JP4798057B2 - Geological disposal facility and its construction method - Google Patents

Geological disposal facility and its construction method Download PDF

Info

Publication number
JP4798057B2
JP4798057B2 JP2007124869A JP2007124869A JP4798057B2 JP 4798057 B2 JP4798057 B2 JP 4798057B2 JP 2007124869 A JP2007124869 A JP 2007124869A JP 2007124869 A JP2007124869 A JP 2007124869A JP 4798057 B2 JP4798057 B2 JP 4798057B2
Authority
JP
Japan
Prior art keywords
main tunnel
disposal
tunnel
geological
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007124869A
Other languages
Japanese (ja)
Other versions
JP2008279346A (en
Inventor
泰宏 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007124869A priority Critical patent/JP4798057B2/en
Publication of JP2008279346A publication Critical patent/JP2008279346A/en
Application granted granted Critical
Publication of JP4798057B2 publication Critical patent/JP4798057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、放射性廃棄物やその他の廃棄物等を地下坑道に地層処分する地層処分施設及びその構築方法に関するものである。特に、高レベル放射性廃棄物の地層処分において不均質な地質環境特性を考慮した施設形態を構築する場合に有効に適用される。その他、二酸化炭素の地中貯蔵などにも有効に適用される。   The present invention relates to a geological disposal facility that geologically disposes radioactive waste and other wastes in underground tunnels, and a construction method thereof. In particular, it is effectively applied when constructing a facility configuration that takes into account heterogeneous geological environmental characteristics in the geological disposal of high-level radioactive waste. In addition, it is effectively applied to underground storage of carbon dioxide.

原子力発電から生じる放射性廃棄物のうち高レベル放射性廃棄物は、使用済核燃料の再処理工程で分離された液体廃棄物であり、放射能レベルが高いばかりでなく、長期間にわたって放射能を持ち続ける長寿命の放射性核種が数多く含まれている。そのため、このような高レベル放射性廃棄物は、ガラス原料と共にステンレス鋼製のキャニスターに溶かし込みガラス固化体として安定化処理し、冷却のため数10年間貯蔵した後、ガラス固化体が収納されたキャニスターをオーバーパックと称される厚肉鋼板製の密閉容器内に密閉収納するなどして廃棄体とし、この廃棄体を地下300m(法律により決定)より深い安定した地層中に埋設処分するようにしている(図9参照)。   Among the radioactive waste generated from nuclear power generation, high-level radioactive waste is liquid waste separated in the reprocessing process of spent nuclear fuel, and not only has a high level of radioactivity but also continues to have radioactivity for a long period of time. It contains many long-lived radionuclides. Therefore, such high-level radioactive waste is dissolved in a stainless steel canister together with glass raw materials, stabilized as a glass solidified body, stored for several decades for cooling, and then the canister in which the glass solidified body is stored. To be disposed of in a sealed container made of thick steel plate called overpack, and disposed of in a stable formation deeper than 300m underground (determined by law). (See FIG. 9).

この廃棄体の地層処分方法としては、施工性、安全性、経済性の観点から、パネル方式が採用されている。図10に示すように、処分パネル1は平行に掘削形成された多数の処分坑道(トンネル)2から構成され、処分坑道内に配置された廃棄体がベントナイト等の緩衝材や埋め戻し材により埋設処分される。処分坑道2は主要坑道3により取り囲まれ、主要坑道間が連絡坑道4により連結され、地上と地下を結ぶ立坑や斜坑等のアクセス坑道から廃棄体等が搬入される。また、処分パネル1は、処分サイトの地質環境条件等に応じて、分散配置や多層配置等の柔軟なパネルレイアウトが可能とされ、建設・操業・閉鎖の主要な作業を独立・並行して実施できるようにされている。   As a geological disposal method of this waste body, a panel method is adopted from the viewpoint of workability, safety, and economy. As shown in FIG. 10, the disposal panel 1 is composed of a number of disposal tunnels (tunnels) 2 excavated and formed in parallel, and wastes disposed in the disposal tunnels are buried with buffer materials such as bentonite and backfilling materials. Will be disposed of. The disposal mine shaft 2 is surrounded by a main mine shaft 3, the main mine shafts are connected by a connecting mine shaft 4, and wastes and the like are carried from an access shaft such as a vertical shaft or an inclined shaft connecting the ground and the underground. In addition, the disposal panel 1 is capable of flexible panel layout such as distributed layout and multi-layer layout according to the geological environmental conditions of the disposal site, and the main work of construction, operation, and closure is performed independently and in parallel. It has been made possible.

処分坑道2における廃棄体の定置方式には、例えば、図11に示すような処分孔竪置き方式や処分坑道横置き方式がある。図11(a)の処分孔竪置き方式では、天然バリアとしての岩盤A中に掘削形成された処分坑道2の底版部から下に向って処分孔5を鉛直に掘削形成し、トンネル軸方向には所定の間隔をおいて多数形成し、この処分孔5内に人工バリアとして地下水や岩盤圧の影響を低減する緩衝材(ベントナイト等) Bを敷き詰めると共に、この緩衝材B中に竪にした廃棄体Cを埋設定置している。処分坑道2はベントナイト等の埋め戻し材6で埋め戻される。図11(b)の処分坑道横置き方式では、処分坑道2内に緩衝材Bを敷き詰めると共に、この緩衝材B中に横にした廃棄体Cをトンネル軸方向に所定の間隔をおいて埋設定置している。なお、軟岩系岩盤の場合には、処分坑道2の内面に支保工が設けられる。   Examples of the waste placement method in the disposal tunnel 2 include a disposal hole anchor placement method and a disposal tunnel horizontal placement method as shown in FIG. 11 (a), the disposal hole 5 is vertically drilled from the bottom slab part of the disposal tunnel 2 formed in the rock A as a natural barrier, and is formed in the tunnel axis direction. Is formed in large numbers at predetermined intervals, and a buffer material (such as bentonite) B that reduces the influence of groundwater and rock pressure as an artificial barrier is laid in the disposal hole 5 and discarded in the buffer material B. The body C is buried. The disposal tunnel 2 is backfilled with a backfilling material 6 such as bentonite. In the disposal tunnel horizontal installation method of FIG. 11 (b), the buffer material B is laid down in the disposal tunnel 2, and the waste C lying in the buffer material B is buried at a predetermined interval in the tunnel axis direction. is doing. In the case of a soft rock base, a support work is provided on the inner surface of the disposal tunnel 2.

このような地層処分での安全性を示すためには、高レベル放射性廃棄物に含まれる核種が地下水に乗って人間が住んでいる世界に届かないように、岩盤自体の低透水性に期待すると共に、人間が掘削した処分坑道を確実に埋め戻し、核種の卓越した移行経路となる水みちを作らないことが要求されている。   In order to demonstrate the safety of such geological disposal, we expect low permeability of the bedrock itself so that nuclides contained in high-level radioactive waste do not reach the world where humans live on groundwater. At the same time, there is a need to reliably backfill man-made excavation tunnels and not create water channels that provide an excellent migration path for nuclides.

我が国におけるこれまでの地層処分事業は、先行して進められてきた海外と同様に好ましいサイト(均質で低透水性)を日本の中から選べるというスタンスで、輸入技術を基本に進めてきた。そのため、現在考えられている処分場概念は、H12レポートに示されているように対象サイトが均質で低透水性のサイトが確保できることを前提に、ある一定領域に等間隔で規則正しく廃棄体を定置する施設形態である(図10、図11参照)。   The geological disposal projects in Japan so far have been based on imported technology, with the stance of being able to select a favorable site (homogeneous and low water permeability) from within Japan, as has been done in advance. Therefore, the concept of the disposal site currently under consideration is to place wastes regularly in a certain area at regular intervals, assuming that the target site can secure a homogeneous and low-permeability site as shown in the H12 report. The facility form to be used (see FIGS. 10 and 11).

また、本発明に関連する先行技術文献として、特許文献1〜5がある。特許文献1の発明は、放射性廃棄物の地層処分場を設置するためのサイトの選定及び地層処分場の仕様選定を支援するための意思決定支援システムに関するものであり、入力部、推定部、出力部を有し、入力部に入力される情報に基づいて、推定部が、建設の意図される地層処分場の安全性能と建設費用とを推定し、出力部が、推定された安全性能と建設費用とを両者の関係が明示される所定の形式で意思決定者に出力するものである。   Further, there are Patent Documents 1 to 5 as prior art documents related to the present invention. The invention of Patent Document 1 relates to a decision support system for supporting selection of a site for setting up a geological disposal site for radioactive waste and specification of a geological disposal site, and includes an input unit, an estimation unit, and an output. Based on the information input to the input unit, the estimation unit estimates the safety performance and construction cost of the geological repository intended for construction, and the output unit estimates the safety performance and construction The cost is output to the decision maker in a predetermined format that clearly shows the relationship between the two.

特許文献2の発明は、放射性廃棄物の埋設廃棄体の受け入れ順序決定や廃棄物処分場における廃棄体の埋設位置決定を支援するための放射性廃棄物埋設支援システムに関するものであり、放射性廃棄物処分場に受け入れられる埋設廃棄物バッチに属する廃棄体の埋設順序を調整するのに必要な情報を入力して、作業員被ばく量と、生活圏への漏洩に伴う安全評価被ばくシナリオ毎の被ばく量とを算出し、廃棄体の埋設候補位置との関係で示すものである。   The invention of Patent Document 2 relates to a radioactive waste embedding support system for supporting the determination of the order in which radioactive waste is buried and determining the location of the waste in the waste disposal site. Enter the information necessary to adjust the burial order of the waste belonging to the burial waste batch that can be accepted at the site, and the amount of worker exposure and the amount of exposure for each safety assessment exposure scenario due to leakage to the living sphere Is calculated and shown in relation to the burying candidate position of the waste.

特許文献3の発明は、放射性廃棄物等の処分パネルによる地層処分において、多数の破砕帯等が存在する場合でも最適に近いパネル形状・配置位置を短時間に選定でき、破砕帯等に対して設置される止水プラグの数を低減でき、コストの低減、工期の短縮等が図れるパネル配置方法であり、地質調査による地質データの任意の区画エリアに処分パネルを配置し、必要な処分容量の処分パネル配置パターンを数種類初期設定し、これらのパターンの、地質データ・基本建設コストデータ・止水プラグの追加コストデータを基に、地質データの不確実性を割増してトータル建設コストを算出し、一番安いものは捨て、一番安いものと二番目に安いものとで交叉させ、処分パネルの大きさや形状を変えながら分散配置し変形パターンを誕生させ、一番安いものに対しては突然変異による変形パターンを誕生させ、前記交叉と突然変異を一定回数繰り返し、その中で一番安いものを選択するものである。   The invention of Patent Document 3 can select a panel shape / positioning position close to the optimum in a short time even in the case where there are a large number of crushing zones in geological disposal by disposal panels for radioactive waste, etc. This is a panel layout method that can reduce the number of water stop plugs installed, reduce costs, shorten the construction period, etc. Several types of disposal panel layout patterns are initially set, and based on the geological data, basic construction cost data, and additional cost data of the water stop plug of these patterns, the uncertainty of the geological data is increased to calculate the total construction cost, Throw away the cheapest one, cross over the cheapest one and the second cheapest one, and create a deformed pattern by distributing and disposing the disposal panel while changing its size and shape. Cheap is born deformation pattern by mutation relative to those, the crossover and mutation of repeating a predetermined number of times, and selects the least expensive therein.

特許文献4の発明は、廃棄物地層処分施設の梯子型地下施設であり、一対の立坑と複数段の処分坑道と、この処分坑道の多数の処分孔からなる立板状の梯子型地層処分パネルを断層破砕帯と断層破砕帯との間に断層破砕帯の傾斜に沿って傾斜配置するなどして破砕帯で挟まれた健全な岩盤部分を有効利用するものである。   The invention of Patent Document 4 is a ladder-type underground facility for a waste geological disposal facility, and a vertical plate-like ladder-type geological disposal panel comprising a pair of vertical shafts, a plurality of disposal tunnels, and a large number of disposal holes in the disposal tunnels In order to effectively utilize the sound rock part sandwiched between the crushing zones, the slope is arranged along the slope of the fault crushing zone between the fault crushing zone and the fault crushing zone.

特許文献5の発明は、廃棄物地層処分場の処分坑道施設であり、処分坑道を水平に対して傾斜する斜坑とし、この斜孔内に廃棄物を斜坑長手方向に間隔をおいて水平または略水平の横置き方式で配置し、掘削土量を低減した上で、埋め戻し材を坑道天端にも隙間なく充填できるようにしたものである。   The invention of Patent Document 5 is a disposal mine facility of a waste geological disposal site. The disposal mine is an inclined shaft inclined with respect to the horizontal, and the waste is horizontally or substantially spaced apart in the longitudinal direction of the inclined shaft. It is arranged in a horizontal horizontal system to reduce the amount of excavated soil, and backfill material can be filled at the top of the tunnel without any gaps.

特開2003−43191号公報JP 2003-43191 A 特開2005−249541号公報JP 2005-249541 A 特開2006−35068号公報JP 2006-3068 A 特開2005−331313号公報JP 2005-331313 A 特開2006−214788号公報JP 2006-214788 A

日本の高レベル放射性廃棄物地層処分の実施主体であるNUMOは海外の国々と異なり、公募でサイトを選ぼうとしている。そのため応募サイトによっては好ましくない(不均質のため低透水性の場所も高透水性の場所も含まれる)サイトである可能性もあり、我が国においては、このような好ましくないサイトにおいても実施できる技術が必要とされている。   Unlike overseas countries, NUMO, which is the implementing body of Japan's high-level radioactive waste geological disposal, is trying to select a site by public offering. Therefore, there is a possibility that it may be a site that is not preferred depending on the application site (because it is inhomogeneous and includes places with low water permeability and high water permeability). In Japan, technology that can be implemented even at such unfavorable sites Is needed.

日本の好ましくないサイトとは、結晶質岩では多くの断層・破砕帯が存在しているサイト、堆積岩では多くの互層構造や挟み層などが存在しているサイトである。このようなサイトでは、例えば結晶質岩の場合、図12に示すように、断層・破砕帯(以下、破砕帯と記載)xが多数存在するため、図13に示すような従来技術における大規模な破砕帯Xを避ける技術のみでは対応することができず、最終的には図14に示すように、破砕帯xがあっても従来どおり処分坑道2を構築し、湧水対策などを実施した後、止水プラグ10を設置するという非常に効率の悪い技術が適用されることとなる。   Unfavorable sites in Japan are sites where many faults and fracture zones exist in crystalline rocks, and many alternating layers and sandwich layers exist in sedimentary rocks. In such a site, for example, in the case of crystalline rock, as shown in FIG. 12, there are many faults / fracture zones (hereinafter referred to as crush zones) x. The technology that avoids the crushing zone X is not enough, and as shown in Fig. 14, the disposal tunnel 2 was constructed as usual even if there was a crushing zone x, and spring measures were implemented. After that, a very inefficient technique of installing the water stop plug 10 is applied.

即ち、上述したように、従来技術は不均質な地質環境特性を考慮した施設形態を有していないため、下記に示すような多くの問題点を有している。   That is, as described above, the prior art does not have a facility configuration that takes into account the heterogeneous geological environment characteristics, and thus has many problems as described below.

(1) 現状の施設形態では、破砕帯部の掘削において、高圧・多量の湧水が存在することが分かっていても、あえてグラウト等の補助工法を多用し、破砕帯を突破(掘削)する必要があり、大変に非効率であり、工期が遅延し、かつ、コストも増大する。   (1) In the current facility configuration, even when it is known that there is a large amount of high-pressure springs when excavating the crushing zone, dare to break through the crushing zone by using many auxiliary methods such as grout. It is necessary, very inefficient, the construction period is delayed, and the cost increases.

(2) また、グラウトにおいては、多量のセメントを用いることになるため、ベントナイト等の人工バリアの性能を低下させ、処分場全体の安全性を損なうことになる。   (2) In addition, since a large amount of cement is used in grout, the performance of artificial barriers such as bentonite is deteriorated and the safety of the entire disposal site is impaired.

(3) 更に、破砕帯を突破(掘削)後、長期安全性の確保の観点から、破砕帯前後に止水プラグを設置する必要があり、大変に非効率であり、工期が遅延し、かつ、コストも増大する。   (3) Furthermore, after breaking through the excavation zone (excavation), it is necessary to install a water stop plug before and after the crush zone from the viewpoint of ensuring long-term safety, which is very inefficient, delays the construction period, and The cost also increases.

(4) 処分場掘削時の湧水量が多くなり、そのための排水設備及び排水処理施設が必要になる。   (4) The amount of spring water at the time of excavation at the disposal site will increase, and drainage facilities and wastewater treatment facilities will be required for this purpose.

(5) 地層処分のプロジェクトを進めるためには一般市民を含めた様々な人々から合意形成を得る必要があるが、このような非効率なことを行うと、合意形成を得ることが困難になる。   (5) In order to proceed with the geological disposal project, it is necessary to obtain consensus from various people including the general public. However, if such inefficiency is done, it will be difficult to obtain consensus. .

本発明は、上記のような問題を解消すべくなされたものであり、放射性廃棄物やその他の廃棄物等を地下坑道に地層処分する地層処分施設において、不均質な地質環境存在する破砕帯を避けて処分坑道や内部主要坑道を掘削形成することで、健全な処分坑道を多数掘削形成することができると共に、破砕帯の突破(掘削)を避けることで、湧水対策や止水プラグ設置数を減らすことができ、コストの低減や工期の短縮等を図ることのできる地層処分施設及びその構築方法を提供するものである。 The present invention has been made to solve the above problem, such as radioactive waste and other waste in geological disposal facilities geological disposal underground tunnels, fracture that exists in heterogeneous geological environment By excavating and forming disposal tunnels and internal main tunnels while avoiding fracture zones, it is possible to excavate and form many healthy disposal tunnels, and by avoiding breakthrough (excavation), measures against spring water and water stoppage It is an object of the present invention to provide a geological disposal facility that can reduce the number of plugs installed, reduce costs, shorten the construction period, and the like, and a construction method thereof.

本発明の請求項1の発明は、廃棄体(放射性廃棄物やその他の廃棄物等)を地下の地盤中に地層処分するために地下に建設される地層処分施設であり、地下の地盤中に廃棄体が埋設定置されるエリアを取り囲むように掘削形成される外周主要坑道と、この外周主要坑道で取り囲まれるエリアに存在する破砕帯の両側ある一定間隔を空けて、前記破砕帯に沿って平行に掘削形成される内部主要坑道と、前記外周主要坑道と前記内部主要坑道で囲まれる区域内に、等間隔に掘削形成される処分坑道から構成されていることを特徴とする地層処分施設である。 The invention of claim 1 of the present invention is a geological disposal facility constructed underground for disposal of waste (radioactive waste, other waste, etc.) in the underground ground, Along the crushing zone, there is a certain interval on both sides of the outer peripheral main tunnel excavated to surround the area where waste is buried and the crushing zone existing in the area surrounded by the outer peripheral main tunnel. an internal main tunnel in parallel to the excavation formed, in the area surrounded with the outer circumferential main tunnel in the internal main tunnel, to be composed of the disposal tunnels being excavated formed at equal intervals in the geological disposal facility, wherein is there.

本発明は、破砕帯の突破(掘削)を避けて、処分坑道や内部主要坑道を掘削形成するものであり、例えば、図5に示すような外周主要坑道と内部第1主要坑道と複数の処分坑道からなる処分パネル、あるいは図8に示すような外周主要坑道と内部第1主要坑道・第2主要坑道と複数の処分坑道からなる処分パネルなどが得られる The present invention avoids breakthrough (excavation) of the crushing zone and excavates and forms disposal tunnels and internal main tunnels. For example, an outer peripheral main tunnel, an internal first main tunnel, and a plurality of disposals as shown in FIG. A disposal panel composed of a mine shaft or a disposal panel composed of an outer peripheral main shaft, an internal first main shaft, a second main shaft, and a plurality of disposal shafts as shown in FIG. 8 is obtained .

えば、図1に示すように、外周主要坑道の掘削時に、その坑道壁面における破砕体の断面の走向・傾斜などを確認することで、破砕帯が処分パネルを横断しているか否かなどを判断する。破砕帯が存在しないと判断された場合には、例えば図2に示すように、等間隔で規則正しい処分坑道を掘削形成し、各処分坑道内に廃棄体を埋設定置する。 For example, as shown in FIG. 1, during drilling of the outer main tunnel, by checking the like strike and dip of a cross section of the crushing member in the tunnel walls, and whether fracture zone traverses the disposition panel to decide. When it is determined that there is no crush zone, for example, as shown in FIG. 2, regular disposal tunnels are excavated at regular intervals, and wastes are buried in each disposal tunnel.

本発明の請求項の発明は、廃棄体(放射性廃棄物やその他の廃棄物等)を地下の地盤中に地層処分するために地下に建設される地層処分施設の構築方法であり、地下の地盤中に廃棄体が埋設定置されるエリアを取り囲む形状の外周主要坑道を掘削形成し、この外周主要坑道の掘削時に、外周主要坑道を横断する破砕帯の存在を把握し、外周主要坑道で取り囲まれるエリアに存在する破砕帯の両側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第1主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法である。 The invention of claim 2 of the present invention is a construction method of a geological disposal facility constructed underground for disposal of waste (radioactive waste, other waste, etc.) in the underground ground. Excavation formation of the outer peripheral main tunnel that surrounds the area where waste is buried in the ground, and when excavating this outer main tunnel, grasp the existence of the crush zone that crosses the outer main tunnel, and surround it with the outer main tunnel An area surrounded by the outer main tunnel and the inner first main tunnel by excavating and forming the inner first main tunnel in parallel along the crush zone with a certain interval on both sides of the crushing zone present in the area It is a construction method of a geological disposal facility characterized by excavating and forming disposal tunnels at regular intervals .

例えば図3に示すように、外周主要坑道の掘削時に破砕帯が確認された場合であり、例えば図4に示すように、破砕帯からある一定間隔(緩衝領域:その区間である程度核種移行遅延が可能な領域)を空け、破砕帯に沿って、再度の主要坑道、即ち内部第1主要坑道を掘削形成する For example, as shown in FIG. 3, a crush zone is confirmed when excavating the outer main tunnel. For example, as shown in FIG. 4, there is a certain interval from the crush zone (buffer region: nuclide migration delay to some extent in that zone). A possible area) is formed, and a main tunnel is formed again along the fracture zone, that is, an internal first main tunnel .

えば図4の内部第1主要坑道の掘削時に、新たな破砕帯の存在を確認し、破砕帯が存在しない場合であり、例えば図5に示すように、外部主要坑道と内部第1主要坑道とで囲まれた破砕帯の無い区域に処分坑道を等間隔で規則正しく掘削形成する。各処分坑道内に廃棄体を埋設定置する。 For example when drilling of the first main tunnel interior of 4 to confirm the presence of a new fracture zone, a case where fracture zone is not present, for example, as shown in FIG. 5, the external main tunnel and the inner first main tunnel Disposal tunnels are excavated regularly at equal intervals in an area surrounded by Wastes are buried in each disposal tunnel.

本発明の請求項の発明は、請求項に記載の地層処分施設の構築方法において、内部第1主要坑道の掘削時に、新たに存在した破砕帯の側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第2主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道及び前記内部第2主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法である。 The invention of claim 3 of the present invention is the method for constructing a geological disposal facility according to claim 2, when drilling within the first main tunnel, at a certain interval on both sides of the newly existed fracture zone, An internal second main tunnel is excavated in parallel along the crushing zone, and a disposal tunnel is excavated at equal intervals in an area surrounded by the outer peripheral main tunnel, the inner first main tunnel, and the inner second main tunnel. It is a construction method of a geological disposal facility characterized by forming .

例えば図6に示すように、内部第1主要坑道の掘削時に、破砕帯に遭遇した場合であり、例えば図7に示すように、破砕帯からある一定間隔(緩衝領域:その区間である程度核種移行遅延が可能な領域)を空け、破砕帯に沿って内部第2主要坑道を掘削形成する For example, as shown in FIG. 6, this is a case where a crush zone is encountered during excavation of the internal first main tunnel. For example, as shown in FIG. 7, a certain interval (buffer region: nuclide migration in that section) from the crush zone The area where delay is possible is made, and an internal second main tunnel is excavated and formed along the fracture zone .

えば図7の内部第2主要坑道の掘削時に、新たな破砕帯の存在を確認し、破砕帯が存在しない場合であり、例えば図8に示すように、外部主要坑道と内部第1主要坑道または内部第2主要坑道とで囲まれた破砕帯の無い区域に処分坑道を等間隔で規則正しく掘削形成する。各処分坑道内に廃棄体を埋設定置する。 For example when drilling within the second main tunnel of Figure 7, confirm the presence of a new fracture zone, a case where fracture zone is not present, for example, as shown in FIG. 8, the external main tunnel and the inner first main tunnel Alternatively, disposal tunnels are regularly excavated at regular intervals in an area without a crush zone surrounded by the second inner main tunnel. Wastes are buried in each disposal tunnel.

本発明の請求項の発明は、請求項に記載の地層処分施設の構築方法において、内部第2主要坑道の掘削時に、新たに存在した破砕帯の側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第3主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道、前記内部第2主要坑道及び前記内部第3主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法である。 The invention of claim 4 of the present invention is a method for constructing a geological disposal facility according to claim 3, when excavation within the second main tunnel, at a certain interval on both sides of the newly existed fracture zone, Excavating and forming an internal third main tunnel in parallel along the crushing zone, and within an area surrounded by the outer peripheral main tunnel and the internal first main tunnel, the internal second main tunnel, and the internal third main tunnel; It is a construction method of a geological disposal facility characterized by excavating and forming disposal tunnels at equal intervals .

以上のような主要坑道掘削時の破砕帯の確認、内部主要坑道の掘削形成を破砕帯が確認されなくなるまで繰り返す。破砕帯が確認されなくなった時点で施設形態が確定することになる。   The confirmation of the crush zone during excavation of the main tunnel and the formation of the inner main tunnel are repeated until no crush zone is confirmed. The facility form will be finalized when the crush zone is no longer confirmed.

以上のような本発明によれば、不均質な地質環境で多数の破砕帯が存在する場合でも、破砕帯を避けて処分坑道や内部主要坑道を掘削形成することで、健全な処分坑道を多数掘削形成することができる。また、破砕帯の突破(掘削)を避けることができるため、(a)グラウト等の湧水対策の量を低減でき、(b)セメントの使用量を低減でき、(c)止水プラグの設置数を低減でき、(d)湧水(排水)量の低減が可能となり、コストの増大と工期の遅延を防ぐことができる。また、地質環境特性を十分に踏まえた施設形態のため合意形成が得られやすくなる。   According to the present invention as described above, even when a large number of crushing zones exist in a heterogeneous geological environment, a number of healthy disposal mine shafts can be obtained by excavating and forming disposal mine channels and internal main mine shafts while avoiding the crushing zones. Excavation can be formed. In addition, because breakthroughs (excavation) can be avoided, (a) the amount of spring water countermeasures such as grout can be reduced, (b) the amount of cement used can be reduced, and (c) water stop plugs are installed. The number can be reduced, and (d) the amount of spring water (drainage) can be reduced, thereby preventing an increase in cost and a delay in the construction period. In addition, it is easy to obtain consensus because of the facility form that fully considers the geological environment characteristics.

本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1) 放射性廃棄物やその他の廃棄物等を地下坑道に地層処分する地層処分施設において、不均質な地質環境で多数の破砕帯が存在する場合でも、外周主要坑道の掘削時に破砕帯の存在を把握し、破砕帯を避けて処分坑道あるいは内部主要坑道と処分坑道を掘削形成するため、健全な処分坑道を多数掘削形成することができる。   (1) In a geological disposal facility that geologically disposes radioactive waste or other waste in underground tunnels, even if there are many fracture zones in a heterogeneous geological environment, the presence of fracture zones when excavating the outer main tunnel Therefore, the disposal tunnel or the inner main tunnel and the disposal tunnel are excavated and formed while avoiding the crushing zone.

(2) 破砕帯の突破(掘削)を避けることで、湧水対策や止水プラグ設置数を減らすことができ、コストの低減や工期の短縮等を図ることができる。   (2) By avoiding the breakage (excavation) of the crushing zone, it is possible to reduce the number of spring measures and the number of water stop plugs installed, thereby reducing costs and shortening the construction period.

(3) 施設形態は基本的に従来の処分パネル・竪置き方式等を継承しており、受け入れやすい施設形態である。前述の地質環境特性を十分に踏まえた施設形態と相まって、合意形成が得られやすくなる。   (3) The facility form basically inherits the conventional disposal panel and laying method, etc. and is an easy to accept facility form. A consensus building is easily obtained in combination with the above-mentioned facility form that fully considers the geological environment characteristics.

(4)応募されたサイトの地質環境の不均質性に応じた施設形態が可能になる。   (4) A facility configuration corresponding to the heterogeneity of the geological environment of the applied site will be possible.

以下、本発明を図示する実施形態に基づいて説明する。この実施形態は高レベル放射性廃棄物の地層処分に適用した例である。図1〜図8は、本発明に係る地層処分施設の構築方法を順に示したものである。   Hereinafter, the present invention will be described based on the illustrated embodiments. This embodiment is an example applied to the geological disposal of high-level radioactive waste. 1 to 8 sequentially show a construction method of a geological disposal facility according to the present invention.

図1〜図8に示すように、処分パネル1は、従来と同様に、地下300mより深い安定した地層中に構築されるが、本発明においては、基本的に、パネル内に破砕帯xを避けて処分坑道2または処分坑道2と内部の主要坑道3を構築するものであり、かつ、処分坑道2や内部の主要坑道3が破砕帯xを突破(掘削)しないように構築するものであり、最終的に、次のような処分パネル1が得られる。   As shown in FIGS. 1 to 8, the disposal panel 1 is constructed in a stable formation deeper than 300 m underground, as in the prior art. In the present invention, basically, the crushing zone x is provided in the panel. The disposal tunnel 2 or the disposal tunnel 2 and the inner main tunnel 3 are constructed by avoiding the construction, and the disposal tunnel 2 and the inner main tunnel 3 are constructed so as not to break through the excavation zone x. Finally, the following disposal panel 1 is obtained.

即ち、図2に示すように、所定の間隔をおいて併設された複数の処分坑道2と、これら処分坑道2を取り囲む外周主要坑道3から構成される処分パネル1−1、図5に示すように、複数の処分坑道2と、外周主要坑道3Aと、内部主要坑道3B1から構成される処分パネル1−2、図8に示すように、複数の処分坑道2と、外周主要坑道3Aと、内部主要坑道3B1・3B2から構成される処分パネル1−3などが得られるThat is, as shown in FIG. 2, a disposal panel 1-1 comprising a plurality of disposal tunnels 2 arranged at predetermined intervals and an outer peripheral main tunnel 3 surrounding these disposal tunnels 2, as shown in FIG. In addition, as shown in FIG. 8, a plurality of disposal tunnels 2, an outer peripheral main tunnel 3 </ b> A, an inner main tunnel 3 </ b> B <b> 1, a plurality of disposal tunnels 2, an outer main tunnel 3 </ b> A, A disposal panel 1-3 including the main mine shafts 3B1 and 3B2 is obtained .

なお、廃棄体は、地上から立坑や斜坑等のアクセス坑道により地下に搬入され、連絡坑道や主要坑道3によって各処分パネル1の処分坑道2内に搬送され、各処分坑道2に処分孔竪置き方式や処分坑道横置き方式により埋設定置される(図11参照)。   The waste is transported underground from the ground through access tunnels such as vertical shafts and inclined shafts, transported into the disposal tunnels 2 of the disposal panels 1 through the connecting tunnels and the main tunnels 3, and placed in the disposal tunnels 2 in the disposal tunnels 2. It is buried by the method and the disposal tunnel horizontal placement method (see FIG. 11).

本発明では、次のような手順で、処分パネル1を構築する。   In the present invention, the disposal panel 1 is constructed in the following procedure.

(1) 先ず、図1に示すように、廃棄体が埋設定置されるエリアを取り囲む閉じた形状の外周主要坑道3Aを掘削形成する。この外周主要坑道3Aの掘削時に、外周主要坑道3Aを横断する破砕帯の存在を把握する。   (1) First, as shown in FIG. 1, the outer peripheral main tunnel 3A having a closed shape surrounding the area where the waste is buried is excavated and formed. At the time of excavation of the outer peripheral main shaft 3A, the existence of a crushing zone crossing the outer main shaft 3A is grasped.

破砕帯は、坑道壁面において、走向・傾斜(面としてどっちを向いているか)を確認する。例えば、周回状の外周主要坑道3Aにおいて、2箇所で破砕帯が見つかり、特性および走向・傾斜として連続性が確認できれば、同一であると判断でき、破砕帯が処分パネルを突き抜けていると判断できる。また、破砕帯が1箇所でしか確認できない場合でも、走向・傾斜を基本に反対側の主要坑道まで到達していると保守的に仮定して、上記の2箇所の場合と同様の対応を実施する。   For the crushing zone, check the strike / inclination (which face is facing) on the wall surface of the tunnel. For example, if crushing zones are found in two places in the circular outer peripheral main shaft 3A and the continuity can be confirmed as the characteristics and strike / inclination, it can be determined that they are the same, and it can be determined that the crushing zone has penetrated the disposal panel. . Even if the crushing zone can only be confirmed at one location, the same measures as in the above two locations are implemented conservatively assuming that the main tunnel on the opposite side is reached on the basis of strike and inclination. To do.

(2) 外周主要坑道3Aで取り囲まれるエリアにおいて破砕帯が存在しないと判断された場合、図2に示すように、外周主要坑道3Aで囲まれた区域内に処分坑道2を等間隔で規則正しく掘削形成する。各処分坑道2内に廃棄体を埋設定置する。   (2) When it is judged that there is no crush zone in the area surrounded by the outer main tunnel 3A, as shown in Fig. 2, the disposal tunnel 2 is excavated regularly at equal intervals in the area surrounded by the outer main tunnel 3A. Form. A waste body is buried in each disposal tunnel 2.

(3) 外周主要坑道3Aの掘削において、図3に示すように、破砕帯xの存在が確認できた場合には、図4に示すように、破砕帯xからある一定間隔(緩衝領域k:その区間である程度核種移行遅延が可能な領域)を空け、破砕帯xに沿って、再度の主要坑道、即ち内部第1主要坑道3B1を掘削形成する。   (3) In the excavation of the outer peripheral main shaft 3A, as shown in FIG. 3, when the existence of the crush zone x can be confirmed, as shown in FIG. 4, a certain interval (buffer region k: A region in which the nuclide migration can be delayed to some extent) is made, and the main tunnel, that is, the inner first main tunnel 3B1 is excavated along the fracture zone x.

(4) 内部第1主要坑道3B1の掘削時に、前述と同様に、新たな破砕帯の存在を確認する。破砕帯が存在しない場合には、図5に示すように、外部主要坑道3Aと内部第1主要坑道3B1とで囲まれた破砕帯の無い区域に処分坑道2を等間隔で規則正しく掘削形成する。各処分坑道2内に廃棄体を埋設定置する。   (4) When excavating the internal first main tunnel 3B1, the existence of a new crush zone is confirmed in the same manner as described above. When the crushing zone does not exist, as shown in FIG. 5, the disposal gallery 2 is regularly excavated and formed at equal intervals in an area without the crushing zone surrounded by the outer main mine 3A and the inner first main mine 3B1. A waste body is buried in each disposal tunnel 2.

(5) 内部第1主要坑道3B1の掘削時に、図6に示すように、破砕帯xに遭遇した場合には、図7に示すように、破砕帯xからある一定間隔(緩衝領域k:その区間である程度核種移行遅延が可能な領域)を空け、破砕帯xに沿って、再再度の主要坑道、即ち内部第2主要坑道3B2を掘削形成する。   (5) When excavating the internal first main tunnel 3B1, as shown in FIG. 6, when encountering the crush zone x, as shown in FIG. 7, a certain interval from the crush zone x (buffer region k: A region in which the nuclide migration can be delayed to some extent in the section is made, and the main tunnel again, that is, the internal second main tunnel 3B2 is excavated and formed along the fracture zone x.

(6) 内部第2主要坑道3B2の掘削時に、前述と同様に、新たな破砕帯の存在を確認する。破砕帯が存在しない場合には、図8に示すように、外部主要坑道3Aと内部第1主要坑道3B1または内部第2主要坑道3B2とで囲まれた破砕帯の無い区域に処分坑道2を等間隔で規則正しく掘削形成する。各処分坑道2内に廃棄体を埋設定置する。   (6) When excavating the internal second main tunnel 3B2, confirm the existence of a new crushing zone as described above. When the crushing zone does not exist, as shown in FIG. 8, the disposal mine tunnel 2 is located in an area without the crushing zone surrounded by the outer main mine 3A and the inner first main mine 3B1 or the inner second main mine 3B2. Form excavation regularly at intervals. A waste body is buried in each disposal tunnel 2.

(7) 以上のような主要坑道掘削時の破砕帯の確認、第3、第4、第5、…の内部主要坑道の掘削形成を破砕帯が確認されなくなるまで繰り返す。破砕帯が確認されなくなった時点で施設形態が確定する。   (7) The confirmation of the crush zone at the time of excavation of the main tunnel as described above and the excavation formation of the third, fourth, fifth,... Internal main tunnel are repeated until no crush zone is confirmed. The facility form is fixed when the crush zone is no longer confirmed.

なお、以上は高レベル放射性廃棄物の地層処分について説明したが、これに限らず、二酸化炭素の地中貯蔵やその他の廃棄物の地層処分にも本発明の施設形態を適用することができる。   In addition, although the geological disposal of high level radioactive waste was demonstrated above, it is not restricted to this, The facility form of this invention is applicable also to geological storage of a carbon dioxide, and geological disposal of other waste.

本発明に係る地層処分施設の構築方法(第1工程)を示す平面図である。It is a top view which shows the construction method (1st process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第2工程)を示す平面図である。It is a top view which shows the construction method (2nd process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第3工程)を示す平面図である。It is a top view which shows the construction method (3rd process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第4工程)を示す平面図である。It is a top view which shows the construction method (4th process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第5工程)を示す平面図である。It is a top view which shows the construction method (5th process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第6工程)を示す平面図である。It is a top view which shows the construction method (6th process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第7工程)を示す平面図である。It is a top view which shows the construction method (7th process) of the geological disposal facility which concerns on this invention. 本発明に係る地層処分施設の構築方法(第8工程)を示す平面図である。It is a top view which shows the construction method (8th process) of the geological disposal facility which concerns on this invention. 高レベル放射性廃棄物の地層処分場の一例を断面にして示す斜視図である。It is a perspective view which shows an example of the geological disposal site of a high level radioactive waste in a cross section. 従来一般の処分パネルの施設形態を示す平面図である。It is a top view which shows the facility form of the conventional general disposal panel. 処分パネルにおける廃棄体の定置方式を示す斜視図であり、(a) は処分孔竪置き方式、(b) は処分坑道横置き方式である。It is a perspective view which shows the placement method of the waste body in a disposal panel, (a) is a disposal hole anchor placement method, (b) is a disposal tunnel horizontal placement method. 不均質な地質環境における断層・破砕帯の分布を示す水平断面図である。It is a horizontal sectional view showing the distribution of faults and fracture zones in a heterogeneous geological environment. 従来における大規模断層・破砕帯を避けるパネル配置を断面にして示す斜視図である。It is a perspective view which shows the panel arrangement which avoids the conventional large-scale fault and crush zone in a cross section. 従来における断層・破砕帯に対する対策技術を示したものであり、(a) は処分地層の水平断面図、(b) は坑道の止水対策を示す部分水平断面図、(c) は全体水平断面図である。This shows conventional countermeasure techniques for faults and crushing zones, where (a) is a horizontal cross-sectional view of the disposal strata, (b) is a partial horizontal cross-sectional view showing the measures against waterstops in a mine shaft, and (c) is an overall horizontal cross-section. FIG.

1……処分パネル
2……処分坑道
3……主要坑道
3A…外周主要坑道
3B…内部主要坑道
4……連絡坑道
5……処分孔
6……埋め戻し材
10……止水プラグ
A……岩盤(天然バリア)
B……緩衝材(人工バリア)
C……廃棄体
X……大規模な断層・破砕帯
x……断層・破砕帯
1 …… Disposal panel 2 …… Disposal tunnel 3 …… Main tunnel 3A… Outer main tunnel 3B… Inner main tunnel 4 …… Communication tunnel 5 …… Disposal hole 6 …… Backfill material 10 …… Water stop plug A …… Bedrock (natural barrier)
B …… Buffer material (artificial barrier)
C …… Waste body X …… Large scale fault / fracture zone x …… Fault / fracture zone

Claims (4)

廃棄体を地下の地盤中に地層処分するために地下に建設される地層処分施設であり、地下の地盤中に廃棄体が埋設定置されるエリアを取り囲むように掘削形成される外周主要坑道と、この外周主要坑道で取り囲まれるエリアに存在する破砕帯の両側ある一定間隔を空けて、前記破砕帯に沿って平行に掘削形成される内部主要坑道と、前記外周主要坑道と前記内部主要坑道で囲まれる区域内に、等間隔に掘削形成される処分坑道から構成されていることを特徴とする地層処分施設。 A geological disposal facility constructed underground to dispose of waste in the underground ground, an outer peripheral main tunnel excavated to surround the area where the waste is buried in the underground ground, and at regular intervals on both sides of the fracture zone located in the area surrounded by the outer peripheral main tunnel, and an internal main tunnel in parallel to the excavation formed along the fracture zone, in the internal main tunnel and the outer circumferential main tunnel A geological disposal facility characterized in that it is composed of disposal tunnels excavated and formed at equal intervals in the enclosed area. 廃棄体を地下の地盤中に地層処分するために地下に建設される地層処分施設の構築方法であり、地下の地盤中に廃棄体が埋設定置されるエリアを取り囲む形状の外周主要坑道を掘削形成し、この外周主要坑道の掘削時に、外周主要坑道を横断する破砕帯の存在を把握し、外周主要坑道で取り囲まれるエリアに存在する破砕帯の両側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第1主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法。 This is a method of constructing a geological disposal facility that is built underground to dispose of waste in the underground ground, and excavating and forming an outer main tunnel with a shape surrounding the area where the waste is buried in the underground ground At the time of excavation of the outer main tunnel, the existence of the crushing zone crossing the outer main tunnel is grasped, and a predetermined interval is provided on both sides of the crushing zone existing in the area surrounded by the outer main tunnel. An internal first main tunnel is formed in parallel along the outer periphery, and a disposal tunnel is excavated and formed at equal intervals in an area surrounded by the outer peripheral main tunnel and the inner first main tunnel . Construction method. 請求項に記載の地層処分施設の構築方法において、内部第1主要坑道の掘削時に、新たに存在した破砕帯の側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第2主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道及び前記内部第2主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法。 In method for constructing a geological disposal facility according to claim 2, when drilling within the first main tunnel, at a certain interval on both sides of the newly existed fracture zone, the internal parallel along the fracture zone A geological disposal facility characterized by excavating and forming two main tunnels, and excavating and forming disposal tunnels at equal intervals in an area surrounded by the outer peripheral main tunnel, the inner first main tunnel and the inner second main tunnel How to build. 請求項に記載の地層処分施設の構築方法において、内部第2主要坑道の掘削時に、新たに存在した破砕帯の側にある一定間隔を空けて、前記破砕帯に沿って平行に内部第3主要坑道を掘削形成し、前記外周主要坑道と前記内部第1主要坑道、前記内部第2主要坑道及び前記内部第3主要坑道で囲まれる区域内に、等間隔に処分坑道を掘削形成することを特徴とする地層処分施設の構築方法。 In method for constructing a geological disposal facility according to claim 3, when excavation within the second main tunnel, at a certain interval on both sides of the newly existed fracture zone, the internal parallel along the fracture zone Excavating and forming three main tunnels, and excavating and forming disposal tunnels at equal intervals in an area surrounded by the outer peripheral main tunnel and the inner first main tunnel, the inner second main tunnel and the inner third main tunnel The construction method of the geological disposal facility characterized by this.
JP2007124869A 2007-05-09 2007-05-09 Geological disposal facility and its construction method Active JP4798057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124869A JP4798057B2 (en) 2007-05-09 2007-05-09 Geological disposal facility and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124869A JP4798057B2 (en) 2007-05-09 2007-05-09 Geological disposal facility and its construction method

Publications (2)

Publication Number Publication Date
JP2008279346A JP2008279346A (en) 2008-11-20
JP4798057B2 true JP4798057B2 (en) 2011-10-19

Family

ID=40140629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124869A Active JP4798057B2 (en) 2007-05-09 2007-05-09 Geological disposal facility and its construction method

Country Status (1)

Country Link
JP (1) JP4798057B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936206B2 (en) * 2010-02-23 2012-05-23 高志 中畑 Carbon dioxide sequestration method and apparatus
JP5983995B2 (en) * 2011-06-02 2016-09-06 清水建設株式会社 Waste disposal facility
JP5984006B2 (en) * 2012-09-10 2016-09-06 清水建設株式会社 Water injection method for gap filler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203797A (en) * 1992-01-23 1993-08-10 Mitsui Constr Co Ltd Radioactive waste disposal site
JP2003043191A (en) * 2001-07-26 2003-02-13 Taisei Corp Decision making support system
JP4270023B2 (en) * 2004-05-19 2009-05-27 鹿島建設株式会社 Ladder-type underground facility for waste geological disposal facility
JP2006035068A (en) * 2004-07-26 2006-02-09 Kajima Corp Arrangement method for waste ground layer disposal field

Also Published As

Publication number Publication date
JP2008279346A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
Lee et al. Concept of a Korean reference disposal system for spent fuels
CN108343449B (en) Structural system for underground neutron energy power station
JP4798057B2 (en) Geological disposal facility and its construction method
JP4225245B2 (en) Underwater tunnel structure
JP4270023B2 (en) Ladder-type underground facility for waste geological disposal facility
JP5740456B2 (en) Radioactive waste underground storage facility and construction method thereof
JP4492373B2 (en) Disposal tunnel facility at waste geological disposal site
Cho et al. KURT, a small-scale underground research laboratory for the research on a high-level waste disposal
JP4356252B2 (en) Geological disposal facility and disposal tunnel segment
JP2006035068A (en) Arrangement method for waste ground layer disposal field
JP5135706B2 (en) Geological disposal facility and its construction method
JP6464469B2 (en) Radioactive waste disposal tunnel
JP5637376B2 (en) Method of burying radioactive waste
JP2008073572A (en) Underground storage facilitie of waste geological disposal field, and recovery method of waste
Hoskins et al. Geologic and engineering dimensions of nuclear waste storage
JP2002048900A (en) Structure for fixing high-level radioactive waste for geologic disposal
JP4281618B2 (en) Underground facility of waste geological disposal facility
KR100669530B1 (en) Construction method of a rataining well
Chegbeleh et al. Concepts of Repository and the Functions of Bentonite in Repository Environments: A State–of–the–art review
JP2007154603A (en) Uneven settlement preventing method for building
JP2002181995A (en) Geologic disposal facility and its construction method
JP4453577B2 (en) Waste geological disposal facility
KR101399295B1 (en) Method for constructing semi-basement structure for radioactive waste
Wei et al. Applications Of Ground Improvement For Nuclear Power Plant Sites
Christiansson et al. Rock engineering challenges for extending the Forsmark SFR, Sweden

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250