が、該所定箇所Pを流れる水流によって押し流されないように略扁平形状となっている。また、この容器15は、再生株a1の下部を支持する砂状培地を収容し、少なくとも、その底面は、多孔質に形成されている。すなわち、この容器15は、たとえば、その底面部分が、多硬質状となるように、所定に加工処理が施されて、改質されている。そして、この容器15には、再生株a1を、概略直立させた姿勢で保持する支持体として、砂状培地である砂礫が、所定深さを確保した分量収容され、この砂礫中に、再生株a1の根が埋設されている。したがって、容器15は、該底面から砂状培地が流出することを阻止するとともに、同底面の厚さ方向に再生株a1の根が通過して容器15外に伸長できるようにしている。他方、容器15はその底面を、多孔質状に形成しているので、所定径の短棒状に形成された杭16は、該底面を損傷することなく貫通して水底に貫入でき、これによって容器15を水底に固定できる。   The container 15 is formed in a flat dish shape that opens upward, has a bottom area that can be stably placed, and has a generally flat shape so that the entire shape is not swept away by the water flow through the predetermined portion P. It has a shape. Moreover, this container 15 accommodates the sand-like culture medium which supports the lower part of the reproduction | regeneration stock | strain a1, and the bottom face is formed in the porous at least. That is, the container 15 is modified by a predetermined processing so that the bottom surface portion thereof is multi-hard. And in this container 15, the gravel which is a sand-like culture medium is accommodated by the quantity which ensured the predetermined depth as a support body which hold | maintains the reproduction | regeneration stock | stump | stock a1 in the substantially upright posture, and the reproduction | regeneration stock | stump is contained in this gravel. The root of a1 is buried. Therefore, the container 15 prevents the sand-like medium from flowing out from the bottom surface, and allows the root of the regenerated strain a1 to pass in the thickness direction of the bottom surface and extend outside the container 15. On the other hand, since the bottom surface of the container 15 is formed in a porous shape, the pile 16 formed in the shape of a short rod having a predetermined diameter can penetrate the bottom surface without damaging the bottom surface and thereby penetrate the bottom of the water. 15 can be fixed to the bottom of the water.

なお、容器15は、その全体を単一の多孔質性材料で形成し、その全面が多孔質状となるようにしてよく、この構成の場合には、簡素な構成となり、低コスト化が図れるとともに、再生株a1から生長する根の伸張方向を底面だけに制約せずに済み、より再生株a1が生長しやすくなる。   The container 15 may be entirely formed of a single porous material and the entire surface thereof may be porous. In this configuration, the configuration is simple and the cost can be reduced. At the same time, it is not necessary to restrict the extending direction of the roots grown from the regenerated strain a1 to only the bottom surface, and the regenerated strain a1 is more easily grown.

したがって、再生株a1を設置する際には、再生株a1を収容した所定数の容器15を、所定箇所Pの水底に配列し、各容器15を杭16で固定して設置しているので、再生株a1の根を手作業で水底に埋設して設置するのに比べて、大幅に作業が容易になり、かつ再生株a1が損傷する機会を削減できる。このため、多数の再生株a1を、迅速かつ正確に設置できる。この結果、簡単かつ確実に初期集団サイズの大きさを確保して、順調な生長可能に再生株a1を移植できる。   Therefore, when installing the regenerated strain a1, a predetermined number of containers 15 containing the regenerated strain a1 are arranged on the water bottom of the predetermined location P, and each container 15 is fixed and installed with a pile 16. Compared with the case where the root of the regenerated strain a1 is manually embedded in the bottom of the water, the work is greatly facilitated, and the opportunity for damage to the regenerated strain a1 can be reduced. Therefore, a large number of regenerated strains a1 can be installed quickly and accurately. As a result, the regenerated strain a1 can be transplanted so that the initial population size can be ensured easily and reliably and can be grown smoothly.

このようにして、容器15に収容されて水底に設置された再生株a1は、透過光を受けて成体に向けて生長し、この生長に伴いその根が伸長し、この伸長した根が、多孔質性の容器15の底部を通過して、所定箇所Pの底泥中に進入し、再生株a1が該水底に活着する。すなわち、再生株a1は、所定箇所Pの底泥から養分を摂取し、所定に確保された透過光で光合成し生長活動する。この結果、この再生株a1から生長した沈水植物Aとして、該水底に定着して自生する。   In this way, the regenerated strain a1 accommodated in the container 15 and placed on the bottom of the water receives the transmitted light and grows toward the adult, and the root grows along with the growth, and the stretched root becomes porous. It passes through the bottom of the qualitative container 15 and enters the bottom mud at a predetermined location P, and the regenerated strain a1 is settled on the water bottom. That is, the regenerated strain a1 takes in nutrients from the bottom mud at a predetermined location P, and synthesizes it with transmitted light secured in a predetermined manner and grows. As a result, the submerged plant A grown from the regenerated strain a1 settles on the bottom of the water and grows naturally.

したがって、沈水植物Aが順調に生長して、沈水植物群落AAの回復と水質の改善とが開始され、かつ、上記の第1の実施形態と同様に、正のフィードバック作用を得て、並列的に進行できる。特に、この際には、沈水植物Aに隣接して植生した浮葉植物を濁度低下手段1とした第1の実施形態に比べて、このような浮葉植物と混在することなく、沈水植物Aは単独で生長するので、より順調な生長が期待できる。この結果、図5(c)に示すように、湖沼に固有な沈水植物群落AAを復元でき、そして沈水植物帯を復活できる。   Therefore, the submerged plant A grows steadily, recovery of the submerged plant community AA and improvement of water quality are started, and a positive feedback action is obtained in the same manner as in the first embodiment. You can proceed to. In particular, in this case, the submerged plant A is not mixed with such a floating leaf plant as compared with the first embodiment in which the floating leaf plant vegetated adjacent to the submerged plant A is used as the turbidity reducing means 1. Since it grows alone, it can be expected to grow more smoothly. As a result, as shown in FIG. 5C, the submerged plant community AA unique to the lake can be restored, and the submerged plant zone can be restored.

