JP4798797B2 - Overlay welding method and overlaid weld formed by the method - Google Patents

Overlay welding method and overlaid weld formed by the method Download PDF

Info

Publication number
JP4798797B2
JP4798797B2 JP2007237132A JP2007237132A JP4798797B2 JP 4798797 B2 JP4798797 B2 JP 4798797B2 JP 2007237132 A JP2007237132 A JP 2007237132A JP 2007237132 A JP2007237132 A JP 2007237132A JP 4798797 B2 JP4798797 B2 JP 4798797B2
Authority
JP
Japan
Prior art keywords
welding
weld
build
less
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007237132A
Other languages
Japanese (ja)
Other versions
JP2008093732A (en
Inventor
光洋 中村
太志 坂田
敏一 寺村
英昭 永吉
太一朗 河村
政広 篠原
Original Assignee
株式会社フジコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006247018 priority Critical
Priority to JP2006247018 priority
Application filed by 株式会社フジコー filed Critical 株式会社フジコー
Priority to JP2007237132A priority patent/JP4798797B2/en
Publication of JP2008093732A publication Critical patent/JP2008093732A/en
Application granted granted Critical
Publication of JP4798797B2 publication Critical patent/JP4798797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐摩耗性、耐腐食性、及び耐熱衝撃性に優れた肉盛溶接部を形成する肉盛溶接方法及び該方法によって形成した肉盛溶接部に関する。 The present invention relates to a build-up welding method for forming a build-up weld having excellent wear resistance, corrosion resistance, and thermal shock resistance, and a build-up weld formed by the method.
転炉排ガス処理設備における排ガス通路は、転炉から排出される温度が1450〜1800℃で、しかも、ダスト(例えば、鉄粉)及び塩素イオンや硫化水素等の腐食性ガスを多量に含む排ガスを冷却して安全に集塵機に導く冷却機能を有している。ここで、排ガス通路の側壁には、冷却器を構成する水管(ボイラー用鋼管)が配設されているが、ダストによる摩耗や腐食性ガスの侵食による水管の減肉、減耗が問題となっている。このため、損傷の激しい水管を抜き取り新しい水管と交換する補修が行なわれているが、工期が長く補修コストも高くなるという問題がある。そこで、減肉、減耗の生じている水管の外表面に、溶接トーチを用いて水管と同材質の肉盛溶接部を形成すること(例えば、特許文献1参照)が行なわれている。 The exhaust gas passage in the converter exhaust gas treatment facility has an exhaust gas temperature of 1450 to 1800 ° C. discharged from the converter, and exhaust gas containing a large amount of dust (for example, iron powder) and corrosive gases such as chlorine ions and hydrogen sulfide. It has a cooling function that cools and safely leads to the dust collector. Here, a water pipe (boiler steel pipe) that constitutes a cooler is disposed on the side wall of the exhaust gas passage. However, there is a problem of thinning and wear of the water pipe due to wear caused by dust or corrosive gas. Yes. For this reason, repair is carried out by removing a severely damaged water pipe and replacing it with a new water pipe, but there is a problem that the construction period is long and the repair cost is high. In view of this, an overlaid weld portion made of the same material as that of the water pipe is formed on the outer surface of the water pipe where thickness reduction and wear have occurred (for example, see Patent Document 1).
特開平6−344142号公報JP-A-6-344142
しかしながら、溶接トーチを用いて水管と同材質の肉盛溶接部を形成する方法は、水管に水漏れが発生した場合の応急的処理方法としては有効であるが、水管の減肉、減耗を抑えて水管の寿命を延ばすという本質的な解決方法ではない。そこで、水管表面に、耐腐食性及び耐摩耗性を有する保護層を溶射により形成して、水管の減肉、減耗を抑えることで水管の寿命を延ばすことが行なわれている。ここで、保護層としては、例えば、クロムが15質量%以下、鉄が8質量%以下、銅が4質量%以下、硼素が1〜3質量%以下、シリコンが1.5〜6質量%以下、タングステンが2質量%以下、炭素が1質量%以下、残部がニッケルからなる溶射材料が使用できる。 However, using a welding torch to form an overlay weld of the same material as the water pipe is effective as an emergency treatment method when water leaks in the water pipe, but it suppresses the thinning and wear of the water pipe. This is not an essential solution to extend the life of water pipes. In view of this, a protective layer having corrosion resistance and wear resistance is formed on the surface of the water pipe by thermal spraying to suppress the thinning and wear of the water pipe, thereby extending the life of the water pipe. Here, as the protective layer, for example, chromium is 15% by mass or less, iron is 8% by mass or less, copper is 4% by mass or less, boron is 1 to 3% by mass or less, and silicon is 1.5 to 6% by mass or less. In addition, a thermal spray material in which tungsten is 2 mass% or less, carbon is 1 mass% or less, and the balance is nickel can be used.
しかし、冷却器には使用環境下において急加熱及び急冷の繰り返し熱衝撃が作用するため、水管の表面に形成された保護層にも繰り返し熱衝撃が作用すると共に、水管自体も熱膨張及び熱収縮を繰り返す。これにより、水管の表面に形成された保護層には表面割れが発生し、水管と保護層の熱膨張係数の差から保護層の水管表面からの剥離が生じるという問題が生じる。なお、保護層に再溶融処理を施すと、表面割れが消失すると共に保護層と水管表面との間に拡散層が形成されて保護層と水管表面との密着力を向上させることができるが、保護層の再溶融処理を行なうには保護層を加熱せねばならず、そのときに保護層に割れが生じるという問題がある。このため、再溶融処理による保護層の補修は困難となり、保護層に表面割れや剥離が発生すると、形成している保護層をブラスト処理等で除去して溶射により新たな保護層を形成する必要があり、工期が長く補修コストも高くなるという問題がある。 However, the cooler is subjected to repeated thermal shocks of rapid heating and rapid cooling under the usage environment, so that the thermal shock also acts repeatedly on the protective layer formed on the surface of the water tube, and the water tube itself is also subjected to thermal expansion and contraction. repeat. Thereby, a surface crack occurs in the protective layer formed on the surface of the water tube, and there arises a problem that the protective layer peels off from the surface of the water tube due to a difference in thermal expansion coefficient between the water tube and the protective layer. In addition, when the protective layer is subjected to remelting treatment, surface cracks disappear and a diffusion layer is formed between the protective layer and the water tube surface, so that the adhesion between the protective layer and the water tube surface can be improved. In order to perform the remelting treatment of the protective layer, the protective layer must be heated, and there is a problem that the protective layer is cracked. For this reason, it is difficult to repair the protective layer by remelting treatment. When surface cracking or peeling occurs in the protective layer, it is necessary to remove the formed protective layer by blasting and form a new protective layer by thermal spraying. There is a problem that the construction period is long and the repair cost is high.
本発明は係る事情に鑑みてなされたもので、基材の表面に耐摩耗性、耐腐食性、及び耐熱衝撃性に優れた肉盛溶接部を形成する肉盛溶接方法及び該方法によって形成した肉盛溶接部を提供することを目的とする。 The present invention has been made in view of such circumstances, and is formed by a build-up welding method for forming a build-up weld portion excellent in wear resistance, corrosion resistance, and thermal shock resistance on the surface of a base material, and the method. The object is to provide an overlay weld.
前記目的に沿う本発明に係る肉盛溶接方法は、垂直又は斜めに設けられた中空長尺の筒状の構造物の一部又は全部であって厚さ1.5mm以上の基材表面に、ニッケル基合金又はステンレス合金を肉盛溶接して、肉盛溶接部を形成する肉盛溶接方法において、
MIG溶接又はMAG溶接を行う溶接機を含む溶接装置を前記構造物に取付けて、前記溶接機を用いて行う溶接部のウィービングの振幅を7mm以上で20mm以下、該ウィービングの振動数を7回/秒以下、溶接速度を2mm/秒以上で17mm/秒以下にして、前記肉盛溶接部の前記基材からの希釈率を10質量%以下にし、
しかも、前記溶接装置は、前記構造物の内面上にそれぞれ支持金具を介して上下周方向に取付けられた第1、第2のレールと、該第1、第2のレールに沿って移動する対となる走行台車に連結された縦ガイド部材と、該縦ガイド部材に沿って上下動する昇降台車と、該昇降台車に取付けられて該昇降台車に対して水平方向に進退する水平ロッド部材と、該水平ロッド部材の一端部の取付け金具に前記構造物の内面の前記溶接部に向けて進退機構及び傾動機構を介して設けられ、前記溶接機の一部を構成する溶接トーチと、該溶接トーチのオシレート制御手段を含むこれらの制御装置と、前記溶接トーチに溶接ワイヤ及び電力を供給する前記溶接機とを有する。
ここで、前記溶接機による溶接の入熱量を400Joule/mm以上で1100Joule/mm以下にすることが好ましく、同一の前記溶接部に1回又は2回以上の肉盛溶接を行うことによって、前記肉盛溶接部の厚みを1.5mm以上とするのがよい。
The overlay welding method according to the present invention that meets the above-mentioned object is a part or all of a hollow long cylindrical structure provided vertically or obliquely, and the surface of a substrate having a thickness of 1.5 mm or more In addition, in the overlay welding method of overlay welding a nickel-based alloy or stainless steel alloy to form an overlay weld,
A welding apparatus including a welding machine for performing MIG welding or MAG welding is attached to the structure, and the weaving amplitude of the welded part using the welding machine is 7 mm to 20 mm, and the frequency of the weaving is 7 times / 1 second or less, the welding speed is 2 mm / second or more and 17 mm / second or less, and the dilution rate from the base material of the build-up weld is 10% by mass or less ,
In addition, the welding device includes first and second rails mounted on the inner surface of the structure via support brackets in the vertical circumferential direction, and a pair that moves along the first and second rails. A vertical guide member connected to the traveling carriage, an elevating carriage that moves up and down along the vertical guide member, a horizontal rod member that is attached to the elevating carriage and moves forward and backward in the horizontal direction with respect to the elevating carriage, A welding torch which is provided on a mounting bracket at one end of the horizontal rod member via an advancing / retracting mechanism and a tilting mechanism toward the welded portion on the inner surface of the structure, and forms a part of the welding machine; and the welding torch and these control devices including a oscillating control means, to have the said welder supplying welding wire and power to the welding torch.
Here, it is preferable that the heat input of welding by the welder is 400 Joules / mm or more and 1100 Joules / mm or less, and by performing overlay welding once or twice on the same welded portion, The thickness of the welded portion is preferably 1.5 mm or more.
本発明に係る肉盛溶接方法において、前記ウィービングの振幅を7mm以上で14mm以下、該ウィービングの振動数を5回/秒以下、溶接速度を3mm/秒以上で17mm/秒以下にすることが好ましい。
本発明に係る肉盛溶接方法において、前記肉盛溶接部は予め形成された溶接ビードの上に他の溶接ビードの一部を積層して構成され、しかも上から重ねられる前記他の溶接ビードの溶接狙い位置を、単一ビードの端から該単一ビードの幅の0.15倍以上0.45倍以下の範囲内とし、前記溶接ビードを3層以上積層することが好ましい。
In the overlay welding method according to the present invention, it is preferable that the amplitude of the weaving is 7 mm or more and 14 mm or less, the frequency of the weaving is 5 times / second or less, and the welding speed is 3 mm / second or more and 17 mm / second or less. .
In the build-up welding method according to the present invention, the build-up weld is formed by laminating a part of another weld bead on a pre-formed weld bead, and the other weld bead stacked from above. It is preferable that the welding target position is within a range of 0.15 to 0.45 times the width of the single bead from the end of the single bead, and three or more layers of the weld beads are laminated.
本発明に係る肉盛溶接方法において、前記第1、第2のレールを、それぞれ摺動機構を介して前記走行台車のフレーム部で挟持し、該第1、第2のレールの内側面にはチェーンがそれぞれ取付けられ、該走行台車に設けられた回転駆動するスプロケットを該チェーンに噛合させることが好ましい。
本発明に係る肉盛溶接方法において、前記第1、第2のレールに、前記縦ガイド部材、前記昇降台車、前記水平ロッド部材、前記溶接トーチをそれぞれ複数任意位置に設けることができる。また、前記溶接トーチと前記基材表面との距離を測定する距離センサーを設けることが好ましい。
In the overlay welding method according to the present invention, the first and second rails are each sandwiched by a frame portion of the traveling carriage via a sliding mechanism, and the inner surfaces of the first and second rails are Each chain is attached, and it is preferable that a sprocket for rotation driving provided on the traveling carriage is engaged with the chain.
In the overlay welding method according to the present invention, a plurality of the vertical guide members, the elevating carriage, the horizontal rod members, and the welding torches can be provided on the first and second rails, respectively, at arbitrary positions. Moreover, it is preferable to provide a distance sensor for measuring the distance between the welding torch and the surface of the base material.
前記目的に沿う本発明に係る肉盛溶接部は、厚さ1.5mm以上の基材表面に、ニッケル基合金又はステンレス合金からなる溶接材料を、MIG溶接機(メタルイナートガス溶接機)又はMAG溶接機(メタルアクティブガス溶接機)を用いて、ウィービングの振幅を7mm以上で20mm以下、該ウィービングの振動数を7回/秒以下、溶接速度を2mm/秒以上で17mm/秒以下の条件で溶接を行って形成した肉盛溶接部であって、前記基材からの希釈率が10質量%以下であり、しかも、前記基材は複数の管を長尺板材で連結した伝熱部材、又は製鉄用排ガス処理設備の排ガス通路の側壁部材である。
ここで、前記溶接の入熱量が400Joule/mm以上で1100Joule/mm以下とすることが好ましく、該肉盛溶接部の厚さは1.5mm以上であることガ好ましい。
The built-up welded part according to the present invention that meets the above-described object is obtained by applying a welding material made of a nickel-based alloy or a stainless alloy to the surface of a base material having a thickness of 1.5 mm or more, or a MIG welding machine (metal inert gas welding machine) or Using a MAG welder (metal active gas welder), the weaving amplitude is 7 mm or more and 20 mm or less, the weaving frequency is 7 times / second or less, and the welding speed is 2 mm / second or more and 17 mm / second or less. in a buttered welding portion formed by performing a welding state, and are dilution ratio 10 mass% or less from the substrate, moreover, the heat transfer member and the substrate is formed by coupling a plurality of tubes in a long plate member or Ru sidewall members der exhaust gas passage of steel for exhaust gas treatment equipment.
Here, the heat input amount of the welding is preferably 400 Joules / mm or more and 1100 Joules / mm or less, and the thickness of the build-up weld is preferably 1.5 mm or more.
本発明に係る肉盛溶接部において、前記ウィービングの振幅を7mm以上で14mm以下、該ウィービングの振動数を5回/秒以下、溶接速度を3mm/秒以上で17mm/秒以下にすることが好ましい。
本発明に係る肉盛溶接部において、該肉盛溶接部は予め形成された溶接ビードの上に他の溶接ビードの一部を積層して構成され、しかも上から重ねられる前記他の溶接ビードの溶接狙い位置を、単一ビードの端から該単一ビードの幅の0.15倍以上0.45倍以下の範囲内とし、前記溶接ビードを3層以上積層することが好ましい。
In the weld overlay according to the present invention, it is preferable that the amplitude of the weaving is 7 mm or more and 14 mm or less, the frequency of the weaving is 5 times / second or less, and the welding speed is 3 mm / second or more and 17 mm / second or less. .
In the build-up weld according to the present invention, the build-up weld is formed by laminating a part of another weld bead on a pre-formed weld bead, and the other weld bead is stacked from above. It is preferable that the welding target position is within a range of 0.15 to 0.45 times the width of the single bead from the end of the single bead, and three or more layers of the weld beads are laminated.
請求項1〜9記載の肉盛溶接方法及び請求項10〜15記載の肉盛溶接部においては、溶接装置を使用し、ウィービングの振幅を7mm以上で20mm以下の範囲内、ウィービングの振動数を7回/秒以下の範囲内、溶接速度を2mm/秒以上で17mm/秒以下の範囲内にして、肉盛溶接部の基材からの希釈率を10質量%以下にするので、肉盛溶接部ではニッケル基合金又はステンレス合金が本来備えている特性が維持され、肉盛溶接部の耐摩耗性、耐腐食性、及び耐熱衝撃性を図ることが可能になり、例えば、温度変動が激しく、ダスト及び腐食性ガスの環境下で使用される機器(構造物)の基材の表面に肉盛溶接部を形成することで、機器を長期間に渡って保護することができる。
そして、この肉盛溶接方法においては、構造物の内面に支持金具を介して上下周方向に第1、第2のレールを取付けることで、溶接トーチを構造物の内面の溶接部に向けて移動させ、更に、溶接トーチを溶接部に向けることができ、例えば、構造物を据え付けた現地において、短時間でしかも均質な肉盛溶接部を形成することが可能になる。
特に、請求項2記載の肉盛溶接方法及び請求項12記載の肉盛溶接部においては、溶接機による溶接部への入熱量が400Joule/mm以上で1100Joule/mm以下であるので、肉盛溶接部では基材からの溶け込み量が少なくなり、希釈率を10質量%以下にすることができる。
請求項3記載の肉盛溶接方法、及び請求項13に記載の肉盛溶接部においては、肉盛溶接部の厚さが1.5mm以上であるので、長期間に渡り基材の保護を行なうことができる。
In the build-up welding method according to any one of claims 1 to 9 and the build-up weld portion according to claims 10 to 15 , a welding apparatus is used, and the weaving amplitude is within a range of 7 mm or more and 20 mm or less. Since the welding speed is within a range of 2 mm / second or more and 17 mm / second or less within the range of 7 times / second or less, and the dilution rate from the base material of the build-up weld is 10 mass% or less, overlay welding The characteristics inherent to nickel-base alloys or stainless steel alloys are maintained at the part, and it becomes possible to achieve wear resistance, corrosion resistance, and thermal shock resistance of the overlay welded part. By forming a build-up weld on the surface of a base material of equipment (structure) used in an environment of dust and corrosive gas, the equipment can be protected for a long period of time.
