JP4793975B2 - Cleaning method for membrane module for ultrapure water - Google Patents

Cleaning method for membrane module for ultrapure water Download PDF

Info

Publication number
JP4793975B2
JP4793975B2 JP2005035862A JP2005035862A JP4793975B2 JP 4793975 B2 JP4793975 B2 JP 4793975B2 JP 2005035862 A JP2005035862 A JP 2005035862A JP 2005035862 A JP2005035862 A JP 2005035862A JP 4793975 B2 JP4793975 B2 JP 4793975B2
Authority
JP
Japan
Prior art keywords
water
cleaning
membrane module
ultrapure water
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005035862A
Other languages
Japanese (ja)
Other versions
JP2006218440A (en
Inventor
眞一 地蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005035862A priority Critical patent/JP4793975B2/en
Publication of JP2006218440A publication Critical patent/JP2006218440A/en
Application granted granted Critical
Publication of JP4793975B2 publication Critical patent/JP4793975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、超純水用膜モジュールの洗浄方法に関し、例えば、半導体洗浄に使用する超純水を作製するために用いる超純水用外圧型中空糸膜モジュールの洗浄方法に関する。   The present invention relates to a method for cleaning a membrane module for ultrapure water, for example, a method for cleaning an external pressure type hollow fiber membrane module for ultrapure water used for producing ultrapure water used for semiconductor cleaning.

半導体の製造においては、各洗浄工程にてウエハに残る微粒子などの洗浄除去のために使用する洗浄水として、不純物を高度に除去した超純水が使用されている。超純水の水質として、イオン、微粒子、微生物、有機物などが存在すると、ウエハに形成する酸化膜、多結晶膜、配線への悪影響を招来する。従って、超純水の特性は、微粒子数、溶存酸素量、溶存炭素量、生菌数等の諸点において厳格に規制されている。特に、近来においては、LSI集積度のアップにより、ますます厳格化されつつある。   In the manufacture of semiconductors, ultrapure water from which impurities are highly removed is used as cleaning water used for cleaning and removing fine particles remaining on a wafer in each cleaning process. If ions, fine particles, microorganisms, organic substances, etc. are present as the quality of ultrapure water, an adverse effect is caused on the oxide film, polycrystalline film, and wiring formed on the wafer. Therefore, the characteristics of ultrapure water are strictly regulated in terms of the number of fine particles, the amount of dissolved oxygen, the amount of dissolved carbon, the number of viable bacteria, and the like. In particular, in recent years, it has become more and more stringent due to an increase in LSI integration.

一方、こうした超純水の製造システムには中空糸膜モジュールが多く用いられている。中空糸膜モジュールには、中空糸膜内を原液側として中空糸膜外を透過液側とする内圧型と、中空糸膜内を透過液側として中空糸膜外を原液側とする外圧型とがある。一般に、外圧型中空糸膜モジュールは、内圧型中空糸膜モジュールに比べて透過水側の排出性に優れ、また、透過水中の微粒子数(粒子径0.1μm以上)を容易に少なくすることができることから、近来の傾向であるLSIの超高ビット化に適合していた(例えば特許文献1参照)。   On the other hand, many hollow fiber membrane modules are used in such ultrapure water production systems. The hollow fiber membrane module includes an internal pressure type in which the inside of the hollow fiber membrane is the stock solution side and the outside of the hollow fiber membrane is the permeate side, and an external pressure type in which the inside of the hollow fiber membrane is the permeate side and the outside of the hollow fiber membrane is the stock solution side. There is. In general, the external pressure type hollow fiber membrane module is superior in drainage on the permeate side compared to the internal pressure type hollow fiber membrane module, and the number of fine particles in the permeate water (particle diameter of 0.1 μm or more) can be easily reduced. Since it can be done, it has been adapted to the ultra-high bit LSI, which is a recent trend (see, for example, Patent Document 1).

しかしながら、近年の半導体製品のさらなる高精密化・高度化に伴い、超純水中の極めて微量のイオンや有機物が半導体製品不良の原因になることがあり、膜モジュールを交換した直後、半導体製品が長期間不良となるという問題も生じている。このように、半導体洗浄に使用する水に要求される水質基準は更に上がってきているとともに、膜モジュール自体からのイオンや有機物の溶出を抑えることが求められてきている。   However, as semiconductor products have become more precise and sophisticated in recent years, extremely small amounts of ions and organic substances in ultrapure water can cause defects in semiconductor products. There is also a problem that it becomes defective for a long time. As described above, water quality standards required for water used for semiconductor cleaning are further increased, and suppression of elution of ions and organic substances from the membrane module itself has been required.

そのため、膜モジュール内全域における部材からの溶出を最低限に抑えた超純水用モジュールが望まれ、具体的には、使用する中空糸膜モジュールを予め洗浄する最適な方法が要求されている。   Therefore, an ultrapure water module that minimizes elution from members in the entire area of the membrane module is desired. Specifically, an optimum method for preliminarily washing the hollow fiber membrane module to be used is required.

一方、純度の高い超純水を供給するための膜モジュールの洗浄方法については、種々の方法が提案されている。例えば、中空糸状濾過膜モジュールの製造工程において超純水を用いて洗浄する方法(例えば特許文献2参照)や、超純水を洗浄水とし、該洗浄水を超純水製造用膜分離装置に通水する通水工程と、膜分離装置に洗浄水を保持したまま通水を停止する浸漬工程と、膜分離装置から洗浄水を排出する排出工程とを有する洗浄サイクルを繰り返す超純水製造用膜分離装置の洗浄方法(例えば特許文献3参照)などの提案がされている。   On the other hand, various methods for cleaning the membrane module for supplying ultrapure water having high purity have been proposed. For example, a method of cleaning using ultrapure water in the manufacturing process of a hollow fiber membrane module (see, for example, Patent Document 2), or using ultrapure water as cleaning water, and using the cleaning water as a membrane separator for manufacturing ultrapure water For ultrapure water production that repeats a washing cycle that includes a water-passing step for passing water, an immersion step for stopping the water-flowing while retaining the washing water in the membrane separator, and a discharging step for discharging the washing water from the membrane separator. Proposals have been made on a method for cleaning a membrane separator (see, for example, Patent Document 3).

さらに、洗浄水で予め分離膜を洗浄して、分離膜に含まれる長鎖アミンを除去する高純度水中への長鎖アミンの溶出低減方法、並びに、洗浄によって分離膜に含まれる長鎖アミンを除去する高純度水中への長鎖アミンの溶出低減装置の提案がされている(例えば特許文献4参照)。
特許第3071870号公報 特開2000‐033242号公報 特開2004‐66015号公報 特開2003‐230821号公報
Furthermore, the separation membrane is washed with washing water in advance to remove the long-chain amine contained in the separation membrane, and a method for reducing elution of long-chain amine in high-purity water, and the long-chain amine contained in the separation membrane by washing. An apparatus for reducing elution of long-chain amines in high-purity water to be removed has been proposed (see, for example, Patent Document 4).
Japanese Patent No. 3071870 JP 2000-033422 A Japanese Patent Laid-Open No. 2004-66015 Japanese Patent Laid-Open No. 2003-230821

しかしながら、上述のような従来型の膜モジュールの洗浄方法は、汎用的な洗浄方法として提案されたものであり、超純水用外圧型中空糸膜モジュールの構造における最適な条件での洗浄方法を開示したものとはいえず、現実に、こうした洗浄方法を用いて、LSIの超高ビット化に適合するような半導体の洗浄に使用するための要求水質を満足する洗浄水を確保することは困難であった。   However, the conventional membrane module cleaning method as described above has been proposed as a general-purpose cleaning method, and the cleaning method under the optimum conditions in the structure of the external pressure hollow fiber membrane module for ultrapure water is used. Although it is not disclosed, it is actually difficult to secure cleaning water that satisfies the required water quality for use in semiconductor cleaning that is suitable for LSI ultra-high bit using such a cleaning method. Met.

そこで、本発明は、半導体製造工場で使用される超純水中へのイオン、有機物の溶出を低減し、極めて純度の高い超純水を安定供給することができ、かつ超純水の使用における立上り時間を短縮することができる超純水用膜モジュールの洗浄方法を提供することを目的とする。   Therefore, the present invention reduces the elution of ions and organic substances into ultrapure water used in semiconductor manufacturing plants, can stably supply ultrapure water with extremely high purity, and in the use of ultrapure water. It is an object of the present invention to provide a method for cleaning a membrane module for ultrapure water that can shorten the rise time.

本発明者らは、鋭意研究を重ねた結果、以下に示す超純水の製造システムに使用する用外圧型中空糸膜モジュール(以下「膜モジュール」という)の洗浄方法により上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies, the present inventors have found that the above object can be achieved by a method for cleaning an external pressure type hollow fiber membrane module (hereinafter referred to as “membrane module”) used in an ultrapure water production system shown below. The headline and the present invention have been completed.

本発明は、超純水の製造システムに使用する外圧型中空糸膜モジュールを新規導入時または交換導入時に洗浄する洗浄方法であって、洗浄に使用する洗浄水の温度を60℃以上として浸漬工程を行った後、原水側の洗浄水を排出した後、ヘッド圧により透過側の洗浄水を原水側に透過させて排出する排出工程を行うことを特徴とする。 The present invention relates to a cleaning method for cleaning external pressure type hollow fiber membrane module used in the production system of the ultrapure water during new installations or during exchange introduction, the temperature of the washing water used for washing and 60 ° C. or higher after the immersion step, after discharging the washing water of the raw water side, and performs the discharge process for discharging by transmitting wash water on the permeate side to the raw water side by the head pressure.

膜モジュール製造時において、または膜モジュール組み立て後に、洗浄に使用する洗浄水の温度を60℃以上とし、かつ、正慮過工程、逆洗工程、浸漬工程、フラッシング工程、排出工程のいずれか2以上の工程を組み合わせることにより、半導体洗浄ラインにおいて膜モジュールの新規導入、または交換を行ってもイオン、有機物の溶出が無く半導体製品の不良の発生を防止し得ることを見出したものである。特に、こうした溶出物の洗浄処理においては、使用する洗浄水を所定温度以上に維持することが効果的であることを見出したものである。本発明は、こうした簡便な処理によって、極めて純度の高い超純水を安定供給することができ、超純水の使用における立上り時間を短縮することができる超純水用膜モジュールの洗浄方法を提供することが可能となった。また、本発明によれば、膜モジュール製造時だけでなく、膜モジュールを超純水の製造システムに使用する前において、かかる処理を行うことによっても、同様の効果を得ることができる。   At the time of membrane module manufacture or after assembly of the membrane module, the temperature of the washing water used for washing is set to 60 ° C. or more, and any two or more of an appropriate process, backwash process, dipping process, flushing process, and discharge process By combining these processes, it has been found that even if a membrane module is newly introduced or replaced in a semiconductor cleaning line, there is no elution of ions and organic substances and the occurrence of defects in semiconductor products can be prevented. In particular, it has been found that it is effective to maintain the washing water to be used at a predetermined temperature or higher in the washing treatment of the eluate. The present invention provides a method for cleaning a membrane module for ultrapure water that can stably supply ultrapure water with extremely high purity by such a simple treatment and can shorten the rise time in the use of ultrapure water. It became possible to do. Further, according to the present invention, the same effect can be obtained not only when the membrane module is manufactured, but also by performing such treatment before the membrane module is used in the ultrapure water manufacturing system.

本発明は、前記膜モジュールの洗浄工程において、6〜30時間の浸漬工程を含み、かつ、正濾過工程、逆濾過工程、フラッシング工程、および排出工程のうちの少なくとも1以上の工程を組み合わせることを特徴とする。   The present invention includes a 6-30 hour immersion step in the membrane module cleaning step, and a combination of at least one of a normal filtration step, a reverse filtration step, a flushing step, and a discharge step. Features.

すなわち、超純水の製造システムにおいて、膜モジュールから溶出するイオンや有機物による半導体製品の不良の発生を未然に防止するためには、洗浄工程の中、浸漬工程が重要な役割を果たすことを見出したもので、特に、外圧型中空糸膜モジュールに対しては、所定範囲の時間、浸漬することによって、従来にはない優れた洗浄効果を得ることができることが判った。   In other words, in the ultrapure water production system, the immersion process plays an important role in the cleaning process in order to prevent the occurrence of defects in semiconductor products due to ions and organic substances eluted from the membrane module. In particular, it was found that, for the external pressure type hollow fiber membrane module, it was possible to obtain an unprecedented excellent cleaning effect by dipping for a predetermined range of time.

以上のように、膜モジュールの洗浄工程を、洗浄水を所定温度以上に管理し複数の工程を組み合わせることによって、極めて純度の高い超純水を安定供給することができる膜モジュールを提供することが可能となるとともに、超純水の使用における立上り時間を短縮することができる。特に、浸漬時間を最適範囲に設定し、浸漬工程を上記の他の工程との組み合わせることによって、より有効に超純水中への膜モジュールからのイオン、有機物の溶出を低減し、極めて純度の高い超純水を安定供給することができる。   As described above, it is possible to provide a membrane module capable of stably supplying ultrapure water with extremely high purity by managing the cleaning water at a predetermined temperature or more and combining a plurality of steps in the cleaning step of the membrane module. In addition, the rise time in the use of ultrapure water can be shortened. In particular, by setting the immersion time in the optimum range and combining the immersion process with the other processes described above, it is possible to more effectively reduce the elution of ions and organic substances from the membrane module into ultrapure water, and achieve extremely high purity. High ultrapure water can be stably supplied.

以下、本発明の実施の形態につい説明する。   Hereinafter, embodiments of the present invention will be described.

図1に、外圧式中空糸膜モジュールの断面を例示する。原水入口1、濃縮水出口2、透過水出口3を有するハウジング4に、中空糸膜5からなる膜エレメント6が内挿された構造を有する外圧式中空糸膜モジュールを示している。膜エレメント6の両端に注型樹脂部7,8を有し、その片端の注型樹脂部8によって封止し、開口させたもう一方の注型樹脂部7より透過水を集水する構造を形成することによって、導入された原水を中空糸膜1によって透過水と濃縮水とに分離することができる。   FIG. 1 illustrates a cross section of an external pressure hollow fiber membrane module. An external pressure type hollow fiber membrane module having a structure in which a membrane element 6 composed of a hollow fiber membrane 5 is inserted into a housing 4 having a raw water inlet 1, a concentrated water outlet 2, and a permeate outlet 3 is shown. A structure having casting resin portions 7 and 8 at both ends of the membrane element 6, sealed by the casting resin portion 8 at one end, and collecting permeate from the other casting resin portion 7 opened. By forming, the introduced raw water can be separated into permeated water and concentrated water by the hollow fiber membrane 1.

ここで、中空糸膜5には特に制限はなく、例えば、限外濾過膜、精密濾過膜などが挙げられる。また、材質としてはポリスルフォン、ポリエーテルスルフォン、ボリフッ化ビニリデンなどが挙げられる。   Here, the hollow fiber membrane 5 is not particularly limited, and examples thereof include an ultrafiltration membrane and a microfiltration membrane. Examples of the material include polysulfone, polyether sulfone, and polyvinylidene fluoride.

また、膜エレメント6を内挿するハウジング4は、注型樹脂部7の外周によって原水入口1と透過水出口3を封止するとともに、膜エレメント6を固定する作用を持っている。かかるハウジング4の材料は、例えば、ポリスルフォンを使用することができる。なお、本発明は、こうした膜エレメントあるいは結合用部材などの構成に限定されるものでないことはいうまでもなく、各種の用途に適した構造を適用することが可能である。   The housing 4 into which the membrane element 6 is inserted has an action of sealing the raw water inlet 1 and the permeated water outlet 3 by the outer periphery of the casting resin portion 7 and fixing the membrane element 6. For example, polysulfone can be used as the material of the housing 4. Needless to say, the present invention is not limited to the configuration of such a membrane element or a coupling member, and it is possible to apply structures suitable for various uses.

本発明は、外圧型中空糸膜モジュールへ洗浄水を供給する際、洗浄に使用する洗浄水の温度を60℃以上とし、通常の運転と同様に原水入口1より洗浄水を供給する正濾過工程、透過水出口3より通常とは逆方向に洗浄水を供給する逆濾過工程、モジュール内が満水の状態で静置する浸漬工程、洗浄水を原水入口1より供給し50%以下の回収率で運転を行うフラッシング工程、膜モジュール内の洗浄水を系外へブローする排出工程のうちのいずれか2以上の工程を組み合わせて行うことを特徴とする。   In the present invention, when supplying the wash water to the external pressure type hollow fiber membrane module, the temperature of the wash water used for washing is set to 60 ° C. or more, and the normal filtration step of supplying the wash water from the raw water inlet 1 in the same manner as the normal operation. The reverse filtration process for supplying cleaning water in the reverse direction from the permeated water outlet 3, the immersion process for allowing the module to stand still in a full state, the cleaning water being supplied from the raw water inlet 1 with a recovery rate of 50% or less It is characterized in that any two or more steps of a flushing step for operating and a discharge step for blowing the cleaning water in the membrane module out of the system are combined.

すなわち、洗浄水の温度については、浸漬工程における自然放冷による温度低下が生じる場合を除き、洗浄水の温度は60℃以上、好ましくは60〜95℃で行うことが望ましい。洗浄水による膜モジュール内の不純物を溶出、拡散させる効果は、時間と温度の積により大きく左右され、50℃までの洗浄に比べ、60℃以上、好ましくは60〜95℃の温度に制御・管理することによって、より短時間で効果が得られる。   That is, the temperature of the cleaning water is preferably 60 ° C. or higher, preferably 60 to 95 ° C., except when the temperature is lowered by natural cooling in the dipping process. The effect of elution and diffusion of impurities in the membrane module by washing water depends greatly on the product of time and temperature, and is controlled and managed at a temperature of 60 ° C or higher, preferably 60 to 95 ° C, compared to cleaning up to 50 ° C. By doing so, an effect can be obtained in a shorter time.

また、本発明は、膜モジュールの洗浄工程を、上記工程のうちの複数の工程を組み合わせることによって、極めて純度の高い超純水を安定供給することができる膜モジュールを提供することが可能となる。具体的には、正濾過工程−浸漬工程−排出工程の組み合わせや正濾過工程−逆濾過工程−浸漬工程−排出工程の組み合わせなどを種々のパターンを挙げることができる。なお、工程の順番については、膜モジュールの製造工程あるいは使用される超純水製造装置の仕様によって任意に設定される。   In addition, the present invention can provide a membrane module capable of stably supplying ultrapure water with extremely high purity by combining a plurality of steps of the above steps with the washing step of the membrane module. . Specifically, various patterns can be cited such as a combination of a normal filtration step, an immersion step, and a discharge step, and a combination of a normal filtration step, a reverse filtration step, an immersion step, and a discharge step. In addition, about the order of a process, it is arbitrarily set by the specification of the manufacturing process of a membrane module or the ultrapure water manufacturing apparatus used.

以下に、本発明で行う各工程についての機能と効果を説明する。
通常、正濾過による洗浄を行った場合、注型樹脂部7の背面(濃縮水出口2側)においては水が流れ難く、溶出物や微粒子が滞留する。そのため、逆濾過により膜を逆に透過した水により注型樹脂部7の背面の滞留物を系外へ流し出すことができる。また、濃縮水出口2側の注型樹脂部7の背面に滞留あるいは蓄積された溶出物に対しては、フラッシングによる洗浄が効果的である。
Below, the function and effect about each process performed by this invention are demonstrated.
Normally, when washing by forward filtration is performed, water hardly flows on the back surface of the casting resin portion 7 (concentrated water outlet 2 side), and eluate and fine particles stay. Therefore, the accumulated matter on the back surface of the casting resin portion 7 can be discharged out of the system by the water that has permeated the membrane in reverse by reverse filtration. In addition, washing by flushing is effective for the effluent accumulated or accumulated on the back surface of the casting resin portion 7 on the concentrated water outlet 2 side.

しかし、フラッシングでは正濾過と同じように原水入口1側の注型樹脂部7の背面では流れが少なく滞留の問題がある。また、逆濾過の場合でも逆流時における中空糸膜5の内部に上流領域(濃縮水出口2寄り)に比べ下流領域(原水入口1寄り)では圧力損失により透過水量が少なくなり溶出物などを流出させる効率としては劣る。原水入口1側注型樹脂部7の背面の滞留物を流出させるためには排出工程が効果的であり、排出時には1次側(供給水及び濃縮水側)の水と共に透過側のヘッド圧により2次側(透過水側)からの水が逆に透過し排出される。   However, in the flushing, there is a problem that the flow is small on the back surface of the casting resin portion 7 on the raw water inlet 1 side as in the case of normal filtration, and there is a problem of staying. Even in the case of reverse filtration, the amount of permeate decreases in the downstream region (near the concentrated water outlet 1) inside the hollow fiber membrane 5 during the reverse flow compared to the upstream region (near the concentrated water outlet 1) due to pressure loss, and the effluent flows out. It is inferior in efficiency. The discharge process is effective for discharging the accumulated matter on the back side of the raw water inlet 1 side casting resin portion 7, and at the time of discharge, the water pressure on the primary side (supply water and concentrated water side) and the head pressure on the permeate side are used. The water from the secondary side (permeate side) permeates and is discharged.

また、浸漬工程においては、膜モジュール内を洗浄水で満たした状態で所定時間静置することで、注型樹脂のアミン成分等をはじめとする膜モジュール内の不純物を溶出、拡散させることができる。ここで、浸漬時間は、6〜30時間とすることが好ましく、より好ましくは、10〜20時間とする。6時間を下回ると、膜モジュール内の不純物を十分溶出、拡散させることができず、30時間を超えると、洗浄工程の作業性の悪化を招来するとともに、溶出した不純物が他の部材へ拡散し付着に至るおそれがあり、また、微生物が繁殖するおそれがある。   Moreover, in the dipping process, by leaving the membrane module filled with washing water for a predetermined time, impurities in the membrane module including the amine component of the casting resin can be eluted and diffused. . Here, the immersion time is preferably 6 to 30 hours, and more preferably 10 to 20 hours. If the time is less than 6 hours, the impurities in the membrane module cannot be sufficiently eluted and diffused. If the time exceeds 30 hours, the workability of the cleaning process is deteriorated and the eluted impurities are diffused to other members. There is a risk of adhesion, and there is a risk of microbial growth.

また、本発明に係る洗浄工程を、浸漬工程を含め、正濾過工程、逆濾過工程、フラッシング工程、および排出工程のうちの少なくとも1以上の工程を組み合わせることが好ましい。すなわち、超純水の製造システムにおいて、膜モジュールから溶出するイオンや有機物による半導体製品の不良の発生を未然に防止するためには、洗浄工程の中、浸漬工程が重要な役割を果たし、膜モジュール内に溶出、拡散した不純物を、上記の正濾過工程などの他の工程と組み合わせて系外に排出させることによって、優れた洗浄効果を得ることができる。   Moreover, it is preferable that the washing | cleaning process which concerns on this invention combines at least 1 or more processes of a normal filtration process, a back filtration process, a flushing process, and a discharge process including an immersion process. That is, in the ultrapure water production system, the dipping process plays an important role in the cleaning process in order to prevent the occurrence of defects in semiconductor products due to ions and organic substances eluted from the membrane module. An excellent cleaning effect can be obtained by discharging the impurities eluted and diffused into the system in combination with other processes such as the above-described normal filtration process.

排水工程においては、排水方法について特に制限はなく、モジュール内の洗浄水を順次系外に流し出すことで、洗浄工程を終了することができる。ただし、本発明者の知見として、先ずモジュール内原水側の水を排出し、続いて透過側の水をヘッド圧によって原水側へ透過させて排出することが好ましいことが判った。実質的に逆濾過と同様の処理を行うことによって、注型樹脂部7の背面などに滞留した溶出物などを、より徹底して系外へ流し出すことができることから、透過水のTOC成分の一層の低減を図ることができた。   In the draining process, the draining method is not particularly limited, and the cleaning process can be completed by sequentially flushing the cleaning water in the module out of the system. However, as a knowledge of the present inventors, it has been found that it is preferable to discharge the water on the raw water side in the module first, and then pass the water on the permeate side to the raw water side by the head pressure and discharge it. By performing substantially the same treatment as reverse filtration, it is possible to more thoroughly flow out the effluent accumulated on the back surface of the casting resin portion 7 to the outside of the system. A further reduction was achieved.

以上のように、本発明に係る膜モジュールの洗浄においては、膜モジュールの構造上、正濾過工程、逆濾過工程、フラッシング工程、浸漬工程、排出工程のうちのいずれか複数の工程を組み合わせることにより効果的な溶出物の除去が可能になることを見出した。また、洗浄の最終工程に正濾過工程を組入れることによって、洗浄後に直ちに使用することが可能となる。さらに、後述する透過水の比抵抗の立上げ、TOC成分の低減をスムーズに行うことが可能となる。   As described above, in the cleaning of the membrane module according to the present invention, due to the structure of the membrane module, by combining any one of the forward filtration step, the reverse filtration step, the flushing step, the immersion step, and the discharge step. It has been found that effective elution can be removed. In addition, by incorporating a normal filtration step into the final washing step, it can be used immediately after washing. Furthermore, it is possible to smoothly raise the specific resistance of permeated water, which will be described later, and reduce the TOC component.

ここで、洗浄水として、超純水を用いることが好ましい。特に、粒径0.1μm以上の微粒子が5個/mL以下、TOC濃度が5ppb以下、比抵抗値が18MΩ・cm以上の超純水を洗浄水とすることによって、さらに洗浄効果を上げることができる。   Here, it is preferable to use ultrapure water as the cleaning water. In particular, the cleaning effect can be further improved by using ultrapure water having a fine particle size of 0.1 μm or more of 5 particles / mL or less, a TOC concentration of 5 ppb or less, and a specific resistance value of 18 MΩ · cm or more as cleaning water. it can.

以下、具体的実施例により本発明をさらに説明する。また、実施例等における評価項目は下記のように算出した。なお、本発明がかかる実施例、評価方法に限定されるものでないことはいうまでもない。   Hereinafter, the present invention will be further described with reference to specific examples. In addition, evaluation items in Examples and the like were calculated as follows. In addition, it cannot be overemphasized that this invention is not limited to this Example and evaluation method.

<評価方法>
実施例および比較例については、有効膜面積30m、公称分画分子量20,000、透過水量15m/h(0.1MPa)以上の外圧型中空糸膜モジュール(日東電工社製、型式NTU−3306−K6R)にて実験を行った。各例ともに、先ず洗浄装置に取り付け各々の条件で洗浄を行った後、評価装置に取り付け、供給水圧力0.15MPa、膜間差圧0.05MPa、回収率90%で運転したときの透過水の比抵抗の立ち上がり速度とTOC低下速度を比較した。なお、ここでの洗浄水としては、粒径0.1μm以上の微粒子が5個/mL以下、TOC濃度が5ppb以下、比抵抗値が17.5MΩ・cm以上の超純水を使用した。
(1)比抵抗
JIS K 0552「超純水中の電気伝導率試験方法」に基づき、水質電気伝導率測定装置(Thornton社製、導電率/比抵抗システム 200CR)によって、試料中の比抵抗を測定した。
(2)有機体炭素量(TOC)
JIS K 0551「超純水中の有機体炭素試験方法」に基づき、水質有機体炭素測定装置(Anatel社製、TOTAL ORGANIC CARBON ANALYZER A−100)によって、試料中のTOCを測定した。
<Evaluation method>
For Examples and Comparative Examples, an external pressure type hollow fiber membrane module having an effective membrane area of 30 m 2 , a nominal molecular weight cut off of 20,000, and a permeated water amount of 15 m 3 / h (0.1 MPa) or more (manufactured by Nitto Denko Corporation, Model NTU- 3306-K6R). In each example, the permeated water was first attached to the cleaning device, cleaned after each condition, then attached to the evaluation device, and operated at a supply water pressure of 0.15 MPa, a transmembrane pressure difference of 0.05 MPa, and a recovery rate of 90%. The specific resistance rising speed and TOC decreasing speed were compared. The washing water used here was ultrapure water having a particle size of 5 μm / mL or less, a TOC concentration of 5 ppb or less, and a specific resistance value of 17.5 MΩ · cm or more.
(1) Specific resistance Based on JIS K 0552 “Testing method of electrical conductivity in ultrapure water”, the specific resistance in the sample was measured with a water quality electrical conductivity measuring device (Torton, conductivity / specific resistance system 200CR). It was measured.
(2) Organic carbon content (TOC)
Based on JIS K 0551 “Testing method for organic carbon in ultrapure water”, the TOC in the sample was measured with a water-based organic carbon measuring device (manufactured by Anatel, TOTAL ORGANIC CARBON ANALYZER A-100).

<実施例1>
90±5℃に調整した洗浄水をモジュールに供給し、供給水圧力0.15MPa、膜間差圧0.1MPa、回収率83%に調整し、正濾過を8時間行い、その後装置を停止して浸漬状態で15時間維持し、その後モジュール内の水を排出する。以上の工程の繰り返しを計3回、3日間行った。その後、上記の評価方法によって評価した。
<Example 1>
Washing water adjusted to 90 ± 5 ° C is supplied to the module, the supply water pressure is adjusted to 0.15 MPa, the transmembrane pressure difference is 0.1 MPa, the recovery rate is 83%, the normal filtration is performed for 8 hours, and then the device is stopped. And soaked for 15 hours, and then drain the water in the module. The above steps were repeated 3 times for 3 days. Then, it evaluated by said evaluation method.

<実施例2>
88±3℃に調整した洗浄水をモジュールに供給し、供給水圧力0.15MPa、膜間差圧0.1MPa、回収率84%に調整し、正濾過を8時間行い、その後装置を停止して浸漬状態で15時間維持し、その後モジュール内の水を排出時に、先ず原水側の水を排出し、続いて透過側の水をヘッド圧によって原水側へ透過させて排出する。以上の工程の繰り返しを計3回、3日間行った。その後、上記の評価方法によって評価した。
<Example 2>
The cleaning water adjusted to 88 ± 3 ° C is supplied to the module, the supply water pressure is adjusted to 0.15 MPa, the transmembrane pressure difference is set to 0.1 MPa, and the recovery rate is 84%, the normal filtration is performed for 8 hours, and then the apparatus is stopped. When the water in the module is discharged, the raw water side is first discharged, and then the permeate side water is permeated to the raw water side by the head pressure and discharged. The above steps were repeated 3 times for 3 days. Then, it evaluated by said evaluation method.

<比較例1>
48±2℃に調整した洗浄水をモジュールに供給し、供給水圧力0.15MPa、膜間差圧0.1MPa、回収率83%に調整し、正濾過を10分間行い、その後装置を停止して浸漬状態で5時間維持し、その後モジュール内の水を排出する。新たな洗浄水を使用して以上の工程の繰り返しを3日間行った。その後、上記の評価方法によって評価した。
<Comparative Example 1>
The cleaning water adjusted to 48 ± 2 ° C is supplied to the module, the supply water pressure is adjusted to 0.15 MPa, the transmembrane pressure difference is 0.1 MPa, and the recovery rate is 83%, the normal filtration is performed for 10 minutes, and then the apparatus is stopped. For 5 hours and then drain the water in the module. The above steps were repeated for 3 days using fresh wash water. Then, it evaluated by said evaluation method.

<比較例2>
90±5℃に調整した洗浄水をモジュールに供給し、供給水圧力0.15MPa、膜間差圧0.1MPa、回収率83%に調整し、正濾過を3日間行い、1日1回、1時間の逆濾過を供給水圧力0.12MPa、膜間差圧0.05MPa、回収率100%で行った。その後、上記の評価方法によって評価した。
<Comparative example 2>
Washing water adjusted to 90 ± 5 ° C. is supplied to the module, the supply water pressure is 0.15 MPa, the transmembrane pressure difference is 0.1 MPa, and the recovery rate is 83%. Reverse filtration for 1 hour was performed at a feed water pressure of 0.12 MPa, a transmembrane pressure difference of 0.05 MPa, and a recovery rate of 100%. Then, it evaluated by said evaluation method.

<比較例3>
50±3℃に調整した洗浄水をモジュールに供給し、供給水圧力0.15MPa、膜間差圧0.1MPa、回収率83%に調整し、正濾過を8時間行い、その後装置を停止して浸漬状態で15時間維持し、その後モジュール内の水を排出する。以上の工程の繰り返しを計3回、3日間行った。その後、上記の評価方法によって評価した。
<Comparative Example 3>
Washing water adjusted to 50 ± 3 ° C is supplied to the module, the supply water pressure is adjusted to 0.15 MPa, the transmembrane pressure difference is 0.1 MPa, the recovery rate is 83%, the normal filtration is performed for 8 hours, and then the device is stopped. And soaked for 15 hours, and then drain the water in the module. The above steps were repeated 3 times for 3 days. Then, it evaluated by said evaluation method.

<評価結果>
各条件にて洗浄後、本発明の実施例1、2と従来法である比較例1〜3における比抵抗立ち上げ特性および溶出成分(△TOC)の低下特性を確認した。ここで、
ΔTOC=(透過水のTOC)−(供給水のTOC)
その結果を、図2、図3に示した。図2は、洗浄時間に対する比抵抗18MΩ・cm付近における各例の比抵抗値の変化を追跡したもので、図3は、洗浄時間に対する各例のΔTOCの変化を追跡したものである。
また、このときの比抵抗立ち上げおよびΔTOCの各目標値に到達した時間を表1に示した。比抵抗は17.8MΩ・cm以上となる時間、ΔTOCは3ppb以下となる時間を基準とした。
表1に示すように、実施例1、2は、比較例1〜3に比較し短時間で目標に達し、本発明に係る洗浄方法の優位性を確認した。
<Evaluation results>
After washing under each condition, the specific resistance rise characteristics and elution component (ΔTOC) lowering characteristics in Examples 1 and 2 of the present invention and Comparative Examples 1 to 3 which are conventional methods were confirmed. here,
ΔTOC = (TOC of permeated water) − (TOC of supplied water)
The results are shown in FIGS. FIG. 2 tracks changes in the specific resistance value of each example near the specific resistance of 18 MΩ · cm with respect to the cleaning time, and FIG. 3 tracks changes in ΔTOC of each example with respect to the cleaning time.
In addition, Table 1 shows the time when the specific resistance rise and ΔTOC reached each target value at this time. The specific resistance was based on the time when it was 17.8 MΩ · cm or more, and ΔTOC was based on the time when it was 3 ppb or less.
As shown in Table 1, Examples 1 and 2 reached the target in a shorter time than Comparative Examples 1 to 3, and confirmed the superiority of the cleaning method according to the present invention.

Figure 0004793975
Figure 0004793975

外圧式中空糸膜モジュールの構造を例示する説明図Explanatory drawing illustrating the structure of the external pressure type hollow fiber membrane module 本発明実施例における比抵抗立ち上げ特性を示す説明図Explanatory drawing which shows the specific resistance start-up characteristic in this invention Example 本発明実施例におけるΔTOC低下特性を示す説明図Explanatory drawing which shows (DELTA) TOC fall characteristic in this invention Example

符号の説明Explanation of symbols

1 原水入口
2 濃縮水入口
3 透過水出口
4 ハウジング
5 中空糸膜
6 膜エレメント
7,8 注型樹脂部
DESCRIPTION OF SYMBOLS 1 Raw water inlet 2 Concentrated water inlet 3 Permeated water outlet 4 Housing 5 Hollow fiber membrane 6 Membrane element 7, 8 Cast resin part

Claims (2)

超純水の製造システムに使用する外圧型中空糸膜モジュールを新規導入時または交換導入時に洗浄する洗浄方法であって、洗浄に使用する洗浄水の温度を60℃以上として浸漬工程を行った後、原水側の洗浄水を排出した後、ヘッド圧により透過側の洗浄水を原水側に透過させて排出する排出工程を行うことを特徴とする超純水用膜モジュールの洗浄方法。 A cleaning method for cleaning external pressure type hollow fiber membrane module used in the production system of the ultrapure water during new installations or during exchange introduction, the temperature of the washing water used for washing with 60 ° C. or higher performing immersion step with Then, after the raw water-side cleaning water is discharged, a draining process is performed in which the permeate-side cleaning water is permeated to the raw water side by the head pressure and discharged. 前記膜モジュールの洗浄工程において、6〜30時間の浸漬工程を含む請求項1記載の超純水用膜モジュールの洗浄方法。   The method for cleaning a membrane module for ultrapure water according to claim 1, wherein the cleaning step of the membrane module includes a dipping step of 6 to 30 hours.
JP2005035862A 2005-02-14 2005-02-14 Cleaning method for membrane module for ultrapure water Active JP4793975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035862A JP4793975B2 (en) 2005-02-14 2005-02-14 Cleaning method for membrane module for ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035862A JP4793975B2 (en) 2005-02-14 2005-02-14 Cleaning method for membrane module for ultrapure water

Publications (2)

Publication Number Publication Date
JP2006218440A JP2006218440A (en) 2006-08-24
JP4793975B2 true JP4793975B2 (en) 2011-10-12

Family

ID=36981095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035862A Active JP4793975B2 (en) 2005-02-14 2005-02-14 Cleaning method for membrane module for ultrapure water

Country Status (1)

Country Link
JP (1) JP4793975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245605B2 (en) * 2008-07-18 2013-07-24 栗田工業株式会社 Filtration membrane cleaning method and ultrapure water production filtration membrane
SG11202004085VA (en) * 2017-12-20 2020-07-29 Evoqua Water Tech Llc Hot water cart conditioning system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271461A (en) * 1999-01-22 2000-10-03 Nitto Denko Corp Spiral type membrane element and operation of spiral type membrane module
JP4583558B2 (en) * 2000-07-18 2010-11-17 日東電工株式会社 Method of operating spiral membrane element and spiral membrane module
JP2002095936A (en) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd Cleaning method for reverse osmosis membrane
JP4810757B2 (en) * 2001-06-05 2011-11-09 栗田工業株式会社 Ultrafiltration membrane for ultrapure water production and its pre-cleaning method
JP3871036B2 (en) * 2002-02-08 2007-01-24 栗田工業株式会社 Method and apparatus for reducing elution of long chain amines in high purity water

Also Published As

Publication number Publication date
JP2006218440A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
CN105517960A (en) Ultrapure water production apparatus
US8506722B2 (en) Method for cleaning filtering membrane
TWI771310B (en) Ultrapure water production device
WO2017191829A1 (en) Method for starting ultrapure water production apparatus
US20130333299A1 (en) Abrasive recovery method and abrasive recovery device
JP5245605B2 (en) Filtration membrane cleaning method and ultrapure water production filtration membrane
JP6469400B2 (en) Ultrapure water production equipment
JP4793975B2 (en) Cleaning method for membrane module for ultrapure water
JPS5811090A (en) Reverse osmosis device or ultrafiltration device for production of pure water
JP4119040B2 (en) Functional water production method and apparatus
JP4196222B2 (en) Cleaning device for membrane separator for ultrapure water production
JP2008302333A (en) Method and apparatus for production of fresh water
WO2012057176A1 (en) Water-treatment method and desalinization method
JP2006130496A (en) Water treatment device and its operating method
JP2006218341A (en) Method and apparatus for treating water
JP2008289958A (en) Membrane filtration system
JP5353562B2 (en) Cleaning method for UF membrane module
JP2005046801A (en) Water treatment method and apparatus therefor
JP2006198531A (en) Operating method of hollow fiber membrane module
JP2004066015A (en) Washing method and washing device for membrane separation apparatus for ultrapure water production
JP4804097B2 (en) Continuous operation method of water purification system
JPH03275190A (en) Producing equipment for ultrapure water
JP5003993B2 (en) Membrane filtration system
JP3115750B2 (en) Pure water production method
WO2019188964A1 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4793975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250