以上のように、この第2の実施形態の再生・復元方法によれば、第1の実施形態と同様な作用効果を得ることができ、沈水植物の復元と水質改善とを、同時に生起させて、並行的に進行させるとともに、水域に固有な沈水植物を群落として復元しかつこの群落が自発的に拡大発展することが期待できる。   As described above, according to the regeneration / restoration method of the second embodiment, the same effects as those of the first embodiment can be obtained, and the restoration of the submerged plant and the improvement of water quality are caused simultaneously. In addition to proceeding in parallel, it can be expected that the submerged plants unique to the water area will be restored as a community and that this community will expand and develop spontaneously.

特に、この第2の実施形態の再生・復元方法では、濁った状況の浅い湖沼において、比較的復元しやすい抽水植物や、大量に繁茂すると水面を覆って底層の嫌気化を招く可能性のある浮葉植物ではなく、成体としては一旦消失した沈水植物を復元させているので、この復元した沈水植物が、底泥の巻き上げを抑制するとともに、底生生物の生息環境を改善することができる。すなわち、少なくとも、底層の嫌気化や日射不足を解消できる。   In particular, in the regeneration / restoration method of the second embodiment, there is a possibility that the extraction plant that is relatively easy to restore in a shallow lake in a cloudy state or the bottom layer becomes anaerobic by covering the water surface when it grows in large quantities. Since a submerged plant that has once disappeared is restored as an adult rather than a floating leaf plant, the restored submerged plant can suppress the rolling up of the bottom mud and improve the habitat of benthic organisms. That is, at least, the anaerobic bottom layer and insufficient solar radiation can be solved.

さらに、現地での運用を念頭において、物理的な定着可能性を事前に検討することや、定着させるための具体的な現地実証試験をすること、を沈水植物群落を再生する一連の手順、つまり復元計画に含んでいるので、充分に実用的であり、高い実現性を得ることができる。   Furthermore, with local operation in mind, a series of procedures to regenerate submerged plant communities, including examining the possibility of physical establishment in advance and conducting specific field verification tests to establish it, that is, Since it is included in the restoration plan, it is sufficiently practical and high realizability can be obtained.

他方、ある栄養レベルの魚類を除去して生態系構造を変化させるバイオマニピュレーションなどのように、生態系に直接かつ強圧的に働きかけて水質を含む湖沼環境の改善をねらう従来の方法に対して、この再生・復元方法は、謂わば、ソフトな生態系利用による環境保全であると言えるとともに、絶滅が危惧される湖沼に固有な沈水植物を再生・復元し、これと同時進行的に水質改善を目指しているので、該水域の生態系に余計な負荷を与えずに済む。すなわち、沈水植物の生長に伴い水質が改善するので、生態系構造を急激に変化させたり、断絶させたりすることなく、汚濁前の水質環境に向けて、継続的かつ連続的に変化させることができる。   On the other hand, compared to conventional methods that aim to improve the lake environment including water quality by working directly and strongly on the ecosystem, such as biomanipulation that changes the ecosystem structure by removing fish of a certain nutrition level, This regeneration / restoration method can be said to be so-called environmental conservation through the use of soft ecosystems. At the same time, we aim to improve water quality by regenerating and restoring submerged plants inherent to endangered lakes. Therefore, it is not necessary to give an extra load to the ecosystem in the water area. In other words, water quality improves with the growth of submerged plants, so it is possible to make continuous and continuous changes to the water quality environment before pollution without suddenly changing or disrupting the ecosystem structure. it can.

すなわち、上記した正のフィードバック・ループ・サイクルを継続できるだけではなく、このサイクルを推進して、正のフィードバック方向への変化を、加速させることができる。また、復元した沈水植物が水質改善に適した種であれば、すなわち特に車軸藻類を復元できれば、この車軸藻類は、その細かな分枝が底泥を覆うので、これらが充分に生長して繁茂している場合には、底泥の巻き上げを、充分かつ確実に抑制する効果が得られることになる。   That is, not only can the positive feedback loop cycle described above be continued, but this cycle can be promoted to accelerate the change in the positive feedback direction. Also, if the restored submerged plant is a species suitable for improving water quality, that is, especially if the axle algae can be restored, the axle algae will grow well and grow because their fine branches cover the bottom mud. When it does, the effect which suppresses winding up of bottom mud sufficiently and reliably will be acquired.

したがって、水質を改善するとともに、湖沼の生物多様性を保全することに寄与することが期待できる。このように、水生生物と呼ばれる多くの生物種の生息域としての沈水植物群落を再生して自己完結的かつ持続的に保全することができ、水生植物以外の該湖沼に固有な水生生物を含めた生態系の再現が可能となる。すなわち、該湖沼に固有な水生生物に適した生息環境を整えられるので、単なる水中生物の回帰ではなく、該湖沼に固有な水生生物を優先的に生息させることができる。なお、この固有な水生生物としては、捕食、退避などで一時的に水際域を利用する生物を含めることとする。   Therefore, it can be expected to improve water quality and contribute to the conservation of lake biodiversity. In this way, submerged plant communities as habitats of many species called aquatic organisms can be regenerated and self-contained and sustainably preserved, including aquatic organisms unique to the lake other than aquatic plants. Reproducible ecosystems. That is, since a habitat suitable for aquatic organisms unique to the lake can be prepared, it is possible to preferentially inhabit aquatic organisms unique to the lake rather than simply return of aquatic organisms. The unique aquatic organisms include organisms that temporarily use the waterfront area for predation and evacuation.