In this build-up welding method, the first and second rails are attached to the inner surface of the structure in the up and down circumferential direction via the support bracket, so that the welding torch moves toward the welded portion on the inner surface of the structure. In addition, the welding torch can be directed to the welded portion, and for example, it is possible to form a uniform weld overlay in a short time at the site where the structure is installed.
Particularly, in the build-up welding method according to claim 2 and the build-up weld part according to claim 12 , the heat input to the weld part by the welding machine is 400 Joules / mm or more and 1100 Joules / mm or less. In the part, the amount of penetration from the base material is reduced, and the dilution rate can be 10% by mass or less.
In the build-up welding method according to claim 3 and the build-up weld part according to claim 13 , since the thickness of the build-up weld part is 1.5 mm or more, the base material is protected for a long period of time. be able to.
請求項4記載の肉盛溶接方法、及び請求項14に記載の肉盛溶接部においては、ウィービングの振幅、ウィービングの振動数、及び溶接速度の範囲を更に限定するので、肉盛溶接部ではニッケル基合金又はステンレス合金が本来備えている特性が更に維持され、肉盛溶接部の耐摩耗性、耐腐食性、及び耐熱衝撃性を図ることが可能になる。これにより、機器を更に長期間に渡って保護することができる。
請求項5記載の肉盛溶接方法、及び請求項15に記載の肉盛溶接部においては、肉盛溶接部が予め形成された溶接ビードの上に他の溶接ビードの一部を重ねて形成して、溶接ビードを3層以上積層するので、重ねられた溶接ビードと基材との間に溶接ビードが配置され、最表層部に位置する溶接ビードの希釈率を更に低減できる。
また、上から重ねられる他の溶接ビードの溶接狙い位置を、単一ビードの端から単一ビードの幅の0.15倍以上0.45倍以下の範囲内とするので、予め形成された溶接ビードと、その上から重ねられる他の溶接ビードとの重なり代を、例えば、0.65倍以上0.95倍以下にできる。
In the overlay welding method according to claim 4 and the overlay weld according to claim 14 , the range of the weaving amplitude, the weaving frequency, and the welding speed is further limited. The characteristics inherent to the base alloy or the stainless alloy are further maintained, and it becomes possible to achieve wear resistance, corrosion resistance, and thermal shock resistance of the overlay weld. As a result, the device can be protected for a longer period of time.
In the build-up welding method according to claim 5 and the build-up weld part according to claim 15 , the build-up weld part is formed by overlapping a part of another weld bead on a pre-formed weld bead. Since three or more layers of the weld beads are laminated, the weld beads are arranged between the stacked weld beads and the base material, and the dilution rate of the weld beads positioned in the outermost layer portion can be further reduced.
In addition, since the welding target position of the other weld beads stacked from above is within the range of 0.15 times or more and 0.45 times or less of the width of the single bead from the end of the single bead, the welding formed in advance is performed. The overlap allowance between the bead and another weld bead stacked thereon can be, for example, 0.65 times or more and 0.95 times or less.
請求項記載の構造物の肉盛溶接方法においては、チェーン及びスプロケットを用いるので、第1、第2のレールに沿って走行台車を容易に移動させることが可能になる。 In the build-up welding method for a structure according to claim 6 , since the chain and the sprocket are used, the traveling carriage can be easily moved along the first and second rails.
請求項記載の構造物の肉盛溶接方法においては、構造物内に複数の溶接トーチを設けることで、構造物の内面の離れた複数箇所に対して同時に肉盛溶接を行なうことができ、構造物の熱変形を抑えながら短時間で構造物の内面全体に肉盛溶接部を形成することが可能になる。
請求項記載の構造物の肉盛溶接方法においては、溶接トーチと基材表面との距離を距離センサーで把握することができ、基材表面に均質な肉盛溶接部を形成することが可能になる。
In the build-up welding method for a structure according to claim 7, by providing a plurality of welding torches in the structure, build-up welding can be performed simultaneously on a plurality of locations away from the inner surface of the structure, It is possible to form a build-up weld on the entire inner surface of the structure in a short time while suppressing thermal deformation of the structure.
In the build-up welding method for a structure according to claim 8 , the distance between the welding torch and the surface of the base material can be grasped by a distance sensor, and a uniform build-up weld is formed on the surface of the base material. Is possible.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る肉盛溶接方法で使用する溶接装置のブロック図、図2は同肉盛溶接方法で使用する溶接装置の部分正断面図、図3は同肉盛溶接方法で使用する溶接装置の部分側断面図、図4は同肉盛溶接方法で使用する溶接装置の部分平断面図、図5は同肉盛溶接方法で使用する溶接装置の溶接トーチの取付け状態を示す平面図、図6は同溶接トーチの取付け状態を示す正面図、図7は同溶接トーチの取付け状態を示す側面図、図8(A)、(B)はそれぞれ本発明の一実施の形態に係る肉盛溶接方法を使用して形成した肉盛溶接部の正断面図、平面図、図9(A)、(B)はそれぞれ同肉盛溶接方法の説明図、図10は第1の変形例に係る縦ガイド部材の説明図、図11は第2の変形例に係る縦ガイド部材の説明図、図12は変形例に係る溶接装置の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a block diagram of a welding apparatus used in the overlay welding method according to one embodiment of the present invention, FIG. 2 is a partial front sectional view of the welding apparatus used in the overlay welding method, and FIG. 4 is a partial sectional side view of a welding apparatus used in the overlay welding method, FIG. 4 is a partial plan sectional view of a welding apparatus used in the overlay welding method, and FIG. 5 is a welding of the welding apparatus used in the overlay welding method. FIG. 6 is a front view showing the attachment state of the welding torch, FIG. 7 is a side view showing the attachment state of the welding torch, and FIGS. 8A and 8B are the present invention. FIG. 9A and FIG. 9B are explanatory views and diagrams of the overlay welding method, respectively, of a front sectional view and a plan view of the overlay weld formed using the overlay welding method according to one embodiment of the present invention. 10 is an explanatory view of the vertical guide member according to the first modification, and FIG. 11 is an explanation of the vertical guide member according to the second modification. FIG, 12 is an illustration of a welding apparatus according to a modification.
図1〜図4に示すように、本発明の一実施の形態に係る肉盛溶接方法で使用する溶接装置10は、垂直に設けられた中空長尺の構造物の一部又は全部である基材の一例であって、製鉄用排ガス処理設備(転炉排ガス処理設備)に設けられた垂直に延びる断面が円形の排ガス通路の側壁部材11(例えば、厚みが5〜10mm)の内面上にそれぞれ複数の支持金具12を介して周方向に取付けられ、しかも、それぞれは上下方向に距離を有した枠状の第1、第2のレール13、14と、第1、第2のレール13、14に沿って移動する対となる走行台車15、16に連結された縦ガイド部材17と、縦ガイド部材17に沿って上下動する昇降台車18と、昇降台車18に取付けられて昇降台車18に対して水平方向に進退する水平ロッド部材19とを有している。更に、溶接装置10は、水平ロッド部材19の一端部の取付け金具20に排ガス通路の側壁部材11の内面の溶接部に向けて進退機構21及び傾動機構22を介して進退及び傾動可能に設けられパルスMIG溶接機(MIG溶接機の一例)27の一部を構成する、オシレート機構23付きの溶接トーチ24と、これらの制御装置25と、溶接トーチ24に溶接ワイヤ26及び電力を供給するパルスMIG溶接機27とを有している。以下、これらについて詳細に説明する。 As shown in FIGS. 1-4, the welding apparatus 10 used with the overlay welding method which concerns on one embodiment of this invention is the group which is a part or all of the hollow elongate structure provided vertically. It is an example of material, Comprising: On the inner surface of the side wall member 11 (for example, thickness is 5-10 mm) of the waste gas passage with a perpendicularly extended cross section provided in the exhaust gas treatment facility for iron making (converter exhaust gas treatment facility) The first and second rails 13, 14 and the first and second rails 13, 14 are attached in the circumferential direction via a plurality of support fittings 12, and each has a distance in the vertical direction. A vertical guide member 17 connected to a pair of traveling carriages 15, 16 that move along the vertical guide member 17, an elevator carriage 18 that moves up and down along the vertical guide member 17, and an elevator carriage 18 that is attached to the elevator carriage 18. Horizontal rod member 1 that moves forward and backward in the horizontal direction And it has a door. Further, the welding apparatus 10 is provided on the mounting bracket 20 at one end of the horizontal rod member 19 so as to be able to advance / retreat and tilt through the advancing / retreating mechanism 21 and the tilting mechanism 22 toward the welding portion on the inner surface of the side wall member 11 of the exhaust gas passage. A welding torch 24 with an oscillating mechanism 23 that constitutes a part of a pulse MIG welding machine (an example of a MIG welding machine) 27, a control device 25, a welding wire 26 and a pulse MIG for supplying electric power to the welding torch 24 And a welding machine 27. Hereinafter, these will be described in detail.
図3、図4に示すように、支持金具12は、排ガス通路の側壁部材11に取付けられる固定部28と、固定部28の先側にそれぞれ連結され先部に隣り合うレール部材29の端部がそれぞれ支持され固定される座板部材30が設けられたレール受け部31とを有している。このような構成とすることにより、側壁部材11の周方向にそれぞれ固定部28を取付け、更にレール受け部31を連結すると、座板部材30上に隣り合うレール部材29の端部同士を対向させながら固定することができる。これにより、排ガス通路の側壁部材11の肉盛溶接部(即ち、肉盛溶接金属)を形成する領域を上、下から挟むように側壁部材11の全周に渡って第1、第2のレール13、14を配置することができる。ここで、第1、第2のレール13、14の内側面の全周にはチェーン32が取付けられている。 As shown in FIGS. 3 and 4, the support fitting 12 includes a fixed portion 28 attached to the side wall member 11 of the exhaust gas passage, and an end portion of the rail member 29 that is connected to the front side of the fixed portion 28 and adjacent to the front portion. And a rail receiving portion 31 provided with a seat plate member 30 to be supported and fixed. With such a configuration, when the fixing portions 28 are attached in the circumferential direction of the side wall member 11 and the rail receiving portion 31 is further connected, the end portions of the adjacent rail members 29 on the seat plate member 30 are opposed to each other. Can be fixed while. Accordingly, the first and second rails are formed over the entire circumference of the side wall member 11 so as to sandwich the region where the build-up welded portion (that is, the build-up weld metal) of the side wall member 11 of the exhaust gas passage is sandwiched from above and below. 13, 14 can be arranged. Here, a chain 32 is attached to the entire inner periphery of the first and second rails 13 and 14.
走行台車15、16は、それぞれ第1、第2のレール13、14の上下両端部を、それぞれ摺動機構の一例であるローラーベアリング33を介して上下方向から挟持するフレーム部34と、フレーム部34内に設けられチェーン32に噛合して回転駆動するスプロケット35と、フレーム部34に設けられた軸受36により両側が回転可能に支持されスプロケット35と連結してスプロケット35に回転駆動力を伝達する回転軸37と、回転軸37に回転駆動力を与える減速機付き電動機38とを有している。
このような構成とすることにより、減速機付き電動機38を駆動させて回転軸37を回転させるとスプロケット35をチェーン32に噛合させながら回転させることができる。これにより、第1、第2のレール13、14の上下両端部に対してフレーム部34をローラーベアリング33を介して摺動させることができる。その結果、第1、第2のレール13、14に沿って走行台車15、16をそれぞれ移動させることができる。なお、符号39はローラーベアリング33をフレーム部34に取付ける固定用ノブである。
The traveling carriages 15 and 16 include a frame portion 34 that holds the upper and lower ends of the first and second rails 13 and 14 from above and below via roller bearings 33 that are examples of sliding mechanisms, and a frame portion, respectively. A sprocket 35 that is provided in 34 and meshes with the chain 32 to rotate and a bearing 36 provided in the frame portion 34 is rotatably supported on both sides, and is connected to the sprocket 35 to transmit a rotational driving force to the sprocket 35. A rotation shaft 37 and a motor 38 with a speed reducer that gives a rotation driving force to the rotation shaft 37 are provided.
By adopting such a configuration, the sprocket 35 can be rotated while being engaged with the chain 32 when the motor 38 with a speed reducer is driven to rotate the rotating shaft 37. Thereby, the frame part 34 can be slid via the roller bearing 33 with respect to the upper and lower ends of the first and second rails 13 and 14. As a result, the traveling carriages 15 and 16 can be moved along the first and second rails 13 and 14, respectively. Reference numeral 39 denotes a fixing knob for attaching the roller bearing 33 to the frame portion 34.
縦ガイド部材17は、走行台車15、16にそれぞれ取付け部材40、41を介して両側が固定される連結部42と、連結部42に取付け台43を介して両側がそれぞれ固定される縦レール44を有している。ここで、縦レール44の前側面にはラック歯45が取付けられている。昇降台車18は、縦レール44の水平方向の両端部を、それぞれ摺動機構の一例であるローラーベアリング46を介して左右方向から挟持するフレーム部47と、フレーム部47内に設けられラック歯45に噛合して回転駆動するピニオン48と、フレーム部47に設けられた図示しない軸受により回転可能に支持されピニオン48と連結してピニオン48に回転駆動力を伝達する図示しない回転軸と、回転軸に回転駆動力を与える減速機付き電動機49とを有している。なお、符号50はローラーベアリング46をフレーム部47に取付ける固定用ノブである。
このような構成とすることにより、減速機付き電動機49を駆動させて回転軸を回転させるとピニオン48をラック歯45に噛合させながら回転させることができる。これにより、縦レール44の左右両端部に対してフレーム部47をローラーベアリング46を介して摺動させることができる。その結果、縦レール44に沿って昇降台車18を移動させることができる。
The vertical guide member 17 includes a connecting portion 42 fixed on both sides of the traveling carriages 15 and 16 via attachment members 40 and 41, and a vertical rail 44 fixed on both sides of the connecting portion 42 via an attachment base 43. have. Here, rack teeth 45 are attached to the front side surface of the vertical rail 44. The lift carriage 18 includes a frame portion 47 that holds both ends of the vertical rail 44 in the horizontal direction via roller bearings 46 that are examples of sliding mechanisms, and rack teeth 45 that are provided in the frame portion 47. A pinion 48 that meshes with and rotates and is rotatably supported by a bearing (not shown) provided on the frame portion 47, and is connected to the pinion 48 and transmits a rotational driving force to the pinion 48, and a rotating shaft And a motor 49 with a speed reducer that gives a rotational driving force to the motor. Reference numeral 50 denotes a fixing knob for attaching the roller bearing 46 to the frame portion 47.
With such a configuration, when the electric motor 49 with a speed reducer is driven to rotate the rotation shaft, the pinion 48 can be rotated while meshing with the rack teeth 45. Accordingly, the frame portion 47 can be slid through the roller bearing 46 with respect to the left and right end portions of the vertical rail 44. As a result, the lifting carriage 18 can be moved along the vertical rail 44.
水平ロッド部材19は、昇降台車18のフレーム部47に固定され水平方向の両側に開口を備えた筒体51内を水平方向に貫通して設けられ、筒体51の天井面及び底面にそれぞれ配置された摺動機構の一例であるローラーベアリング52を介して上下両端部が摺動可能に支持された水平レール53と、水平レール53の裏面側に取付けられた水平フレーム54と、水平レール53の表面側に取付けられたラック歯55とを有している。そして、筒体51内にはラック歯55に噛合して回転するピニオン56が設けられ、ピニオン56は図示しない回転軸を介して減速機付き電動機57の回転軸と連結している。なお、符号58はローラーベアリング52を筒体51に取付ける固定用ノブである。
このような構成とすることにより、減速機付き電動機57を駆動させて回転軸を回転させるとピニオン56をラック歯55に噛合させながら回転させることができる。これにより、水平レール53をその上下両端部をローラーベアリング52で支えられながら水平方向に移動させることができ、水平レール53と共に水平フレーム54を移動させることができる。
The horizontal rod member 19 is provided on the ceiling surface and the bottom surface of the cylindrical body 51 and is provided in the horizontal direction through the cylindrical body 51 that is fixed to the frame portion 47 of the lifting carriage 18 and has openings on both sides in the horizontal direction. A horizontal rail 53 whose upper and lower ends are slidably supported via a roller bearing 52 which is an example of a sliding mechanism, a horizontal frame 54 attached to the back side of the horizontal rail 53, and a horizontal rail 53. And rack teeth 55 attached to the front surface side. A pinion 56 that rotates while meshing with the rack teeth 55 is provided in the cylindrical body 51, and the pinion 56 is connected to a rotation shaft of an electric motor 57 with a speed reducer via a rotation shaft (not shown). Reference numeral 58 denotes a fixing knob for attaching the roller bearing 52 to the cylindrical body 51.
