JP4797921B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4797921B2
JP4797921B2 JP2006268948A JP2006268948A JP4797921B2 JP 4797921 B2 JP4797921 B2 JP 4797921B2 JP 2006268948 A JP2006268948 A JP 2006268948A JP 2006268948 A JP2006268948 A JP 2006268948A JP 4797921 B2 JP4797921 B2 JP 4797921B2
Authority
JP
Japan
Prior art keywords
light emitting
light
diffraction grating
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006268948A
Other languages
Japanese (ja)
Other versions
JP2008091129A (en
Inventor
功 海老沢
吉幸 松岡
賢次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006268948A priority Critical patent/JP4797921B2/en
Publication of JP2008091129A publication Critical patent/JP2008091129A/en
Application granted granted Critical
Publication of JP4797921B2 publication Critical patent/JP4797921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プリント装置の露光ヘッド等に利用される発光装置に関する。   The present invention relates to a light emitting device used for an exposure head of a printing apparatus.

従来、有機EL素子をプリント装置の露光ヘッド等の光源として利用する試みが各種なされてきている。   Conventionally, various attempts have been made to use an organic EL element as a light source such as an exposure head of a printing apparatus.

例えば、特許文献1においては、有機EL素子のアレイの個々の素子に対応させてマイクロレンズを配置する構成において、各有機EL素子において発生した光の集光位置に、隣接する有機EL素子からの光が混入するのを遮る光学的な穴が設けられた隔壁を有機EL素子の発光側に配置することにより、露光ヘッドにおけるクロストークを低減させ、十分な解像力で各有機EL素子からの光を集光できるようにしている。   For example, in Patent Document 1, in a configuration in which a microlens is arranged corresponding to each element of an array of organic EL elements, a light collecting position of light generated in each organic EL element is placed from an adjacent organic EL element. By arranging a partition wall with an optical hole that blocks light from entering on the light emitting side of the organic EL element, crosstalk in the exposure head is reduced, and light from each organic EL element is received with sufficient resolution. The light can be condensed.

また、特許文献2においては、有機EL素子の発光側に整列してマイクロレンズアレイ板を配置し、マイクロレンズアレイ板の入射側の面に、各有機EL素子を囲む溝を設け、その溝内に吸収層又は反射層を配置することにより、露光ヘッドにおけるクロストークを低減させ、十分な解像力で各有機EL素子からの光を集光できるようにしている。
特開2003−291404号公報 特開2003−291406号公報
Further, in Patent Document 2, a microlens array plate is arranged in alignment with the light emitting side of an organic EL element, and a groove surrounding each organic EL element is provided on the incident side surface of the microlens array plate. By disposing an absorption layer or a reflection layer, crosstalk in the exposure head is reduced, and light from each organic EL element can be condensed with sufficient resolution.
JP 2003-291404 A JP 2003-291406 A

ここで、上記した特許文献1及び特許文献2は、何れも有機EL素子毎に光学的な開口、マイクロレンズ、反射層、吸収層等を形成しなければならない。これらの構造は、プリント装置を高解像度化するほど微細化する必要があるため、その分だけ加工コストが上がり、場合によっては加工そのものが困難となる。   Here, in both Patent Document 1 and Patent Document 2 described above, an optical aperture, a microlens, a reflective layer, an absorption layer, and the like must be formed for each organic EL element. Since these structures need to be miniaturized as the resolution of the printing apparatus increases, the processing cost increases accordingly, and in some cases, the processing itself becomes difficult.

また、上記特許文献1及び特許文献2は、光学的には有機EL素子に対してマイクロレンズの径が同程度の大きさである。そして、1枚レンズの構造であるため、集光位置が有機EL素子に非常に近くなり、像坦持体に集光するためには露光ヘッドと像担持体とを限りなく近づけなければならない。やむを得ず、結像点を離す場合には像が拡大されて解像度は低下し、さらに光量も低下することになる。また、結像ではなく狭指向性を利用して露光する場合にも、露光ヘッドを像担持体に限りなく近づけなければならない。   Also, in Patent Document 1 and Patent Document 2, the diameter of the microlens is optically the same as that of the organic EL element. Since the lens has a single lens structure, the condensing position is very close to the organic EL element, and in order to condense on the image carrier, the exposure head and the image carrier must be brought as close as possible. Inevitably, when the image forming point is separated, the image is enlarged, the resolution is lowered, and the light quantity is also lowered. Even when exposure is performed using narrow directivity rather than image formation, the exposure head must be as close as possible to the image carrier.

さらには、マイクロレンズを用いる構造の場合、露光ヘッドの光照射面が凸形状となるため、露光ヘッドの光照射面にトナー等が付着した場合に容易に取り除くことができない。   Furthermore, in the case of a structure using a microlens, the light irradiation surface of the exposure head has a convex shape, and thus cannot be easily removed when toner or the like adheres to the light irradiation surface of the exposure head.

本発明は、上記の事情に鑑みてなされたものであり、高精細、高輝度かつ狭指向性を有し、比較的簡単な製作プロセスで製作できる発光装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light emitting device that has high definition, high luminance, narrow directivity, and can be manufactured by a relatively simple manufacturing process.