このように、その湖沼特有の水生植物群落を復元できれば、この湖沼の水域をその一部として含んだ地域全体の生態系や、社会的な文化の再生に、より貢献することが期待できる。   Thus, if the aquatic plant community peculiar to the lake can be restored, it can be expected to contribute more to the regeneration of the ecosystem and social culture of the entire region including the water area of this lake.

次に、この発明の第3の実施形態を説明する。なお、上記した第2の実施形態と同一の構成の部材には、同一の符号を付して、説明を省略または簡略化することにする。すなわち、上記の第2の実施形態と異なる部分を中心に説明し、この第3の実施形態では説明しない構成や、上記の作業手順などの方法、およびこれらにより得られる作用は、上記の第2の実施形態と同一とする。   Next explained is the third embodiment of the invention. In addition, the same code | symbol is attached | subjected to the member of the same structure as above-mentioned 2nd Embodiment, and description is abbreviate | omitted or simplified. That is, the description will focus on the differences from the second embodiment, and the configuration not described in the third embodiment, the method such as the work procedure, and the actions obtained by these will be described in the second embodiment. It is the same as the embodiment.

この第3の実施形態では、図6(a)に示すように、上記の復元用に選定した所定箇所が、沈水植物群および浮葉植物群が消失して、ほとんど裸地化している場合には、この裸地化した所定箇所Pの水底を直接覆った無生物の手段からなる濁度低下手段21を設け、底泥の巻き上げ抑制している。すなわち、この第3の実施形態では、濁度低下手段21としての生分解プラスティックでつくった繊維からなるマット22を、所定箇所に杭23で打ち込み、底泥巻き上げを押さえるようにしている。   In this third embodiment, as shown in FIG. 6 (a), when the predetermined location selected for the above restoration is almost completely bare with the submerged plant group and the floating leaf plant group disappearing. The turbidity lowering means 21 comprising inanimate means that directly covers the bottom of the bare place P is provided to suppress the rolling up of the bottom mud. That is, in this third embodiment, a mat 22 made of a fiber made of biodegradable plastic as the turbidity lowering means 21 is driven into a predetermined place with a pile 23 to suppress the rolling up of the bottom mud.

このマット22は、植物由来の生分解プラスティックなどのように生分解性を有した材料を用いて細い繊維を作成し、この繊維を、スチールウールと同様に、繊維間の隙間を多く確保しながら、互いにからめて所定厚さに形成した面状部材とされている。したがって、このマット22は、その繊維間の隙間を所定に確保して、所定の厚さに形成しているので、柔軟に変形が可能となり、マット22が設置される水底の形状に応じて変形でき、その水底面を確実にカバーできる。このため、水中擾乱の影響を水底に伝達させずに済む。他方、少なくとも、マット22上に位置した植物体から根を、その生長に伴い、マット22の厚さ方向に貫通させて、水底に到達させることができる。また、このマット22は、その材質が所定に選択され、またはその繊維径や厚さなどが、所定寸法に確保されており、少なくとも、該マット22を水中設置してから自然にその分解が完了するまでに要する時間が、同時的に設置した再生株a1が底泥の巻き上げ現象を所定に抑制できる程度の植物体に成長するための時間よりも、長くなるように設定されている。   The mat 22 is made of a thin fiber using a biodegradable material such as a plant-derived biodegradable plastic, and this fiber is secured to a large number of gaps between the fibers in the same manner as steel wool. The planar members are tangled with each other and have a predetermined thickness. Therefore, the mat 22 is formed with a predetermined thickness with a predetermined gap between the fibers. Therefore, the mat 22 can be flexibly deformed and deformed according to the shape of the water bottom where the mat 22 is installed. And can reliably cover the bottom of the water. For this reason, it is not necessary to transmit the influence of underwater disturbance to the bottom of the water. On the other hand, at least the roots from the plant body located on the mat 22 can be penetrated in the thickness direction of the mat 22 to reach the bottom of the water with its growth. The mat 22 has a predetermined material selected, or a fiber diameter, a thickness, etc., are secured to predetermined dimensions. At least the mat 22 is installed in water and then the disassembly is completed naturally. The time required to do so is set to be longer than the time required for the regenerated strain a1 installed at the same time to grow into a plant that can suppress the phenomenon of rolling up the bottom mud.

そして、図6(b)に示すように、上記の選定した箇所Pは、該箇所Pの水底面が、マット22で覆われており、このマット22の所定箇所をそれぞれ貫通して、杭23が、水底にまで打ち込まれている。このため、これらの杭23によって、風波による水中の擾乱に拘わらず、その設置した水底から移動しないように、かつ、該水底を覆うように、マット22が固定される。   And as shown in FIG.6 (b), as for the said selected location P, the water bottom of this location P is covered with the mat 22, The predetermined location of this mat 22 is penetrated, respectively, and the pile 23 However, it has been driven to the bottom of the water. For this reason, the mat 22 is fixed by these piles 23 so as not to move from the installed water bottom and to cover the water bottom, regardless of underwater disturbance caused by wind waves.