With such a configuration, when the electric motor 57 with a speed reducer is driven to rotate the rotating shaft, the pinion 56 can be rotated while meshing with the rack teeth 55. Accordingly, the horizontal rail 53 can be moved in the horizontal direction while being supported by the roller bearings 52 at both upper and lower ends, and the horizontal frame 54 can be moved together with the horizontal rail 53.
図5〜図7に示すように、水平ロッド部材19の水平フレーム54の一端部には、溶接トーチ24を取付ける取付け金具20が設けられている。ここで、取付け金具20は水平フレーム54の一端部に取付けられた連結部59と、連結部59に対して水平フレーム54の軸心に直交して取付けられた固定板60と、固定板60の一側に距離を開けて平行に立設され先側が平面視して円板状となった対となる取付け板61、62を有している。 As shown in FIGS. 5 to 7, a mounting bracket 20 for attaching the welding torch 24 is provided at one end portion of the horizontal frame 54 of the horizontal rod member 19. Here, the mounting bracket 20 includes a connecting portion 59 attached to one end of the horizontal frame 54, a fixing plate 60 attached to the connecting portion 59 perpendicular to the axis of the horizontal frame 54, and a fixing plate 60. A pair of mounting plates 61 and 62 are provided which are erected in parallel with a distance on one side, and the tip side is in a disk shape in plan view.
また、傾動機構22は、一側が円板状となって取付け板61、62に外側から当接し第1のピン65を介して回動可能に取付けられるガイド板63、64を備えた第1の傾動部66を有している。なお、ガイド板63、64の他端部は、それぞれ連結板67の両側に連結しており、ガイド板64には、第1のピン65の中心位置を中心とする異なる2つの半径の円弧(中心角が90〜100度)で挟まれた弧状孔68、69が第1のピン65の中心位置に対して対称に形成され、弧状孔68、69には取付け板62に立設された第2のピン70、71がそれぞれ嵌入している。更に、傾動機構22は、連結板67の中央部に形成された図示しない挿通孔を挿通する第3のピン72を中央部に備えて連結板67の下面側に当接し回動可能なトーチ取付け板73と、トーチ取付け板73の第3のピン72の先側に形成された雌ねじ部に螺合し連結板67に対して任意の角度位置まで回動した状態のトーチ取付け板73を固定する固定用ノブ74とを備えた第2の傾動部75を有している。 Further, the tilting mechanism 22 has a first plate provided with guide plates 63 and 64 that are disk-shaped on one side and abut against the mounting plates 61 and 62 from the outside and are rotatably mounted via the first pins 65. A tilting portion 66 is provided. The other end portions of the guide plates 63 and 64 are respectively connected to both sides of the connecting plate 67, and the guide plate 64 has two arcs with different radii centered on the center position of the first pin 65 ( Arc-shaped holes 68 and 69 sandwiched at a central angle of 90 to 100 degrees are formed symmetrically with respect to the center position of the first pin 65, and the arc-shaped holes 68 and 69 are erected on the mounting plate 62. Two pins 70 and 71 are respectively inserted. Further, the tilting mechanism 22 includes a third pin 72 inserted through an insertion hole (not shown) formed in the central portion of the connecting plate 67 at the central portion, and is attached to the lower surface side of the connecting plate 67 so as to be rotatable. The plate 73 and the torch mounting plate 73 in a state of being rotated to an arbitrary angular position with respect to the connecting plate 67 by screwing into the female screw portion formed on the front side of the third pin 72 of the torch mounting plate 73 are fixed. A second tilting portion 75 having a fixing knob 74 is provided.
進退機構21は、トーチ取付け板73の下面側に取付けられ、平面視して矩形状のフレーム部76と、フレーム部76の長手方向に沿って電動機77の回転駆動力により進退する図示しないスライド台と、スライド台の下面側に取付けられた架台部78とを有している。更に、フレーム部76には、架台部78を突出させた状態でスライド台の進退範囲を覆ってフレーム部76内に埃が進入するのを防止する伸縮性のカバー部材79が設けられている。そして、架台部78の上側にはオシレート機構23が取付けられ、オシレート機構23に取付け部材80を介して溶接トーチ24が取付けられている。更に、図6に示すように、架台部78の下側には、センサー収納部81が取付けられ、センサー収納部81内には溶接トーチ24と排ガス通路の側壁部材11の表面との距離を測定する距離センサーの一例である超音波センサー82が設けられている。ここで、超音波センサー82では、非接触式で距離を測定することができるので、溶接トーチ24を制約を比較的受けずに移動させることが可能になる。なお、溶接トーチ24を比較的自由に移動させることができる場合は、例えば、検出部に差動トランスを用いた接触式の距離センサーを使用することができる。 The advance / retreat mechanism 21 is attached to the lower surface side of the torch attachment plate 73 and has a rectangular frame portion 76 in plan view, and a slide base (not shown) that advances and retracts along the longitudinal direction of the frame portion 76 by the rotational driving force of the electric motor 77. And a pedestal part 78 attached to the lower surface side of the slide table. Further, the frame portion 76 is provided with a stretchable cover member 79 that covers the advancing / retreating range of the slide base with the pedestal portion 78 protruding and prevents dust from entering the frame portion 76. The oscillating mechanism 23 is attached to the upper side of the gantry 78, and the welding torch 24 is attached to the oscillating mechanism 23 via an attachment member 80. Further, as shown in FIG. 6, a sensor storage portion 81 is attached to the lower side of the gantry portion 78, and the distance between the welding torch 24 and the surface of the side wall member 11 of the exhaust gas passage is measured in the sensor storage portion 81. An ultrasonic sensor 82 which is an example of a distance sensor is provided. Here, since the ultrasonic sensor 82 can measure the distance in a non-contact manner, the welding torch 24 can be moved without being relatively restricted. In addition, when the welding torch 24 can be moved relatively freely, for example, a contact-type distance sensor using a differential transformer for the detection unit can be used.
以上の構成により、傾動機構22の第1の傾動部66を用いて連結板67を水平ロッド部材19の軸方向に対して傾斜させることができ、第2の傾動部75を用いて連結板67に対してトーチ取付け板73を連結板67面内で傾動させることができる。その結果、水平ロッド部材19の一端部で、溶接トーチ24を任意の方向に向けることができる。更に、進退機構21により、溶接トーチ24と排ガス通路の側壁部材11との距離を任意に調整できる。これにより、排ガス通路の側壁部材11の溶接部に対して、溶接トーチ24の方向を所定の溶接方向になるように調整すると共に、溶接部と溶接トーチ24との距離を、設定した溶接距離に調整できる。
なお、第1、第2のレール13、14、走行台車15、16、縦ガイド部材17、昇降台車18、水平ロッド部材19、取付け金具20、進退機構21、傾動機構22、オシレート機構23、及び溶接トーチ24は、いずれも、主要部材にアルミ材質を使用し、例えば重量が20kg以下の構成部品に分解可能な構成となっている。これによって、現地において構造物の溶接装置10を容易に組み立てることができ、作業終了後には素早く分解することが可能になる。
With the above configuration, the connecting plate 67 can be tilted with respect to the axial direction of the horizontal rod member 19 using the first tilting portion 66 of the tilting mechanism 22, and the connecting plate 67 can be used using the second tilting portion 75. In contrast, the torch mounting plate 73 can be tilted in the plane of the connecting plate 67. As a result, the welding torch 24 can be directed in an arbitrary direction at one end of the horizontal rod member 19. Furthermore, the distance between the welding torch 24 and the side wall member 11 of the exhaust gas passage can be arbitrarily adjusted by the advance / retreat mechanism 21. As a result, the direction of the welding torch 24 is adjusted to a predetermined welding direction with respect to the welded portion of the side wall member 11 of the exhaust gas passage, and the distance between the welded portion and the welding torch 24 is set to the set welding distance. Can be adjusted.
The first and second rails 13 and 14, traveling carriages 15 and 16, vertical guide member 17, lifting carriage 18, horizontal rod member 19, mounting bracket 20, advance / retreat mechanism 21, tilting mechanism 22, oscillating mechanism 23, and The welding torch 24 uses an aluminum material as a main member and can be disassembled into components having a weight of 20 kg or less, for example. Thereby, the welding apparatus 10 for a structure can be easily assembled on site, and can be quickly disassembled after the work is completed.
図1に示すように、制御装置25には、第1、第2のレール13、14に沿って移動する対となる走行台車15、16の走行を制御する走行台車制御部、縦ガイド部材17に沿って上下動する昇降台車18の移動を制御する昇降台車制御部、昇降台車18に対して水平方向に水平ロッド部材19を進退させる水平ロッド制御部、超音波センサー82からの信号に基づいて溶接トーチ24を排ガス通路の側壁部材11の溶接部に対して進退させる進退機構21の動作を制御するトーチ進退制御部が設けられている。これによって、排ガス通路の側壁部材11の溶接部及び溶接部に対する溶接距離を決めて、溶接部に対して溶接トーチ24の方向を傾動機構22により予め設定しておくと、溶接トーチ24を自動で溶接部位に向けて移動させ、溶接部から設定された溶接距離を有して溶接トーチ24を配置することができる。これによって、溶接部の凹凸に応じて溶接トーチ24を進退させること(倣い制御)が可能になる。 As shown in FIG. 1, the control device 25 includes a traveling carriage control unit that controls traveling of the traveling carriages 15 and 16 that move along the first and second rails 13 and 14, and a vertical guide member 17. Based on the signal from the ultrasonic sensor 82, the elevator car controller for controlling the movement of the elevator car 18 that moves up and down along the horizontal axis, the horizontal rod controller for moving the horizontal rod member 19 in the horizontal direction with respect to the elevator car 18, and the ultrasonic sensor 82. A torch advance / retreat control unit for controlling the operation of the advance / retreat mechanism 21 for advancing / retreating the welding torch 24 with respect to the welded portion of the side wall member 11 of the exhaust gas passage is provided. Thus, when the welding distance of the side wall member 11 of the exhaust gas passage and the welding distance to the welding portion are determined and the direction of the welding torch 24 is set in advance by the tilt mechanism 22 with respect to the welding portion, the welding torch 24 is automatically set. The welding torch 24 can be arranged with a welding distance set from the welded portion and moved toward the welding site. As a result, the welding torch 24 can be moved forward and backward (following control) according to the unevenness of the welded portion.
更に、制御装置25には、オシレート機構23の動作を制御するオシレート制御手段が設けられている。一方、パルスMIG溶接機27は、溶接トーチ24と、溶接トーチ24に不活性ガス(例えば、アルゴンガス)を供給しながらパルス電力を供給するガス電力供給部86と、ガス電力供給部86からのパルス電力供給に同期して溶接トーチ24に溶接ワイヤ26を供給するワイヤ供給部87とを有している。このような構成とすることにより、排ガス通路の側壁部材11の溶接部に対して溶接トーチ24を向けて、オシレート制御手段により溶接トーチ24を単位時間当たり設定した回数で一定の振幅となるように水平面内で振動させながらパルスMIG溶接機27を駆動させると、溶接部に一定幅の溶接肉盛層を形成することができる。 Further, the control device 25 is provided with an oscillation control means for controlling the operation of the oscillation mechanism 23. On the other hand, the pulse MIG welder 27 includes a welding torch 24, a gas power supply unit 86 that supplies pulse power while supplying an inert gas (for example, argon gas) to the welding torch 24, and a gas power supply unit 86. And a wire supply unit 87 for supplying the welding wire 26 to the welding torch 24 in synchronization with the pulse power supply. With such a configuration, the welding torch 24 is directed toward the welded portion of the side wall member 11 of the exhaust gas passage so that the welding torch 24 has a constant amplitude at the number of times set per unit time by the oscillating control means. When the pulse MIG welder 27 is driven while vibrating in a horizontal plane, a weld overlay layer having a certain width can be formed in the welded portion.
続いて、本発明の一実施の形態に係る肉盛溶接方法について説明する。
先ず、転炉排ガス処理設備が設置されている現地で、垂直に設けられた断面が円形の排ガス通路の側壁部材11で肉盛溶接部を形成する領域を上下から挟むように第1、第2のレール13、14をそれぞれ配置する。そして、第1、第2のレール13、14にそれぞれ走行台車15、16を取付け、走行台車15、16を縦ガイド部材17で連結する。また、縦ガイド部材17に昇降台車18を取付け、昇降台車18に水平ロッド部材19を取付ける。更に、水平ロッド部材19の一端部に取付け金具20を取付け、取付け金具20に進退機構21及び傾動機構22を介してオシレート機構23付きの溶接トーチ24を固定する。続いて、走行台車15、16、昇降台車18、及び水平ロッド部材19にそれぞれ設けられた減速機付き電動機38、49、57、並びに進退機構21に設けられた電動機77を、制御装置25に設けられた走行台車制御部、昇降台車制御部、水平ロッド制御部、トーチ進退制御部と接続し、オシレート機構23はオシレート制御手段と接続する。そして、溶接トーチ24をガス電力供給部86と接続すると共に、溶接トーチ24にワイヤ供給部87からニッケル基合金又はステンレス合金の溶接ワイヤ26を供給する。これによって、側壁部材11への溶接装置10の配置が完了する。
Then, the overlay welding method which concerns on one embodiment of this invention is demonstrated.
First, at the site where the converter exhaust gas treatment facility is installed, the first and second regions are formed so as to sandwich the region where the build-up weld is formed by the side wall member 11 of the exhaust gas passage having a circular cross section provided vertically. The rails 13 and 14 are respectively arranged. The traveling carriages 15 and 16 are attached to the first and second rails 13 and 14, respectively, and the traveling carriages 15 and 16 are connected by the vertical guide member 17. In addition, an elevating carriage 18 is attached to the vertical guide member 17, and a horizontal rod member 19 is attached to the elevating carriage 18. Further, a mounting bracket 20 is attached to one end of the horizontal rod member 19, and a welding torch 24 with an oscillating mechanism 23 is fixed to the mounting bracket 20 via an advance / retreat mechanism 21 and a tilting mechanism 22. Subsequently, motors 38, 49, 57 with reduction gears provided on the traveling carriages 15 and 16, the lifting carriage 18, and the horizontal rod member 19, respectively, and an electric motor 77 provided on the advance / retreat mechanism 21 are provided on the control device 25. The oscillating mechanism 23 is connected to the oscillating control means. The oscillating mechanism 23 is connected to the oscillating control means. The welding torch 24 is connected to the gas power supply unit 86, and the welding wire 26 made of a nickel-based alloy or a stainless alloy is supplied to the welding torch 24 from the wire supply unit 87. Thereby, arrangement | positioning of the welding apparatus 10 to the side wall member 11 is completed.
次いで、排ガス通路の側壁部材11における肉盛溶接を開始する位置(側壁部材11の任意の周方向角度位置で肉盛溶接領域の上端)を決め、制御装置25の走行台車制御部により対となる走行台車15、16を第1、第2のレール13、14に沿って移動させ、次いで昇降台車制御部により昇降台車18を縦ガイド部材17に沿って上昇させる。そして、水平ロッド制御部により昇降台車18に対して水平方向に水平ロッド部材19を移動させ、更に、超音波センサー82による溶接トーチ24と側壁部材11との距離を測定しながらトーチ進退制御部を介して進退機構21を電動機77を駆動させて操作し水平ロッド部材19の一端部の取付け金具20に取付けられた溶接トーチ24と側壁部材11の溶接部との距離を予め設定された溶接距離に調整すると共に、傾動機構22を手動で操作して溶接部に対する溶接トーチ24の方向を調整する。以上の操作により、肉盛溶接を開始する位置の溶接部に対して立て向き下進溶接を行なうための溶接トーチ24の位置決め作業が終了する。 Subsequently, the position (the upper end of the build-up welding region at an arbitrary angular position in the circumferential direction of the side wall member 11) at which the build-up welding is started in the side wall member 11 of the exhaust gas passage is determined and paired by the traveling carriage control unit of the control device 25. The traveling carriages 15 and 16 are moved along the first and second rails 13 and 14, and then the elevator carriage 18 is raised along the vertical guide member 17 by the elevator carriage controller. Then, the horizontal rod controller 19 moves the horizontal rod member 19 in the horizontal direction with respect to the lifting carriage 18, and further, the torch advance / retreat controller is operated while measuring the distance between the welding torch 24 and the side wall member 11 by the ultrasonic sensor 82. The distance between the welding torch 24 attached to the fitting 20 at one end of the horizontal rod member 19 and the welded portion of the side wall member 11 is set to a preset welding distance by operating the advance / retreat mechanism 21 by driving the electric motor 77. At the same time, the tilting mechanism 22 is manually operated to adjust the direction of the welding torch 24 relative to the welded portion. With the above operation, the positioning work of the welding torch 24 for performing the vertical downward welding on the welded portion at the position where the overlay welding is started is completed.
