JP4773930B2 - Biaxially stretched multilayer laminated film and identification medium - Google Patents

Biaxially stretched multilayer laminated film and identification medium Download PDF

Info

Publication number
JP4773930B2
JP4773930B2 JP2006318398A JP2006318398A JP4773930B2 JP 4773930 B2 JP4773930 B2 JP 4773930B2 JP 2006318398 A JP2006318398 A JP 2006318398A JP 2006318398 A JP2006318398 A JP 2006318398A JP 4773930 B2 JP4773930 B2 JP 4773930B2
Authority
JP
Japan
Prior art keywords
layer
film
thermoplastic resin
light
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006318398A
Other languages
Japanese (ja)
Other versions
JP2008132611A (en
Inventor
太郎 大宅
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2006318398A priority Critical patent/JP4773930B2/en
Publication of JP2008132611A publication Critical patent/JP2008132611A/en
Application granted granted Critical
Publication of JP4773930B2 publication Critical patent/JP4773930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二軸延伸多層積層フィルムに関し、詳しくは、商品を梱包したパッケージ、パスポート、カード、紙幣、金券、証券、証書、商品券、絵画、切符、公共競技投票券等の平面的な対象物または各種立体的な対象物の真正性を識別するための識別媒体、例えば偽造防止シール、として好適に用いることのできる二軸延伸多層積層フィルムに関する。   The present invention relates to a biaxially stretched multi-layer laminated film, and more specifically, planar objects such as packages in which products are packed, passports, cards, banknotes, cash vouchers, securities, certificates, gift certificates, pictures, tickets, public competition voting tickets, etc. The present invention relates to a biaxially stretched multilayer laminated film that can be suitably used as an identification medium for identifying the authenticity of an object or various three-dimensional objects, for example, an anti-counterfeit seal.

光学干渉による選択波長反射性を示す多層積層フィルムは従来より知られている。まず、光学干渉による選択波長反射性を示す多層積層フィルムの基本的な原理について説明する。図1は、多層積層フィルムに入射した光が各層で選択反射する様子を示す図である。白色光が多層積層フィルムに入射する場合、その波長に応じて光は反射、吸収、透過され、特にその反射光は各層における反射の光路差によって相互に干渉し、特定の波長域の光のみが反射される性質がある。これを選択反射効果という。反射波長と反射率は、次の式によって求めることができる。   Multilayer laminated films that exhibit selective wavelength reflectivity due to optical interference have been known. First, the basic principle of a multilayer laminated film exhibiting selective wavelength reflectivity due to optical interference will be described. FIG. 1 is a diagram illustrating a state in which light incident on a multilayer laminated film is selectively reflected by each layer. When white light is incident on a multilayer laminated film, the light is reflected, absorbed, and transmitted according to its wavelength. Especially, the reflected light interferes with each other due to the optical path difference of reflection in each layer, and only light in a specific wavelength region is reflected. There is a nature of being reflected. This is called a selective reflection effect. The reflection wavelength and the reflectance can be obtained by the following equations.

式1 λ=2×(nA・dA・cosθ+nB・dB・cosθ)
式2 R=(nA/nB−1)/(nA/nB+1)
ここに、λ:反射波長、nA:A層屈折率、nB:B層屈折率、θ:反射角、dA:A層膜厚、dB:B層膜厚、R:反射率である。
この選択反射波長域は、各層をなすポリマーなどの素材の屈折率と膜厚、層数などにより任意に設定可能である。
Formula 1 λ = 2 × (nA · dA · cos θ + nB · dB · cos θ)
Formula 2 R = (nA / nB-1) 2 / (nA / nB + 1) 2
Here, λ: reflection wavelength, nA: A layer refractive index, nB: B layer refractive index, θ: reflection angle, dA: A layer film thickness, dB: B layer film thickness, R: reflectance.
This selective reflection wavelength region can be arbitrarily set depending on the refractive index and film thickness of the material such as a polymer forming each layer, the number of layers, and the like.

また、多層積層フィルムは上記式から明らかなように、見る角度によって色が変わるという特徴を有する。これは、入射光が斜めの場合には、膜厚dA,dBが見かけ上減少することから、中心波長λが短波長側へ移行するためである。この現象は、以下のようにも説明できる。すなわち、入射光は多層積層フィルムの各界面において屈折率の差に起因して反射され、この反射光は、光路差に応じて互いに干渉する。この光路差は、面に対して平行に近い角度から入射し、反射する程、小さくなる。よって、面に対してより平行に近い方向から多層積層フィルムを見る程、各界面で反射される反射光同士の光路差が小さくなり、干渉し強め合う波長が短波長側にシフトする。この原理により、多層積層フィルムを正面から見る状態から徐々に傾けてゆくと、干渉して強め合う光が短波長側にシフトしてゆく様子が観察される。   Further, as is clear from the above formula, the multilayer laminated film has a feature that the color changes depending on the viewing angle. This is because when the incident light is oblique, the film thicknesses dA and dB are apparently reduced, so that the center wavelength λ shifts to the short wavelength side. This phenomenon can also be explained as follows. That is, incident light is reflected due to the difference in refractive index at each interface of the multilayer laminated film, and the reflected light interferes with each other according to the optical path difference. This optical path difference becomes smaller as it is incident and reflected from an angle close to parallel to the surface. Therefore, as the multilayer laminated film is viewed from a direction more parallel to the surface, the optical path difference between the reflected lights reflected at each interface becomes smaller, and the wavelengths that interfere and strengthen each other shift to the shorter wavelength side. According to this principle, when the multilayer laminated film is gradually tilted from the state of being viewed from the front, it is observed that the light that interferes and strengthens shifts to the short wavelength side.

たとえば、垂直入射光を観察して(つまり正面から見て)赤色に呈色する多層積層フィルムの反射色は、視野角を大きくするに従い(つまり多層薄膜フィルムを傾けるに従い)、オレンジ色、黄色、緑色、青緑色、青色と順次変化するように観察される(カラーシフト)。   For example, the reflection color of a multilayer laminated film that turns red when observing normal incident light (that is, when viewed from the front) is orange, yellow, as the viewing angle increases (that is, the multilayer thin film is tilted) Observed to change in order of green, blue-green, and blue (color shift).