したがって、風波による水中擾乱の影響は、その大部分がマット22で遮断されたり緩和されたりして、実質的に水底に到達させずに済む。このため、マット22で覆った水底からの底泥の巻き上げが抑制される。このため、該水底における底泥の巻き上げによる濁度の上昇が抑制される。この結果、該水底には、沈水植物の育成を可能とする程度の透過光量が確保される。   Therefore, most of the influence of underwater disturbance caused by wind waves is blocked or alleviated by the mat 22 and does not substantially reach the bottom of the water. For this reason, rolling up of the bottom mud from the water bottom covered with the mat 22 is suppressed. For this reason, the raise of the turbidity by winding up of the bottom mud in this water bottom is suppressed. As a result, the amount of transmitted light is secured at the bottom of the water so that the submerged plant can be grown.

そして、このように透過光量が確保される水底には、ほぼ同時的に、上記の第2の実施形態と同様にして、沈水植物の再生株a1が、所定数の単位で移植され、図6(c)に示すように、再生株a1が該水底で生長して、固有の沈水植物Aが沈水植物群落AAとして復元され、上記した正のフィードバック作用を得た水質浄化が並行的に進行する。   Then, in the water bottom where the amount of transmitted light is secured in this manner, the regenerated submerged plant a1 of the submerged plant is transplanted in a predetermined number of units almost simultaneously as in the second embodiment. As shown in (c), the regenerated strain a1 grows on the bottom of the water, the inherent submerged plant A is restored as a submerged plant community AA, and the water purification that has obtained the positive feedback action described above proceeds in parallel. .

すなわち、上記の容器15に収容されて水底に設置された再生株a1は、透過光を受けて生体に向けて生長し、この生長に伴いその根が、容器15の底部およびこの底部に接したマット22を貫通して、水底の底泥中に進入し、沈水植物として、水底に活着する。   That is, the regenerated strain a1 accommodated in the container 15 and installed on the bottom of the water receives the transmitted light and grows toward the living body, and the root of the regenerated strain a1 comes into contact with the bottom of the container 15 and the bottom. It penetrates the mat 22 and enters the bottom mud of the bottom of the water, and settles on the bottom of the water as a submerged plant.

他方、マット22は、自然に生分解されるが、少なくとも、再生株a1が活着して生長するまでは残存し、底泥の巻き上げをある程度抑制できる沈水植物群落となってから、完全に分解され消失する。したがって、マット22を除去する作業を不要にでき、省力化が図れる。特に、除去し忘れなどの人為的なミスが生じることを未然に回避でき、設置後の管理を簡素化できる。このように、自然分解されて人工物を残存させずに済むので、再生・復元した沈水植物群落の生息環境として好ましいものとなる。   On the other hand, the mat 22 is naturally biodegraded, but remains at least until the regenerated strain a1 is activated and grows, and is completely decomposed after becoming a submerged plant community that can suppress the raising of the bottom mud to some extent. Disappear. Therefore, the work of removing the mat 22 can be made unnecessary and labor saving can be achieved. In particular, it is possible to avoid the occurrence of human error such as forgetting to remove, and the management after installation can be simplified. In this way, it is not necessary to leave the man-made product after being naturally decomposed, which is preferable as a habitat environment for the regenerated and restored submerged plant community.

以上のように、この第3の実施形態の再生・復元方法によれば、上記の第2の実施形態による作用効果が得られるのに加えて、この濁度低下手段としてマットを、選定した箇所の水底を覆うように設置して、該水底からの底泥の巻き上げを抑制したので、このマットが、同箇所の水面および水中の妨害物となることを回避できる。このため、移植した沈水植物の観測などのように、同箇所の水面での諸活動や水上交通を阻害せずに済む。   As described above, according to the reproduction / restoration method of the third embodiment, in addition to obtaining the effects of the second embodiment, the mat is selected as the turbidity reducing means. It was installed so as to cover the bottom of the water, and the rolling up of the bottom mud from the bottom of the water was suppressed, so that the mat can be prevented from becoming an obstruction in the surface of the water and in the water. For this reason, it is not necessary to obstruct various activities and water traffic on the surface of the water like observation of transplanted submerged plants.

また、このようにマットは、水底に該水底を覆うように設置されているので、水流抵抗を受けにくいので、ある程度の速度の水流が存在した箇所に設置できる。たとえば、マットを、湖沼の流入または流出河口付近などのように、風波による水中擾乱以外に、常時、水流が存在した箇所に安定して設置できる。したがって、水域内における設置箇所の選択幅が広がる。このため、この再生・復元方法の適用範囲を拡大できる。   Since the mat is installed so as to cover the bottom of the water in this way, it is difficult to receive water flow resistance, so that the mat can be installed at a place where a water flow of a certain speed exists. For example, the mat can be stably installed at a place where water flow always exists, other than underwater disturbance due to wind waves, such as in the vicinity of a lake inflow or outflow estuary. Therefore, the selection range of the installation location in the water area is expanded. For this reason, the application range of this reproduction / restoration method can be expanded.

他方、生分解性材料を用いて、所定に自然分解に要する時間が設定されたマットを用いているので、少なくとも、沈水植物群落を復元した後のマット除去作業が不要となり、省力化が図れ、群落復元用に掛かる費用を削減できる。また、人工物としてのマットを、その一部でも残存させることなく、完全に排除できるので、生態系に影響を与えずに済む。   On the other hand, using a biodegradable material, a mat with a predetermined time required for natural decomposition is used, so at least mat removal work after restoring submerged plant communities is unnecessary, and labor saving can be achieved. Costs for community restoration can be reduced. In addition, the mat as an artifact can be completely eliminated without leaving a part of the mat, so that it does not affect the ecosystem.

なお、衰退した沈水植物群落を再生するために、または、消失した沈水植物群落を復元するために、上記した第1ないし第3の実施形態でそれぞれ説明した濁度低下手段のうちのいずれかを適宜選択して、または適宜組み合わせて用いてもよい。すなわち、上記した各実施形態の濁度低下手段は、互いに排除しあうものではないので、実際の現地状況に応じて、適宜、いくつかの濁度低下手段を組み合わせてよく、より濁度を低下させる作用を増強してもよい。また、たとえば、所定箇所に、小規模な浮葉植物群落が密生している場合には、つまり沈水植物群落を再生・回復させる予定領域の一部を、浮葉植物群落が占有している場合には、この浮葉植物群落を除去することなく所定に分布させて、予定領域の一部を担当する濁度低下手段としたうえ、予定領域の他の部分を担当するために、上記の第2,第3の実施形態の濁度低下手段を設けてもよい。また、浅い湖沼とは、その水域の全域が浅い水深を有した湖沼だけではなく、水質汚濁に影響を与える程度の面積の浅水域を有していれば、その一部に深い水域を有した湖沼を含むものとする。   In order to regenerate a submerged submerged plant community or to restore a lost submerged plant community, any one of the turbidity lowering means described in the first to third embodiments described above is used. You may select suitably or may be used in combination as appropriate. That is, the turbidity lowering means of each embodiment described above are not mutually exclusive, so depending on the actual local situation, several turbidity lowering means may be combined as appropriate to further reduce the turbidity. You may enhance the effect. In addition, for example, when a small-sized floating plant community grows densely at a predetermined location, that is, when a floating plant community occupies a part of the planned area for regenerating and recovering a submerged plant community. In order to distribute this floating leaf plant community without removing it and use it as a turbidity lowering means that takes charge of a part of the planned area, The turbidity lowering means of the third embodiment may be provided. A shallow lake is not only a lake with a shallow water depth but also a shallow water area with an area that affects water pollution. Including lakes.

さらに、上記した各実施形態では、内陸部の浅い湖沼に適用した例を説明したが、これに限られることなく、浅い水深であれば、海水が混合する汽水域や、狭い湾口を有した湾内の内奥部などの海水域を含むものとし、これらに応じて、各域の衰退または消失した群落を再生または回復対象とする。   Furthermore, in each of the above-described embodiments, an example in which the present invention is applied to a shallow lake in an inland area has been described. However, the present invention is not limited to this. It includes sea areas such as the inner part of the sea, and in accordance with these, the decline or disappearance of each area is the target of regeneration or recovery.

この発明の再生・復元方法を適用した例としての第1の実施形態を示し、(a)は、所定箇所に浮葉植物が繁茂している状態を示す概略図、(b)は、繁茂していた浮葉植物を濁度低下手段として所定に分布させた状態を示す概略図、(c)は、沈水植物が定着して自生した状態を示す概略図、(d)は、沈水植物群落が再生した状態を示す概略図である。1st Embodiment as an example to which the regeneration / restoration method of this invention is applied is shown, (a) is a schematic diagram showing a state in which a floating leaf plant is prospering at a predetermined location, and (b) is prospering. Schematic showing a state in which the floating plant is distributed as a turbidity lowering means, (c) is a schematic diagram showing a state where a submerged plant has settled and has grown naturally, and (d) is a regenerated submerged plant community. It is the schematic which shows a state. この発明の再生・復元方法の適用例としての第2の実施形態を示し、いくつかの箇所で底泥の柱状サンプル採取を示す概略図である。It is the schematic which shows 2nd Embodiment as an example of application of the reproduction | regeneration / restoration | reconstruction method of this invention, and shows column-shaped sample collection of bottom mud in several places. この第2の実施形態を示し、採取した柱状サンプルの分析資料化および発芽試験を示す概略図である。It is the schematic which shows this 2nd Embodiment and shows the collection of analytical data and the germination test of the collected columnar sample. 第2の実施形態を示し、埋土種子の採取地点を選定する概要を示す概略図である。It is the schematic which shows 2nd Embodiment and shows the outline | summary which selects the collection point of a buried seed. 第2の実施形態を示し、再生株の大量培養の概要を示した概略図である。It is the schematic which showed 2nd Embodiment and showed the outline | summary of the mass culture of the reproduction | regeneration strain | stump | stock. 第2の実施形態を示し、現地の湖沼に設定した実験区域を示す概略図である。It is the schematic which shows 2nd Embodiment and shows the experimental area set to the local lake. 第2の実施形態を示し、再生株を収容した容器を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment and shows the container which accommodated the reproduction | regeneration stock | strain. 第2の実施形態を示し、再生株を収容した容器を、水底に固定設置した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which showed 2nd Embodiment and fixedly installed the container which accommodated the reproduction | regeneration stock | stump in the water bottom. この第2の実施形態を示し、(a)は、所定箇所が裸地化している状態を示す概略図、(b)は、濁度低下手段を設置した状態を示す概略図、(c)は、沈水植物群落が復元した状態を示す概略図である。This 2nd Embodiment is shown, (a) is the schematic which shows the state where the predetermined location is bare, (b) is the schematic which shows the state which installed the turbidity reduction means, (c) is It is the schematic which shows the state which the submerged plant community restored | restored. この発明の再生・復元方法の適用例としての第3の実施形態を示し、(a)は、所定箇所が裸地化している状態を示す概略図、(b)は、濁度低下手段を設置した状態を示す概略図、(c)は、沈水植物群落が復元した状態を示す概略図である。3rd Embodiment is shown as an example of application of the reproduction | regeneration / restoration method of this invention, (a) is the schematic which shows the state where the predetermined location is bare, and (b) installs a turbidity reduction means The schematic which shows the state which carried out, (c) is the schematic which shows the state which the submerged plant community restored | restored.

符号の説明Explanation of symbols

1,11,21 濁度低下手段 5 再侵入防止手段
6 シート(隔離部材) 7 浮体
12 シート(シート状部材) 13 浮体枠
13a 浮体 15 容器
16 杭(容器固定用) 22 マット
23 杭(マット固定用)
A 沈水植物 a1 再生株
AA 沈水植物群落 B 浮葉植物
P 沈水植物群落の再生・復元用箇所
Sa1,Sa2 湖沼底泥の不攪乱柱状サンプル
St1,St2 底泥の柱状サンプルを採取した箇所
1,11,21 Turbidity reduction means 5 Re-entry prevention means 6 Sheet (separation member) 7 Floating body 12 Sheet (sheet-like member) 13 Floating body frame 13a Floating body 15 Container 16 Pile (for container fixation) 22 Mat 23 Pile (mat fixation) for)
A Submerged plant a1 Regenerated strain AA Submerged plant community B Floating leaf plant P Regeneration / restoration site of submerged plant community Sa1, Sa2 Undisturbed columnar sample of lake bottom mud St1, St2 Sample of columnar sample of bottom mud

Claims (10)

外部から流入した汚濁物質のため、水域の水質汚濁が進展して、少なくとも、該水域に固有な沈水植物群落が衰退または消失し、前記汚濁物質の流入が減少しても、汚濁状態が解消されない浅い湖沼において、
前記水域の風波に起因する底泥の巻き上げを抑制して水中濁度を低減させ、該水域の水底に透過光を到達させる濁度低下手段を形成し、前記沈水植物群落が衰退または消失した水域に、前記固有な沈水植物群落を再生または復元させるとともに、
再生または復元させた沈水植物群落が水底を覆うことで前記底泥の巻き上げの抑制効果を高め、沈水植物群落の再生または復元をさらに促進させ、該水域の水質を改善することを特徴とする浅い湖沼における沈水植物の再生・復元方法。
Due to pollutants flowing in from the outside, water pollution progresses in the water area, at least the submerged plant communities inherent in the water area decline or disappear, and even if the inflow of the pollutant decreases, the pollution state is not resolved In a shallow lake,
Reduce the water turbidity by suppressing winding mud caused by wind waves of the waters, waters forming the turbidity reduction means to reach a transmitted light sea bed of the body of water, the submerged plant communities is declined or disappeared To regenerate or restore the unique submerged plant community,
Shallows characterized in that the submerged plant communities regenerated or restored cover the bottom of the water, thereby enhancing the suppression effect of rolling up the bottom mud, further promoting the regeneration or restoration of submerged plant communities, and improving the water quality of the water area. How to regenerate and restore submerged plants in lakes.
前記濁度低下手段は、浮葉植物を所定に分布させて形成することを特徴とする請求項1に記載の浅い湖沼における沈水植物の再生・復元方法。   The method for regenerating / restoring a submerged plant in a shallow lake according to claim 1, wherein the turbidity reducing means is formed by predetermined distribution of floating leaf plants. 前記濁度低下手段は、前記水底を、マットで覆って形成することを特徴とする請求項1に記載の浅い湖沼水域における沈水植物の再生・復元方法。   The method for regenerating / restoring a submerged plant in a shallow lake body according to claim 1, wherein the turbidity reducing means is formed by covering the water bottom with a mat. 前記濁度低下手段は、前記水底の周囲を、シート状部材を垂下した浮体枠で囲んで形成することを特徴とする請求項1に記載の浅い湖沼における沈水植物の再生・復元方法。   The method for regenerating / restoring a submerged plant in a shallow lake according to claim 1, wherein the turbidity lowering unit is formed by surrounding the bottom of the water with a floating frame in which a sheet-like member is suspended. 前記沈水植物群落を再生または復元させる箇所に、少なくとも、既存の浮葉植物が進入することを防止する隔離部材を設けたことを特徴とする請求項1ないし4のいずれかに記載の浅い湖沼における沈水植物の再生・復元方法。 The submergence in a shallow lake according to any one of claims 1 to 4, wherein an isolation member for preventing an existing floating leaf plant from entering is provided at a location where the submerged plant community is regenerated or restored. Plant regeneration and restoration methods. 外部から流入した汚濁物質のため、水域の水質汚濁が進展して、少なくとも、該水域に固有な沈水植物群落が消失し、前記汚濁物質の流入が減少しても、汚濁状態が解消されない浅い湖沼において、
前記消失した沈水植物群落を形成していた沈水植物の埋土種子を前記水域内から採取し、この採取した埋土種子によって、該水域に固有な沈水植物群落を復元させるとともに、
復元させた沈水植物群落が水底を覆うことで該水域における底泥の巻き上げを抑制し、該水域の水底に透過光を到達させて沈水植物群落の復元をさらに促進させ、該水域の水質を改善することを特徴とする浅い湖沼における沈水植物の再生・復元方法。