続いて、ウィービング振幅が7mm以上で20mm以下(好ましくは、下限を8mm、上限を、14mm、更には13mm)、ウィービング振動数が7回/秒以下(好ましくは、5回/秒以下)となるようにオシレート機構23を駆動させると共にパルスMIG溶接機27を稼動させながら昇降台車制御部により昇降台車18を縦ガイド部材17に沿って2mm/秒以上で17mm/秒以下(好ましくは、下限を3mm/秒)の下進溶接速度Sで下降させる。これにより、溶接トーチ24に不活性ガスを供給しパルス電力供給に同期して溶接トーチ24に溶接ワイヤ26を供給すると共に、溶接トーチ24を水平面内で振動させながら徐々に下降させることができ、パルスMIG溶接により肉盛溶接を開始する位置から下方に向けて、7〜20mmの一定幅の肉盛溶接部が徐々に形成されていく。 Subsequently, the weaving amplitude is 7 mm or more and 20 mm or less (preferably, the lower limit is 8 mm, the upper limit is 14 mm, or 13 mm), and the weaving frequency is 7 times / second or less (preferably 5 times / second or less). In this way, while driving the oscillating mechanism 23 and operating the pulse MIG welder 27, the elevator carriage 18 is moved along the vertical guide member 17 by the elevator carriage control unit so that it is 2 mm / second or more and 17 mm / second or less (preferably, the lower limit is 3 mm). / Sec) at a downward welding speed S. Thereby, while supplying an inert gas to the welding torch 24 and supplying the welding wire 26 to the welding torch 24 in synchronization with the pulse power supply, the welding torch 24 can be gradually lowered while vibrating in a horizontal plane, A build-up weld with a constant width of 7 to 20 mm is gradually formed from the position where the build-up welding is started by pulse MIG welding downward.
ここで、溶接トーチ24を下方に移動させる、即ち下進溶接することにより、溶接ワイヤ26の溶解により形成された肉盛溶接部の一部は溶接部から垂れて溶接部の下側の側壁部材11上に溶着金属層を形成することになり、溶接ワイヤ26とこの溶着金属層の間にアークが発生することになって、側壁部材11の表層部がアークにより溶融する深さが浅くなる。更に、パルス電力供給では、溶接電流Iを100〜300アンペア、溶接電圧Vを10〜30ボルトの範囲でそれぞれ調整するので、下進溶接の溶接部への入熱量Qを400Joule/mm以上で1100Joule/mm以下(好ましくは、上限を700Joule/mm)とすることができ、これによって、側壁部材11を構成する基材の溶け込みによる希釈率が10質量%以下となる肉盛溶接部を一筋形成することができる。ここで、入熱量Qは、IV/Sを用いて算定し、ウィービングは考慮していない。 Here, by moving the welding torch 24 downward, that is, downward welding, a part of the build-up weld formed by melting the welding wire 26 hangs down from the weld and the side wall member on the lower side of the weld 11, a weld metal layer is formed on the surface 11, an arc is generated between the welding wire 26 and the weld metal layer, and the depth at which the surface layer portion of the side wall member 11 is melted by the arc becomes shallow. Further, in the pulse power supply, since the welding current I is adjusted in the range of 100 to 300 amperes and the welding voltage V is in the range of 10 to 30 volts, the heat input Q to the welded part of the downward welding is 1100 joules at 400 joules / mm or more. / Mm or less (preferably, the upper limit is 700 Joules / mm), thereby forming a single line of weld overlay where the dilution rate due to melting of the base material constituting the side wall member 11 is 10% by mass or less. be able to. Here, the heat input Q is calculated using IV / S, and weaving is not considered.
なお、別の手法により、肉盛溶接部の重ね代を、以下検討する。
図8(A)、(B)に示すように、肉盛溶接部は、間隔を有して配置された水管パネルの構造物に形成している。なお、図8(A)、(B)において、符号1a〜7aは肉盛溶接部の溶接ビードを示しており、その番号は溶接部に溶接ビードが形成される順番を示している。これにより肉盛溶接部を多層盛りとすることができる。即ち、水管パネルの各水管150を連接する各平板151の上に肉盛溶接して1番目の溶接ビードを形成し(図8(A)、(B)に示す1a、2a)、この溶接ビードと水管150の上に被さるようにして2番目の溶接ビードを形成する(図8(A)、(B)に示す3a、4a)。次に、2番目の溶接ビードと水管150の上に被さるように3番目の溶接ビードを形成し(図8(A)、(B)に示す5a、6a)、最後に3番目の溶接ビードと水管150の上に被さるように4番目の溶接ビードを形成する(図8(A)、(B)に示す7a)。このように、各水管150と各平板151の同じ領域を順次溶接することによって、熱ひずみを最小にできる。ここで、各溶接ビードに以下に説明する多層盛りを適用するのが好ましく、これによって表面がインコネルの肉盛溶接部が形成される。
ここで、水管パネルにインコネル625を、直流又は交流のパルス溶接のMIG溶接で下進溶接した場合、ウィービング幅とビード幅の関係について説明する。
ウィービング幅が5〜15mmの場合、ビード幅は8〜20mmになるため、溶接トーチの速度を適切に調整して形成した溶接ビードの重ね代の限定範囲の下限値は、(8mm−5mm)/8mm=0.24、又は(20mm−15mm)/20mm=0.25にできる。
しかし、ウィービング幅とビード幅の関係は、肉盛溶接する水管内部の水冷状態により変化するため、水冷が十分行われている場合には、溶接部のウィービングなしの溶接トーチで溶接する場合の溶接ビードの幅が小さくなり、ウィービング幅とビード幅の差異が小さくなるので、この下限値をビード幅の0.15倍とすることができる。
In addition, the overlap margin of the overlay welding part is examined below by another method.
As shown to FIG. 8 (A) and (B), the build-up welding part is formed in the structure of the water pipe panel arrange | positioned with a space | interval. 8A and 8B, reference numerals 1a to 7a denote weld beads of the build-up welds, and the numbers indicate the order in which the weld beads are formed in the welds. Thereby, a build-up welding part can be made into a multilayer pile. That is, the first weld bead is formed by overlay welding on each flat plate 151 connecting the water pipes 150 of the water pipe panel (1a and 2a shown in FIGS. 8A and 8B). A second weld bead is formed so as to cover the water pipe 150 (3a and 4a shown in FIGS. 8A and 8B). Next, a third weld bead is formed so as to cover the second weld bead and the water pipe 150 (5a and 6a shown in FIGS. 8A and 8B), and finally the third weld bead A fourth weld bead is formed so as to cover the water pipe 150 (7a shown in FIGS. 8A and 8B). In this way, the thermal strain can be minimized by sequentially welding the same region of each water pipe 150 and each flat plate 151. Here, it is preferable to apply a multi-layer pile described below to each weld bead, thereby forming a build-up weld with a surface of Inconel.
Here, the relationship between the weaving width and the bead width when Inconel 625 is welded downward to the water tube panel by DC or AC pulse welding MIG welding will be described.
When the weaving width is 5 to 15 mm, the bead width is 8 to 20 mm. Therefore, the lower limit value of the limit range of the overlap margin of the weld bead formed by appropriately adjusting the speed of the welding torch is (8 mm-5 mm) / 8mm = 0.24, or (20mm-15mm) /20mm=0.25.
However, since the relationship between the weaving width and the bead width changes depending on the water cooling state inside the water pipe to be welded, welding is performed when welding is performed with a welding torch without a weaving of the welded part when water cooling is sufficiently performed. Since the bead width is reduced and the difference between the weaving width and the bead width is reduced, the lower limit value can be 0.15 times the bead width.
一方、上限値は、後述するように、ビードを肉盛溶接する位置によってビードの重なりが片方だけの場合と両側に生ずる場合があるので、溶接トーチの速度を適切に調整して形成した溶接ビードの重ね代の下限値の2倍以上となるため、0.25×2=0.50となる。
通常、構造物の肉盛溶接を施工する場合、構造物の溶接熱ひずみによる曲り等の変形を防止するため、先に溶接したビードとは対称となる反対側の位置に肉盛溶接の施工をする。
これらを交互に繰返し、最後に構造物の中央部の位置における位置の肉盛溶接を施工して、肉盛溶接施工は完成し、最終の溶接ビードには、前述したように重なりが両側に発生する。従って、上限値は、ビード幅の0.55倍とすることができる。
On the other hand, as will be described later, since the bead overlap may occur only on one side and on both sides depending on the position where the bead is welded, the weld bead formed by appropriately adjusting the speed of the welding torch, as will be described later. Therefore, it becomes 0.25 × 2 = 0.50.
Normally, when overlay welding is performed on a structure, in order to prevent deformation such as bending due to welding thermal strain of the structure, overlay welding is performed at a position opposite to the bead that has been welded previously. To do.
These steps are repeated alternately. Finally, overlay welding is performed at the position of the center of the structure, and the overlay welding is completed. As described above, the overlap occurs on both sides of the final weld bead. To do. Therefore, the upper limit value can be 0.55 times the bead width.
また、図9(A)に示すように、肉盛溶接部100は、予め形成された溶接ビード101の上に他の溶接ビード102の一部、この溶接ビード102の上に他の溶接ビード103の一部を重ねる溶接作業を複数回行って形成することが好ましい。また、図9(B)に示すように、肉盛溶接部110は、予め形成された溶接ビード111の上に他の溶接ビード112の一部、この溶接ビード112の上に他の溶接ビード113の一部を重ねる溶接作業を複数回行って形成することが好ましい。なお、図9(A)、(B)においては、ウィービングを図示していない。
このとき、図9(A)に示すように、溶接ビード101に対する他の溶接ビード102、及び溶接ビード102に対する溶接ビード103の溶接狙い位置、即ち、溶接トーチの位置決め位置P1を、単一ビードの端からこの単一ビードの幅dの0.15倍以上とする。また、溶接ビード111に対する他の溶接ビード112、及び溶接ビード112に対する溶接ビード113の溶接狙い位置、即ち、溶接トーチの位置決め位置を、単一ビードの端からこの単一ビードの幅の0.45倍以下、好ましくは0.33倍以下、更に好ましくは、図9(B)に示すように、溶接トーチの位置決め位置P2を、単一ビードの端からこの単一ビードの幅dの0.25倍以下とする。
これにより、溶接ビードを3層以上積層する。なお、単一ビード幅とは、前記した溶接条件と同一条件で、ウィービングを行うことなく直線的に溶接を行った場合に形成される溶接ビードの幅dを意味する。
Further, as shown in FIG. 9A, the build-up welded portion 100 includes a part of another weld bead 102 on the weld bead 101 formed in advance, and another weld bead 103 on the weld bead 102. It is preferable to form by performing a welding operation of overlapping a part of a plurality of times. Further, as shown in FIG. 9B, the build-up weld 110 includes a part of another weld bead 112 on the weld bead 111 formed in advance and another weld bead 113 on the weld bead 112. It is preferable to form by performing a welding operation of overlapping a part of a plurality of times. Note that weaving is not shown in FIGS. 9A and 9B.
At this time, as shown in FIG. 9A, the welding target position of the welding bead 103 relative to the welding bead 102 and the welding bead 103 relative to the welding bead 102, that is, the positioning position P1 of the welding torch is set to a single bead. The width of the single bead is 0.15 times or more from the end. Further, the welding target position of the other welding bead 112 with respect to the welding bead 111 and the welding bead 113 with respect to the welding bead 112, that is, the positioning position of the welding torch, is set to 0.45 of the width of the single bead from the end of the single bead. As shown in FIG. 9B, the positioning position P2 of the welding torch is moved from the end of the single bead to 0.25 of the width d of this single bead. It shall be less than double.
Thereby, three or more layers of weld beads are laminated. The single bead width means a width d of a weld bead formed when welding is performed linearly without performing weaving under the same conditions as those described above.
ここで、他の溶接トーチの位置決めした位置が、単一ビード幅の0.15倍未満の場合、形成される溶接ビードの重なる領域が少なくなり、下層に形成された溶接ビードが表面に露出し、希釈された部分が表面に現れ易くなる。なお、溶接トーチの位置決め位置を、単一ビード幅の0.15倍とした場合、図9(A)に示すように、溶接ビードを3層以上積層できない領域が発生するように思われる。しかし、前記したように、本実施の形態では下進溶接を行っているので、溶接ワイヤの溶解により形成された肉盛溶接部の一部が溶接部から垂れ、溶接部の下側の側壁部材上に溶着金属層を形成するため問題ない。
一方、単一ビード幅の0.45倍を超える場合、溶接ビードが過剰に積層されることになり、下進速度が遅くなり過ぎて作業効率の低下を招く。
Here, when the position where the other welding torch is positioned is less than 0.15 times the single bead width, the overlapping region of the formed weld beads is reduced, and the weld beads formed in the lower layer are exposed on the surface. The diluted portion tends to appear on the surface. When the positioning position of the welding torch is set to 0.15 times the single bead width, it seems that an area where three or more layers of the welding beads cannot be stacked is generated as shown in FIG. However, as described above, since the downward welding is performed in the present embodiment, a part of the build-up weld formed by melting the welding wire hangs down from the weld and the side wall member on the lower side of the weld There is no problem because a deposited metal layer is formed thereon.
On the other hand, if the width exceeds 0.45 times the single bead width, the weld beads are excessively stacked, and the lowering speed becomes too slow, resulting in a decrease in work efficiency.
以上のことから、上から重ねられる他の溶接ビードの溶接狙い位置を、単一ビードの端から単一ビードの幅の0.15倍以上0.45倍以下の範囲内としたが、下限を0.17倍、上限を0.33倍、更には0.25倍とすることが好ましい。
このように、肉盛溶接部を形成するに際しては、溶接ビードを積層するごとに、基材の溶け込みによる希釈率が低減され、特に肉盛溶接部の最表層部となる溶接ビードの希釈率を10質量%以下、更には5質量%以下まで低減できる。
なお、複数の溶接ビードを積層するに際しては、下層となる溶接ビードが凝固した後に、その上から溶接ビードを形成することが好ましい。これにより、下層となる溶接ビードの希釈率が高くなったとしても、その上から積層される溶接ビードへの溶け込みが少なく、希釈率の低減が図れる。この方法としては、例えば、ウィービングの振動数を遅くする方法がある。
From the above, the welding target position of the other weld beads stacked from above is set within the range of 0.15 times or more and 0.45 times or less of the width of the single bead from the end of the single bead. It is preferable that the upper limit is 0.17 times, the upper limit is 0.33 times, and further 0.25 times.
Thus, when forming the build-up weld, each time the weld beads are stacked, the dilution rate due to the penetration of the base material is reduced, and in particular, the dilution rate of the weld bead that becomes the outermost layer portion of the build-up weld is reduced. It can be reduced to 10% by mass or less, and further to 5% by mass or less.
In addition, when laminating | stacking a some weld bead, after the weld bead used as a lower layer solidifies, it is preferable to form a weld bead from the top. Thereby, even if the dilution rate of the weld bead as the lower layer becomes high, there is little penetration into the weld bead laminated thereon, and the dilution rate can be reduced. As this method, for example, there is a method of slowing the frequency of weaving.
以上に示した方法を適用し、溶接トーチ24を下降させて、排ガス通路の側壁部材11における肉盛溶接の終了の位置(内肉盛溶接を開始した位置と同一の周方向角度位置で肉盛溶接領域の下端)まで肉盛溶接部が形成されると、昇降台車18を停止させると共に、オシレート機構23及びパルスMIG溶接機27を停止させる。次いで、排ガス通路の側壁部材11における肉盛溶接部を形成した周方向角度位置から離れた周方向角度位置(例えば、周方向角度差が90〜180度となる位置)で肉盛溶接領域の上端となる位置に向けて、走行台車15、16、昇降台車18、及び水平ロッド部材19を操作することで溶接トーチ24を移動させ、更に、進退機構21及び傾動機構22を操作して、溶接トーチ24と側壁部材11の溶接部との溶接距離及び溶接部に対する溶接トーチ24の方向を調整する。そして、オシレート機構23を駆動させると共にパルスMIG溶接機27を稼動させながら昇降台車制御部により昇降台車18を縦ガイド部材17に沿って下降させ、肉盛溶接領域の下端となる位置まで肉盛溶接部を形成すると、昇降台車18を停止させると共に、オシレート機構23及びパルスMIG溶接機27を停止させる。これにより、側壁部材11に二筋目の肉盛溶接部が形成される。二筋目の肉盛溶接部を一筋目の肉盛溶接部を形成した場所から離れた位置に形成することにより、排ガス通路の側壁部材11に対する肉盛溶接に伴う入熱を分散させることができ、排ガス通路の熱変形を防止することができる。 Applying the above-described method, the welding torch 24 is lowered, and the position of the end of the overlay welding on the side wall member 11 of the exhaust gas passage (the same circumferential angle position as the position where the inner overlay welding is started) When the build-up weld is formed up to the lower end of the welding region, the lifting carriage 18 is stopped, and the oscillating mechanism 23 and the pulse MIG welder 27 are stopped. Next, the upper end of the build-up welding region at a circumferential angle position (for example, a position where the circumferential angle difference is 90 to 180 degrees) away from the circumferential angle position where the build-up weld portion is formed in the side wall member 11 of the exhaust gas passage. The welding torch 24 is moved by operating the traveling carriages 15 and 16, the lifting carriage 18, and the horizontal rod member 19 toward the position, and the welding torch 24 is further operated by operating the advance / retreat mechanism 21 and the tilting mechanism 22. The welding distance between 24 and the welded portion of the side wall member 11 and the direction of the welding torch 24 with respect to the welded portion are adjusted. Then, while driving the oscillating mechanism 23 and operating the pulse MIG welding machine 27, the elevator car 18 is lowered along the vertical guide member 17 by the elevator car controller, and build-up welding is performed to a position that becomes the lower end of the build-up welding region. When the part is formed, the lifting carriage 18 is stopped, and the oscillating mechanism 23 and the pulse MIG welding machine 27 are stopped. As a result, a second overlay weld is formed on the side wall member 11. By forming the second weld overlay at a position away from the location where the first weld overlay is formed, the heat input accompanying the overlay welding to the side wall member 11 of the exhaust gas passage can be dispersed, Thermal deformation of the exhaust gas passage can be prevented.
側壁部材11への二筋目の肉盛溶接部の形成が終了すると、溶接トーチ24を三筋目の肉盛溶接部を開始する位置まで移動させ、溶接トーチ24と側壁部材11の溶接部との溶接距離及び溶接部に対する溶接トーチ24の方向を調整して、肉盛溶接を開始する。以上の肉盛溶接作業を繰り返すことにより、排ガス通路の側壁部材11全周に肉盛溶接部を形成することができる。
ここで、走行台車15、16にそれぞれ距離計を設けると共に、走行台車制御部に、走行台車15、16の移動機能、走行台車15、16の停止機能、走行台車15、16の移動速度調整機能、走行台車15、16の移動距離計測機能、走行台車15、16の移動(停止)回数の計数機能、及び各機能を組み合わせて走行台車15、16に複合動作を行なわせるプログラム機能を設けることにより、予め、溶接開始位置、即ち走行台車15、16の初期位置、走行台車15、16の移動速度、走行台車15、16の移動距離、走行台車15、16の移動(停止)回数のデータを走行台車制御部に入力することで、一つの肉盛溶接作業が終了すると、自動で次の肉盛溶接位置に向けて溶接トーチ24を移動させることができる。
When the formation of the second overlay weld on the side wall member 11 is completed, the welding torch 24 is moved to a position where the third overlay weld is started, and welding between the welding torch 24 and the weld on the sidewall member 11 is performed. Overlay welding is started by adjusting the distance and the direction of the welding torch 24 relative to the weld. By repeating the build-up welding operation described above, a build-up weld can be formed on the entire circumference of the side wall member 11 of the exhaust gas passage.
Here, the travel carts 15 and 16 are provided with distance meters, respectively, and the travel cart control unit has a travel function for the travel carts 15 and 16, a stop function for the travel carts 15 and 16, and a travel speed adjustment function for the travel carts 15 and 16. By providing a travel distance measuring function for the traveling carriages 15 and 16, a function for counting the number of times of movement (stopping) of the traveling carriages 15 and 16, and a program function for causing the traveling carriages 15 and 16 to perform a combined operation by combining these functions. In advance, the welding start position, that is, the initial position of the traveling carriages 15 and 16, the moving speed of the traveling carriages 15 and 16, the movement distance of the traveling carriages 15 and 16, and the number of movements (stops) of the traveling carriages 15 and 16 are traveled. By inputting to the cart control unit, when one build-up welding operation is completed, the welding torch 24 can be automatically moved toward the next build-up welding position.
また、昇降台車18に距離計を設けると共に、昇降台車制御部に、昇降台車18の移動機能、停止機能、移動速度調整機能、移動距離計測機能、及び各機能を組み合わせて昇降台車18に複合動作を行なわせるプログラム機能を設けることにより、予め、溶接開始位置、即ち昇降台車18の初期位置、昇降台車18の移動速度、移動距離のデータを昇降台車制御部に入力することで、一つの肉盛溶接作業を自動で行なうことができる。
更に、制御装置25に、走行台車15、16及び昇降台車18を連携させて移動させた際に走行台車15、16及び昇降台車18の位置をそれぞれ記憶する位置記憶機能、位置記憶機能に記憶された走行台車15、16及び昇降台車18の各位置データに基づいて走行台車制御部及び昇降台車制御部を介して走行台車15、16及び昇降台車18を連携動作させる連携動作機能を備えた連携動作制御部を設けることにより、予め、肉盛溶接を行なう経路に沿って溶接トーチ24を移動させて溶接経路を教えておくと、教えた溶接経路に沿って自動で溶接トーチ24を移動させることができる。これによって、曲線状の肉盛溶接が可能になる。
以上の実際の形態においては、肉盛溶接を開始する位置の溶接部に対して立て向き下進溶接を行なう場合について説明したが、水平溶接を行うこともできる。この場合、下進溶接速度は、水平溶接速度となる。
In addition, the elevator car 18 is provided with a distance meter, and the elevator car controller is combined with the moving function, stop function, moving speed adjustment function, moving distance measuring function, and each function of the elevator car 18 to perform combined operation on the elevator car 18. By providing a program function for performing the above, a welding start position, that is, an initial position of the lifting carriage 18, a moving speed of the lifting carriage 18, and a moving distance data are input to the lifting carriage control unit in advance. Welding work can be performed automatically.
Further, when the traveling carriages 15 and 16 and the lifting carriage 18 are moved together in the control device 25, they are stored in a position storage function and a position storage function for storing the positions of the traveling carriages 15 and 16 and the lifting carriage 18 respectively. Based on the respective position data of the traveling carriages 15 and 16 and the lifting carriage 18, a cooperative operation having a cooperative operation function for cooperatively operating the traveling carriages 15 and 16 and the lifting carriage 18 via the traveling carriage control section and the lifting carriage control section. By providing the control unit, if the welding torch 24 is moved in advance along the path for overlay welding and the welding path is taught, the welding torch 24 can be automatically moved along the taught welding path. it can. Thereby, curvilinear build-up welding becomes possible.
In the above-mentioned actual form, although the case where the standing downward welding was performed with respect to the welding part of the position which starts overlay welding, horizontal welding can also be performed. In this case, the downward welding speed is the horizontal welding speed.
続いて、本発明の一実施の形態に係る肉盛溶接方法で形成した肉盛溶接部について説明する。
ここで、ニッケル基合金の溶接ワイヤ26は、(1)ニッケルを36.5質量%以上、クロムを14.0〜23.5質量%含有する合金のソリッドワイヤ、(2)ニッケルを36.5質量%以上、モリブデンを5.5〜30.0質量%含有する合金のソリッドワイヤ、(3)ニッケルを36.5質量%以上、クロムを14.0〜23.5質量%、及びモリブデンを5.5〜30.0質量%含有する合金のソリッドワイヤをいい、具体的には表1に示すソリッドワイヤがある。
また、ステンレス合金の溶接ワイヤ26は、(1)ニッケルを9.0〜22.5質量%、クロムを11.5〜28.0質量%含有する合金のソリッドワイヤ、(2)ニッケルを9.0〜22.5質量%、モリブデンを2.0〜3.0質量%含有する合金のソリッドワイヤ、(3)ニッケルを9.0〜22.5質量%、クロムを11.5〜28.0質量%、及びモリブデンを2.0〜3.0質量%含有する合金のソリッドワイヤ、(4)ニッケルを16.0質量%以下、クロムを11.0質量%以上含有する合金のフラックス入りワイヤをいい、具体的には表2に示すものがある。
Then, the build-up weld part formed with the build-up welding method which concerns on one embodiment of this invention is demonstrated.
Here, the welding wire 26 of the nickel base alloy is (1) a solid wire of an alloy containing 36.5% by mass or more of nickel and 14.0 to 23.5% by mass of chromium, and (2) 36.5 of nickel. Solid wire of an alloy containing 5.5% to 30.0% by mass of molybdenum by mass% or more, (3) 36.5% by mass or more of nickel, 14.0 to 23.5% by mass of chromium, and 5% of molybdenum This refers to a solid wire of an alloy containing 5 to 30.0% by mass. Specifically, there are solid wires shown in Table 1.
Further, the welding wire 26 made of stainless steel includes (1) an alloy solid wire containing 9.0 to 22.5% by mass of nickel and 11.5 to 28.0% by mass of chromium, and (2) 9. 0 to 22.5 mass%, solid wire of alloy containing 2.0 to 3.0 mass% of molybdenum, (3) 9.0 to 22.5 mass% of nickel, and 11.5 to 28.0 of chromium Solid wire of alloy containing 2.0% by mass to 2.0% by mass of molybdenum and (4) flux-cored wire of alloy containing 16.0% by mass or less of nickel and 11.0% by mass or more of chromium Specifically, there are those shown in Table 2.
そして、下進溶接の入熱量を400Joule/mm以上で1100Joule/mm以下に制限するので、排ガス通路の側壁部材11に形成した肉盛溶接部では、側壁部材11からの溶け込み量が少なくなって希釈率が10質量%以下になっている。このため、肉盛溶接部ではニッケル基合金又はステンレス合金が本来備えている特性が維持され、肉盛溶接部の耐摩耗性、耐腐食性、及び耐熱衝撃性を図ることが可能になる。その結果、肉盛溶接部の厚さを1.5mm以上にすることで、長期間に渡り側壁部材11の保護を行なうことができる And since the heat input of the downward welding is limited to 400 Joules / mm or more and 1100 Joules / mm or less, the build-up weld formed on the side wall member 11 of the exhaust gas passage reduces the amount of penetration from the side wall member 11 and dilutes. The rate is 10% by mass or less. For this reason, the characteristic which nickel base alloy or stainless steel alloy originally has is maintained in the build-up weld, and it becomes possible to aim at the wear resistance, corrosion resistance, and thermal shock resistance of the build-up weld. As a result, the side wall member 11 can be protected over a long period of time by setting the thickness of the overlay welded portion to 1.5 mm or more.
(実施例1)
垂直に保持した厚さ5mmのSS400を基材に使用し、パルスMIG溶接機を用いて、表3に示すA〜Fと表4に示すK〜Vの溶接条件でインコネル625(YNiCrMo−3)のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。また、比較例として、垂直に保持した厚さ5mmのSS400を基材に使用し、パルスMIG溶接機を用いて表3に示すG〜Jの溶接条件でインコネル625のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。なお、表3は立て向き下進溶接での溶接条件であり、表4は水平溶接での溶接条件である。
Example 1
Inconel 625 (YNiCrMo-3) was used under the welding conditions of A to F shown in Table 3 and K to V shown in Table 4 using SS400 having a thickness of 5 mm held vertically as a base material and using a pulse MIG welding machine. The overlay welding part was formed by using the solid wire as a welding wire. Further, as a comparative example, SS400 having a thickness of 5 mm held vertically is used as a base material, and a solid wire of Inconel 625 is used as a welding wire under the welding conditions G to J shown in Table 3 using a pulse MIG welding machine. A prime weld was formed. Table 3 shows the welding conditions in the downward vertical welding, and Table 4 shows the welding conditions in the horizontal welding.
表4から明らかなように、実施例では、溶け込み深さの平均が、最大でも0.5mm程度であり、希釈率の低減が図れることを確認できた。
また、表3の溶接条件については、得られた肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を求めると共に、鉄の濃化率を求めた。また、形成した肉盛溶接部の一部については、濃度32%の塩酸と濃度65%の硝酸を3:1の割合で混合した腐食液に120分間浸漬した際の腐食減量の測定を行なった。その結果を表5に示す。なお、成分Xの希釈率は、溶接ワイヤ中のXの分析値をX、肉盛溶接部中のXの分析値をXとした場合、100(X−X)/Xから求めた。また、鉄の濃化率は、溶接ワイヤ中の鉄の分析値をF、肉盛溶接部中の鉄の分析値をFとした場合、100(F−F)/(100−F)から求めた。なお、表5には、使用したインコネル625のソリッドワイヤ中のニッケル、クロム、モリブデン、鉄、及びその他成分の含有率も合わせて示している。また、希釈率の平均欄は、ニッケル、クロム、及びモリブデンの各希釈率の平均希釈率を示し、−符号は濃化を示す。
As is apparent from Table 4, in the examples, the average penetration depth was about 0.5 mm at the maximum, and it was confirmed that the dilution rate could be reduced.
Moreover, about the welding conditions of Table 3, while calculating | requiring the dilution rate from the base material of each component of nickel, chromium, and molybdenum of the obtained overlay welding part, the concentration rate of iron was calculated | required. Further, with respect to a part of the formed overlay weld, the corrosion weight loss was measured when immersed for 120 minutes in a corrosive liquid in which hydrochloric acid having a concentration of 32% and nitric acid having a concentration of 65% were mixed at a ratio of 3: 1. . The results are shown in Table 5. The dilution rate of component X is 100 (X W −X B ) / X W where X W is the analytical value of X in the welding wire and X B is the analytical value of X in the weld overlay. Asked. Further, the concentration ratio of iron is 100 (F B −F W ) / (100−, where F W is the analytical value of iron in the welding wire and F B is the analytical value of iron in the weld overlay. Fw ). Table 5 also shows the contents of nickel, chromium, molybdenum, iron, and other components in the solid wire of Inconel 625 used. Moreover, the average column of a dilution rate shows the average dilution rate of each dilution rate of nickel, chromium, and molybdenum, and-symbol shows concentration.
表5から、本実施例では、肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を10質量%以下にできることが確認された。そして、希釈率を10質量%以下にできることから、肉盛溶接部にニッケル基合金が本来備えている耐腐食性を付与できることが確認できた。 From Table 5, in this example, it was confirmed that the dilution rate from the base material of each component of nickel, chromium, and molybdenum in the build-up welded portion could be 10% by mass or less. And since the dilution rate can be made into 10 mass% or less, it has confirmed that the corrosion resistance which the nickel base alloy was originally equipped to the build-up welding part can be provided.
(実施例2)
垂直に保持した厚さ5mmのSS400を基材に、パルスMIG溶接機を用いて表3に示すA〜Fの溶接条件でハステロイX(YNiCrMo−2)のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。また、比較例として、垂直に保持した厚さ5mmのSS400を基材に使用し、パルスMIG溶接機を用いて表3に示すG〜Jの溶接条件でハステロイXのソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した.そして、得られた肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を求めると共に、鉄の濃化率を求めた。その結果を表6に示す。なお、表6には、使用したハステロイXのソリッドワイヤ中のニッケル、クロム、モリブデン、鉄、及びその他成分の含有率も合わせて示している。また、希釈率の平均欄は、ニッケル、クロム、及びモリブデンの各希釈率の平均希釈率を示し、−符号は濃化を示す。
表6から、本実施例では、肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を10質量%以下にできることが確認された。
(Example 2)
Overlay welded part using a solid wire of Hastelloy X (YNiCrMo-2) as welding wire under the welding conditions of A to F shown in Table 3 using a pulse MIG welder with SS400 of 5 mm thickness held vertically Formed. Further, as a comparative example, SS400 having a thickness of 5 mm held vertically is used as a base material, and a solid wire of Hastelloy X is used as a welding wire under the welding conditions G to J shown in Table 3 using a pulse MIG welding machine. A prime weld was formed. And while calculating | requiring the dilution rate from the base material of each component of nickel, chromium, and molybdenum of the obtained overlay welding part, the concentration rate of iron was calculated | required. The results are shown in Table 6. Table 6 also shows the contents of nickel, chromium, molybdenum, iron, and other components in the solid wire of Hastelloy X used. Moreover, the average column of a dilution rate shows the average dilution rate of each dilution rate of nickel, chromium, and molybdenum, and-symbol shows concentration.
From Table 6, in the present Example, it was confirmed that the dilution rate from the base material of each component of nickel, chromium, and molybdenum of a build-up welding part can be made into 10 mass% or less.
(実施例3)
垂直に保持した厚さ5mmのSS400を基材に、パルスMIG溶接機を用いて表3に示すA〜Fの溶接条件で25Cr−20Niステンレス合金(Y310)のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。また、比較例として、垂直に保持した厚さ5mmのSS400を基材に使用し、パルスMIG溶接機を用いて表3に示すG〜Jの溶接条件で25Cr−20Niステンレス合金のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。そして、得られた肉盛溶接部のニッケル及びクロムの各成分の基材からの希釈率を求めると共に、鉄の濃化率を求めた。その結果を表7に示す。なお、表7には、使用した25Cr−20Niステンレス合金のソリッドワイヤ中のニッケル、クロム、鉄、及びその他成分の含有率も合わせて示している。また、希釈率の平均欄は、ニッケル及びクロムの各希釈率の平均希釈率を示し、−符号は濃化を示す。
表7から、本実施例では、肉盛溶接部のニッケル及びクロムの各成分の基材からの希釈率を10質量%以下にできることが確認された。
(Example 3)
Overlay welding using a solid wire of 25Cr-20Ni stainless steel alloy (Y310) as a welding wire under the welding conditions of A to F shown in Table 3 using a pulsed MIG welding machine with SS400 of 5 mm thickness held vertically Part was formed. Further, as a comparative example, a 5 mm thick SS400 held vertically is used as a base material, and a 25Cr-20Ni stainless alloy solid wire is welded using a pulse MIG welding machine under the welding conditions G to J shown in Table 3. Overlay welds were formed as wires. And while calculating | requiring the dilution rate from the base material of each component of nickel and chromium of the obtained overlay welding part, the concentration rate of iron was calculated | required. The results are shown in Table 7. Table 7 also shows the contents of nickel, chromium, iron, and other components in the solid wire of the 25Cr-20Ni stainless steel used. Moreover, the average column of a dilution rate shows the average dilution rate of each dilution rate of nickel and chromium, and-symbol shows concentration.
From Table 7, in the present Example, it was confirmed that the dilution rate from the base material of each component of nickel and chromium of an overlay welding part can be made into 10 mass% or less.
(実施例4)
垂直に保持した厚さ5mmのSS400を基材に、パルスMIG溶接機を用いて表3に示すA〜Fの溶接条件で13Crステンレス合金(420J2)のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。また、比較例として、垂直に保持した厚さ5mmのSS400を基材に使用し、パルスMIG溶接機を用いて表3に示すG〜Jの溶接条件で13Crステンレス合金のソリッドワイヤを溶接ワイヤとして肉盛溶接部を形成した。そして、得られた肉盛溶接部のクロム成分の基材からの希釈率を求めると共に、鉄の濃化率を求めた。その結果を表8に示す。なお、表8には、使用した13Crステンレス合金のソリッドワイヤ中のクロム、鉄、及びその他成分の含有率も合わせて示している。また、表中の−符号は濃化を示す。
表8から、本実施例では、肉盛溶接部のクロム成分の基材からの希釈率を10質量%以下にできることが確認された。
Example 4
Using a SS400 of 5 mm thickness held vertically as a base material, and using a pulsed MIG welding machine, a welding wire of 13Cr stainless alloy (420J2) as a welding wire was used as a welding wire under the welding conditions A to F shown in Table 3. Formed. Further, as a comparative example, a SS400 having a thickness of 5 mm held vertically is used as a base material, and a solid wire of 13Cr stainless alloy is used as a welding wire under the welding conditions G to J shown in Table 3 using a pulse MIG welding machine. A build-up weld was formed. And while calculating | requiring the dilution rate from the base material of the chromium component of the obtained overlay welding part, the concentration rate of iron was calculated | required. The results are shown in Table 8. Table 8 also shows the contents of chromium, iron, and other components in the solid wire of the 13Cr stainless alloy used. Moreover,-symbol in a table | surface shows thickening.
From Table 8, in the present Example, it was confirmed that the dilution rate from the base material of the chromium component of the overlay welding part can be made into 10 mass% or less.
(実施例5)
垂直に保持した厚さ5mmのSS400を基材に、MAG溶接機を用いて表3に示すA〜Fの溶接条件で23Cr−13Ni−2.5Moステンレス合金(YF309Mo)のフラックス入りワイヤを溶接ワイヤとして肉盛溶接部を形成した。また、比較例として、垂直に保持した厚さ5mmのSS400を基材に使用し、MAG溶接機を用いて表3に示すG〜Jの溶接条件で23Cr−13Ni−2.5Moステンレス合金(YF309Mo)のフラックス入りワイヤを溶接ワイヤとして肉盛溶接部を形成した.そして、得られた肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を求めると共に、鉄の濃化率を求めた。その結果を表9に示す。なお、表9には、使用した23Cr−13Ni−2.5Moステンレス合金(YF309Mo)のフラックス入りワイヤ中のニッケル、クロム、モリブデン、鉄、及びその他成分の含有率も合わせて示している。また、希釈率の平均欄は、ニッケル、クロム、及びモリブデンの各希釈率の平均希釈率を示し、−符号は濃化を示す。
表9から、本実施例では、肉盛溶接部のニッケル、クロム、及びモリブデンの各成分の基材からの希釈率を10質量%以下にできることが確認された。
(Example 5)
Using a SS400 of 5 mm thickness held vertically as a base material, a flux-cored wire of 23Cr-13Ni-2.5Mo stainless steel alloy (YF309Mo) was welded using a MAG welding machine under the welding conditions A to F shown in Table 3. The overlay welding part was formed as. Further, as a comparative example, a vertically-maintained SS400 having a thickness of 5 mm was used as a base material, and a 23Cr-13Ni-2.5Mo stainless steel alloy (YF309Mo) was used under the welding conditions G to J shown in Table 3 using a MAG welding machine. Overlay welds were formed using a flux-cored wire as a welding wire. And while calculating | requiring the dilution rate from the base material of each component of nickel, chromium, and molybdenum of the obtained overlay welding part, the concentration rate of iron was calculated | required. The results are shown in Table 9. Table 9 also shows the contents of nickel, chromium, molybdenum, iron, and other components in the flux-cored wire of the 23Cr-13Ni-2.5Mo stainless alloy (YF309Mo) used. Moreover, the average column of a dilution rate shows the average dilution rate of each dilution rate of nickel, chromium, and molybdenum, and-symbol shows concentration.
From Table 9, in the present Example, it was confirmed that the dilution rate from the base material of each component of nickel, chromium, and molybdenum of a build-up welding part can be 10 mass% or less.
以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の肉盛溶接方法及びそれを用いて形成した肉盛溶接部を構成する場合も本発明の権利範囲に含まれる。
例えば、第1、第2のレール上に、縦ガイド部材、昇降台車、水平ロッド部材、溶接トーチをそれぞれ複数任意位置、好ましくは複数均等位置に配置してもよい。これによって、同時に複数筋の肉盛溶接部を排ガス通路の内面に形成することができ、排ガス通路の内面全周に肉盛溶接部を短時間で形成することができる。
本実施の形態では、垂直に設けられた中空長尺の構造物の一部又は全部である基材の一例として、転炉排ガス処理設備の排ガス通路の側壁部材表面に肉盛溶接部を形成したが、転炉排ガス処理設備の転炉フードの内面、ごみ焼却炉の煙道の側壁部材、排ガス通路内の熱交換チューブの外面等のように、第1、第2のレールが取付け可能であれば断面が任意形状の構造体の内面又は外面に対しても、更に、熱交換器の熱交換チューブパネルの内面のように平面状の構造体に対しても本発明を適用して肉盛溶接部を形成することができる。なお、基材の厚みは1.5mm以上とする。また、斜めに設けられた構造物に対して適用することもできる。基材が複数の管を長尺板材で連結した伝熱部材であってもよい。
そして、本実施の形態では、パルスMIG溶接機を用いて溶接を行ったが、その他のMIG溶接機又はMAG溶接を使用して溶接を行ってもよい。更に、本実施の形態では、同一溶接部に1回の肉盛溶接を行ったが、2回以上の肉盛溶接を行うこともできる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. The case where the overlay welding method of the present invention and the build-up weld formed using the same are combined with some or all of the forms and modifications are also included in the scope of the present invention.
For example, a plurality of vertical guide members, lifting carriages, horizontal rod members, and welding torches may be arranged on the first and second rails at arbitrary positions, preferably a plurality of equal positions, respectively. As a result, a plurality of overlay welds can be formed on the inner surface of the exhaust gas passage at the same time, and an overlay weld can be formed in a short time on the entire inner surface of the exhaust gas passage.
In the present embodiment, as an example of a base material that is a part or all of a vertically long hollow structure, a build-up weld is formed on the side wall member surface of the exhaust gas passage of the converter exhaust gas treatment facility. However, the first and second rails can be attached such as the inner surface of the converter hood of the converter exhaust gas treatment facility, the side wall member of the flue of the refuse incinerator, the outer surface of the heat exchange tube in the exhaust gas passage, etc. For example, overlay welding is applied to the inner surface or outer surface of a structure having an arbitrary cross section, and also to a planar structure such as the inner surface of a heat exchange tube panel of a heat exchanger. The part can be formed. In addition, the thickness of a base material shall be 1.5 mm or more. It can also be applied to a structure provided obliquely. The base material may be a heat transfer member in which a plurality of tubes are connected by a long plate material.
And in this Embodiment, although welding was performed using the pulse MIG welding machine, you may weld using another MIG welding machine or MAG welding. Further, in the present embodiment, one build-up welding is performed on the same welded portion, but two or more build-up weldings can be performed.
本実施の形態では、図2に示すように、縦ガイド部材17の縦レール44が第1、第2のレール13、14の間に配置されるようにしたが、図10に示す縦ガイド部材17aのように、連結部83を長くして、縦レール84の両側が第1、第2のレール13、14の外側にそれぞれ突出するようにしてもよい。これによって、ラック歯85の長さを長くでき、昇降台車18を第1、第2のレール13、14の外側領域まで移動させて、第1、第2のレール13、14の外側領域に肉盛溶接部を形成することができる。
また、各走行台車15、16に設けた取付け部材40、41に連結部の両側をそれぞれ固定したが、図11に示す縦ガイド部材17bのように、連結部88に伸縮機構89を設けて連結部88の長さを可変にすると共に、連結部88の両側を取付け部材40、41にそれぞれピン部材90を用いてピン結合することもできる。これによって、各走行台車15、16を第1、第2のレール13、14上で単独動作させることで、連結部88を手動操作により傾斜させることができる。その結果、肉盛ビード芯が傾斜している場合、縦レール44の軸方向を肉盛ビード芯の軸方向に実質的に一致させて昇降台車18を肉盛ビード芯の軸方向に沿って斜行させることができ、スカート等の末広がり構造の構造物の内面又は外面に肉盛溶接部を形成することができる。
更に、図12に示すように、排ガス通路が斜めに設けられている場合は、排ガス通路の側壁部材91の肉盛溶接部を形成する領域を斜め上と斜め下から挟むように排ガス通路の側壁部材91の全周に渡って第1、第2のレール92、93を配置する。そして、第1、第2のレール92、93にそれぞれ走行台車15、16を設け、走行台車15、16を縦ガイド部材17で連結し、縦ガイド部材17には縦ガイド部材17の軸方向に移動する昇降台車18を設け、昇降台車18には昇降台車18に対して水平方向、即ち、縦位ガイド部材17と直交する方向に進退する水平ロッド部材19を取付け、水平ロッド部材19の一端部に設けられた取付け金具20に進退機構21及び傾動機構22を介して進退及び傾動可能にオシレート機構23付きの溶接トーチ24を設けるようにすればよい。なお、走行台車15、16には、それぞれ駆動源として減速機付きの電動機(図示せず)を搭載させ、各減速機付きの電動機は同調運転させる。これにより、第1、第2のレール92、93上を、走行台車15、16は安定して走行することができ、斜めに設けられた排ガス通路の側壁部材91の任意の部位に肉盛溶接部を形成することができる。
In the present embodiment, as shown in FIG. 2, the vertical rail 44 of the vertical guide member 17 is arranged between the first and second rails 13 and 14, but the vertical guide member shown in FIG. As in 17a, the connecting portion 83 may be lengthened so that both sides of the vertical rail 84 protrude to the outside of the first and second rails 13 and 14, respectively. As a result, the length of the rack teeth 85 can be increased, the lifting carriage 18 is moved to the outer region of the first and second rails 13 and 14, and the meat is formed in the outer region of the first and second rails 13 and 14. A prime weld can be formed.
Further, although both sides of the connecting portion are fixed to the attachment members 40 and 41 provided on the traveling carriages 15 and 16, respectively, as in the longitudinal guide member 17b shown in FIG. The length of the portion 88 can be made variable, and both sides of the connecting portion 88 can be pin-coupled to the mounting members 40 and 41 using the pin members 90, respectively. Accordingly, the connecting portion 88 can be tilted manually by operating each traveling carriage 15 and 16 independently on the first and second rails 13 and 14. As a result, when the built-up bead core is inclined, the axial direction of the vertical rail 44 is substantially matched with the axial direction of the built-up bead core, and the lifting carriage 18 is inclined along the axial direction of the built-up bead core. The build-up weld can be formed on the inner or outer surface of a structure having a divergent structure such as a skirt.
Further, as shown in FIG. 12, when the exhaust gas passage is provided obliquely, the side wall of the exhaust gas passage is sandwiched between the upper part and the lower part of the side wall member 91 of the exhaust gas passage so as to sandwich the region forming the build-up weld. The first and second rails 92 and 93 are arranged over the entire circumference of the member 91. The first and second rails 92 and 93 are provided with traveling carriages 15 and 16, respectively. The traveling carriages 15 and 16 are connected by the vertical guide member 17, and the vertical guide member 17 is connected to the longitudinal guide member 17 in the axial direction. An elevating carriage 18 is provided. A horizontal rod member 19 is attached to the elevating carriage 18 in a horizontal direction with respect to the elevating carriage 18, that is, in a direction perpendicular to the vertical guide member 17. A welding torch 24 with an oscillating mechanism 23 may be provided on the mounting bracket 20 provided on the mounting bracket 20 so as to be able to advance and retract and tilt through an advance / retreat mechanism 21 and a tilt mechanism 22. The traveling carriages 15 and 16 are each equipped with a motor (not shown) with a reduction gear as a drive source, and the electric motors with reduction gears are operated in a synchronized manner. Thus, the traveling carriages 15 and 16 can stably travel on the first and second rails 92 and 93, and are welded to an arbitrary portion of the side wall member 91 of the exhaust gas passage provided obliquely. The part can be formed.
本発明の一実施の形態に係る肉盛溶接方法で使用する溶接装置のブロック図である。It is a block diagram of the welding apparatus used with the overlay welding method which concerns on one embodiment of this invention. 同溶接装置の部分正断面図である。It is a partial front sectional view of the welding apparatus. 同溶接装置の部分側断面図である。It is a partial sectional side view of the welding apparatus. 同溶接装置の部分平断面図である。It is a partial plane sectional view of the welding device. 同溶接装置の溶接トーチの取付け状態を示す平面図である。It is a top view which shows the attachment state of the welding torch of the welding apparatus. 同溶接トーチの取付け状態を示す正面図である。It is a front view which shows the attachment state of the welding torch. 同溶接トーチの取付け状態を示す側面図である。It is a side view which shows the attachment state of the welding torch. (A)、(B)はそれぞれ本発明の一実施の形態に係る肉盛溶接方法を使用して形成した肉盛溶接部の正断面図、平面図である。(A) and (B) are the front sectional view and the top view of the build-up welding part formed using the build-up welding method which concerns on one embodiment of this invention, respectively. (A)、(B)はそれぞれ本発明の一実施の形態に係る肉盛溶接方法の説明図である。(A), (B) is explanatory drawing of the overlay welding method which concerns on one embodiment of this invention, respectively. 第1の変形例に係る縦ガイド部材の説明図である。It is explanatory drawing of the vertical guide member which concerns on a 1st modification. 第2の変形例に係る縦ガイド部材の説明図である。It is explanatory drawing of the vertical guide member which concerns on a 2nd modification. 変形例に係る溶接装置の説明図である。It is explanatory drawing of the welding apparatus which concerns on a modification.
符号の説明Explanation of symbols
10:溶接装置、11:側壁部材、12:支持金具、13:第1のレール、14:第2のレール、15、16:走行台車、17、17a、17b:縦ガイド部材、18:昇降台車、19:水平ロッド部材、20:取付け金具、21:進退機構、22:傾動機構、23:オシレート機構、24:溶接トーチ、25:制御装置、26:溶接ワイヤ、27:パルスMIG溶接機、28:固定部、29:レール部材、30:座板部材、31:レール受け部、32:チェーン、33:ローラーベアリング、34:フレーム部、35:スプロケット、36:軸受、37:回転軸、38:減速機付き電動機、39:固定用ノブ、40、41:取付け部材、42:連結部、43:取付け台、44:縦レール、45:ラック歯、46:ローラーベアリング、47:フレーム部、48:ピニオン、49:減速機付き電動機、50:固定用ノブ、51:筒体、52:ローラーベアリング、53:水平レール、54:水平フレーム、55:ラック歯、56:ピニオン、57:減速機付き電動機、58:固定用ノブ、59:連結部、60:固定板、61、62:取付け板、63、64:ガイド板、65:第1のピン、66:第1の傾動部、67:連結板、68、69:弧状孔、70、71:第2のピン、72:第3のピン、73:トーチ取付け板、74:固定用ノブ、75:第2の傾動部、76:フレーム部、77:電動機、78:架台部、79:カバー部材、80:取付け部材、81:センサー収納部、82:超音波センサー、83:連結部、84:縦レール、85:ラック歯、86:ガス電力供給部、87:ワイヤ供給部、88:連結部、89:伸縮機構、90:ピン部材、91:側壁部材、92:第1のレール、93:第2のレール、100:肉盛溶接部、101〜103:溶接ビード、110:肉盛溶接部、111〜113:溶接ビード、150:水管、151:平板 DESCRIPTION OF SYMBOLS 10: Welding apparatus, 11: Side wall member, 12: Support metal fitting, 13: 1st rail, 14: 2nd rail, 15, 16: Traveling cart, 17, 17a, 17b: Vertical guide member, 18: Lifting cart , 19: Horizontal rod member, 20: Mounting bracket, 21: Advance / retract mechanism, 22: Tilt mechanism, 23: Oscillation mechanism, 24: Welding torch, 25: Control device, 26: Welding wire, 27: Pulsed MIG welder, 28 : Fixing part, 29: Rail member, 30: Seat plate member, 31: Rail receiving part, 32: Chain, 33: Roller bearing, 34: Frame part, 35: Sprocket, 36: Bearing, 37: Rotating shaft, 38: Electric motor with reduction gear, 39: fixing knob, 40, 41: mounting member, 42: connecting part, 43: mounting base, 44: vertical rail, 45: rack tooth, 46: roller bearing, 47 Frame part, 48: Pinion, 49: Electric motor with reduction gear, 50: Knob for fixing, 51: Cylindrical body, 52: Roller bearing, 53: Horizontal rail, 54: Horizontal frame, 55: Rack teeth, 56: Pinion, 57 : Electric motor with reduction gear, 58: fixing knob, 59: connecting portion, 60: fixing plate, 61, 62: mounting plate, 63, 64: guide plate, 65: first pin, 66: first tilting portion , 67: connecting plate, 68, 69: arc hole, 70, 71: second pin, 72: third pin, 73: torch mounting plate, 74: fixing knob, 75: second tilting portion, 76 : Frame portion, 77: Electric motor, 78: Mount portion, 79: Cover member, 80: Mounting member, 81: Sensor storage portion, 82: Ultrasonic sensor, 83: Connection portion, 84: Vertical rail, 85: Rack teeth, 86: Gas power supply unit, 87 Wire supply part, 88: Connecting part, 89: Expansion / contraction mechanism, 90: Pin member, 91: Side wall member, 92: First rail, 93: Second rail, 100: Overlay welding part, 101-103: Welding Bead: 110: Overlay weld, 111-113: Weld bead, 150: Water pipe, 151: Flat plate

Claims (15)

  1. 垂直又は斜めに設けられた中空長尺の筒状の構造物の一部又は全部であって厚さ1.5mm以上の基材表面に、ニッケル基合金又はステンレス合金を肉盛溶接して、肉盛溶接部を形成する肉盛溶接方法において、
    MIG溶接又はMAG溶接を行う溶接機を含む溶接装置を前記構造物に取付けて、前記溶接機を用いて行う溶接部のウィービングの振幅を7mm以上で20mm以下、該ウィービングの振動数を7回/秒以下、溶接速度を2mm/秒以上で17mm/秒以下にして、前記肉盛溶接部の前記基材からの希釈率を10質量%以下にし、
    しかも、前記溶接装置は、前記構造物の内面上にそれぞれ支持金具を介して上下周方向に取付けられた第1、第2のレールと、該第1、第2のレールに沿って移動する対となる走行台車に連結された縦ガイド部材と、該縦ガイド部材に沿って上下動する昇降台車と、該昇降台車に取付けられて該昇降台車に対して水平方向に進退する水平ロッド部材と、該水平ロッド部材の一端部の取付け金具に前記構造物の内面の前記溶接部に向けて進退機構及び傾動機構を介して設けられ、前記溶接機の一部を構成する溶接トーチと、該溶接トーチのオシレート制御手段を含むこれらの制御装置と、前記溶接トーチに溶接ワイヤ及び電力を供給する前記溶接機とを有することを特徴とする肉盛溶接方法。
    Overlay welding of a nickel base alloy or a stainless alloy on the surface of a base material that is part or all of a hollow long cylindrical structure provided vertically or obliquely and has a thickness of 1.5 mm or more. In the overlay welding method for forming the overlay weld,
    A welding apparatus including a welding machine for performing MIG welding or MAG welding is attached to the structure, and the weaving amplitude of the welded part using the welding machine is 7 mm to 20 mm, and the frequency of the weaving is 7 times / 1 second or less, the welding speed is 2 mm / second or more and 17 mm / second or less, and the dilution rate from the base material of the build-up weld is 10% by mass or less ,
    In addition, the welding device includes first and second rails mounted on the inner surface of the structure via support brackets in the vertical circumferential direction, and a pair that moves along the first and second rails. A vertical guide member connected to the traveling carriage, an elevating carriage that moves up and down along the vertical guide member, a horizontal rod member that is attached to the elevating carriage and moves forward and backward in the horizontal direction with respect to the elevating carriage, A welding torch which is provided on a mounting bracket at one end of the horizontal rod member via an advancing / retracting mechanism and a tilting mechanism toward the welded portion on the inner surface of the structure, and forms a part of the welding machine; and the welding torch A build-up welding method comprising: these control devices including an oscillating control means; and a welding machine for supplying a welding wire and electric power to the welding torch .
  2. 請求項1記載の肉盛溶接方法において、前記溶接機による溶接の入熱量を400Joule/mm以上で1100Joule/mm以下にすることを特徴とする肉盛溶接方法。 The build-up welding method according to claim 1, wherein a heat input amount of welding by the welding machine is 400 Joules / mm or more and 1100 Joules / mm or less.
  3. 請求項1又は2記載の肉盛溶接方法において、同一の前記溶接部に1回又は2回以上の肉盛溶接を行うことによって、前記肉盛溶接部の厚みを1.5mm以上とすることを特徴とする肉盛溶接方法。 The build-up welding method according to claim 1 or 2 , wherein the build-up weld is made to have a thickness of 1.5 mm or more by performing build-up welding once or twice on the same weld. A characteristic overlay welding method.
  4. 請求項1〜3のいずれか1項に記載の肉盛溶接方法において、前記ウィービングの振幅を7mm以上で14mm以下、該ウィービングの振動数を5回/秒以下、溶接速度を3mm/秒以上で17mm/秒以下にすることを特徴とする肉盛溶接方法。 The build-up welding method according to any one of claims 1 to 3, wherein the amplitude of the weaving is 7 mm or more and 14 mm or less, the frequency of the weaving is 5 times / second or less, and the welding speed is 3 mm / second or more. A build-up welding method characterized by a rate of 17 mm / second or less.
  5. 請求項1又は2記載の肉盛溶接方法において、前記肉盛溶接部は予め形成された溶接ビードの上に他の溶接ビードの一部を重ねて形成され、しかも上から重ねられる前記他の溶接ビードの溶接狙い位置を、単一ビードの端から該単一ビードの幅の0.15倍以上0.45倍以下の範囲内とし、前記溶接ビードを3層以上積層することを特徴とする肉盛溶接方法。 3. The build-up welding method according to claim 1 or 2 , wherein the build-up weld is formed by overlapping a part of another weld bead on a pre-formed weld bead and the other weld is overlapped from above. Meat characterized in that a welding target position of a bead is within a range of 0.15 to 0.45 times the width of the single bead from the end of the single bead, and three or more layers of the weld beads are laminated. Prime welding method.
  6. 請求項記載の肉盛溶接方法において、前記第1、第2のレールを、それぞれ摺動機構を介して前記走行台車のフレーム部で挟持し、該第1、第2のレールの内側面にはチェーンがそれぞれ取付けられ、該走行台車に設けられた回転駆動するスプロケットを該チェーンに噛合させることを特徴とする肉盛溶接方法。 The build-up welding method according to claim 1 , wherein the first and second rails are sandwiched by frame portions of the traveling carriage via sliding mechanisms, respectively, and are attached to inner surfaces of the first and second rails. A build-up welding method characterized in that a chain is attached to each of the chains, and a sprocket for rotation driving provided on the traveling carriage is engaged with the chain.
  7. 請求項1又は6記載の肉盛溶接方法において、前記第1、第2のレールに、前記縦ガイド部材、前記昇降台車、前記水平ロッド部材、前記溶接トーチをそれぞれ複数任意位置に設けることを特徴とする肉盛溶接方法。 7. The build-up welding method according to claim 1 or 6 , wherein the first and second rails are each provided with a plurality of the vertical guide members, the lift carriage, the horizontal rod members, and the welding torches at arbitrary positions. Overlay welding method.
  8. 請求項1、6、7のいずれか1項に記載の肉盛溶接方法において、前記溶接トーチと前記基材表面との距離を測定する距離センサーを設けることを特徴とする肉盛溶接方法。 In overlay welding method according to any one of claims 1, 6 and 7, the overlay welding method characterized by providing a distance sensor that measures the distance between the welding torch and the substrate surface.
  9. 請求項1記載の肉盛溶接方法において、前記溶接はパルスMIGによる立て向き下進溶接によって行われていることを特徴とする肉盛溶接方法。The build-up welding method according to claim 1, wherein the welding is performed by vertical downward welding using a pulse MIG.
  10. 厚さ1.5mm以上の基材表面に、ニッケル基合金又はステンレス合金からなる溶接材料を、MIG溶接機又はMAG溶接機を用いて、ウィービングの振幅を7mm以上で20mm以下、該ウィービングの振動数を7回/秒以下、溶接速度を2mm/秒以上で17mm/秒以下の条件で溶接を行って形成した肉盛溶接部であって、前記基材からの希釈率が10質量%以下であり、
    しかも、前記基材は複数の管を長尺板材で連結した伝熱部材であることを特徴とする肉盛溶接部。
    Using a MIG welding machine or a MAG welding machine on a surface of a base material having a thickness of 1.5 mm or more, a weaving amplitude of 7 mm or more and 20 mm or less. A build-up weld formed by welding under conditions of a frequency of 7 times / second or less and a welding speed of 2 mm / second or more and 17 mm / second or less, wherein the dilution rate from the base material is 10% by mass or less der is,
    Moreover, the substrate overlay weld part, wherein the heat transfer member der Rukoto formed by coupling a plurality of tubes in a long plate member.
  11. 厚さ1.5mm以上の基材表面に、ニッケル基合金又はステンレス合金からなる溶接材料を、MIG溶接機又はMAG溶接機を用いて、ウィービングの振幅を7mm以上で20mm以下、該ウィービングの振動数を7回/秒以下、溶接速度を2mm/秒以上で17mm/秒以下の条件で溶接を行って形成した肉盛溶接部であって、前記基材からの希釈率が10質量%以下であり、
    しかも、前記基材が、製鉄用排ガス処理設備の排ガス通路の側壁部材であることを特徴とする肉盛溶接部。
    Using a MIG welding machine or a MAG welding machine on a surface of a base material having a thickness of 1.5 mm or more, a weaving amplitude of 7 mm or more and 20 mm or less. A build-up weld formed by welding under conditions of a frequency of 7 times / second or less and a welding speed of 2 mm / second or more and 17 mm / second or less, wherein the dilution rate from the base material is 10% by mass or less der is,
    Moreover, the substrate, the overlay weld part, wherein the side wall members der Rukoto exhaust gas passage of steel for exhaust gas treatment equipment.
  12. 請求項10又は11記載の肉盛溶接部において、前記溶接機による溶接の入熱量が400Joule/mm以上で1100Joule/mm以下であることを特徴とする肉盛溶接部。 The build-up weld according to claim 10 or 11 , wherein a heat input of welding by the welding machine is 400 Joules / mm or more and 1100 Joules / mm or less.
  13. 請求項10〜12のいずれか1項に記載の肉盛溶接部において、該肉盛溶接部の厚さが1.5mm以上であることを特徴とする肉盛溶接部。 The build-up weld according to any one of claims 10 to 12 , wherein the build-up weld has a thickness of 1.5 mm or more.
  14. 請求項10〜13のいずれか1項に記載の肉盛溶接部において、前記ウィービングの振幅を7mm以上で14mm以下、該ウィービングの振動数を5回/秒以下、溶接速度を3mm/秒以上で17mm/秒以下にすることを特徴とする肉盛溶接部。 The build-up weld part according to any one of claims 10 to 13 , wherein an amplitude of the weaving is 7 mm or more and 14 mm or less, a frequency of the weaving is 5 times / second or less, and a welding speed is 3 mm / second or more. Overlay welding part characterized by being made into 17 mm / sec or less.
  15. 請求項10〜13のいずれか1項に記載の肉盛溶接部において、該肉盛溶接部は予め形成された溶接ビードの上に他の溶接ビードの一部を積層して構成され、しかも上から重ねられる前記他の溶接ビードの溶接狙い位置を、単一ビードの端から該単一ビードの幅の0.15倍以上0.45倍以下の範囲内とし、前記溶接ビードを3層以上積層することを特徴とする肉盛溶接部。 The build-up weld part according to any one of claims 10 to 13 , wherein the build-up weld part is formed by laminating a part of another weld bead on a pre-formed weld bead. The welding target position of the other welding bead stacked from within the range is 0.15 times to 0.45 times the width of the single bead from the end of the single bead, and three or more layers of the welding beads are laminated. A built-up welded part characterized by:
JP2007237132A 2006-09-12 2007-09-12 Overlay welding method and overlaid weld formed by the method Active JP4798797B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006247018 2006-09-12
JP2006247018 2006-09-12
JP2007237132A JP4798797B2 (en) 2006-09-12 2007-09-12 Overlay welding method and overlaid weld formed by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237132A JP4798797B2 (en) 2006-09-12 2007-09-12 Overlay welding method and overlaid weld formed by the method

Publications (2)

Publication Number Publication Date
JP2008093732A JP2008093732A (en) 2008-04-24
JP4798797B2 true JP4798797B2 (en) 2011-10-19

Family

ID=39377130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237132A Active JP4798797B2 (en) 2006-09-12 2007-09-12 Overlay welding method and overlaid weld formed by the method

Country Status (1)

Country Link
JP (1) JP4798797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103921030A (en) * 2014-04-29 2014-07-16 天津福得士阀门有限公司 Surfacing welding machine used for valve with one-way valve dust discharging pipeline

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149750B2 (en) * 2008-07-30 2013-02-20 株式会社ダイヘン Inconel overlay welding method by AC pulse arc welding
JP5529434B2 (en) * 2009-04-07 2014-06-25 株式会社フジコー Friction welding method for composite metal pipe
JP2012055917A (en) * 2010-09-07 2012-03-22 Hitachi Zosen Corp Build-up welding device and method
WO2013069573A1 (en) * 2011-11-08 2013-05-16 株式会社フジコー Curved surface weld overlay method and lance manufacturing method employing same
JP2013136085A (en) * 2011-12-28 2013-07-11 Hitachi Zosen Corp Build-up welding method and device
JP5837433B2 (en) * 2012-01-31 2015-12-24 東洋鋼鈑株式会社 Manufacturing method of overlay welding member
JP6016742B2 (en) * 2013-09-12 2016-10-26 三菱重工業株式会社 Method and apparatus for selecting material for sprayed film or overlay weld layer
KR101976005B1 (en) * 2017-05-11 2019-05-07 주식회사 명진티에스알 apparatus of overlay welding for vertical type

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256037A (en) * 1975-11-04 1977-05-09 Mitsubishi Heavy Ind Ltd Method of fabricating spheroidal tank
JPS5749313B2 (en) * 1978-08-11 1982-10-21
JPS56163097A (en) * 1980-05-21 1981-12-15 Fukushima Tekkosho:Kk Automatic welding equipment
JP3199553B2 (en) * 1994-01-31 2001-08-20 日鐵溶接工業株式会社 Lateral automatic gouging device
JP3137254B2 (en) * 1994-10-07 2001-02-19 新日本製鐵株式会社 Automatic welding method
JPH1024370A (en) * 1996-07-09 1998-01-27 Nkk Corp Automatic butt welding equipment
JP2000084665A (en) * 1998-09-09 2000-03-28 Nkk Corp Vertical downward build-up welding method
JP2007155233A (en) * 2005-12-06 2007-06-21 Babcock Hitachi Kk Boiler furnace and manufacturing method of panel for boiler furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103921030A (en) * 2014-04-29 2014-07-16 天津福得士阀门有限公司 Surfacing welding machine used for valve with one-way valve dust discharging pipeline
CN103921030B (en) * 2014-04-29 2016-03-30 天津福得士阀门有限公司 With the valve built-up welder of check valve dust discharge pipeline

Also Published As

Publication number Publication date
JP2008093732A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
EP2950972B1 (en) Localized repair of supperalloy component
US9283593B2 (en) Selective laser melting / sintering using powdered flux
US20200156172A1 (en) Synchronized rotating arc welding method and system
Norrish Advanced welding processes
JP3112758B2 (en) Method and apparatus for welding superalloy workpieces
Sun et al. Laser welding of dissimilar metal combinations
US7429716B2 (en) Modular welding system
Gourd Principles of welding technology
CA2957990C (en) High-productivity hybrid induction heating/welding assembly
US9677692B2 (en) Welded steel pipe joined with high-energy-density beam and method for producing the same
DE69920770T2 (en) Improved process for solid-state welding and welded workpieces
KR101791113B1 (en) Deposition of superalloys using powdered flux and metal
CA2265297C (en) Method and apparatus for welding
US20130316183A1 (en) Localized repair of superalloy component
CN100398246C (en) Process and device for automatic argon arc welding and narrow gap burial arc welding for circular pipe header seam
CA2726237C (en) Manufacture of a portion of a metal part using the mig method with pulsed current and wire
CN102652046B (en) A welding process and a welding arrangement
CN1038913C (en) Method of joining metal parts by means of fusion arc welding
EP0523615B1 (en) Method of welding nickel or nickel alloy products
JP4500884B2 (en) Method and apparatus for joining metal plates
CN103801845B (en) Iron based on beam flying or nickel-base material laser MIG composite overlaying method
JP6104408B2 (en) Method for forming a cladding layer of a superalloy material
JP4951448B2 (en) Double-side welding method and double-side welded structure
KR20080001821A (en) Plasma automatic welding machine for pipe circle welding
WO2014120991A1 (en) Selective laser melting / sintering using powdered flux

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4798797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250