ところで、従来、たとえばカード、証書類の偽造防止方法としては、その対象物の表面にホログラムを貼付したり特殊なインクを塗布する技術が知られている。(たとえば、特開2001−315243号公報)。ホログラムでは、立体的に見えたり見る角度で絵柄が変わることを目視で確認して識別を行っていた。また、特殊なインクとしては、蛍光インクや磁気インクなどがあり、これらのインクを用いた場合、目視では通常のインクと変わりがないが、紫外線を照射したり磁気センサで検出することにより、隠れた情報によって対象物を識別することができる。また、対象物の識別媒体として、反射特性が視野角に依存して光の選択反射を示すフィルムを用いた、カード、証書類の偽造防止方法としては、コレステリック液晶のインクまたはフィルムを用いた例がよく知られている。(たとえば、特許第3244278号公報)   By the way, conventionally, as a method for preventing forgery of a card or a certificate, for example, a technique of applying a hologram or applying special ink to the surface of an object is known. (For example, Unexamined-Japanese-Patent No. 2001-315243). In holograms, identification is performed by visually confirming that the pattern changes depending on the viewing angle or viewing angle. In addition, special inks include fluorescent inks and magnetic inks. When these inks are used, they are not different from normal inks by visual observation, but they can be hidden by irradiating ultraviolet rays or detecting them with a magnetic sensor. The object can be identified by the information. In addition, as an identification medium for an object, a film having a reflection characteristic that selectively reflects light depending on a viewing angle is used. As a method for preventing forgery of cards and certificates, an example using cholesteric liquid crystal ink or film is used. Is well known. (For example, Japanese Patent No. 3244278)

しかしながら、ホログラムだけで高い識別性を得ようとすると、高コストな技術が必要とされ、また対象物の種類によっては使用できない場合がある。また、蛍光インクや磁気インクは類似品が入手し易いため偽造が容易であるとともに、識別のための装置が大がかりで電源を必要とするため、使い勝手が悪いという欠点がある。また、対象物の識別媒体の原料として用いられているコレステリック液晶はコストが高く、識別媒体の製造コストが割高になり、単価の低い商品に使うには適していない。   However, in order to obtain high discriminability only by the hologram, a high-cost technique is required, and there are cases where it cannot be used depending on the type of the object. In addition, fluorescent inks and magnetic inks are easily obtained because similar products are easy to obtain, and the identification device is large and requires a power source. Further, the cholesteric liquid crystal used as a raw material for the identification medium of the object is high in cost, and the manufacturing cost of the identification medium is high, so that it is not suitable for use in a product with a low unit price.

上記のような問題点を解決する方法として、上述の多層積層フィルムを用いた光学干渉による選択波長反射性を利用する方法が提案されている(特開2005−59332号公報、国際公開第04/024439号パンフレット)。しかしながら、上述のフィルムでは、可視光に反射が見られるために、下地の絵柄が着色してしまい、視認性が低下するといった問題点があった。   As a method for solving the above problems, a method using selective wavelength reflectivity by optical interference using the above-mentioned multilayer laminated film has been proposed (Japanese Patent Laid-Open No. 2005-59332, International Publication No. 04 / 024439 pamphlet). However, the above-described film has a problem in that since the reflection is seen in the visible light, the background pattern is colored and the visibility is lowered.

なお、特表2002−509041号公報には、無色透明な多層積層フィルムを使用した例が提案されているが、これは赤外線を反射するフィルムとして、視野角により反射波長が可視光領域にシフトすることによる着色するフィルムであり、可視光の長波長領域にしか設計できないといった問題点があった。   In addition, in Japanese translations of PCT publication No. 2002-509041, the example which uses a colorless and transparent multilayer laminated film is proposed, but this is a film which reflects infrared rays, and a reflection wavelength shifts to a visible light region by a viewing angle. There is a problem that the film can be designed only in the long wavelength region of visible light.

特開2001−315243号公報JP 2001-315243 A 特許第3244278号公報Japanese Patent No. 3244278 特開2005−59332号公報JP 2005-59332 A 国際公開第04/024439号パンフレットInternational Publication No. 04/024439 Pamphlet 特表2002−509041号公報Special table 2002-509041 gazette

本発明は、無色透明であり、かつ特定の視野角において入射光のP偏光成分のみを視認できる程度に反射し、他方、S偏光成分は視認できる程度に反射することがなく無色透明に見える、視野角および偏光に依存する光の選択反射性を示す多層積層フィルムを提供することを課題とする。   The present invention is colorless and transparent, and reflects so that only the P-polarized component of incident light can be visually recognized at a specific viewing angle, while the S-polarized component does not reflect so much as to be visible and appears colorless and transparent. It is an object of the present invention to provide a multilayer laminated film that exhibits selective reflectivity of light depending on the viewing angle and polarization.

さらに、本発明は、容易に偽造することができず、真偽の識別が容易かつ確実であり、しかも、低い製造コストで製造することのできる、対象物の識別媒体を提供することを課題とする。   Furthermore, it is an object of the present invention to provide an identification medium for an object that cannot be easily counterfeited, can easily and reliably identify authenticity, and can be manufactured at a low manufacturing cost. To do.

本発明者らは、種々検討を重ねた結果、負の固有複屈折性を有する熱可塑性樹脂とそれとは異なる熱可塑性樹脂を積層し、延伸後の面内の屈折率を合わせる一方で、厚み方向の屈折率差を十分に設けることで、正面入射においては、実質的に透明でありながら、特定の視野角においては、P偏光においてのみ反射光が視認でき、S偏光については、実質的に透明である二軸延伸多層積層フィルムを作成できることを見出し本発明に到達した。   As a result of various investigations, the present inventors have laminated a thermoplastic resin having negative intrinsic birefringence and a thermoplastic resin different from the thermoplastic resin, and matched the in-plane refractive index after stretching, while in the thickness direction. By providing a sufficient refractive index difference, the reflected light can be visually recognized only in the P-polarized light and the S-polarized light is substantially transparent at a specific viewing angle while being substantially transparent at the front incidence. The present inventors have found that a biaxially stretched multi-layer laminated film can be prepared and have reached the present invention.

すなわち本発明は、厚みが0.05〜0.5μmの範囲にある負の固有複屈折性を有する結晶性熱可塑性樹脂からなる第1の層と、厚みが0.05〜0.5μmの範囲にある熱可塑性樹脂からなる第2の層とを100層以上交互に積層した多層積層フィルムであって、フィルム面に対して垂直な面からの入射光に対する反射率ピーク高さが5%以下であり、かつフィルムに対して60°の角度で入射する光のうちS偏光に対しては反射率ピーク高さが5%以下であり、フィルムに対して60°の角度で入射する光のうちP偏光に対しては反射率ピーク高さが20%以上であることを特徴とする二軸延伸多層積層フィルムである。   That is, the present invention provides a first layer made of a crystalline thermoplastic resin having a negative intrinsic birefringence having a thickness in the range of 0.05 to 0.5 μm, and a thickness in the range of 0.05 to 0.5 μm. A multilayer laminated film in which 100 layers or more of the second layers made of the thermoplastic resin are alternately laminated, and the reflectance peak height for incident light from a plane perpendicular to the film surface is 5% or less. The reflectance peak height is 5% or less for S-polarized light among the light incident on the film at an angle of 60 °, and P of the light incident on the film at an angle of 60 °. A biaxially stretched multilayer laminate film having a reflectance peak height of 20% or more with respect to polarized light.

本発明によれば、無色透明であり、かつ特定の視野角において入射光のP偏光成分のみを視認できる程度に反射し、他方S偏光成分は視認できる程度に反射することがなく無色透明にみえる、視野角および偏光に依存する光の選択反射性を示す多層積層フィルムを提供することができる。
さらに、容易に偽造することができず、真偽の識別が容易かつ確実であり、しかも、低い製造コストで製造することのできる、識別媒体を提供することができる。
According to the present invention, it is colorless and transparent, and reflects so that only the P-polarized component of the incident light can be visually recognized at a specific viewing angle, while the S-polarized component does not reflect so much as to be visible and appears colorless and transparent. It is possible to provide a multilayer laminated film that exhibits selective reflectivity of light depending on viewing angle and polarization.
Further, it is possible to provide an identification medium that cannot be easily counterfeited, can be easily and reliably identified as authentic, and can be manufactured at a low manufacturing cost.

[光学特性]
本発明の二軸延伸多層積層フィルムは、フィルム面に対して垂直な面からの入射光に対する反射率ピーク高さが5%以下である。反射率ピーク高さが5%を超えるとフィルムから反射する光の着色が視認されるため、下地に印刷などを施した場合にはその色相が変化してしまう。
[optical properties]
The biaxially stretched multilayer laminated film of the present invention has a reflectance peak height of 5% or less with respect to incident light from a plane perpendicular to the film surface. If the reflectance peak height exceeds 5%, the color of the light reflected from the film is visually recognized, so that the hue changes when printing or the like is applied to the base.

本発明の二軸延伸多層積層フィルムは、フィルム面に対して60°の角度で入射する光のうちS偏光については反射率ピーク高さが5%以下であり、フィルム面に対して60°の角度で入射する光のうちP偏光については反射率ピークの高さは20%以上である。この特性を備えることが本発明では肝要であり、その性質を備えることによって識別媒体として利用することができる。具体的には、偏光板を通して識別媒体を観察することで識別媒体の付された対象物の真贋を見分けることができる。フィルム面に対して60°の角度で入射する光のうちS偏光での反射率ピーク高さが5%を超えると色相が視認されてしまい、フィルム面に対して60°の角度で入射する光のうちP偏光成分での反射率ピーク高さが20%未満であると十分な色相が視認されない。   The biaxially stretched multilayer laminated film of the present invention has a reflectance peak height of 5% or less for S-polarized light, which is incident at an angle of 60 ° with respect to the film surface, and 60 ° with respect to the film surface. Of the light incident at an angle, the height of the reflectance peak for P-polarized light is 20% or more. Having this characteristic is essential in the present invention, and it can be used as an identification medium by having this property. Specifically, the authenticity of the object to which the identification medium is attached can be identified by observing the identification medium through the polarizing plate. Of the light incident at an angle of 60 ° with respect to the film surface, if the reflectance peak height with S polarization exceeds 5%, the hue is visually recognized, and the light incident at an angle of 60 ° with respect to the film surface. If the reflectance peak height for the P-polarized component is less than 20%, sufficient hue is not visually recognized.

ここでP偏光とは、入射角と反射角を含む面内に平行な振動成分を含む偏光成分を表わし、S偏光とは入射角と反射角を含む面内に垂直な振動成分を含む偏光成分を表わす。また、反射率ピークの高さは、波長ごとの反射率を測定したときのベースラインとピークとの差である。   Here, P-polarized light represents a polarized light component including a vibration component parallel to the plane including the incident angle and the reflection angle, and S-polarized light includes a polarized light component including a vibration component perpendicular to the surface including the incident angle and the reflection angle. Represents. The height of the reflectance peak is the difference between the baseline and the peak when the reflectance for each wavelength is measured.

本発明の二軸延伸多層積層フィルムは、透明性を確保する観点から透過率が85%以上である。透過率が85%未満であるとフィルムの透明性が損なわれるために、下地に印刷した絵柄などの視認性が低下する。   The biaxially stretched multilayer laminated film of the present invention has a transmittance of 85% or more from the viewpoint of ensuring transparency. If the transmittance is less than 85%, the transparency of the film is impaired, so that the visibility of a pattern or the like printed on the base is lowered.

[層構成]
本発明の二軸延伸多層積層フィルムは、厚みが0.05〜0.5μmの範囲にある負の固有複屈折性を有する結晶性熱可塑性樹脂からなる第1の層と、厚みが0.05〜0.5μmの範囲にある熱可塑性樹脂からなる第2の層とを100層以上交互に積層した構成をとる。
[Layer structure]
The biaxially stretched multilayer laminated film of the present invention has a first layer made of a crystalline thermoplastic resin having a negative intrinsic birefringence having a thickness in the range of 0.05 to 0.5 μm, and a thickness of 0.05. It takes the structure which laminated | stacked 100 layers or more alternately with the 2nd layer which consists of a thermoplastic resin in the range of -0.5 micrometer.

[第1の層]
本発明における第1の層を構成する負の固有複屈折性を有する結晶性熱可塑性樹脂とは、高分子の分子鎖方向を軸として、誘電率分布から計算される固有複屈折の値が負となる結晶性熱可塑性樹脂である。上記を満たすポリマーの例としては、シンジオタクティックポリスチレンや、アイソタクティックポリスチレン、ポリエチレン−1,4−ナフタレンジカルボキシレートやその共重合体を例示することができる。
[First layer]
The crystalline thermoplastic resin having negative intrinsic birefringence constituting the first layer in the present invention has a negative intrinsic birefringence value calculated from the dielectric constant distribution with the molecular chain direction of the polymer as an axis. It is a crystalline thermoplastic resin. Examples of the polymer satisfying the above include syndiotactic polystyrene, isotactic polystyrene, polyethylene-1,4-naphthalenedicarboxylate and copolymers thereof.

[第2の層]
本発明における第2の層を構成する熱可塑性樹脂としては、第1の層を構成する結晶性熱可塑性樹脂の延伸後の面内の屈折率に合わせることができるものを用いる。
[Second layer]
As the thermoplastic resin constituting the second layer in the present invention, one that can be adjusted to the in-plane refractive index after stretching of the crystalline thermoplastic resin constituting the first layer is used.

第2の層の熱可塑性樹脂の屈折率を第1の層の面内屈折率に合わせる方法としては、
1)第2の層の熱可塑性樹脂として、正の固有複屈折性を有する結晶性熱可塑性樹脂を用いて、延伸後の面内屈折率を第1の層の結晶性熱可塑性樹脂の延伸後の面内屈折率に合わせる方法、
2)第2の層の熱可塑性樹脂として、非晶性樹脂を用いて、第1の層の結晶性熱可塑性樹脂の延伸後の面内屈折率に合わせる方法、
3)第2の層の熱可塑性樹脂として結晶性熱可塑性樹脂を用いて、これを延伸工程後に等方化する方法
を用いることができる。
As a method of matching the refractive index of the thermoplastic resin of the second layer with the in-plane refractive index of the first layer,
1) A crystalline thermoplastic resin having positive intrinsic birefringence is used as the thermoplastic resin of the second layer, and the in-plane refractive index after stretching is after stretching of the crystalline thermoplastic resin of the first layer. To match the in-plane refractive index of
2) A method of matching an in-plane refractive index after stretching of the crystalline thermoplastic resin of the first layer using an amorphous resin as the thermoplastic resin of the second layer,
3) A method of using a crystalline thermoplastic resin as the thermoplastic resin of the second layer and making it isotropic after the stretching step can be used.

上述の第1の方法を用いる場合、第1の層としてシンジオタクティックポリスチレンと、第2の層として芳香族環を有しないポリアミドとの組合せを挙げることができる。このポリアミドとして例えばナイロン6を挙げることができる。   When the above-described first method is used, a combination of syndiotactic polystyrene as the first layer and polyamide having no aromatic ring as the second layer can be given. An example of this polyamide is nylon 6.

上述の第2の方法を用いる場合、延伸工程において、配向による異方性が発現しないように、第2の層を構成する熱可塑性樹脂として、第1の層を構成する結晶性熱可塑性樹脂のガラス転移温度よりも20℃以上低いガラス転移温度を有する非晶性熱可塑性樹脂を用いることが好ましい。ガラス転移温度差が20℃未満であると延伸時に第2の層を構成する熱可塑性樹脂が配向してしまったり、第1の層の複屈折性が発現しなかったりする。好ましい組合せの例としては、第1の層としてシンジオタクティックポリスチレンと第2の層として共重合ポリエチレンテレフタレートとの組み合わせ、また、第1の層としてシンジオタクティックポリスチレンと第2の層として共重合ポリブチレンテレフタレートとの組み合わせ、を挙げることができる。   In the case of using the second method described above, the crystalline thermoplastic resin constituting the first layer is used as the thermoplastic resin constituting the second layer so that anisotropy due to orientation is not expressed in the stretching step. It is preferable to use an amorphous thermoplastic resin having a glass transition temperature that is 20 ° C. or more lower than the glass transition temperature. When the glass transition temperature difference is less than 20 ° C., the thermoplastic resin constituting the second layer is oriented during stretching, or the birefringence of the first layer is not exhibited. Examples of preferred combinations include a combination of syndiotactic polystyrene as the first layer and copolymerized polyethylene terephthalate as the second layer, and syndiotactic polystyrene as the first layer and copolymerized polythene as the second layer. A combination with butylene terephthalate can be mentioned.

上述の第3の方法を用いる場合、延伸後の結晶化工程の温度を第2の層を構成する熱可塑性樹脂の融点付近の温度にすることにより第2の層を等方化する方法を用いることができる。第2の層を構成する熱可塑性樹脂として、第1の層を構成する結晶性熱可塑性樹脂の融点より20℃〜50℃低い融点を有する結晶性熱可塑性樹脂を用いることが好ましい。融点差が20℃未満であると配向の等方化が実現できず、50℃以上低いと結晶化工程で流動化してしまい均質なフィルムが得られない。第2の層の熱可塑性樹脂として、例えば、共重合ポリエステルを用いることができ、具体的には、例えば、共重合ポリエチレンテレフタレート、共重合ポリテトラメチレンテレフタレート、共重合ポリエチレンナフタレンジカルボキシレートを用いることができる。共重合成分としては、例えばイソフタル酸を用いることができる。   When using the third method described above, a method is used in which the second layer is isotropic by setting the temperature of the crystallization step after stretching to a temperature near the melting point of the thermoplastic resin constituting the second layer. be able to. As the thermoplastic resin constituting the second layer, it is preferable to use a crystalline thermoplastic resin having a melting point 20 ° C. to 50 ° C. lower than the melting point of the crystalline thermoplastic resin constituting the first layer. If the melting point difference is less than 20 ° C., isotropic orientation cannot be realized, and if it is lower than 50 ° C., fluidization occurs in the crystallization step, and a homogeneous film cannot be obtained. As the thermoplastic resin of the second layer, for example, a copolyester can be used. Specifically, for example, copolyethylene terephthalate, copolyethyleneethylene terephthalate, copolyethylene naphthalene dicarboxylate is used. Can do. As the copolymer component, for example, isophthalic acid can be used.

[製膜方法]
本発明の二軸延伸多層積層フィルムは、上述の第1の層の樹脂と第2の層の樹脂とを交互に100層以上積層し、延伸することによって製造することができる。以下、製造方法の一例を詳細に説明する。第1の押出し機より供給された第1のポリエステルと、第2の押出し機より供給された第2のポリエステルと、を溶融状態で交互に少なくとも100層以上重ね合わせて多層未延伸シートとする。これを回転するドラム上にキャストすることにより、未延伸多層積層フィルムとする。このようにして得られた未延伸多層積層フィルムを、製膜方向とそれに直交する幅方向の二軸方向(フィルム面に沿った方向)に延伸する。延伸温度は、第1のポリエステルのガラス転移点の温度(Tg)〜Tg+50℃の範囲とする。延伸の面積倍率は5〜50倍とすることが好ましい。延伸倍率が大きい程、第1の層および第2の層の個々の層における面方向のバラツキが延伸による薄層化により小さくなり、二軸延伸多層積層フィルムの光干渉が面方向に均一になるので、延伸倍率はこの範囲で大きいことが好ましい。延伸方法は、逐次二軸延伸、同時二軸延伸のいずれの方法であってもよい。必要があればさらに熱固定を行ってもよい。
[Film forming method]
The biaxially stretched multilayer laminated film of the present invention can be produced by alternately laminating 100 layers or more of the above-mentioned first layer resin and second layer resin and stretching them. Hereinafter, an example of the manufacturing method will be described in detail. The first polyester supplied from the first extruder and the second polyester supplied from the second extruder are alternately laminated in a molten state to form at least 100 layers to form a multilayer unstretched sheet. By casting this on a rotating drum, an unstretched multilayer laminated film is obtained. The unstretched multilayer laminated film thus obtained is stretched in the biaxial direction (the direction along the film surface) in the width direction perpendicular to the film forming direction. The stretching temperature is in the range of the glass transition temperature (Tg) to Tg + 50 ° C. of the first polyester. The stretching area ratio is preferably 5 to 50 times. The larger the draw ratio, the smaller the variation in the plane direction in the individual layers of the first layer and the second layer due to the thinning by stretching, and the light interference of the biaxially stretched multilayer laminated film becomes uniform in the plane direction. Therefore, the draw ratio is preferably large in this range. The stretching method may be either sequential biaxial stretching or simultaneous biaxial stretching. If necessary, heat setting may be further performed.

以下、実施例を挙げて本発明をさらに説明する。
なお、実施例中の物性や特性は、下記の方法にて測定または評価した。
Hereinafter, the present invention will be further described with reference to examples.
In addition, the physical property and characteristic in an Example were measured or evaluated by the following method.

(1)ガラス転移温度(Tg)および融点
試料10mgについて、DSC(TAインスツルメンツ社製、商品名:DSC2920)を用い、20℃/min.の昇温速度でガラス転移温度および融点を測定した。
(1) Glass transition temperature (Tg) and melting point About 10 mg of sample, DSC (TA Instruments make, brand name: DSC2920) is used, and 20 degreeC / min. The glass transition temperature and the melting point were measured at a temperature increase rate of.

(2)層厚み
サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S、製造元:ライヘルト社)で製膜方向と厚み方向に沿って切断し、厚さ50nmの薄膜切片にした。得られた薄膜切片を、透過型電子顕微鏡(製造元:日本電子(株)、商品名:JEM2010)を用いて、加速電圧100kVにて観察・撮影し、写真から各層の厚みを測定した。
(2) Layer thickness A sample was cut into a triangle, fixed in an embedded capsule, and then embedded in an epoxy resin. And the embedded sample was cut | disconnected along the film forming direction and thickness direction with the microtome (ULTRACUT-S, manufacturer: Reichert), and it was set as the thin film slice | slice of thickness 50nm. The obtained thin film slices were observed and photographed at an accelerating voltage of 100 kV using a transmission electron microscope (manufacturer: JEOL Ltd., trade name: JEM2010), and the thickness of each layer was measured from the photograph.

(3)正面入射および60°におけるP偏光およびS偏光に対する反射率
分光光度計(島津製作所製、MPC−3100)を用い、フィルムと光源の間に、可視光用偏光フィルタ設置し、波長400nmから800nmの範囲にわたり、分光透過率を測定した。また、同様にして、フィルムと光源の間に近赤外線用偏光フィルタを、波長800nmから1600nmの範囲にわたり、分光透過率を測定した。
60°入射における測定は、サンプルを光路に対して、60°傾けて測定した。このとき、偏光フィルタにおける透過軸と入射角と反射角を含む面内に平行な成分をP偏光成分と定義した。
なお、分光反射率は、フィルムの吸収は無視できるほど十分に小さいことから、下記の式より算出した。波長ごとに測定された反射率の中で最大のものを最大反射率としその波長を最大反射率波長とした。最大反射率とベースラインと差を最大反射率ピーク高さとした。
分光反射率(%)=100(%)−分光透過率(%)
(3) Reflectance for P-polarized light and S-polarized light at front incidence and 60 ° Using a spectrophotometer (manufactured by Shimadzu Corp., MPC-3100), a polarizing filter for visible light is installed between the film and the light source, and from a wavelength of 400 nm Spectral transmittance was measured over a range of 800 nm. Similarly, the spectral transmittance of the near-infrared polarizing filter between the film and the light source was measured over a wavelength range of 800 nm to 1600 nm.
The measurement at 60 ° incidence was performed by tilting the sample by 60 ° with respect to the optical path. At this time, the component parallel to the plane including the transmission axis, the incident angle, and the reflection angle in the polarizing filter was defined as the P-polarized light component.
The spectral reflectance was calculated from the following formula because the absorption of the film was sufficiently small to be negligible. Among the reflectances measured for each wavelength, the maximum reflectance was defined as the maximum reflectance, and the wavelength was defined as the maximum reflectance wavelength. The difference between the maximum reflectance and the baseline was taken as the maximum reflectance peak height.
Spectral reflectance (%) = 100 (%)-Spectral transmittance (%)

(4)全光線透過率
日本電色工業社製のへーズ測定器(NDH−20)を使用して、全光線透過率を測定した。
(4) Total light transmittance The total light transmittance was measured using the haze measuring device (NDH-20) by Nippon Denshoku Industries Co., Ltd.

(5)識別媒体としての特性評価
得られた多層延伸フィルムの上にアクリル系の粘着層を塗布して識別媒体を作成した。こうして製造した識別媒体を、表面が白色の対象物に貼り付け、 識別媒体を簡易判定器で観察して評価した。簡易判定器は、透過軸を縦方向に合わせた可視光用偏光フィルタと、透過軸を横方向に合わせた可視光用偏光フィルタを備え、ボール紙の台紙でできたカード状の手軽に持ち運びできる真正性の識別手段である。この簡易判定器を用いて、上方45°より30W蛍光灯で照らし、フィルムに対して垂直方向およびフィルム面に対して60°方向から簡易判定器を通して観察し、その色相を観察した。ここで、偏光フィルタの透過軸が入射角と反射角を含む平面に平行になるようにした場合をP偏光とし、垂直になる場合をS偏光とした。
図2に、識別媒体を簡易判定器で観察している断面の模式図を示す。図3に、簡易判定器における透過軸を縦方向に合わせた可視光用偏光フィルタと、透過軸を横方向に合わせた可視光用偏光フィルタの配置の様子を示す。
(5) Characteristic evaluation as identification medium
An identification medium was prepared by applying an acrylic adhesive layer on the obtained multilayer stretched film. The identification medium thus manufactured was attached to an object having a white surface, and the identification medium was observed and evaluated with a simple judgment device. The simple discriminator has a polarizing filter for visible light whose transmission axis is aligned in the vertical direction and a polarizing filter for visible light whose transmission axis is aligned in the horizontal direction, and can be easily carried in the shape of a card made of cardboard. It is a means for authenticity identification. Using this simple determiner, it was illuminated with a 30 W fluorescent lamp from above 45 °, observed through a simple determiner from the direction perpendicular to the film and from the direction 60 ° to the film surface, and the hue was observed. Here, the case where the transmission axis of the polarizing filter is parallel to the plane including the incident angle and the reflection angle is P-polarized light, and the case where it is perpendicular is S-polarized light.
FIG. 2 is a schematic diagram of a cross section in which the identification medium is observed with a simple determination device. FIG. 3 shows the arrangement of the visible light polarizing filter with the transmission axis aligned in the vertical direction and the visible light polarizing filter with the transmission axis aligned in the horizontal direction in the simple determination device.

(6)外観
A4サイズのサンプルフィルムを10枚用意し、それぞれのサンプルフィルムを白色の普通紙に重ね、30ルクスの照明の下、目視にてサンプルフィルム内の透過色の色相の斑を評価した。また、A4サイズのサンプルフィルムを10枚用意し、それぞれのサンプルフィルムの裏面を黒色のスプレーにて着色した後、30ルクスの照明の下、目視にてサンプルフィルム内の反射色の色相の斑を下記基準で評価した。
○:視認される色相の斑がない
△:わずかに色相の斑が確認される
×:明らかに色相の斑が確認される
(6) Appearance Ten A4-size sample films were prepared, and each sample film was layered on white plain paper, and the color spots of the transmitted color in the sample film were visually evaluated under illumination of 30 lux. . In addition, 10 A4 size sample films were prepared, and the back surface of each sample film was colored with a black spray, and then the reflected color spots in the sample film were visually observed under 30 lux illumination. Evaluation was made according to the following criteria.
○: No visible hue spots Δ: Slight hue spots confirmed X: Clear hue spots confirmed

[実施例1]
第1の層の結晶性熱可塑性樹脂として、メルトインデックス30のシンジオタクティックポリスチレン(出光石油化学製:XAREC300ZC:「300ZC」という)を用意し、第2の層の熱可塑性樹脂として、0.65のポリエチレンテレフタレート−2,6−ナフタレンジカルボン酸共重合体(2,6−ナフタレンジカルボン酸含有量10モル%、「NDC10PET」という)を用意した。
[Example 1]
A syndiotactic polystyrene having a melt index of 30 (made by Idemitsu Petrochemical Co., Ltd .: XAREC300ZC: “300ZC”) is prepared as the crystalline thermoplastic resin of the first layer, and 0.65 as the thermoplastic resin of the second layer. Polyethylene terephthalate-2,6-naphthalenedicarboxylic acid copolymer (2,6-naphthalenedicarboxylic acid content 10 mol%, referred to as “NDC10PET”) was prepared.

そして、第1の層の結晶性熱可塑性樹脂および第2の層の熱可塑性樹脂を、それぞれ170℃で3時間乾燥後、第1、2の押出し機に供給し、290℃まで加熱して溶融状態とし、第1の層の結晶性熱可塑性樹脂を251層、第2の層の熱可塑性樹脂を250層に分岐させた後、第1の層と第2の層が交互に積層するような多層フィードブロック装置を使用して、積層状態の溶融体とし、その積層状態を保持したまま、キャスティングドラム上にキャストして、押出量の比を第1の層の結晶性熱可塑性樹脂を50%、第2の層の熱可塑性樹脂を50%に調整し、第1の層と第2の層が交互に積層された総数501層の未延伸多層積層フィルムを作成した。この多層未延伸フィルムを110℃の温度で製膜方向に4.0倍延伸し、続いて、110℃の温度で幅方向に4.0倍延伸し、230℃で3秒間熱固定処理を行い、二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表1および表2に示す。この二軸延伸多層積層フィルムを用いた識別媒体は垂直方向からの観察では着色が確認されず、60度方向からの観察では、P偏光成分用の窓より着色が確認され、S偏光成分用の窓からは着色が観察されなかった。この識別媒体はこのような簡便な方法で対象物の真贋判定が可能であった。   Then, the crystalline thermoplastic resin of the first layer and the thermoplastic resin of the second layer are each dried at 170 ° C. for 3 hours, then supplied to the first and second extruders, heated to 290 ° C. and melted In this state, after the first layer of the crystalline thermoplastic resin is branched into 251 layers and the second layer of the thermoplastic resin is branched into 250 layers, the first layer and the second layer are alternately laminated. Using a multi-layer feed block device, a molten material in a laminated state is formed, and the laminated state is maintained and cast on a casting drum. The ratio of the extrusion amount is 50% of the crystalline thermoplastic resin of the first layer. The thermoplastic resin of the second layer was adjusted to 50%, and a total of 501 unstretched multilayer laminated films in which the first layer and the second layer were alternately laminated were prepared. This multilayer unstretched film is stretched 4.0 times in the film forming direction at a temperature of 110 ° C., then stretched 4.0 times in the width direction at a temperature of 110 ° C., and heat-set at 230 ° C. for 3 seconds. A biaxially stretched multilayer laminated film was obtained. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Tables 1 and 2. In the identification medium using this biaxially stretched multilayer laminated film, coloring is not confirmed in the observation from the vertical direction, and in the observation from the 60 degree direction, the coloring is confirmed from the window for the P-polarized component, and for the S-polarized component. No coloring was observed from the window. This identification medium can determine the authenticity of an object by such a simple method.

[実施例2]
第1の層の結晶性熱可塑性樹脂を、メルトインデックス14の共重合シンジオタクティックポリスチレン(出光石油化学製:XAREC142AE:「142AE」という)とし、第2の層の熱可塑性樹脂として、固有粘度(オルソクロロフェノール、35℃)1.0のポリブチレンテレフタレート−イソフタレート共重合体(イソフタル酸含有量32モル%、「IA32PBT」という)し、製造条件を表1に示すように変更した以外は、実施例1と同様にして二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表2に示す。この二軸延伸多層積層フィルムを用いた識別媒体は垂直方向からの観察では着色が確認されず、60度方向からの観察では、P偏光成分用の窓より着色が確認され、S偏光成分用の窓からは着色が観察されなかった。この識別媒体はこのような簡便な方法で対象物の真贋判定が可能であった。
[Example 2]
The crystalline thermoplastic resin of the first layer is a copolymer syndiotactic polystyrene having a melt index of 14 (manufactured by Idemitsu Petrochemical Co., Ltd .: XAREC142AE: “142AE”), and the thermoplastic resin of the second layer is an intrinsic viscosity ( Orthobutylphenol, 35 ° C.) 1.0 polybutylene terephthalate-isophthalate copolymer (isophthalic acid content 32 mol%, referred to as “IA32PBT”), and the production conditions were changed as shown in Table 1, In the same manner as in Example 1, a biaxially stretched multilayer laminated film was obtained. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Table 2. In the identification medium using this biaxially stretched multilayer laminated film, coloring is not confirmed in the observation from the vertical direction, and in the observation from the 60 degree direction, the coloring is confirmed from the window for the P-polarized component, and for the S-polarized component. No coloring was observed from the window. This identification medium can determine the authenticity of an object by such a simple method.

[実施例3]
第2の層の熱可塑性樹脂を、ナイロン6(帝人デュポンナイロン製の商品名「ナイロン6 Brite」:「Ny−6」という)とし、製造条件を表1に示すように変更した以外は、実施例1と同様にして二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表2に示す。この二軸延伸多層積層フィルムを用いた識別媒体は垂直方向からの観察では着色が確認されず、60度方向からの観察では、P偏光成分用の窓より着色が確認され、S偏光成分用の窓からは着色が観察されなかった。この識別媒体はこのような簡便な方法で対象物の真贋判定が可能であった。
[Example 3]
Except that the thermoplastic resin of the second layer is nylon 6 (trade name “Nylon 6 Brite”: “Ny-6” made by Teijin DuPont Nylon) and the production conditions are changed as shown in Table 1, In the same manner as in Example 1, a biaxially stretched multilayer laminated film was obtained. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Table 2. In the identification medium using this biaxially stretched multilayer laminated film, coloring is not confirmed in the observation from the vertical direction, and in the observation from the 60 degree direction, the coloring is confirmed from the window for the P-polarized component, and for the S-polarized component. No coloring was observed from the window. This identification medium can determine the authenticity of an object by such a simple method.

[比較例1]
第1の層の結晶性熱可塑性樹脂を固有粘度(オルソクロロフェノール、35℃)0.64のポリエチレンテレフタレート(「PET」という)とし、第2の層の熱可塑性樹脂を固有粘度(オルソクロロフェノール、35℃)0.68のポリエチレンテレフタレート−イソフタレート共重合体(イソフタル酸含有量12モル%、「IA12PET」という)とし、製造条件を表1に示すように変更した以外は、実施例1と同様にして二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表2に示す。
[Comparative Example 1]
The crystalline thermoplastic resin of the first layer is polyethylene terephthalate (referred to as “PET”) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.64, and the thermoplastic resin of the second layer is intrinsic viscosity (orthochlorophenol). 35 ° C.) 0.68 polyethylene terephthalate-isophthalate copolymer (isophthalic acid content 12 mol%, referred to as “IA12PET”), except that the production conditions were changed as shown in Table 1, and Example 1 Similarly, a biaxially stretched multilayer laminated film was obtained. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Table 2.

[比較例2]
製造条件を表1に示すように変更した以外は、比較例1と同様にして二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表2に示す。
[Comparative Example 2]
A biaxially stretched multilayer laminated film was obtained in the same manner as in Comparative Example 1 except that the production conditions were changed as shown in Table 1. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Table 2.

[比較例3]
第1の層の結晶性熱可塑性樹脂をメルトインデックス30のシンジオタクティックポリスチレン(出光石油化学製:XAREC300ZC:「300ZC」という)とし、第2の層の熱可塑性樹脂を固有粘度(オルソクロロフェノール、35℃)0.62のポリエチレン2,6ナフタレンジカルボキシレート(「PEN」という)とし、製造条件を表1に示すように変更した以外は実施例1と同様にして二軸延伸多層積層フィルムを得た。こうして得られたフィルムの特性を前述の方法で評価し、その結果を表2に示す。
[Comparative Example 3]
The crystalline thermoplastic resin of the first layer is a syndiotactic polystyrene having a melt index of 30 (made by Idemitsu Petrochemical Co., Ltd .: XAREC300ZC: “300ZC”), and the thermoplastic resin of the second layer is an intrinsic viscosity (orthochlorophenol, 35 ° C.) A biaxially oriented multilayer laminated film in the same manner as in Example 1 except that polyethylene 2,6 naphthalene dicarboxylate (referred to as “PEN”) of 0.62 was used and the production conditions were changed as shown in Table 1. Obtained. The properties of the film thus obtained were evaluated by the method described above, and the results are shown in Table 2.

Figure 0004773930
Figure 0004773930

Figure 0004773930
Figure 0004773930

本発明は、商品を梱包したパッケージ、パスポート、カード、紙幣、金券、証券、証書、商品券、絵画、切符、公共競技投票券等の平面的な対象物または各種立体的な対象物の真正性を識別するための識別媒体として好適に利用することができる。   The present invention is the authenticity of flat objects such as packages, passports, cards, banknotes, cash vouchers, securities, certificates, gift certificates, pictures, tickets, public competition voting tickets, etc. It can be suitably used as an identification medium for identifying.

多層薄膜フィルムに入射した光が各層で選択反射する様子を示す図である。It is a figure which shows a mode that the light which injected into the multilayer thin film is selectively reflected by each layer. 識別媒体を簡易判定器で観察している断面の模式図である。It is a schematic diagram of the cross section which has observed the identification medium with the simple determination device. 簡易判定器における透過軸を縦方向に合わせた可視光用偏光フィルタと、透過軸を横方向に合わせた可視光用偏光フィルタの配置の様子を示す図である。It is a figure which shows the mode of arrangement | positioning of the polarizing filter for visible light which matched the transmission axis to the vertical direction in the simple determination device, and the polarizing filter for visible light which adjusted the transmission axis to the horizontal direction.

Claims (2)

厚みが0.05〜0.5μmの範囲にある負の固有複屈折性を有する結晶性熱可塑性樹脂からなる第1の層と、厚みが0.05〜0.5μmの範囲にある熱可塑性樹脂からなる第2の層とを100層以上交互に積層した多層積層フィルムであって、フィルム面に対して垂直な面からの入射光に対する反射率ピーク高さが5%以下であり、かつフィルムに対して60°の角度で入射する光のうちS偏光に対しては反射率ピーク高さが5%以下であり、フィルムに対して60°の角度で入射する光のうちP偏光に対しては反射率ピーク高さが20%以上であることを特徴とする二軸延伸多層積層フィルム。   A first layer made of a crystalline thermoplastic resin having a negative intrinsic birefringence having a thickness in the range of 0.05 to 0.5 μm; and a thermoplastic resin having a thickness in the range of 0.05 to 0.5 μm A multilayer laminated film in which 100 or more layers are alternately laminated, and the reflectance peak height with respect to incident light from a plane perpendicular to the film surface is 5% or less, and The reflectance peak height is 5% or less for S-polarized light among the light incident at an angle of 60 °, and for P-polarized light among the light incident at an angle of 60 ° to the film. A biaxially stretched multilayer laminate film having a reflectance peak height of 20% or more. 請求項1記載の二軸延伸積層フィルムを用いた識別媒体。   An identification medium using the biaxially stretched laminated film according to claim 1.
JP2006318398A 2006-11-27 2006-11-27 Biaxially stretched multilayer laminated film and identification medium Active JP4773930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318398A JP4773930B2 (en) 2006-11-27 2006-11-27 Biaxially stretched multilayer laminated film and identification medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318398A JP4773930B2 (en) 2006-11-27 2006-11-27 Biaxially stretched multilayer laminated film and identification medium

Publications (2)

Publication Number Publication Date
JP2008132611A JP2008132611A (en) 2008-06-12
JP4773930B2 true JP4773930B2 (en) 2011-09-14

Family

ID=39557808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318398A Active JP4773930B2 (en) 2006-11-27 2006-11-27 Biaxially stretched multilayer laminated film and identification medium

Country Status (1)

Country Link
JP (1) JP4773930B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374033A4 (en) 2008-12-22 2017-07-26 3M Innovative Properties Company Multilayer optical films having side-by-side polarizer/polarizer zones
JP5644500B2 (en) * 2009-01-31 2014-12-24 新日本理化株式会社 Polypropylene resin molding
JP6411736B2 (en) * 2013-12-17 2018-10-24 帝人フィルムソリューション株式会社 Light selective reflection film and light selective reflective film for display
JP6267013B2 (en) * 2014-03-06 2018-01-24 帝人株式会社 Multilayer uniaxially stretched film, reflective polarizing plate comprising the same, optical member for IPS liquid crystal display device, and IPS liquid crystal display device
JP6934703B2 (en) 2016-02-03 2021-09-15 スリーエム イノベイティブ プロパティズ カンパニー Display device and infrared light cut film
CN111954598B (en) * 2018-04-10 2023-02-28 东丽株式会社 Laminated film and display device
JPWO2022181583A1 (en) * 2021-02-24 2022-09-01

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097501B2 (en) * 2002-03-01 2008-06-11 帝人株式会社 Biaxially stretched multilayer laminated film and method for producing the same
JP4527952B2 (en) * 2003-08-11 2010-08-18 帝人株式会社 Biaxially stretched multilayer laminated film
JP4624817B2 (en) * 2005-02-02 2011-02-02 帝人デュポンフィルム株式会社 Reflective polarizing film

Also Published As

Publication number Publication date
JP2008132611A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US9851484B2 (en) Effective media retarder films with spatially selective birefringence reduction
KR100560342B1 (en) Clear to colored security film
JP4257903B2 (en) Identification medium, identification medium identification method, identification target article, and identification apparatus
JP4773930B2 (en) Biaxially stretched multilayer laminated film and identification medium
KR101510919B1 (en) Identification medium and producing method thereof
JP5245296B2 (en) Anti-counterfeit medium and discrimination method
MX2007001546A (en) Security element and method for producing the same.
US20090190223A1 (en) Optical security marking component, method of manufacturing such a component, system comprising such a component, and reader for checking such a component
KR20110104071A (en) Internally patterned multilayer optical films using spatially selective birefringence reduction
WO2004102234A1 (en) Object identification medium and identification method
US20060097514A1 (en) Object identification structure and object provided with the same
KR20090096437A (en) Identification medium, identification method and identification device
CN102179966A (en) Anti-counterfeiting element and anti-counterfeiting product
JP5381023B2 (en) Image forming body
JP3969592B2 (en) Object identification medium
JP4236853B2 (en) Authenticity judgment system
JP2008139509A (en) Layered body, adhesive label, recording medium, article with label and discrimination method
JP5157057B2 (en) Color information intrinsic sheet, verification tool, and color information verification method
EP3013597B1 (en) Security element and document incorporating such a security element
JP2004354430A (en) Discrimination medium, articles to be discriminated, judging device, judging method of discrimination medium and manufacturing method of laminated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250