Because of pollutants flowing in from the outside, water pollution in the water area will progress, at least the submerged plant communities inherent to the water area will disappear, and even if the inflow of the pollutant substance decreases, the shallow lake where the pollution state will not be resolved In
The buried seeds of the submerged plant that formed the disappeared submerged plant community were collected from within the water area, and the collected buried seeds restored the submerged plant community inherent to the water area,
The restored submerged plant community covers the bottom of the water to suppress the rolling up of the bottom mud, and the transmitted light reaches the bottom of the water area to further promote the restoration of the submerged plant community , improving the water quality of the water area. A method for regenerating and restoring submerged plants in shallow lakes.
前記採取した埋土種子を発芽させて、所定に生長させた再生株を大量培養し、
この再生株の生長に適した箇所を、前記水域から選定し、
この選定した箇所の水底に透過光を到達させる濁度低下手段を設け、
この透過光を確保した水底に、所定数の再生株を移植して定着させ、沈水植物群落として生長させることを特徴とする請求項6に記載の浅い湖沼における沈水植物の再生・復元方法。
Germinating the collected buried seeds, cultivating a large amount of the regenerated strain that has been grown to a predetermined extent,
Select a location suitable for the growth of this regenerated strain from the water area,
Provide turbidity lowering means to allow the transmitted light to reach the water bottom of the selected location,
The method for regenerating / restoring a submerged plant in a shallow lake according to claim 6, wherein a predetermined number of regenerated strains are transplanted and fixed on the bottom of the water where the transmitted light is secured to grow as a submerged plant community.
前記再生株は、所定容器に収容して、前記水底に設置しており、前記容器は、少なくとも、その底面が多孔質に形成されていることを特徴とする請求項に記載の浅い湖沼における沈水植物の再生・復元方法。 8. The shallow lake according to claim 7 , wherein the regenerated strain is housed in a predetermined container and installed at the bottom of the water, and the container is formed with a porous bottom at least. How to regenerate and restore submerged plants. 前記水域の地形、水文および気象状況に基づいて、水底における底泥擾乱や流速分布を定量的に評価する流動モデルを作成し、該流動モデルを用いて前記埋土種子の採取地点を選定することを特徴とする請求項6ないし8のいずれかに記載の浅い湖沼における沈水植物の再生・復元方法。 Create a flow model that quantitatively evaluates the bottom mud disturbance and flow velocity distribution on the bottom of the water based on the topography, hydrology, and weather conditions of the water area, and uses the flow model to select the landfill seed collection point A method for regenerating and restoring a submerged plant in a shallow lake according to any one of claims 6 to 8 . 前記水域の地形、水文および気象状況に基づいて、水底における底泥擾乱や流速分布を定量的に評価する流動モデルを作成し、該流動モデルを用いて前記再生株の生長に適した箇所を選定することを特徴とする請求項7または8に記載の浅い湖沼における沈水植物の再生・復元方法。 Create a flow model that quantitatively evaluates bottom mud disturbance and flow velocity distribution at the bottom of the water based on the topography, hydrology, and weather conditions of the water area, and uses the flow model to select locations that are suitable for the growth of the regenerated strain The method for regenerating and restoring a submerged plant in a shallow lake according to claim 7 or 8 .
JP2005193674A 2005-07-01 2005-07-01 Regeneration and restoration methods of submerged plants in shallow lakes Expired - Fee Related JP4803421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193674A JP4803421B2 (en) 2005-07-01 2005-07-01 Regeneration and restoration methods of submerged plants in shallow lakes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193674A JP4803421B2 (en) 2005-07-01 2005-07-01 Regeneration and restoration methods of submerged plants in shallow lakes

Publications (2)

Publication Number Publication Date
JP2007006819A JP2007006819A (en) 2007-01-18
JP4803421B2 true JP4803421B2 (en) 2011-10-26

Family

ID=37746096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193674A Expired - Fee Related JP4803421B2 (en) 2005-07-01 2005-07-01 Regeneration and restoration methods of submerged plants in shallow lakes

Country Status (1)

Country Link
JP (1) JP4803421B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840459A (en) * 2017-12-19 2018-03-27 江南大学 A kind of combination bed system with water ecology repair function
CN107902761A (en) * 2017-10-16 2018-04-13 浙江诚邦园林股份有限公司 A kind of Method for building river course ecological restoration vegetation
CN110204052A (en) * 2019-06-10 2019-09-06 福建荣冠环境建设集团有限公司 A kind of ecological restoring method of muskeg

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388926B2 (en) * 2010-03-30 2014-01-15 株式会社フジタ Community formation method of submerged plant and vegetation base used for the same
CN102502969B (en) * 2011-11-21 2013-09-04 中国科学院水生生物研究所 Method for restoring algal-inhibition submerged vegetation in eutrophic water
JP5982249B2 (en) * 2012-10-12 2016-08-31 東亜建設工業株式会社 Seaweed relocation method
CN103340144A (en) * 2013-07-11 2013-10-09 安徽泊湖全美渔业有限公司 Method for improving environment of fishery culture lake
CN104193126B (en) * 2014-08-28 2016-03-16 中国科学院水生生物研究所 A kind of ecological matrix of hardground shallow lake and preparation method and substrate modification method
CN105753163A (en) * 2016-04-22 2016-07-13 上海海洋大学 Method for substrate improving in ecological restoration of water bodies
GB2563827B (en) * 2017-06-21 2022-11-16 Univ Nottingham Trent Aquatic vegetation restoration device and method
JP7077113B2 (en) * 2018-04-12 2022-05-30 大成建設株式会社 How to store and transplant aquatic plants
CN110150131A (en) * 2019-06-21 2019-08-23 重庆市十八土鑫诚灌浆防水工程有限公司 A kind of deep water implantation methods convenient for reinforcing rivers two sides soil
CN110563151A (en) * 2019-09-24 2019-12-13 广东河海工程咨询有限公司 Impact-resistant soft enclosure system for large-surface lake restoration area
JP7296343B2 (en) 2020-05-20 2023-06-22 鹿島建設株式会社 Water supply device
CN111543327A (en) * 2020-06-11 2020-08-18 南大(常熟)研究院有限公司 Production method of detoxified seedlings suitable for rapid propagation of submerged plants
CN112005770A (en) * 2020-09-09 2020-12-01 广州和源生态科技发展股份有限公司 Torrent type river submerged plant solid planting device and solid planting method
CN112340932B (en) * 2020-10-15 2023-01-06 长江水利委员会长江科学院 Method for improving and treating water quality of rainwater collection type reservoir
CN112314095B (en) * 2020-10-30 2022-10-11 中国科学院东北地理与农业生态研究所 Method for recovering degraded reed wetland by using farmland drainage in spring
CN114524522A (en) * 2022-03-10 2022-05-24 上海同瑞环保工程有限公司 Planting method for recovering submerged plants and gridding planting device
CN115304211A (en) * 2022-06-29 2022-11-08 鹏凯环境科技股份有限公司 Method for treating river and lake pollution point source by clear water type water ecosystem
CN117509921A (en) * 2024-01-05 2024-02-06 江苏龙腾工程设计股份有限公司 Intelligent photovoltaic ecological wetland restoration system for coastal zone of river and lake

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171597A (en) * 1985-01-11 1986-08-02 Tsutomu Arimizu Method for purifying water of lake and marsh by aquatic plant
JP2577639B2 (en) * 1989-08-11 1997-02-05 タイテック 株式会社 Temperature detection device in aluminum block thermostat
JPH10306430A (en) * 1997-05-08 1998-11-17 Tashizen Techno Works:Kk Habitable mat for aquatic animal and plant, revetment structure using mat for river, bottom construction using mat for river, marsh and lake, and revetment building method using mat for river, marsh and lake
JP3141083B2 (en) * 1997-06-14 2001-03-05 北海道開発局開発土木研究所長 Ecosystem conservation block and construction method
JPH1170306A (en) * 1997-08-28 1999-03-16 Tanaka Sansho Kk Water area purification device, water area purifying mat, guide device for push pile of water area purifying mat, sludge recovery apparatus and filter base material of filter type water area purification device
JP3032861B2 (en) * 1997-12-04 2000-04-17 乙益 正隆 Revegetation method of flooded slope using wave-dissipating basket
JP2003111530A (en) * 2001-10-04 2003-04-15 Toa Harbor Works Co Ltd Method for establishment of eelgrass zone
JP2004201522A (en) * 2002-12-24 2004-07-22 Tetra Co Ltd Method for regenerating vegetation in dry beach

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902761A (en) * 2017-10-16 2018-04-13 浙江诚邦园林股份有限公司 A kind of Method for building river course ecological restoration vegetation
CN107840459A (en) * 2017-12-19 2018-03-27 江南大学 A kind of combination bed system with water ecology repair function
CN110204052A (en) * 2019-06-10 2019-09-06 福建荣冠环境建设集团有限公司 A kind of ecological restoring method of muskeg

Also Published As

Publication number Publication date
JP2007006819A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4803421B2 (en) Regeneration and restoration methods of submerged plants in shallow lakes
US11598064B2 (en) Lake restoration systems and processes
Lotze et al. Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms
JP4217232B2 (en) Formation method of submerged plant group using artificial floating island for submerged plant
JP2008271989A (en) Method for forming submerged plant cluster by using artificial floating island for submerged plant
Bryars et al. Natural recolonisation of seagrasses at a disused sewage sludge outfall
US11740221B2 (en) Smart raft system and method for monitoring and improving water quality to mitigate algal blooms
De Jong et al. ‘Global change’impact of inter-annual variation in water discharge as a driving factor to dredging and spoil disposal in the river Rhine system and of turbidity in the Wadden Sea
Van de Haterd et al. Potential for the development of submerged macrophytes in eutrophicated shallow peaty lakes after restoration measures
d’Avack et al. Assessing the sensitivity of seagrass bed biotopes to pressures associated with marine activities.
CN107063756B (en) large-sized seaweed natural sea area decomposition process research experimental device
Lillebø et al. 10.07 Restoration of Seagrass Community to Reverse Eutrophication in Estuaries
JP4247285B2 (en) Method for regenerating submerged plant community and method for purifying water
US20230203771A1 (en) Lake restoration systems and processes
WHEELER et al. 14• Freshwater wetlands
Chen et al. Restoring wetlands outside of the seawalls and to provide clean water habitat
Molloy Studies on the ecology and production of seaweeds of economic and potential economic importance on the Namibian coast
Boudouresque et al. Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues. Water 2021, 13, 1034
CN114747436B (en) Submerged plant community culture method adopting space-time plaque mosaic replacement
Suutari et al. Eco Tipping Points
US20230404002A1 (en) Smart raft system and method for monitoring and improving water quality to mitigate algal blooms
US11795646B2 (en) System for reducing contaminants in a body of water
KR20110121280A (en) Method for constructing zostera forest using wood boxes
Vogel The Effects of Artificial Floating Wetland Island Construction Materials on Plant Biomass
Perry et al. Ascophyllum nodosum with epiphytic sponges and ascidians on variable salinity infralittoral rock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees