JP4778700B2 - Plasma CVD method and apparatus - Google Patents

Plasma CVD method and apparatus Download PDF

Info

Publication number
JP4778700B2
JP4778700B2 JP2004315714A JP2004315714A JP4778700B2 JP 4778700 B2 JP4778700 B2 JP 4778700B2 JP 2004315714 A JP2004315714 A JP 2004315714A JP 2004315714 A JP2004315714 A JP 2004315714A JP 4778700 B2 JP4778700 B2 JP 4778700B2
Authority
JP
Japan
Prior art keywords
electrode
frequency power
substrate holder
vacuum chamber
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004315714A
Other languages
Japanese (ja)
Other versions
JP2006128446A (en
Inventor
正志 菊池
洋介 神保
貞次 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004315714A priority Critical patent/JP4778700B2/en
Publication of JP2006128446A publication Critical patent/JP2006128446A/en
Application granted granted Critical
Publication of JP4778700B2 publication Critical patent/JP4778700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に液晶分野で用いられる大面積基板に薄膜を均一に形成するのに用いられ得るプラズマCVD方法及び装置に関するものである。   The present invention relates to a plasma CVD method and apparatus that can be used to uniformly form a thin film on a large-area substrate used particularly in the field of liquid crystal.

近年、大画面で高品質で低価格の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイパネルの需要が増大するのに伴い、それらの生産に用いられるマザーガラスの基板サイズの大型化が加速している。   In recent years, as the demand for large-screen, high-quality, low-cost liquid crystal displays and organic electroluminescence display panels increases, the increase in the size of the mother glass used for production thereof has been accelerated.

それに伴い、基板上にデバイスを製作する上で、薄膜形成工程の一つとして欠かせないプラズマCVD装置においては、処理面積の大型化と面内膜厚の均一性が重要な課題とされている。   Along with this, in the plasma CVD apparatus that is indispensable as one of the thin film formation processes when manufacturing devices on the substrate, increasing the processing area and uniformity of the in-plane film thickness are important issues. .

基板上に堆積される薄膜としては、代表的にはアモルファスシリコン(a−Si)、窒化珪素(SiNx)、酸化珪素(SiOx)、酸化窒化珪素(SiOxNy)、nドープアモルファスシリコン(n+a−Si)を挙げることができる。   The thin films deposited on the substrate are typically amorphous silicon (a-Si), silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiOxNy), and n-doped amorphous silicon (n + a-Si). Can be mentioned.

これらの薄膜を基板上に形成する際には、プラズマCVD装置において高周波電力を用いて成膜ガスをプラズマ化する。しかし、高周波電力を印加する電極の大きさが大きくなればなるほど電極上で発生する定在波がプラズマ密度の面内均一性に影響し、堆積膜の膜厚の不均一性の悪化を招くことが知られている。   When these thin films are formed on the substrate, the film forming gas is turned into plasma using high frequency power in a plasma CVD apparatus. However, the larger the size of the electrode to which the high frequency power is applied, the more the standing wave generated on the electrode affects the in-plane uniformity of the plasma density, leading to deterioration of the non-uniformity of the deposited film thickness. It has been known.

同時に、使用する基板の大きさが大きくなるほど、電極の大きさも大きくなり、電極及び基板ホルダーの配置される真空槽も大きくなり、プラズマに供給される高周波電力も大きくなるが、電極の真空槽に対する相対的な大きさは小さくされるため、基板を載置する基板ホルダーから真空槽壁を介して接地電位へ流れる電流分布のプラズマへの影響が無視できなくなることも知られている。   At the same time, the larger the size of the substrate used, the larger the size of the electrode, the larger the vacuum chamber in which the electrode and the substrate holder are arranged, and the higher the high-frequency power supplied to the plasma. Since the relative size is reduced, it is also known that the influence of plasma on the current distribution flowing from the substrate holder on which the substrate is placed to the ground potential via the vacuum chamber wall cannot be ignored.

添付図面の図9には従来のプラズマCVD装置の一例を示す。図9において、Aは真空槽で、この真空槽Aの内部には基板ホルダーBと電極Cとが対向して配置されている。基板ホルダーBは真空槽Aの底壁に取り付けられ、内部にヒーターDを備え、上面に基板Eが載置される。   FIG. 9 of the accompanying drawings shows an example of a conventional plasma CVD apparatus. In FIG. 9, A is a vacuum chamber, and a substrate holder B and an electrode C are disposed inside the vacuum chamber A so as to face each other. The substrate holder B is attached to the bottom wall of the vacuum chamber A, has a heater D inside, and a substrate E is placed on the upper surface.

電極Cは絶縁部材Fを介して真空槽Aの頂壁に取り付けられ、そして給電部材G及び整合器Hを介して高周波電源Iに接続されている。また、図示していないが、真空槽Aには成膜ガス導入系及び真空排気系が設けられている。   The electrode C is attached to the top wall of the vacuum chamber A via an insulating member F, and is connected to a high-frequency power source I via a power supply member G and a matching unit H. Although not shown, the vacuum chamber A is provided with a film forming gas introduction system and a vacuum exhaust system.

このように構成した従来の装置では、高周波電源Iとして、通常13.56MHz又は27.12MHzの周波数の高周波電源が用いられ得る。そして基板Eのサイズが1m×1m以下では、堆積すべき膜の種類に応じて成膜条件を最適化することにより、得られる膜厚分布は±10%以下にすることができる。  In the conventional apparatus configured as described above, a high-frequency power source having a frequency of 13.56 MHz or 27.12 MHz is normally used as the high-frequency power source I. When the size of the substrate E is 1 m × 1 m or less, the film thickness distribution obtained can be made ± 10% or less by optimizing the film formation conditions according to the type of film to be deposited.

しかし、基板サイズが1m×1m以上になると、上述の理由で膜厚分布の所望の均一性を確保することができなくなる。  However, when the substrate size is 1 m × 1 m or more, the desired uniformity of the film thickness distribution cannot be ensured for the reasons described above.

このような問題点を解決するため、従来、高周波電力を印加する電極を中心部と周辺部との分割し、電極の中心部と周辺部における電極と基板ホルダーとの距離を調節可能にしてプラズマ分布を調節し、膜厚分布を均一化するようにしたプラズマCVD装置が提案されている(特許文献1参照)。  In order to solve such problems, conventionally, an electrode to which high-frequency power is applied is divided into a central portion and a peripheral portion, and the distance between the electrode and the substrate holder in the central portion and the peripheral portion of the electrode can be adjusted to make plasma. A plasma CVD apparatus has been proposed in which the distribution is adjusted and the film thickness distribution is made uniform (see Patent Document 1).

また、電極を複数の小電極に分割して、分割した電極の境界部分において電極と基板ホルダーとの距離が連続となるようにし、また各小電極に印加する高周波電力を調整し、それにより膜厚分布を均一化するようにしたプラズマ処理装置も従来提案されている(特許文献2参照)。
特開平10−289881号公報 特開2003−68651号公報
Also, the electrode is divided into a plurality of small electrodes so that the distance between the electrode and the substrate holder is continuous at the boundary between the divided electrodes, and the high-frequency power applied to each small electrode is adjusted, thereby A plasma processing apparatus that makes the thickness distribution uniform has also been proposed (see Patent Document 2).
Japanese Patent Laid-Open No. 10-289881 JP 2003-68651 A

しかし、特許文献1に記載された装置では、電極の中心部と周辺部との境界が不連続であるために、プラズマが不安定となり、薄膜を均一に形成することができないという問題がある。   However, the apparatus described in Patent Document 1 has a problem that plasma becomes unstable and a thin film cannot be formed uniformly because the boundary between the central part and the peripheral part of the electrode is discontinuous.

また、特許文献2に記載された発明では、実際上、分割された小電極間の境界部分でプラズマの安定化が困難であり、異常放電も発生し易く、薄膜を均一化する条件を見出すことが困難であるという問題がある。また、電極間の境界面には反応生成物が付着、剥離し易く、そのため装置内のパーティクルの発生源となり、異常放電の発生源ともなり、その結果製品の歩留まりを低下させるという問題もある。  In addition, in the invention described in Patent Document 2, in practice, it is difficult to stabilize plasma at the boundary between divided small electrodes, abnormal discharge is likely to occur, and a condition for uniformizing the thin film is found. There is a problem that is difficult. Further, the reaction product easily adheres to and peels from the interface between the electrodes, so that it becomes a source of particles in the apparatus and a source of abnormal discharge, resulting in a problem that the yield of the product is lowered.

そこで、本発明は、従来技術に伴うこのような問題点を解決して、大面積基板に均一な膜厚及び膜質分布で成膜できるプラズマCVD方法及び装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a plasma CVD method and apparatus capable of solving such problems associated with the prior art and forming a film on a large area substrate with a uniform film thickness and film quality distribution.

上記の目的を達成するために、本発明の第1の発明によれば、真空槽内に、基板ホルダーと電極とを対向させて配置し、前記真空槽内に成膜ガスを導入すると共に前記電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、前記基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD装置において、
前記電極の複数の部位に高周波電力を印加する一つ以上の高周波電源を設け、
また、前記電極と前記基板ホルダーとの距離が少なくとも周辺部において連続的に変化するような形状に前記電極の前記基板ホルダーに対向する面を構成し、
前記一つ以上の高周波電源から前記電極の左右一つずつ二つの部位に印加される高周波電力が、同じ周波数及び位相をもち、
前記電極と前記基板ホルダーとの距離が前記周辺部において連続的に変化する部分の傾斜度が0.3%〜0.6%であること
を特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a substrate holder and an electrode are arranged facing each other in a vacuum chamber, a film forming gas is introduced into the vacuum chamber, and the In a plasma CVD apparatus in which a film forming gas introduced by applying high frequency power to an electrode is turned into a plasma and formed on a large area substrate placed on the substrate holder,
Providing one or more high-frequency power supplies for applying high-frequency power to a plurality of portions of the electrode;
Further, the surface of the electrode facing the substrate holder is configured in such a shape that the distance between the electrode and the substrate holder continuously changes at least in the peripheral portion,
RF power applied from said one or more high-frequency power source to the left and right one by one two sites of the electrodes, Chi also the same frequency and phase,
The inclination of the portion where the distance between the electrode and the substrate holder continuously changes in the peripheral portion is 0.3% to 0.6% .

また電極はシャワーヘッドとシャワープレートから成る構成とし、シャワープレートの基板ホルダーに対向した面は凹状又は凸状に形成され得る。そして成膜ガスは、シャワープレートから基板ホルダーに向って供給され得る。   The electrode may be composed of a shower head and a shower plate, and the surface of the shower plate facing the substrate holder may be formed in a concave shape or a convex shape. The film forming gas can be supplied from the shower plate toward the substrate holder.

また電極の外形寸法は基板の外形寸法より大きく構成され得る。   Further, the outer dimension of the electrode may be configured to be larger than the outer dimension of the substrate.

基板ホルダーと電極との距離は連続的に異なるように調整可能にされ得る。   The distance between the substrate holder and the electrode may be adjustable to be continuously different.

また、本発明の第の発明によれば、真空槽内に、基板ホルダーと電極とを対向させて配置し、真空槽内に成膜ガスを導入すると共に電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD方法において、
電極と基板ホルダーとの距離が少なくとも周辺部において傾斜度0.3%〜0.6%で連続的に変化するように電極の基板ホルダーに対向する面を凹面状に形成し、電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的高い約100Pa以上に保って大面積基板上に成膜すること
を特徴としている。この場合、成膜圧力は他の成膜条件と関連で好ましくは約100Pa〜約500Paの範囲に選定され得る。
Further, according to the second invention of the present invention, the substrate holder and the electrode are disposed in the vacuum chamber so as to face each other, and the film forming gas is introduced into the vacuum chamber and the high frequency power is applied to the electrode. In the plasma CVD method in which the introduced film forming gas is converted into plasma and formed on a large area substrate placed on a substrate holder,
A surface facing the substrate holder of the electrode is formed in a concave shape so that the distance between the electrode and the substrate holder continuously changes at an inclination of 0.3% to 0.6% at least in the peripheral portion, and a plurality of electrodes It is characterized in that high-frequency power is applied to the site and the film formation pressure in the vacuum chamber is kept at a relatively high pressure of about 100 Pa or more to form a film on a large area substrate. In this case, the film forming pressure is preferably selected in the range of about 100 Pa to about 500 Pa in relation to other film forming conditions.

また、本発明の第の発明によれば、真空槽内に、基板ホルダーと電極とを対向させて配置し、真空槽内に成膜ガスを導入すると共に電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD方法において、
電極と基板ホルダーとの距離が少なくとも周辺部において傾斜度0.3%〜0.6%で連続的に変化するように記電極の基板ホルダーに対向する面を凸面状に形成し、電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的高い約100Pa以下に保って大面積基板上に成膜すること
を特徴としている。
Further, according to the third invention of the present invention, the substrate holder and the electrode are disposed in the vacuum chamber so as to face each other, and the film forming gas is introduced into the vacuum chamber and the high frequency power is applied to the electrode. In the plasma CVD method in which the introduced film forming gas is converted into plasma and formed on a large area substrate placed on a substrate holder,
A surface facing the substrate holder of the electrode is formed in a convex shape so that the distance between the electrode and the substrate holder continuously changes at an inclination of 0.3% to 0.6% at least in the peripheral portion, and a plurality of electrodes This is characterized in that high-frequency power is applied to this part and the film formation pressure in the vacuum chamber is kept at a relatively high level of about 100 Pa or less to form a film on a large-area substrate.

本発明の第、第の発明において、一つ以上の高周波電源から電極の複数の部位に印加される高周波電力は同じ周波数をもち、そして位相制御され得る。この場合、高周波電力の位相制御は、各部位に印加される高周波電力が同じ位相をもつように行なわれ得る。 In the second and third aspects of the present invention, the high frequency power applied to the plurality of portions of the electrode from one or more high frequency power supplies has the same frequency and can be phase controlled. In this case, the phase control of the high frequency power can be performed so that the high frequency power applied to each part has the same phase.

本明細書において、用語“大面積基板”は、縦横の長さ1m×1m以上、長辺又は長径の長さが1m以上のサイズをもつ任意の形状の基板を意味するものとする。   In the present specification, the term “large area substrate” means a substrate having an arbitrary shape having a size of 1 m × 1 m or more in length and width and a length of a long side or a long diameter of 1 m or more.

以上説明してきたように、本発明の第1の発明によるプラズマCVD装置においては、電極の複数の部位に高周波電力を印加する一つ以上の高周波電源を設け、また、電極と基板ホルダーとの距離が少なくとも周辺部において連続的に変化するような形状に電極の基板ホルダーに対向する面を構成し、一つ以上の高周波電源から電極の左右一つずつ二つの部位に印加される高周波電力が、同じ周波数及び位相をもち、電極と基板ホルダーとの距離が前記周辺部において連続的に変化する部分の傾斜度が0.3%〜0.6%であるとしたことにより、電極と基板ホルダーとの間の良好な電界強度分布を得ることができ、基板上において成膜ガスを均一にプラズマ化させることができ、反応生成物の均一な膜厚の薄膜を形成することができるようになる。 As described above, in the plasma CVD apparatus according to the first aspect of the present invention, one or more high-frequency power supplies for applying high-frequency power to a plurality of portions of the electrode are provided, and the distance between the electrode and the substrate holder Forming a surface facing the electrode substrate holder in such a shape that continuously changes at least in the peripheral portion, and high frequency power applied to two portions of each of the left and right electrodes from one or more high frequency power sources, It has the same frequency and phase, by tilting of the continuously varying portion at distance the peripheral portion of the electrode and the substrate holder has to be 0.3% to 0.6%, electrodes and a substrate holder A good electric field strength distribution between the substrate and the substrate, and the film forming gas can be uniformly converted to a plasma on the substrate, so that a thin film with a uniform film thickness of the reaction product can be formed. It made.

また、本発明の第1発明によるプラズマCVD装置において、基板ホルダーと電極との距離が連続的に異なるように調整可能に構成した場合には、NFやF或いはCF系ガスをプラズマ化して成膜に伴ってシャワープレート等へ付着生成される物質を除去するクリーニングを均一に行うことができるようになる。 In the plasma CVD apparatus according to the first aspect of the present invention, when the distance between the substrate holder and the electrode can be adjusted to be continuously different, NF 3 , F 2, or CF gas is converted into plasma. As a result, it is possible to uniformly perform the cleaning for removing the substances generated and adhered to the shower plate or the like as the film is formed.

また、本発明の第の発明によるプラズマCVD方法においては、電極と基板ホルダーとの距離が中央部から周辺部へ向って傾斜度0.3%〜0.6%で連続的に変化するように電極の基板ホルダーに対向する面を凹面状に形成し、電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的高い約100Pa以上に保って大面積基板上に成膜することにより、電極と基板ホルダーとの間の良好な電界強度分布を得ることができ、基板上において成膜ガスを均一にプラズマ化させることができ、反応生成物の均一な膜厚の薄膜を大面積基板上に形成することができるようになる。 Further, in the plasma CVD method according to the second aspect of the present invention, the distance between the electrode and the substrate holder is continuously changed from the central part to the peripheral part at an inclination of 0.3% to 0.6%. The surface of the electrode facing the substrate holder is formed in a concave shape, high frequency power is applied to a plurality of portions of the electrode, and the film forming pressure in the vacuum chamber is kept at a relatively high level of about 100 Pa or higher on a large area substrate. By forming a film, a good electric field strength distribution between the electrode and the substrate holder can be obtained, the film forming gas can be uniformly converted to plasma on the substrate, and the reaction product has a uniform film thickness. A thin film can be formed on a large area substrate.

また、本発明の第の発明によるプラズマCVD方法においては、電極と基板ホルダーとの距離が中央部から周辺部へ向って傾斜度0.3%〜0.6%で連続的に変化するように電極の基板ホルダーに対向する面を凸面状に形成し、電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的低い約100Pa以下に保って大面積基板上に成膜することにより、低圧領域時に真空槽壁に向ってプラズマが拡散して電極外周におけるプラズマ密度の上昇を抑えることができ、それにより大面積基板全面のプラズマの均一性を高めることができ、反応生成物の均一な膜厚の薄膜を大面積基板上に形成することができるようになる。 In the plasma CVD method according to the third aspect of the present invention, the distance between the electrode and the substrate holder continuously changes from the central portion to the peripheral portion at an inclination of 0.3% to 0.6%. The surface of the electrode facing the substrate holder is formed in a convex shape, high frequency power is applied to a plurality of portions of the electrode, and the film forming pressure in the vacuum chamber is kept at a relatively low level of about 100 Pa or less on a large area substrate. By forming a film, the plasma diffuses toward the vacuum chamber wall in the low pressure region and can suppress an increase in the plasma density on the outer periphery of the electrode, thereby improving the uniformity of the plasma over the entire large area substrate, A thin film of a uniform thickness of the reaction product can be formed on a large area substrate.

以下添付図面の図1〜図8を参照して本発明の実施形態について説明する。  Embodiments of the present invention will be described below with reference to FIGS.

図1には、本発明の一実施形態によるプラズマCVD装置を示す。図1において、1は真空槽であり、この真空槽1の内部にはアノードとして機能する基板ホルダー2及びカソードとして機能する電極3が互いに対向して配置されている。基板ホルダー2は真空槽1の底壁に取り付けられ、内部にヒーター4を備え、そして基板ホルダー2の上面に大面積基板5が載置される。   FIG. 1 shows a plasma CVD apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vacuum chamber, and a substrate holder 2 that functions as an anode and an electrode 3 that functions as a cathode are disposed inside the vacuum chamber 1 so as to face each other. The substrate holder 2 is attached to the bottom wall of the vacuum chamber 1, includes a heater 4 inside, and a large area substrate 5 is placed on the upper surface of the substrate holder 2.

基板ホルダー2は、図示していない昇降機構によって昇降可能であり、これにより電極3との距離を調節可能にして、成膜時及びクリーニング時に基板ホルダー2と電極3との間の距離を変えるようにされる。この場合、昇降機構はまた、真空槽1の外部から内部へ処理すべき大面積基板5を搬入したり、真空槽1の内部から外部へ処理済みの大面積基板5を搬出する際の搬送動作における基板の昇降動作にも用いることができる。   The substrate holder 2 can be moved up and down by a lifting mechanism (not shown), whereby the distance from the electrode 3 can be adjusted, and the distance between the substrate holder 2 and the electrode 3 can be changed during film formation and cleaning. To be. In this case, the lifting mechanism also carries a large-area substrate 5 to be processed from the outside to the inside of the vacuum chamber 1 and a transfer operation when the processed large-area substrate 5 is unloaded from the inside of the vacuum chamber 1 to the outside. It can also be used for raising and lowering the substrate.

電極3は絶縁部材6を介して真空槽1の頂壁に取り付けられている。そして電極3の基板ホルダー2に対向した面は連続した凹面状に形成されている。また、電極3の外寸は、基板ホルダー2に載置される大面積基板5の外寸より大きく構成されている。   The electrode 3 is attached to the top wall of the vacuum chamber 1 via an insulating member 6. The surface of the electrode 3 facing the substrate holder 2 is formed in a continuous concave shape. Further, the outer dimension of the electrode 3 is configured to be larger than the outer dimension of the large area substrate 5 placed on the substrate holder 2.

電極3の二つの部位には、図7に見られるように、二つの高周波電源7からそれぞれ整合器8及び給電部材9を介して高周波電力が印加される。給電部材9は絶縁部材10により真空槽1から絶縁されている。真空槽1及び基板ホルダー2は接地電位に接続されている。   As shown in FIG. 7, high frequency power is applied to the two portions of the electrode 3 from the two high frequency power sources 7 via the matching unit 8 and the power feeding member 9, respectively. The power supply member 9 is insulated from the vacuum chamber 1 by the insulating member 10. The vacuum chamber 1 and the substrate holder 2 are connected to the ground potential.

また、図示していないが、真空槽1には、外部の成膜ガス供給源から真空槽1内へ成膜ガスを導入する成膜ガス導入系並びに真空槽1内の真空排気及び成膜ガスの排気を行なう真空排気系が設けられる。   Although not shown, the vacuum chamber 1 has a film formation gas introduction system for introducing a film formation gas into the vacuum chamber 1 from an external film formation gas supply source, and vacuum exhaust and film formation gas in the vacuum chamber 1. An evacuation system for evacuating the air is provided.

このように構成した図1の装置の動作において、二つの高周波電源7からそれぞれ整合器8及び給電部材9を介して高周波電力が電極3の二つの部位に印加されると、図示していない外部の成膜ガス供給源から真空槽1内へ導入された成膜ガスは、基板ホルダー2をアノード、電極3をカソードとした容量結合型グロー放電により、真空槽1内でプラズマ化される。一方、大面積基板5は、基板ホルダー2に内蔵されたヒーター4によって予め所定の温度に加熱されている。それでプラズマ化した成膜ガスによる反応生成物は基板5の表面に到達し、良好な膜厚分布をもつ所望の薄膜を基板上に形成する。 In the operation of the apparatus of FIG. 1 configured as described above, when high-frequency power is applied to two parts of the electrode 3 from the two high-frequency power sources 7 via the matching unit 8 and the power feeding member 9, respectively, an external unit (not shown) The film forming gas introduced into the vacuum chamber 1 from the film forming gas supply source is converted into plasma in the vacuum chamber 1 by capacitively coupled glow discharge using the substrate holder 2 as an anode and the electrode 3 as a cathode. On the other hand, the large area substrate 5 is heated to a predetermined temperature in advance by a heater 4 built in the substrate holder 2. As a result, the reaction product of the film-forming gas that has been turned into plasma reaches the surface of the substrate 5 and forms a desired thin film having a good film thickness distribution on the substrate.

ところで、図1の装置においては、二つの高周波電源7から電極3の左右一つずつ二つの部位に独立して高周波電力を印加しているが、代わりに、一つの高周波電源を用い、そこから分岐して電極3の二つの部位に高周波電力を印加するように構成することもできる。いずれの構成の場合にも、電極3の二つの部位に印加される高周波電力は、位相制御装置により所望の位相差となるように制御することもできる。或いは、電極3に二つ以上の印加部位を設け、使用する高周波電源は一つ以上、電極3における印加部位の数以下として、各々整合器を介して電極の印加部位へ高周波電力を印加し、任意の電源間で位相差を制御するように構成してもよい。  By the way, in the apparatus of FIG. 1, high frequency power is independently applied to the two left and right portions of the electrode 3 from the two high frequency power sources 7. Instead, one high frequency power source is used, and from there It can also be configured to branch and apply high frequency power to the two parts of the electrode 3. In any configuration, the high-frequency power applied to the two portions of the electrode 3 can be controlled to have a desired phase difference by the phase control device. Alternatively, the electrode 3 is provided with two or more application sites, and one or more high-frequency power sources to be used are set to be equal to or less than the number of application sites in the electrode 3, and high-frequency power is applied to the electrode application sites through the matching devices You may comprise so that a phase difference may be controlled between arbitrary power supplies.

図2には、本発明の別の実施形態によるプラズマCVD装置を示す。図2において、図1の装置における対応した部分は同じ符号で示す。図1の装置の場合と同様に、真空槽1の内部にはアノードとして機能する基板ホルダー2及びカソードとして機能する電極3が互いに対向して配置されている。基板ホルダー2は真空槽1の底壁に取り付けられ、内部にヒーター4を備え、そして基板ホルダー2の上面に大面積基板5が載置される。   FIG. 2 shows a plasma CVD apparatus according to another embodiment of the present invention. In FIG. 2, the corresponding parts in the apparatus of FIG. As in the case of the apparatus of FIG. 1, a substrate holder 2 that functions as an anode and an electrode 3 that functions as a cathode are arranged inside the vacuum chamber 1 so as to face each other. The substrate holder 2 is attached to the bottom wall of the vacuum chamber 1, includes a heater 4 inside, and a large area substrate 5 is placed on the upper surface of the substrate holder 2.

また、基板ホルダー2は、図示していない昇降機構によって昇降可能であり、これにより電極3との距離を調節可能にして、成膜時及びクリーニング時に基板ホルダー2と電極3との間の距離を変えるようにされる。この場合、昇降機構はまた、真空槽1の外部から内部へ処理すべき大面積基板5を搬入したり、真空槽1の内部から外部へ処理済みの大面積基板5を搬出する際の搬送動作における基板の昇降動作にも用いることができる。   The substrate holder 2 can be moved up and down by a lifting mechanism (not shown), whereby the distance from the electrode 3 can be adjusted, and the distance between the substrate holder 2 and the electrode 3 can be adjusted during film formation and cleaning. To be changed. In this case, the lifting mechanism also carries a large-area substrate 5 to be processed from the outside to the inside of the vacuum chamber 1 and a transfer operation when the processed large-area substrate 5 is unloaded from the inside of the vacuum chamber 1 to the outside. It can also be used for raising and lowering the substrate.

電極3は絶縁部材6を介して真空槽1の頂壁に取り付けられている。この実施形態では電極3はシャワーヘッド31とシャワープレート32で構成されている。シャワーヘッド31は成膜ガス供給口11を介して図示していない成膜ガス供給源に接続される。シャワーヘッド31の内側には複数枚の拡散プレート33が互いに間隔を空けて配置され、各拡散プレート33には多数の貫通孔33aが設けられている。   The electrode 3 is attached to the top wall of the vacuum chamber 1 via an insulating member 6. In this embodiment, the electrode 3 includes a shower head 31 and a shower plate 32. The shower head 31 is connected to a film forming gas supply source (not shown) through the film forming gas supply port 11. Inside the shower head 31, a plurality of diffusion plates 33 are arranged at intervals, and each diffusion plate 33 is provided with a large number of through holes 33 a.

シャワープレート32は多数のガス放出孔32aを備え、そしてシャワープレート32の基板ホルダー2に対向した面は連続した凹面状に形成されている。これにより、図示していない成膜ガス供給源から成膜ガス供給口11を介してシャワーヘッド31の内側に供給された成膜ガスは、シャワーヘッド31の内側に配置した複数枚の拡散プレート33における多数の貫通孔33a及び拡散プレート33間の隙間を通って拡散、混合され、そしシャワープレート32における多数のガス放出孔32aから基板ホルダー2上の大面積基板5に向って供給される。また、図示していないが、真空槽1には、真空槽1内の真空排気及び成膜ガスの排気を行なう真空排気系が設けられる。また、電極3の外寸は、基板ホルダー2に載置される大面積基板5の外寸より大きく構成されている。  The shower plate 32 includes a number of gas discharge holes 32a, and the surface of the shower plate 32 facing the substrate holder 2 is formed in a continuous concave shape. Thereby, the film forming gas supplied from the film forming gas supply source (not shown) to the inside of the shower head 31 through the film forming gas supply port 11 is a plurality of diffusion plates 33 arranged inside the shower head 31. Are diffused and mixed through the gaps between the large number of through holes 33 a and the diffusion plate 33, and are supplied from the large number of gas discharge holes 32 a in the shower plate 32 toward the large area substrate 5 on the substrate holder 2. Although not shown, the vacuum chamber 1 is provided with an evacuation system for evacuating the vacuum chamber 1 and evacuating the film forming gas. Further, the outer dimension of the electrode 3 is configured to be larger than the outer dimension of the large area substrate 5 placed on the substrate holder 2.

電極3の左右二つずつ四つの部位には、図8に見られるように、二つの高周波電源7からそれぞれ整合器8及び給電部材9を介して高周波電力が印加される。なお、給電部材9は絶縁部材10により真空槽1から絶縁されている。真空槽1及び基板ホルダー2は接地電位に接続されている。   As shown in FIG. 8, high-frequency power is applied to the four left and right parts of the electrode 3 from the two high-frequency power sources 7 via the matching unit 8 and the feeding member 9, respectively. The power feeding member 9 is insulated from the vacuum chamber 1 by the insulating member 10. The vacuum chamber 1 and the substrate holder 2 are connected to the ground potential.

このように構成した図2の装置の動作において、二つの高周波電源7からそれぞれ整合器8及び給電部材9を介して高周波電力が電極3の四つの部位に印加されると、図示していない外部の成膜ガス供給源から成膜ガス供給口11を介してシャワーヘッド31の内側の拡散プレート33における多数の貫通孔33a及び隙間及びシャワープレート32における多数のガス放出孔32aを通って真空槽1内へ導入された成膜ガスは、基板ホルダー2をアノード、電極3をカソードとした容量結合型グロー放電により、真空槽1内でプラズマ化される。一方、大面積基板5は、基板ホルダー2に内蔵されたヒーター4によって予め所定の温度に加熱されている。それでプラズマ化した成膜ガスによる反応生成物は基板5の表面に到達し、良好な膜厚分布をもつ所望の薄膜を基板上に形成する。  In the operation of the apparatus of FIG. 2 configured as described above, when high-frequency power is applied to the four parts of the electrode 3 from the two high-frequency power sources 7 through the matching unit 8 and the power feeding member 9, respectively, external devices not shown The vacuum chamber 1 passes through a large number of through holes 33a and gaps in the diffusion plate 33 inside the shower head 31 and a large number of gas discharge holes 32a in the shower plate 32 through a film forming gas supply port 11 from a film forming gas supply source. The film forming gas introduced into the inside is converted into plasma in the vacuum chamber 1 by capacitively coupled glow discharge using the substrate holder 2 as an anode and the electrode 3 as a cathode. On the other hand, the large area substrate 5 is heated to a predetermined temperature in advance by a heater 4 built in the substrate holder 2. As a result, the reaction product of the film-forming gas that has been turned into plasma reaches the surface of the substrate 5 and forms a desired thin film having a good film thickness distribution on the substrate.

ところで、図2の装置においては、二つの高周波電源7の各々から電極3の左右の二つの部位に高周波電力を印加しているが、代わりに、一つの高周波電源を用い、そこから分岐して電極3の四つの部位に高周波電力を印加するように構成することもできる。いずれの構成の場合にも、電極3の左右二つずつの部位に印加される高周波電力は、図8に示すように位相制御装置12により所望の位相差となるように制御することもできる。或いは、電極3に二つ以上の印加部位を設け、使用する高周波電源は一つ以上、電極3における印加部位の数以下として、各々整合器を介して電極の印加部位へ高周波電力を印加し、任意の電源間で位相差を制御するように構成してもよい。  By the way, in the apparatus of FIG. 2, high frequency power is applied to the left and right two parts of the electrode 3 from each of the two high frequency power supplies 7, but instead, one high frequency power supply is used and branched from there. It can also comprise so that high frequency electric power may be applied to four parts of the electrode 3. FIG. In any configuration, the high-frequency power applied to the left and right portions of the electrode 3 can be controlled to have a desired phase difference by the phase controller 12 as shown in FIG. Alternatively, the electrode 3 is provided with two or more application sites, and one or more high-frequency power sources to be used are set to be equal to or less than the number of application sites in the electrode 3, and high-frequency power is applied to the electrode application sites through the matching devices You may comprise so that a phase difference may be controlled between arbitrary power supplies.

次に基板上にSiNx膜を成膜する場合におけるシミュレーションに基いて本発明をさらに説明する。
外寸2400mm×2200mmの図3に示すような通常の平面電極、外寸2400mm×2200mmであり、周辺部傾斜度0.3%の図4及び図5に示すよう凹面状電極I又はシャワープレート及び周辺部傾斜度0.6%の図5に示すよう凹面状電極II又はシャワープレートのそれぞれの中心部と基板ホルダーとの距離を20mmに設定した場合において、各電極について電界強度のシミュレーションを行った。なお、図4において電極の中心領域1.2m×1.1mはフラットであり、その外周は図5に示すように傾斜している。定在波の影響に対する電極形状の寄与効果の確認も兼ねて、印加する高周波電力は電極の中心に印加するものとし、高周波電力の周波数は27.12MHzとし、電極単位面積当りの電力密度は0.5W/cm2とした。いずれの電極も面対称形状であるので、1/4モデルで計算した。
Next, the present invention will be further described based on a simulation in the case where a SiNx film is formed on a substrate.
An ordinary flat electrode as shown in FIG. 3 having an outer dimension of 2400 mm × 2200 mm, a concave electrode I or a shower plate as shown in FIGS. 4 and 5 having an outer dimension of 2400 mm × 2200 mm and a peripheral portion inclination of 0.3%, and When the distance between the central part of each of the concave electrode II or the shower plate and the substrate holder is set to 20 mm as shown in FIG. 5 with a peripheral portion inclination of 0.6%, the electric field strength was simulated for each electrode. . In FIG. 4, the center area of the electrode 1.2 m × 1.1 m is flat, and the outer periphery thereof is inclined as shown in FIG. In addition to confirming the contribution effect of the electrode shape to the influence of the standing wave, the applied high frequency power is applied to the center of the electrode, the frequency of the high frequency power is 27.12 MHz, and the power density per electrode unit area is 0. .5 W / cm2. Since all the electrodes have a plane-symmetric shape, calculation was performed using a ¼ model.

図6に計算結果を示す。図6において横軸原点0は電極の中心位置に対応し、長辺即ち2400mm方向の中心線上の電界強度分布が示されている。縦軸の電界強度は任意単位である。  FIG. 6 shows the calculation result. In FIG. 6, the origin 0 on the horizontal axis corresponds to the center position of the electrode, and shows the electric field intensity distribution on the long side, that is, the center line in the direction of 2400 mm. The electric field strength on the vertical axis is an arbitrary unit.

電界強度分布の計算結果より、大面積基板上に形成される薄膜の膜厚分布をシミレーションした比較結果を表1に示す。   Table 1 shows a comparison result obtained by simulating the film thickness distribution of the thin film formed on the large-area substrate from the calculation result of the electric field intensity distribution.

Figure 0004778700
Figure 0004778700

表1において、高周波電力を2点同位相印加した場合は、図2に示す実施形態に基くものであり、高周波電力の印加形態は図7に示す。膜厚計算範囲(2370mm)における膜厚分布は、高周波電力を基板の中心に印加した場合には、通常の平面電極では±19%、凹面状電極Iでは±6%、凹面状電極IIでは±18%となっており、また高周波電力を同位相で2点印加した揚合には、通常の平面電極では±17%、凹面状電極Iでは±5%、凹面状電極IIでは±16%となっており、高周波電力を基板の中心に1点印加した場合よりも相対的に良好であることがわかる。   In Table 1, when two high-frequency powers are applied in the same phase, it is based on the embodiment shown in FIG. 2, and the application mode of the high-frequency power is shown in FIG. The film thickness distribution in the film thickness calculation range (2370 mm) is ± 19% for a normal planar electrode, ± 6% for a concave electrode I, and ± 6 for a concave electrode II when high frequency power is applied to the center of the substrate. 18%, and in the case of applying two points of high frequency power in the same phase, ± 17% for a normal planar electrode, ± 5% for a concave electrode I, and ± 16% for a concave electrode II. It can be seen that this is relatively better than when one point of high-frequency power is applied to the center of the substrate.

また平面電極の揚合、電極サイズと高周波周波数に関係する定在波の影響が明確に示唆されているが、電極の対向面を凹面形状にすることにより定在波の影響を抑制できることが確認された。また、凹面形状における外周部の傾斜度0%〜0.6%の範囲において、0.3%が最も膜厚分布が良いことが計算上示されているが、これは凹面形状の調節により膜厚分布の均一化の調整ができる可能性を示唆している。なお、印加する高周波電力の周波数を低くした場合(例えば13.56MHz)、定在波の影響による電界強度分布の悪化、しいては膜厚分布の悪化の程度が小さくなることは言うまでもない。   In addition, the influence of standing waves related to the formation of flat electrodes, electrode size, and high frequency frequency is clearly suggested, but it was confirmed that the influence of standing waves can be suppressed by making the opposing surfaces of the electrodes concave. It was done. In addition, in the range of 0% to 0.6% of the inclination of the outer peripheral portion in the concave shape, it has been calculated that 0.3% has the best film thickness distribution. This is because the film is adjusted by adjusting the concave shape. This suggests the possibility of adjusting the uniformity of the thickness distribution. Needless to say, when the frequency of the applied high-frequency power is lowered (for example, 13.56 MHz), the deterioration of the electric field strength distribution due to the influence of the standing wave, and hence the deterioration of the film thickness distribution is reduced.

次に、図2に示す実施形態によるプラズマCVD装置を用いて、SiNxの成膜を行い、基板内膜厚分布を検証した実施例について説明する。   Next, an example in which the SiNx film is formed using the plasma CVD apparatus according to the embodiment shown in FIG. 2 and the film thickness distribution in the substrate is verified will be described.

条件として、高周波電力の周波数を27.12MHz、電極の単位面積あたりの電密度を0.5W/cmとした。成膜ガスとしてはモノシラン(SiH)、アンモニア(NH)及び窒素(N)から成る混合ガスを用い、成膜圧(放電圧)は200Paとした。また基板温度は300℃とした。電極の外形寸法は2.6m×2.4mで、シミュレーションをした3種類の電極の周辺部傾斜を各々外側へ延長した形状の電極で比較を行った。凹面状電極の中心部と基板ホルダーとの距離は20mmとした。基板に関しては厚み0.7mmの小ガラスを基板ホルダー上に並べて載置して基板とした。なお、2点印加する高周波電力の周波数の位相は同相とした。 Condition, 27.12 MHz the frequency of the high frequency power, the power density per unit area of the electrode was set to 0.5 W / cm 2. Monosilane as the film forming gas (SiH 4), using a mixed gas consisting of ammonia (NH 3) and nitrogen (N 2), Narumaku圧force (discharging voltage power) was set to 200 Pa. The substrate temperature was 300 ° C. The outer dimensions of the electrodes were 2.6 m × 2.4 m, and comparison was made with electrodes having shapes in which the slopes of the peripheral portions of the three types of simulated electrodes were extended outward. The distance between the center of the concave electrode and the substrate holder was 20 mm. As for the substrate, a small glass having a thickness of 0.7 mm was placed side by side on the substrate holder to form a substrate. The phase of the frequency of the high-frequency power applied at two points was the same.

測定結果を高周波電力の電極の中心部への1点印加の場合と比較して表2に示す。   The measurement results are shown in Table 2 in comparison with the case of applying one point to the center of the electrode of the high frequency power.

Figure 0004778700
Figure 0004778700

実際の成膜において計算で示唆されていた膜厚分布の改善の傾向が確認された。なお表1に示すシミュレーション結果と比較して、実際の成膜装置での膜厚分布が相対的に悪いが、これは実際の装置の構造における非対称性に拠るところが大きい。そして高周波電力の2点印加と凹面状電極との組み合わせにより、膜厚分布が他の条件と比較して大幅に改善されることが認められる。   The tendency of the improvement of the film thickness distribution suggested by the calculation in the actual film formation was confirmed. Compared with the simulation results shown in Table 1, the film thickness distribution in the actual film forming apparatus is relatively bad, but this is largely due to the asymmetry in the structure of the actual apparatus. It is recognized that the film thickness distribution is significantly improved by the combination of the two-point application of the high frequency power and the concave electrode as compared with other conditions.

本実施例1では電極と基板ホルダーとの距離を15mmとしたが、10mm〜25mmの範囲で任意の距離としても調整により使用できるが、本発明の適用については、電極と基板ホルダー間の距離として10mm〜20mmの範囲とするのがより好ましい。また電極と基板ホルダーの距離を25mm以上として、所定のガスを導入することにより、プラズマクリーニング処理を行なうことができる。   In the first embodiment, the distance between the electrode and the substrate holder is 15 mm. However, the distance between the electrode and the substrate holder can be used as an arbitrary distance within the range of 10 mm to 25 mm. More preferably, the range is 10 mm to 20 mm. Further, plasma cleaning can be performed by introducing a predetermined gas with the distance between the electrode and the substrate holder being 25 mm or more.

図2に示す実施形態に応じた装置を用い、高周波電力の印加を図8に示す形態即ち4点印加で行い、a−Si、SiNx、n+a−Si、SiOx、SiOxNyの成膜を行った。使用した電極形状は、周辺部傾斜度0.3%の図5に示すような凹面状電極Iである。また印加する高周波電力は位相制御をし、同位相とした。   Using the apparatus according to the embodiment shown in FIG. 2, high-frequency power was applied in the form shown in FIG. 8, that is, four-point application, and a-Si, SiNx, n + a-Si, SiOx, and SiOxNy were formed. The used electrode shape is a concave electrode I as shown in FIG. The applied high frequency power was phase-controlled to have the same phase.

表3には主な条件と共に膜厚分布の測定結果を示す。   Table 3 shows the measurement results of the film thickness distribution together with the main conditions.

Figure 0004778700
Figure 0004778700

表3から分かるように、いずれの膜も、膜厚分布が±10%以下と良好な成膜が達成されている。5種類の成膜に対し同一の電極形状、同一の高周波電力印加形態にて発明の効果が確認されているが、対象とする成膜により、電極形状の調整、電極と基板ホルダー間の距離の調整、高周波電力の形態の変更や位相調整によりさらに膜厚分布の均一化が図れることはいうまでもない。   As can be seen from Table 3, the film thickness distribution is ± 10% or less for any film, and good film formation is achieved. The effect of the invention has been confirmed with the same electrode shape and the same high-frequency power application mode for five types of film formation, but adjustment of the electrode shape and the distance between the electrode and the substrate holder can be adjusted by the target film formation. It goes without saying that the film thickness distribution can be made more uniform by adjusting, changing the form of the high-frequency power or adjusting the phase.

また、実験を行った成膜条件は、いずれも成膜圧が100Pa以上であるが、成膜圧が100Pa以下(例えば10Pa〜100Pa)の領域では、プラズマが真空槽壁に向って拡散し易くなり、電極外周のプラズマ密度が上昇する。プラズマ密度の上昇を低減するために電極と基板ホルダーとの距離が中央部から周辺部へ向って連続的に変化するように電極の基板ホルダーに対向する面を凸面状に形成することにより、成膜圧が100Pa以下(例えば10Pa〜100Pa)の領域でも大面積基板全面のプラズマの均一性を高めることができ、反応生成物の均一な膜厚の薄膜を大面積基板上に形成することができる。 Further, film formation conditions of an experiment, although both Narumaku圧force is not less than 100Pa, in the region of the Narumaku圧force 100Pa or less (e.g. 10Pa~100Pa), plasma toward the vacuum chamber wall diffusion This increases the plasma density around the electrode. In order to reduce the increase in plasma density, the surface of the electrode facing the substrate holder is formed in a convex shape so that the distance between the electrode and the substrate holder continuously changes from the center to the periphery. that film thickness force also can increase the plasma uniformity large area substrates entire surface area of 100Pa or less (e.g. 10Pa~100Pa), to form a thin film of uniform thickness of the reaction product on a large area substrate it can.

本発明は当然例示した成膜材料以外にも適用され得る。   The present invention can naturally be applied to materials other than the exemplified film forming materials.

実施例2においても実施例1の場合と同様に、電極と基板ホルダーの距離を25mm以上として、所定のガスを導入しプラズマクリーニング処理を行うことも可能である。   In the second embodiment, as in the first embodiment, the distance between the electrode and the substrate holder can be 25 mm or more, and a predetermined gas can be introduced to perform the plasma cleaning process.

本発明は、以上説明してきたように、大型基板に薄膜形成行うプラズマCVD装置以外に、プラズマクリーング装置やエッチング装置に適用することができる。  As described above, the present invention can be applied to a plasma cleaning apparatus and an etching apparatus in addition to a plasma CVD apparatus that forms a thin film on a large substrate.

本発明の一つの実施形態によるプラズマCVD装置を示す概略断面図。1 is a schematic cross-sectional view showing a plasma CVD apparatus according to one embodiment of the present invention. 本発明の別の実施形態によるプラズマCVD装置を示す概略断面図。The schematic sectional drawing which shows the plasma CVD apparatus by another embodiment of this invention. 通常の平面電極の概略図。Schematic of a normal planar electrode. 本発明において用いられ得る凹面状電極の概略図Schematic of concave electrode that can be used in the present invention 図4の凹面状電極の部分Aの拡大断面図FIG. 4 is an enlarged sectional view of a portion A of the concave electrode in FIG. 図3及び図5に示す3種類の電極を用いた場合における電界強度の計算結果を示すグラ フ。The graph which shows the calculation result of the electric field strength at the time of using three types of electrodes shown in FIG.3 and FIG.5. 高周波電力を電極の二つの部位に印加する場合を例示する概略線図。The schematic diagram which illustrates the case where a high frequency electric power is applied to two site | parts of an electrode. 高周波電力を電極の四つの部位に印加する場合を例示する概略線図。The schematic diagram which illustrates the case where high frequency electric power is applied to four parts of an electrode. 従来のプラズマCVD装置の一例を示す概略断面図。The schematic sectional drawing which shows an example of the conventional plasma CVD apparatus.

符号の説明Explanation of symbols

1:真空槽
2:基板ホルダー
3:電極
4:ヒーター
5:大面積基板
6:絶縁部材
7:高周波電源
8:整合器
9:給電部材
10:絶縁部材
11:成膜ガス供給口
31:シャワーヘッド
32:シャワープレート
32a:ガス放出孔
33:拡散プレート
33a:貫通孔

1: Vacuum chamber 2: Substrate holder 3: Electrode 4: Heater 5: Large-area substrate 6: Insulating member 7: High frequency power supply 8: Matching device 9: Power supply member 10: Insulating member 11: Film forming gas supply port 31: Shower head 32: Shower plate 32a: Gas discharge hole 33: Diffusion plate 33a: Through hole

Claims (10)

真空槽内に、基板ホルダーと電極とを対向させて配置し、前記真空槽内に成膜ガスを導入すると共に前記電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、前記基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD装置において、
前記電極の複数の部位に高周波電力を印加する一つ以上の高周波電源を設け、
また、前記電極と前記基板ホルダーとの距離が少なくとも周辺部において連続的に変化するような形状に前記電極の前記基板ホルダーに対向する面を構成し、
前記一つ以上の高周波電源から前記電極の左右一つずつ二つの部位に印加される高周波電力が、同じ周波数及び位相をもち、
前記電極と前記基板ホルダーとの距離が前記周辺部において連続的に変化する部分の傾斜度が0.3%〜0.6%であること
を特徴とするプラズマCVD装置。
In the vacuum chamber, the substrate holder and the electrode are arranged to face each other, and the deposition gas introduced into the vacuum chamber by introducing high-frequency power into the vacuum chamber is converted into plasma, In a plasma CVD apparatus designed to form a film on a large-area substrate placed on a substrate holder,
Providing one or more high-frequency power supplies for applying high-frequency power to a plurality of portions of the electrode;
Further, the surface of the electrode facing the substrate holder is configured in such a shape that the distance between the electrode and the substrate holder continuously changes at least in the peripheral portion,
RF power applied from said one or more high-frequency power source to the left and right one by one two sites of the electrodes, Chi also the same frequency and phase,
The plasma CVD apparatus characterized in that the slope of the portion where the distance between the electrode and the substrate holder continuously changes in the peripheral portion is 0.3% to 0.6% .
前記成膜ガスが前記シャワープレートから基板ホルダーに向って供給される請求項1記載のプラズマCVD装置。 The plasma CVD apparatus according to claim 1, wherein the film forming gas is supplied from the shower plate toward the substrate holder . 前記電極の外形寸法が前記基板の外形寸法より大きい請求項1又は2記載のプラズマCVD装置。 The plasma CVD apparatus according to claim 1, wherein an outer dimension of the electrode is larger than an outer dimension of the substrate . 前記基板ホルダーと前記電極との距離が連続的に異なるように調整可能である請求項1〜3のいずれか一項記載のプラズマCVD装置。 The plasma CVD apparatus according to any one of claims 1 to 3, wherein the distance between the substrate holder and the electrode can be adjusted to be continuously different . 真空槽内に、基板ホルダーと電極とを対向させて配置し、前記真空槽内に成膜ガスを導入すると共に前記電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、前記基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD方法において、
前記電極と前記基板ホルダーとの距離が少なくとも周辺部において傾斜度0.3%〜0.6%で連続的に変化するような前記電極の前記基板ホルダーに対向する面を凹面状に形成し、前記電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的高い約100Pa以上に保って大面積基板上に成膜すること
を特徴とするプラズマCVD方法
In the vacuum chamber, the substrate holder and the electrode are arranged to face each other, and the deposition gas introduced into the vacuum chamber by introducing high-frequency power into the vacuum chamber is converted into plasma, In the plasma CVD method designed to form a film on a large area substrate placed on a substrate holder,
Forming a surface facing the substrate holder of the electrode so that the distance between the electrode and the substrate holder continuously changes at an inclination of 0.3% to 0.6% at least in a peripheral portion, and having a concave shape; High-frequency power is applied to a plurality of portions of the electrode, and the film formation pressure in the vacuum chamber is kept at a relatively high level of about 100 Pa or more to form a film on a large area substrate.
A plasma CVD method characterized by the above .
前記一つ以上の高周波電源から前記電極の複数の部位に印加される高周波電力が同じ周波数をもち、そして位相制御されることを特徴とする請求項5記載のプラズマCVD方法 6. The plasma CVD method according to claim 5, wherein the high frequency power applied to the plurality of portions of the electrode from the one or more high frequency power sources has the same frequency and is phase-controlled . 高周波電力の位相制御は、各部位に印加される高周波電力が同じ位相をもつように行なわれる請求項6記載のプラズマCVD方法 7. The plasma CVD method according to claim 6, wherein the phase control of the high frequency power is performed so that the high frequency power applied to each part has the same phase . 真空槽内に、基板ホルダーと電極とを対向させて配置し、前記真空槽内に成膜ガスを導入すると共に前記電極に高周波電力を印加することにより導入した成膜ガスをプラズマ化して、前記基板ホルダーに載置した大面積基板上に成膜するようにしたプラズマCVD方法において、
前記電極と前記基板ホルダーとの距離が少なくとも周辺部において傾斜度0.3%〜0.6%で連続的に変化するような前記電極の前記基板ホルダーに対向する面を凸面状に形成し、前記電極の複数の部位に高周波電力を印加し、真空槽内の成膜圧力を比較的低い約100Pa以下に保って大面積基板上に成膜すること
を特徴とするプラズマCVD方法
In the vacuum chamber, the substrate holder and the electrode are arranged to face each other, and the deposition gas introduced into the vacuum chamber by introducing high-frequency power into the vacuum chamber is converted into plasma, In the plasma CVD method designed to form a film on a large area substrate placed on a substrate holder,
Forming a surface facing the substrate holder of the electrode in a convex shape so that the distance between the electrode and the substrate holder continuously changes at an inclination of 0.3% to 0.6% at least in the peripheral portion; High frequency power is applied to a plurality of portions of the electrode, and the film formation pressure in the vacuum chamber is kept at a relatively low value of about 100 Pa or less to form a film on a large area substrate.
A plasma CVD method characterized by the above .
前記一つ以上の高周波電源から前記電極の複数の部位に印加される高周波電力が同じ周波数をもち、そして位相制御される請求項8記載のプラズマCVD方法。 9. The plasma CVD method according to claim 8, wherein the high frequency power applied to the plurality of portions of the electrode from the one or more high frequency power sources has the same frequency and is phase-controlled . 高周波電力の位相制御は、各部位に印加される高周波電力が同じ位相をもつように行なわれる請求項8記載のプラズマCVD方法。 9. The plasma CVD method according to claim 8, wherein the phase control of the high frequency power is performed such that the high frequency power applied to each part has the same phase .
JP2004315714A 2004-10-29 2004-10-29 Plasma CVD method and apparatus Active JP4778700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315714A JP4778700B2 (en) 2004-10-29 2004-10-29 Plasma CVD method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315714A JP4778700B2 (en) 2004-10-29 2004-10-29 Plasma CVD method and apparatus

Publications (2)

Publication Number Publication Date
JP2006128446A JP2006128446A (en) 2006-05-18
JP4778700B2 true JP4778700B2 (en) 2011-09-21

Family

ID=36722819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315714A Active JP4778700B2 (en) 2004-10-29 2004-10-29 Plasma CVD method and apparatus

Country Status (1)

Country Link
JP (1) JP4778700B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142606B2 (en) * 2007-06-07 2012-03-27 Applied Materials, Inc. Apparatus for depositing a uniform silicon film and methods for manufacturing the same
JP5649153B2 (en) * 2008-07-11 2015-01-07 住友重機械工業株式会社 Plasma processing apparatus and plasma processing method
JP2012142445A (en) * 2010-12-28 2012-07-26 Sharp Corp Plasma cvd apparatus
WO2012147571A1 (en) * 2011-04-27 2012-11-01 旭硝子株式会社 Method for producing laminate
JP5713842B2 (en) * 2011-08-24 2015-05-07 富士フイルム株式会社 Deposition equipment
US10167552B2 (en) * 2015-02-05 2019-01-01 Lam Research Ag Spin chuck with rotating gas showerhead

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314228A (en) * 1989-06-13 1991-01-22 Nec Corp Plasma process device
JP3425009B2 (en) * 1995-05-30 2003-07-07 アネルバ株式会社 Surface treatment equipment
JP3224011B2 (en) * 1996-05-23 2001-10-29 シャープ株式会社 Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
KR100252210B1 (en) * 1996-12-24 2000-04-15 윤종용 Dry etching facility for manufacturing semiconductor devices
JP3595853B2 (en) * 1999-03-18 2004-12-02 日本エー・エス・エム株式会社 Plasma CVD film forming equipment
JP2001189308A (en) * 1999-12-28 2001-07-10 Toshiba Corp Device and method for plasma treatment
JP2002246622A (en) * 2001-02-16 2002-08-30 Mitsubishi Heavy Ind Ltd Silicon crystal thin film photovoltaic element, method of manufacturing it and method of evaluating it
JP2003179043A (en) * 2001-12-13 2003-06-27 Ulvac Japan Ltd Plasma cvd apparatus

Also Published As

Publication number Publication date
JP2006128446A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR100783200B1 (en) Apparatus for depositing film and apparatus for plasma processing a substrate
KR101336446B1 (en) Process tuning gas injection from the substrate edge
JP4707403B2 (en) Plasma processing method and apparatus by pulse division supply and plasma CVD method
US7927455B2 (en) Plasma processing apparatus
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
US20080283086A1 (en) Substrate processing apparatus and cleaning method therefor
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
JP6915002B2 (en) Gas confinement device assembly for removing shadow frames
JP3210277U (en) Substrate support assembly with non-uniform gas flow clearance
TWI539868B (en) Plasma processing device
JP4778700B2 (en) Plasma CVD method and apparatus
CN108807124B (en) Substrate processing apparatus
KR101197020B1 (en) Substrate processing apparatus for uniform plasma discharge and method of adjusting strength of plasma discharge
EP2202785A1 (en) Plasma treatment apparatus, plasma treatment method, and semiconductor element
JP4672436B2 (en) Plasma processing equipment
JP2017512894A (en) Corner spoiler to improve profile uniformity
KR102224586B1 (en) Coating material for processing chambers
JPH05160042A (en) Plasma producing device and method of performing plasma treatment of semiconductor thin film
US20070202636A1 (en) Method of controlling the film thickness uniformity of PECVD-deposited silicon-comprising thin films
JP2011071544A (en) Plasma processing method and device, and plasma cvd method and device
JP4890313B2 (en) Plasma CVD equipment
JP2630089B2 (en) Microwave plasma processing equipment
JP2013131475A (en) Plasma processing apparatus and semiconductor device
JP2004200233A (en) Plasma production device
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Ref document number: 4778700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250