上記の目的を達成するために、請求項1に記載の発明は、複数の発光部を有し、前記各発光部は、発光層と、前記発光層を狭挟して前記発光層に電界を与えて前記発光層を発光させるための、対向する第1の電極及び第2の電極とを有して第1の基板の一面に形成され、前記発光層から発光した光を、発光面をなす前記第1の電極から出射し、前記各発光部前記第1の基板の一面上に互いに離間して直線状に配列された発光部アレイと、前記発光部アレイの前記発光面側の全体を覆って設けられたコア層と、を具備し、前記コア層は、屈折率が互いに異なる2つの回折格子形成層が積層されて形成され、前記コア層の前記複数の発光部の各々の前記発光面に対応する領域に、前記第1の電極から出射された光を前記複数の発光部の配列方向に対する直交方向に伝搬させて外部に出射する方向に設けられた複数の光導波回折格子が形成され前記コア層の前記複数の発光部の配列方向における前記各発光部間に対応する領域に光の伝搬方向が前記光導波回折格子における光の伝搬方向に対して直交する複数の光アイソレート回折格子が形成され、前記各光アイソレート回折格子の格子間隔は、前記第1の電極から出射された光の隣り合う前記発光部への伝搬を遮断する値に設定され、前記各光導波回折格子及び前記各光アイソレート回折格子は、前記コア層内に同一の材料により形成されていることを特徴とする発光装置である。 In order to achieve the above object, the invention according to claim 1 has a plurality of light emitting portions, each of the light emitting portions having a light emitting layer and an electric field applied to the light emitting layer sandwiching the light emitting layer. provided for emitting the light emitting layer, a first electrode and a second electrode facing, is formed on the first one surface on the substrate has a light emitted from the light-emitting layer, the light emitting surface emitted from the first electrode forming a light-emitting unit array are linearly arranged each light emitting portion is spaced apart from each other on one surface of the first substrate, the light emitting surface side of the light emitting portion array A core layer provided so as to cover the whole, wherein the core layer is formed by laminating two diffraction grating forming layers having different refractive indexes , and each of the plurality of light emitting portions of the core layer . in a region corresponding to the light emitting surface, sequence the light emitted from said first electrode of said plurality of light emitting portions Is propagated in the direction perpendicular against the direction a plurality of optical waveguide gratings provided in the direction of emission to the outside is formed, a region corresponding to between the respective light emitting portions in the arrangement direction of the plurality of light emitting portions of the core layer In addition, a plurality of optical isolation gratings whose light propagation directions are orthogonal to the light propagation direction in the optical waveguide diffraction grating are formed, and the lattice spacing of each of the optical isolation diffraction gratings is determined by the first electrode. Each of the optical waveguide diffraction grating and each of the optical isolated diffraction gratings is formed of the same material in the core layer. It is a light-emitting device characterized by having.

請求項2に記載の発明は、請求項1に記載の発光装置において、前記光導波回折格子は、ブラッグ条件の空間周期を有する分布帰還型の回折格子であることを特徴とする。   According to a second aspect of the present invention, in the light emitting device according to the first aspect, the optical waveguide diffraction grating is a distributed feedback diffraction grating having a spatial period of Bragg conditions.

請求項3に記載の発明は、請求項1に記載の発光装置において、前記光導波回折格子は、λ/4位相シフト構造を有する回折格子であることを特徴とする。   According to a third aspect of the present invention, in the light emitting device according to the first aspect, the optical waveguide diffraction grating is a diffraction grating having a λ / 4 phase shift structure.

請求項4に記載の発明は、請求項1に記載の発光装置において、前記光アイソレート回折格子は、相異なる周期的摂動の単位セルから反射される前記隣り合う発光部からの光が打ち消し合う位相で重なる空間周期からなる回折格子であることを特徴とする。   According to a fourth aspect of the present invention, in the light emitting device according to the first aspect, the light isolation diffraction grating cancels light from the adjacent light emitting portions reflected from unit cells having different periodic perturbations. It is a diffraction grating having a spatial period overlapping in phase.

請求項5に記載の発明は、請求項1に記載の発光装置において、一面側が前記第1の基板の前記一面側と対向して前記発光部アレイの前記発光面側に設けられてクラッド層をなす第2基板を有し、前記コア層は、前記第2基板の前記一面側と前記発光部アレイの前記発光面側との間に設けられ、前記コア層の積層された前記2つの回折格子形成層の界面に回折格子形状形成され該回折格子形状により前記各光導波回折格子と前記各光アイソレート回折格子とが、前記光導波回折格子における光の伝搬方向に対して直交する方向に沿って、交互に連続的に形成されていることを特徴とする。 According to a fifth aspect of the present invention, in the light emitting device according to the first aspect , the one surface side is provided on the light emitting surface side of the light emitting section array so as to face the one surface side of the first substrate. And the core layer is provided between the one surface side of the second substrate and the light emitting surface side of the light emitting section array, and the two diffraction gratings in which the core layers are stacked. is a diffraction grating shape formed at an interface forming layer, wherein the diffraction grating pattern and the optical waveguide diffraction grating and the respective optical isolate diffraction grating, orthogonal to the propagation direction of light in said optical waveguide grating It is characterized by being formed alternately and continuously along the direction .

請求項6に記載の発明は、請求項5に記載の発光装置において、前記第2の基板の前記一面上と前記コア層との間の、前記各発光部の前記発光面と対向する位置に形成され、前記発光から出射され、前記第2の基板の前記一面側に入射した光を前記光導波回折格子側に反射させる反射部を更に具備することを特徴とする。 According to a sixth aspect of the present invention, in the light emitting device according to the fifth aspect, between the one surface of the second substrate and the core layer , at a position facing the light emitting surface of each light emitting unit. And a reflecting portion configured to reflect the light emitted from the light emitting surface and incident on the one surface side of the second substrate to the optical waveguide diffraction grating side.

本発明によれば、直線状に離間して配列される複数の発光部を有する発光部アレイを有し、各発光部の発光面側を覆って設けられたコア層内に光導波回折格子を形成して、各発光部から出射した光を発光部の配列方向に直交方向に伝搬させて出射させ、コア層内の各光導波回折格子間に光アイソレート回折格子を各光導波回折格子と同じ材料で形成して隣り合う発光部間に光が伝搬しないようにして、高精細、高輝度かつ狭指向性を有し、比較的簡単な製作プロセスで製作できる発光装置を提供することができる。 According to the present invention, an optical waveguide diffraction grating is provided in a core layer that has a light-emitting part array having a plurality of light-emitting parts arranged linearly apart and covers the light-emitting surface side of each light-emitting part. formed by the light emitted from the light emitting unit is emitted is propagated in a direction orthogonal to the array direction of the light emitting portion, the light isolated diffraction grating between each optical waveguide grating in the core layer and each optical waveguide grating formed of the same material, so as the light does not propagate between the light emitting portion adjacent, has a high resolution, high luminance and narrow directivity, is possible to provide a light emitting device can be fabricated by relatively simple fabrication processes it can.

以下、図面を参照して本発明の実施形態を説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係る発光装置1000を模式的に示す3断面図である。なお、図1(a)は発光装置1000の上面断面図であり、図1(b)は図1(a)のA−A線断面図であり、図1(c)は図1(a)のB−B線断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a cross-sectional view schematically showing a light emitting device 1000 according to the first embodiment of the present invention. 1A is a top cross-sectional view of the light-emitting device 1000, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and FIG. 1C is FIG. It is a BB sectional view taken on the line.

図1(c)に示すように、発光装置1000は、有機EL発光体形成層100に導波路形成層200を積層した構造により構成されている。また、図1(c)において、矢印C方向は光の伝搬方向を示している。更に、発光装置1000の光出射面と対向する側の面には例えばアルミ薄膜からなる反射板300が形成されている。なお、反射板300の代わりに遮光板を形成しても良い。   As shown in FIG. 1C, the light emitting device 1000 is configured with a structure in which a waveguide forming layer 200 is stacked on an organic EL light emitter forming layer 100. In FIG. 1C, the arrow C direction indicates the light propagation direction. Further, a reflective plate 300 made of, for example, an aluminum thin film is formed on the surface of the light emitting device 1000 facing the light exit surface. A light shielding plate may be formed instead of the reflection plate 300.

有機EL発光体形成層100は、例えばガラス基板からなる発光体基板(第1の基板)10に、フォトレジストによって例えばAlからなる下部電極(第2の電極)20をパターニングした後で、導波路形成層200におけるクラッド層の役割を兼ねた絶縁層30を積層し、その後に例えばフォトレジストによって絶縁層30に開口をパターニングし、該開口に、有機発光層40、及び例えばITO(インジウムスズ酸化物)からなる上部透明電極(第1の電極)50を順に積層して発光部44を形成することにより構成されている。   The organic EL light emitter forming layer 100 is formed by, for example, forming a waveguide after patterning a lower electrode (second electrode) 20 made of, for example, Al with a photoresist on a light emitter substrate (first substrate) 10 made of, for example, a glass substrate. An insulating layer 30 that also serves as a clad layer in the formation layer 200 is laminated, and then an opening is patterned in the insulating layer 30 with, for example, a photoresist. The organic light emitting layer 40 and, for example, ITO (indium tin oxide) are formed in the opening. The upper transparent electrode (first electrode) 50 is formed in order to form the light emitting portion 44.

ここで、図1(a)に示すように、発光部44は、直線状に複数配列されて形成されて、発光部アレイをなしている。それぞれの発光部44は個別に発光制御可能とするために、矢印Cで示す光出射方向に対して長尺形状に形成されている。また、下部電極20と上部透明電極50からは、図1(a)に示すようにして配線が引き出され、図示しない発光装置の駆動装置に接続されている。   Here, as shown to Fig.1 (a), the light emission part 44 is formed in multiple linear arrangement | sequences, and has comprised the light emission part array. Each light emitting section 44 is formed in a long shape with respect to the light emitting direction indicated by the arrow C in order to individually control light emission. Further, wiring is drawn out from the lower electrode 20 and the upper transparent electrode 50 as shown in FIG. 1A and connected to a driving device of a light emitting device (not shown).

このような構成において、下部電極20と上部透明電極50とを介して有機発光層40に電界が印加されると、有機発光層40を構成する電子輸送層とホール輸送層との間で電子及びホールの移動が起こり、その結果、電子とホールとが発光層において再結合して発光が起きる。   In such a configuration, when an electric field is applied to the organic light emitting layer 40 through the lower electrode 20 and the upper transparent electrode 50, electrons and electrons are transferred between the electron transport layer and the hole transport layer constituting the organic light emitting layer 40. Hole movement occurs, and as a result, electrons and holes recombine in the light emitting layer to emit light.

ここで、有機EL発光体形成層100の各材料は、従来の有機EL発光素子に用いられる各種材料を用いることができる。ただし、下部電極20は、有機発光層40から発光体基板10側に出射された光を導波路形成層200側へ戻すために、高い光反射率を有する金属材料(例えば、AlやAgなど)で形成することが望ましい。   Here, as each material of the organic EL light-emitting body forming layer 100, various materials used in conventional organic EL light-emitting elements can be used. However, the lower electrode 20 is a metal material (for example, Al or Ag) having a high light reflectance in order to return the light emitted from the organic light emitting layer 40 to the light emitter substrate 10 side to the waveguide forming layer 200 side. It is desirable to form with.

導波路形成層200は、絶縁層30と共にクラッド層の役割を兼ねる導波路基板(第2の基板)55と、コア層60とにより形成されている。   The waveguide forming layer 200 is formed of a waveguide substrate (second substrate) 55 that also serves as a cladding layer together with the insulating layer 30 and a core layer 60.

発光部44において発生した光が伝搬されるコア層60は、互いに屈折率の異なる第1の層60aと第2の層60bとからなり、第1の層60aと第2の層60bとの境界領域に回折格子66が形成されている。   The core layer 60 through which light generated in the light emitting unit 44 is propagated includes a first layer 60a and a second layer 60b having different refractive indexes, and a boundary between the first layer 60a and the second layer 60b. A diffraction grating 66 is formed in the region.

ここで、コア層60の第1の層60aと第2の層60bとの間に形成される回折格子66は、2種類の光導波回折格子67、68を図1(a)、図1(b)及び図1(c)に示すように配置することで構成されている。   Here, the diffraction grating 66 formed between the first layer 60a and the second layer 60b of the core layer 60 includes two types of optical waveguide diffraction gratings 67 and 68 shown in FIGS. It is comprised by arrange | positioning as shown to b) and FIG.1 (c).

即ち、長尺形状の発光部44において発生した光の伝搬方向には、位相が一致して光帰還するブラッグ条件の回析格子を有する光導波回折格子67を発光部44の直上部に該発光部44と対となるような位置に配置している。もう1種類の回折格子は、隣り合う発光部44間のスペース直上部に、位相が180度ずれて光帰還する条件の回折格子を有する光アイソレート回折格子68を配置している。なお、光アイソレート回折格子68は光導波回折格子67に対して直交する方向に形成されている。   That is, an optical waveguide diffraction grating 67 having a diffraction grating with a Bragg condition in which light is fed back in phase with respect to the propagation direction of the light generated in the long light emitting section 44 is emitted immediately above the light emitting section 44. It is arranged at a position to be paired with the portion 44. In another type of diffraction grating, an optically isolated diffraction grating 68 having a diffraction grating with a condition that light is fed back with a phase shift of 180 degrees is disposed immediately above the space between adjacent light emitting portions 44. The optical isolation diffraction grating 68 is formed in a direction orthogonal to the optical waveguide diffraction grating 67.

ここで、光導波回折格子67は、例えばブラック条件を満たす空間周期で格子間隔が設定される分布帰還型の回折格子である。即ち、光導波回折格子67は、発光部44から第1の層60aを介して入射する光の波長をλ、回折格子の格子間隔をΛとした場合に、
Λ=m(λ/2) m=1,2,3,… (式1)
で示すブラッグ条件が成立するように構成される。図2は、分布帰還型の光導波回折格子67を示した図である。例えば、発光部44の発光した光が空気中を伝わる際の波長をλ0=750nmとし、回折格子を構成する材料の平均屈折率をn1=1.5とすると、回折格子に入射する光の波長λg(=λ)は、
λg=λ=λ0/n1=500nm (式2)
となる。したがって、図2に示す格子間隔Λは、(式1)より250nmの自然数倍した寸法、即ちΛ=250、500、750、1000、1250、1500…の中から選択可能である。ただし、格子間隔が小さくなるほど、回折格子に入射した光の位相が一致して帰還する回数が多くなるので、格子間隔Λは精度良く製作可能な最小の間隔とすることが望ましい。
Here, the optical waveguide diffraction grating 67 is, for example, a distributed feedback diffraction grating in which the grating interval is set with a spatial period that satisfies the black condition. That is, the optical waveguide diffraction grating 67 has a wavelength of light incident from the light emitting unit 44 via the first layer 60a as λ and a grating interval of the diffraction grating as Λ.
Λ = m (λ / 2) m = 1, 2, 3,... (Formula 1)
The Bragg condition indicated by is established. FIG. 2 is a diagram showing a distributed feedback optical waveguide diffraction grating 67. For example, assuming that the wavelength when the light emitted from the light emitting unit 44 travels in the air is λ0 = 750 nm, and the average refractive index of the material constituting the diffraction grating is n1 = 1.5, the wavelength of the light incident on the diffraction grating λg (= λ) is
λg = λ = λ0 / n1 = 500 nm (Formula 2)
It becomes. Therefore, the lattice spacing Λ shown in FIG. 2 can be selected from the dimensions obtained by multiplying (Equation 1) by a natural number of 250 nm, that is, Λ = 250, 500, 750, 1000, 1250, 1500. However, the smaller the grating interval is, the more times the light incident on the diffraction grating matches and the number of times of feedback increases. Therefore, it is desirable that the grating interval Λ be the minimum that can be manufactured with high accuracy.

図2のようなブラッグ条件の分布帰還型の回折格子を形成することにより、発光部44において発生し、回折格子の各単位セルから反射された光が導波路形成層200内で共振し、結果として光が増幅される。したがって、波長選択性及び指向性に優れ、発光スペクトル幅の狭い光を得ることができる。   By forming the distributed feedback type diffraction grating under the Bragg condition as shown in FIG. 2, the light generated in the light emitting section 44 and reflected from each unit cell of the diffraction grating resonates in the waveguide forming layer 200, and as a result As the light is amplified. Therefore, it is possible to obtain light having excellent wavelength selectivity and directivity and a narrow emission spectrum width.

ここで、光導波回折格子67は、図3に示すようなλ/4位相シフト構造を有することが好ましい。λ/4位相シフト構造は、上記(式1)の関係を満たす空間周期の格子とその半分の空間周期(=Λ/2)の格子との組み合わせで構成される。例えば、回折格子に入射する光の波長λg(=λ)を上記と同様の500nmとすると、図3に示す格子間隔Λ及びΛ/2はそれぞれ250と125、500と250、750と375、1000と500、1250と625、1500と750…の中から選択可能である。この場合も、格子間隔Λ及びΛ/2は精度良く製作可能な最小の間隔とすることが望ましい。   Here, the optical waveguide diffraction grating 67 preferably has a λ / 4 phase shift structure as shown in FIG. The λ / 4 phase shift structure is composed of a combination of a grating having a spatial period satisfying the relationship of (Expression 1) and a grating having a half spatial period (= Λ / 2). For example, assuming that the wavelength λg (= λ) of light incident on the diffraction grating is 500 nm, the grating spacings Λ and Λ / 2 shown in FIG. 3 are 250 and 125, 500 and 250, 750 and 375, and 1000, respectively. , 500, 1250 and 625, 1500, 750... Also in this case, it is desirable that the lattice spacings Λ and Λ / 2 be the minimum spacing that can be manufactured with high accuracy.

このように、光導波回折格子67をλ/4位相シフト構造とすることにより、出射光の位相を一致させ、より単一モードの光を出射することができる。なお、λ/4位相シフト構造の回折格子の代わりに、利得結合型構造の回折格子を用いても良い。   In this way, by making the optical waveguide diffraction grating 67 have a λ / 4 phase shift structure, it is possible to match the phase of the emitted light and emit more single mode light. Note that a gain-coupled structure diffraction grating may be used instead of the λ / 4 phase shift structure diffraction grating.

また、光アイソレート回折格子68は、ブラッグ条件を満たさない空間周期で格子間隔が設定される回折格子である。即ち、上記(式1)の条件を満たさないようにするため、入射光の波長λの非自然数倍となるように格子間隔Λが設定される。このような回折格子を形成することにより、格子の各単位セルから反射される隣り合う発光部44からの光が打ち消されるので、クロストークを低減させて各発光部から光を出射できる。   The optical isolation diffraction grating 68 is a diffraction grating in which the grating interval is set with a spatial period that does not satisfy the Bragg condition. That is, in order not to satisfy the condition of (Equation 1), the grating interval Λ is set to be a non-natural number multiple of the wavelength λ of the incident light. By forming such a diffraction grating, light from the adjacent light emitting portions 44 reflected from each unit cell of the grating is canceled, so that light can be emitted from each light emitting portion with reduced crosstalk.

ここで、導波路形成層200の回折格子構造は、コア層の第1の層60aを形成するための薄層樹脂、例えばポリメタクリル酸メチル[PMMA]、ポリカーボネート[PC]、ポリイミド[PI]等の光透過性の良い、光学特性の優れた樹脂材料を、例えばガラス材料の導波路基板55に薄層コーティングした基材に対して、例えば熱式ナノインプリント法により前述の回折格子形状を転写形成することで作成することができる。なお、回折格子構造の作成手法は、熱式ナノインプリント法に限るものではなく、例えば射出成型法により作成するようにしても良い。   Here, the diffraction grating structure of the waveguide forming layer 200 has a thin layer resin for forming the first layer 60a of the core layer, such as polymethyl methacrylate [PMMA], polycarbonate [PC], polyimide [PI], etc. The above-mentioned diffraction grating shape is transferred and formed, for example, by a thermal nanoimprint method on a base material obtained by thinly coating a resin material having a good light transmission property and an excellent optical property on a waveguide substrate 55 made of a glass material, for example. Can be created. The creation method of the diffraction grating structure is not limited to the thermal nanoimprint method, and may be created by, for example, an injection molding method.

このように第1の層60aに形成された回折格子66の上に第1の層60aと屈折率の異なる第2の層60bを塗布して平坦化することにより導波路形成層200を製作することができる。なお、第1の層60aと第2の層60bとは屈折率が異なっていれば良く、例えば第1の層60aにポリメタクリル酸メチルを用い、第2の層60bにポリカーボネートを用いたり、逆に第1の層60aにポリカーボネートを用い、第2の層60bにポリメタクリル酸メチルを用いたりすることができる。   The waveguide forming layer 200 is manufactured by applying and planarizing the second layer 60b having a refractive index different from that of the first layer 60a on the diffraction grating 66 formed in the first layer 60a. be able to. The first layer 60a and the second layer 60b may have different refractive indexes. For example, polymethyl methacrylate is used for the first layer 60a and polycarbonate is used for the second layer 60b, or vice versa. Alternatively, polycarbonate can be used for the first layer 60a, and polymethyl methacrylate can be used for the second layer 60b.

このように導波路形成層200は、導波路基板55にコーティングした薄層樹脂層に対して形状を形成しているため樹脂部の熱収縮等による歪や寸法変動を低く抑えることが可能となる。   Thus, since the waveguide forming layer 200 has a shape formed with respect to the thin resin layer coated on the waveguide substrate 55, it is possible to suppress distortion and dimensional variation due to thermal contraction of the resin portion. .

ここで、有機EL発光体形成層100の発光体基板10も導波路基板55と同様の材料(例ではガラス材料)を選定することにより寸法精度、熱膨張が同レベルとなる。これにより接合が容易となり、特に微細ピッチのアレイを形成する場合の歩留を向上させることが可能となる。   Here, the luminescent accuracy substrate 10 of the organic EL luminescent material forming layer 100 also has the same level of dimensional accuracy and thermal expansion by selecting the same material (glass material in the example) as the waveguide substrate 55. This facilitates bonding and can improve the yield particularly when an array with a fine pitch is formed.

また、有機EL発光体形成層100の有機発光層40は一般に水分等の吸湿により著しく寿命が低下する。これに対し、本実施形態においては、発光部44を基板端面に対してガスバリア可能な十分な内側位置に配置することが可能であり、このように内側位置に配置した発光部44に、導波路形成層200を積層させることにより有機ELを封止でき、発光部44からの光を光導波回折格子67により発光装置の光出射面に導くことができる。   In addition, the life of the organic light emitting layer 40 of the organic EL light emitter forming layer 100 is remarkably reduced due to moisture absorption such as moisture. On the other hand, in the present embodiment, it is possible to arrange the light emitting unit 44 at a sufficiently inner position where a gas barrier can be provided with respect to the substrate end surface. By stacking the formation layer 200, the organic EL can be sealed, and the light from the light emitting portion 44 can be guided to the light emitting surface of the light emitting device by the optical waveguide diffraction grating 67.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。図4は、本実施形態に係る発光装置1000を模式的に示す3断面図である。なお、図4(a)は発光装置1000の上面断面図であり、図4(b)は図4(a)のA−A線断面図であり、図4(c)は図4(a)のB−B線断面図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 4 is a cross-sectional view schematically showing the light emitting device 1000 according to this embodiment. 4A is a top cross-sectional view of the light-emitting device 1000, FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A, and FIG. 4C is FIG. 4A. It is a BB sectional view taken on the line.

本実施形態の発光装置1000は、第1の実施形態と同様に、有機EL発光体形成層100に導波路形成層200を積層した構造より構成されている。第2の実施形態と第1の実施形態との違いは、導波路基板(第2の基板)55とコア層60との間に反射部としての反射ミラー80が形成されている点である。その他の構造は第1の実施形態と同じであるので説明を省略する。   As in the first embodiment, the light emitting device 1000 according to the present embodiment has a structure in which a waveguide forming layer 200 is stacked on an organic EL light emitter forming layer 100. The difference between the second embodiment and the first embodiment is that a reflection mirror 80 as a reflection portion is formed between the waveguide substrate (second substrate) 55 and the core layer 60. Since other structures are the same as those of the first embodiment, description thereof is omitted.

反射ミラー80は、AlやAg等の高反射率材料を、例えば蒸着により導波路基板55上に成膜することにより形成される。なお、反射ミラー80は、数層の誘電体を成膜する増反射ミラーにすることがより望ましい。このような反射ミラー80を設けることにより、発光部44において発光した光が導波路基板55側に入射してきた場合でも、該入射した光が反射ミラー80によって光導波回折格子67の側に反射されるので、光の閉じ込め率を第1の実施形態よりも向上させることができる。   The reflection mirror 80 is formed by depositing a high reflectance material such as Al or Ag on the waveguide substrate 55 by vapor deposition, for example. The reflection mirror 80 is more preferably a multi-reflection mirror for forming several layers of dielectrics. By providing such a reflection mirror 80, even when light emitted from the light emitting unit 44 enters the waveguide substrate 55, the incident light is reflected by the reflection mirror 80 toward the optical waveguide diffraction grating 67. Therefore, the light confinement rate can be improved as compared with the first embodiment.

以上実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。   Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications and applications are naturally possible within the scope of the gist of the present invention.

さらに、上記した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、上述したような課題を解決でき、上述したような効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。   Further, the above-described embodiments include various stages of the invention, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some configuration requirements are deleted from all the configuration requirements shown in the embodiment, the above-described problem can be solved, and this configuration requirement is deleted when the above-described effects can be obtained. The configuration can also be extracted as an invention.

本発明の第1の実施形態に係る発光装置を模式的に示す3断面図である。It is 3 sectional drawing which shows typically the light-emitting device which concerns on the 1st Embodiment of this invention. 分布帰還型の光導波回折格子を示した図である。It is the figure which showed the distributed feedback type optical waveguide diffraction grating. λ/4位相シフト構造の光導波回折格子を示した図である。It is the figure which showed the optical waveguide diffraction grating of (lambda) / 4 phase shift structure. 本発明の第2の実施形態に係る発光装置を模式的に示す3断面図である。It is 3 sectional drawing which shows typically the light-emitting device which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10…発光体基板、20…下部電極、30…絶縁層、40…有機発光層、44…発光部、50…上部透明電極、55…導波路基板、60…コア層、60a…第1の層、60b…第2の層、66…回折格子、67…光導波回折格子、68…光アイソレート回折格子、80…反射ミラー   DESCRIPTION OF SYMBOLS 10 ... Luminescent substrate, 20 ... Lower electrode, 30 ... Insulating layer, 40 ... Organic light emitting layer, 44 ... Light emitting part, 50 ... Upper transparent electrode, 55 ... Waveguide substrate, 60 ... Core layer, 60a ... First layer 60b ... second layer, 66 ... diffraction grating, 67 ... optical waveguide diffraction grating, 68 ... optical isolation grating, 80 ... reflection mirror

Claims (6)

複数の発光部を有し、前記各発光部は、発光層と、前記発光層を狭挟して前記発光層に電界を与えて前記発光層を発光させるための、対向する第1の電極及び第2の電極とを有して第1の基板の一面に形成され、前記発光層から発光した光を前記第1の電極から出射し、前記第1の電極の光出射面が発光面をなし、前記各発光部前記第1の基板の一面上に互いに離間して直線状に配列された発光部アレイと、
前記発光部アレイの前記発光面側の全体を覆って設けられたコア層と、
を具備し、
前記コア層は、屈折率が互いに異なる2つの回折格子形成層が積層されて形成され、
前記コア層の前記複数の発光部の各々の前記発光面に対応する領域に、前記第1の電極から出射された光を前記複数の発光部の配列方向に対する直交方向に伝搬させて外部に出射する方向に設けられた複数の光導波回折格子が形成され前記コア層の前記複数の発光部の配列方向における前記各発光部間に対応する領域に光の伝搬方向が前記光導波回折格子における光の伝搬方向に対して直交する複数の光アイソレート回折格子が形成され、前記各光アイソレート回折格子の格子間隔は、前記第1の電極から出射された光の隣り合う前記発光部への伝搬を遮断する値に設定され、
前記各光導波回折格子及び前記各光アイソレート回折格子は、前記コア層内に同一の材料により形成されていることを特徴とする発光装置。
A plurality of light emitting portions, each light emitting portion including a light emitting layer, an opposing first electrode for sandwiching the light emitting layer and applying an electric field to the light emitting layer to cause the light emitting layer to emit light; is formed on the first one surface on the substrate having a second electrode, and light emitted from the light-emitting layer is emitted from the first electrode, the light emitting surface of the first electrode is the light emitting surface A light emitting section array in which each of the light emitting sections is linearly spaced apart from each other on one surface of the first substrate ;
A core layer provided to cover the entire light emitting surface side of the light emitting section array;
Comprising
The core layer is formed by laminating two diffraction grating forming layers having different refractive indexes,
In a region corresponding to the light emitting surface of each of the plurality of light emitting portions of the core layer, to the outside is propagated in the direction perpendicular against the light emitted from the first electrode in the array direction of the plurality of light emitting portions A plurality of optical waveguide diffraction gratings provided in the emission direction are formed , and the propagation direction of light is the optical waveguide diffraction in a region corresponding to the space between the light emitting units in the arrangement direction of the plurality of light emitting units of the core layer. A plurality of optically isolated diffraction gratings perpendicular to the light propagation direction in the grating are formed, and the interval between the optically isolated diffraction gratings is such that the light emitting units adjacent to the light emitted from the first electrode Set to a value that blocks propagation to
Each light guide diffraction grating and each light isolation diffraction grating are formed of the same material in the core layer .
前記光導波回折格子は、ブラッグ条件の空間周期を有する分布帰還型の回折格子であることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the optical waveguide diffraction grating is a distributed feedback diffraction grating having a spatial period of a Bragg condition. 前記光導波回折格子は、λ/4位相シフト構造を有する回折格子であることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the optical waveguide diffraction grating is a diffraction grating having a λ / 4 phase shift structure. 前記光アイソレート回折格子は、相異なる周期的摂動の単位セルから反射される前記隣り合う発光部からの光が打ち消し合う位相で重なる空間周期からなる回折格子であることを特徴とする請求項1に記載の発光装置。   2. The optically isolated diffraction grating according to claim 1, wherein the optically isolated diffraction grating is a diffraction grating having a spatial period overlapping with a phase in which light from the adjacent light emitting parts reflected from unit cells having different periodic perturbations cancel each other. The light emitting device according to 1. 一面側が前記第1の基板の前記一面側と対向して前記発光部アレイの前記発光面側に設けられた第2基板を有し、
前記コア層は、前記第2基板の前記一面側と前記発光部アレイの前記発光面側との間に設けられ、
前記コア層の積層された前記2つの回折格子形成層の界面に回折格子形状形成され該回折格子形状により前記各光導波回折格子と前記各光アイソレート回折格子とが、前記光導波回折格子における光の伝搬方向に対して直交する方向に沿って、交互に連続的に形成されていることを特徴とする請求項1に記載の発光装置。
A first substrate having a second substrate provided on the light emitting surface side of the light emitting unit array facing the one surface side of the first substrate;
The core layer is provided between the one surface side of the second substrate and the light emitting surface side of the light emitting unit array,
Diffraction grating pattern is formed at the interface of the stacked the two diffraction grating layer of the core layer, and wherein each optical isolate diffraction grating and the respective optical waveguide grating by diffraction grating pattern, the optical waveguide The light emitting device according to claim 1, wherein the light emitting device is alternately and continuously formed along a direction orthogonal to a light propagation direction in the diffraction grating .
前記第2の基板の前記一面上と前記コア層との間の、前記各発光部の前記発光面と対向する位置に形成され、前記発光から出射され、前記第2の基板の前記一面側に入射した光を前記光導波回折格子側に反射させる反射部を更に具備することを特徴とする請求項5に記載の発光装置。 Formed at a position facing the light emitting surface of each light emitting section between the one surface of the second substrate and the core layer , emitted from the light emitting surface, and on the one surface side of the second substrate The light-emitting device according to claim 5, further comprising a reflection unit configured to reflect light incident on the optical waveguide diffraction grating side.
JP2006268948A 2006-09-29 2006-09-29 Light emitting device Expired - Fee Related JP4797921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268948A JP4797921B2 (en) 2006-09-29 2006-09-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268948A JP4797921B2 (en) 2006-09-29 2006-09-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2008091129A JP2008091129A (en) 2008-04-17
JP4797921B2 true JP4797921B2 (en) 2011-10-19

Family

ID=39375080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268948A Expired - Fee Related JP4797921B2 (en) 2006-09-29 2006-09-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP4797921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305489B2 (en) 2013-11-04 2016-04-05 Samsung Display Co., Ltd. Organic light emitting diode display

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325207A (en) * 1991-04-29 1994-06-28 Westinghouse Electric Corp. Facsimile machine using thin film electroluminescent device for spot scanning
JPH054377A (en) * 1991-06-26 1993-01-14 Fuji Xerox Co Ltd El-light printer head
JP2000182764A (en) * 1998-12-18 2000-06-30 Seiko Epson Corp El device
JP2001244066A (en) * 2000-03-01 2001-09-07 Seiko Epson Corp Light emitting device
JP2002056989A (en) * 2000-08-11 2002-02-22 Seiko Epson Corp Light-emission device
JP2002063990A (en) * 2000-08-14 2002-02-28 Seiko Epson Corp Luminescent equipment
JP2003157976A (en) * 2001-11-21 2003-05-30 Canon Inc Light emitting element and light emitting element array
JP4294264B2 (en) * 2002-04-25 2009-07-08 有限会社オートクローニング・テクノロジー Integrated optical element
JP2006095744A (en) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd Light source of image forming device and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305489B2 (en) 2013-11-04 2016-04-05 Samsung Display Co., Ltd. Organic light emitting diode display

Also Published As

Publication number Publication date
JP2008091129A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
US6704335B1 (en) Light-emitting device
US20020018620A1 (en) Surface emitting device
JP2004521491A5 (en)
US20220020963A1 (en) Metasurface, light-emitting device including the metasurface, display device including the light-emitting device, and method of fabricating the metasurface
US20090238514A1 (en) Optical waveguide having grating and method of forming the same
WO2010098279A1 (en) Light-emitting element
US6737802B2 (en) Light-emitting device
JP3951109B2 (en) Light emitting device
US7751669B2 (en) Waveguide and device including the same
JP2006523931A (en) Feedback and coupling structures and methods
JP2005159002A (en) Light receiving element, optical module, and optical transmission device
JP4797921B2 (en) Light emitting device
JP3786160B2 (en) EL device
KR100403682B1 (en) Light emitting device
JP2000200687A (en) El device
EP1892545B1 (en) Waveguide and light emitting device having the same
US6795463B2 (en) Light -emitting device
JP2002056968A (en) Luminous device
JP2014135183A (en) Organic el light emitting device and method for manufacturing the same
JP2002110361A (en) Luminous device
US6574249B2 (en) Thin film laser emitting device and method for the manufacture thereof
JP2002056988A (en) Light-emission device
JP2000182764A (en) El device
WO2021241439A1 (en) Polarization plate, manufacturing method therefor, and optical device
JP2000286497A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4797921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees