JP4771126B2 - Synchronous motor drive - Google Patents

Synchronous motor drive Download PDF

Info

Publication number
JP4771126B2
JP4771126B2 JP2005281142A JP2005281142A JP4771126B2 JP 4771126 B2 JP4771126 B2 JP 4771126B2 JP 2005281142 A JP2005281142 A JP 2005281142A JP 2005281142 A JP2005281142 A JP 2005281142A JP 4771126 B2 JP4771126 B2 JP 4771126B2
Authority
JP
Japan
Prior art keywords
command value
axis current
magnetic pole
axis
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281142A
Other languages
Japanese (ja)
Other versions
JP2007097275A (en
Inventor
寛明 林
良和 市中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005281142A priority Critical patent/JP4771126B2/en
Publication of JP2007097275A publication Critical patent/JP2007097275A/en
Application granted granted Critical
Publication of JP4771126B2 publication Critical patent/JP4771126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、インクリメンタルタイプのパルスジェネレータ(以下、PGと略称する)を備えた同期電動機を可変速駆動する同期電動機駆動装置に関するものである。   The present invention relates to a synchronous motor driving device that drives a synchronous motor having an incremental type pulse generator (hereinafter abbreviated as PG) at a variable speed.

同期電動機を駆動する場合、電源投入時は駆動装置にとって磁極位置は不明であるが、磁極位置が不明なまま駆動しようとすると、その磁極位置のずれ量によっては、トルク不足で起動できなかったり、逆方向に回転してしまうおそれがある。
そこで、従来、同期電動機を駆動する場合には、アブソリュートタイプのPGを同期電動機に組み合わせ、一番最初の運転時までに何らかの方法で駆動装置にPGの原点と磁極位置の位相角とを予め記憶させておき、その後については、電源を一旦遮断後に再投入した場合においても、PGからの位置情報によって磁極位置を確実に復元できるようにするのが一般的である。
When driving a synchronous motor, the magnetic pole position is unknown to the drive device when the power is turned on, but if you try to drive with the magnetic pole position unknown, depending on the deviation of the magnetic pole position, it may not start due to insufficient torque, There is a risk of rotating in the opposite direction.
Therefore, conventionally, when driving a synchronous motor, an absolute type PG is combined with the synchronous motor, and the origin of the PG and the phase angle of the magnetic pole position are stored in advance in the drive device by the first operation. In general, after that, even when the power is once turned off and then turned on again, it is general that the magnetic pole position can be reliably restored by the position information from the PG.

アブソリュートタイプのPGには、大まかな位置しか検出できないもの、細かい位置まで検出可能なものがあるが、これらの絶対位置情報を駆動装置に取り込むことによって磁極位置の推定が一応可能であるため、起動できないほどのトルク不足や逆転により電動機が暴走してしまうといった事態にはならない。   There are absolute type PGs that can detect only a rough position, and those that can detect even a fine position, but it is possible to estimate the position of the magnetic pole by taking these absolute position information into the drive device. The motor will not run away due to insufficient torque or reverse rotation.

一方、アブソリュートタイプのPGよりも一般に安価なインクリメンタルタイプ(軸の回転変位量に応じて出力されるパルス数をカウントして回転位置を検出するタイプ)のPGを組み合わせた同期電動機を駆動するために、電源投入時に磁極位置を推定するようにした同期電動機の駆動方法がいくつか提案されている。   On the other hand, in order to drive a synchronous motor that combines an incremental type PG that is generally less expensive than an absolute type PG and that detects the rotational position by counting the number of pulses output according to the rotational displacement of the shaft. Several methods of driving a synchronous motor that estimate the magnetic pole position when the power is turned on have been proposed.

例えば、非特許文献1に記載された方法は、電機子鉄心の磁気飽和により電流応答が変化することを利用して、d軸方向に印加した電圧ベクトルに対する電流応答により磁極位置を推定する方法である。
この方法は、磁極位置推定の際に軸が回転することなく、各位置における電流偏差が見つかるように予め電圧ベクトルを決定しておき、磁極位置推定時にはそれに従って電圧ベクトルを印加し、そのときの電流帰還を用いて磁極位置を推定するものである。
For example, the method described in Non-Patent Document 1 is a method of estimating the magnetic pole position from the current response to the voltage vector applied in the d-axis direction by utilizing the fact that the current response changes due to the magnetic saturation of the armature core. is there.
In this method, the voltage vector is determined in advance so that the current deviation at each position can be found without rotating the shaft at the time of magnetic pole position estimation, and the voltage vector is applied accordingly at the time of magnetic pole position estimation. The magnetic pole position is estimated using current feedback.

なお、特許文献1に記載された永久磁石式同期電動機のセンサレス制御システムにおいても、同様に電機子鉄心の磁気飽和による電流応答の変化を利用した磁極位置推定方法が開示されている。   In the sensorless control system of the permanent magnet type synchronous motor described in Patent Document 1, a magnetic pole position estimation method using a change in current response due to magnetic saturation of the armature core is also disclosed.

田中康司,森山林太郎,三木一郎,「最適電圧ベクトルを用いた埋込磁石同期電動機の初期磁極位置推定法」,電気学会論文誌D,第124巻1号,2004年,P.101-107Koji Tanaka, Taro Moriyama, Ichiro Miki, “Initial magnetic pole position estimation method for interior permanent magnet synchronous motor using optimal voltage vector”, IEICE Transactions D, Vol. 124, No. 1, 2004, P.101-107 特開2000−312493号公報(段落[0018]〜[0023]等)JP 2000-31493 A (paragraphs [0018] to [0023] etc.)

しかしながら、上記各文献に記載された方法によって実際に磁極位置推定を行う際に、電動機によっては電機子鉄心の磁化特性に起因して磁気飽和しにくい特性を持つことがあり、その場合、真の磁極位置とその180°(電気角、以下同じ)ずれた位置での電流振幅差が小さくなるために180°分、誤って推定してしまうことがある。
また、一般的に電流検出器及びA/Dコンバータと組み合わせたマイコンの有する分解能や検出精度に対して、磁気飽和により検出される電流振幅の差が小さく、その影響によって正確に推定できないおそれもある。
However, when the magnetic pole position is actually estimated by the method described in each of the above documents, depending on the motor, there may be a characteristic that magnetic saturation is difficult due to the magnetization characteristic of the armature core. Since the difference in current amplitude between the magnetic pole position and its position 180 ° (electrical angle, the same applies hereinafter) is small, it may be erroneously estimated by 180 °.
In addition, the difference in current amplitude detected by magnetic saturation is small relative to the resolution and detection accuracy of a microcomputer generally combined with a current detector and an A / D converter, and there is a possibility that it cannot be accurately estimated due to the influence. .

そこで、本発明の解決課題は、磁気飽和しにくい同期電動機に対しても最適な電圧指令値を与えることにより、磁極位置の推定精度を向上させた同期電動機駆動装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a synchronous motor drive device that improves the estimation accuracy of the magnetic pole position by giving an optimum voltage command value even to a synchronous motor that is not easily magnetically saturated.

上記課題を解決するため、請求項1に記載した発明は、インクリメンタルタイプのPGを備えた同期電動機をインバータ部により可変速駆動する同期電動機の駆動装置であって、
同期電動機の速度指令値を与える速度設定手段と、前記PGの出力パルスに基づいて回転子の位置及び速度を検出する位置・速度検出手段と、この位置・速度検出手段から出力される速度検出値と前記速度指令値との偏差がなくなるようにトルク指令値を生成する速度調節手段と、前記トルク指令値から磁極位置と直交する方向のq軸電流指令値を生成するq軸電流指令手段と、前記磁極位置と同一方向のd軸電流指令値を生成するd軸電流指令手段と、前記位置・速度検出手段から出力される位置検出値に基づいて位相角を演算する位相角演算手段と、電動機電流を検出する電流検出手段と、前記位相角を用いて電動機電流をd軸電流、q軸電流に分解する第1のベクトル回転手段と、d軸電流とd軸電流指令値との偏差、q軸電流とq軸電流指令値との偏差がなくなるようにd軸電圧指令値、q軸電圧指令値をそれぞれ生成するd軸電流調節手段及びq軸電流調節手段と、前記位相角を用いてd軸電圧指令値及びq軸電圧指令値を三相交流電圧指令に変換する第2のベクトル回転手段と、三相電圧指令に応じて前記インバータ部のスイッチング素子に対する駆動パルスを生成する制御手段と、を備えた同期電動機駆動装置において、
同期電動機の定数としての規格化一次抵抗値相当の電圧指令値を出力する手段と、この電圧指令値に高周波信号を重畳して磁極位置推定用d軸電圧指令値を生成する手段と、第1のベクトル回転手段から出力されるd軸電流検出値の高周波成分を検出する高周波成分検出手段と、この高周波成分検出手段により検出した高周波成分の振幅に基づいて、磁極位置推定時に、前記磁極位置推定用d軸電圧指令値を前記d軸電流調節手段からのd軸電圧指令値に代えて第2のベクトル回転手段に与えると共に、前記磁極位置推定用d軸電圧指令値を出力する電気角を決定するための位相角を演算し、かつ、この位相角を前記位相角演算手段からの位相角に代えて第2のベクトル回転手段に与える位相角演算・切替手段と、を備え、
前記高周波成分検出手段により検出した高周波成分の振幅が最大となる位相角から真の磁極位置を推定するものである。
In order to solve the above-mentioned problem, the invention described in claim 1 is a drive device for a synchronous motor that drives a synchronous motor having an incremental type PG at a variable speed by an inverter unit,
Speed setting means for giving a speed command value of the synchronous motor, position / speed detection means for detecting the position and speed of the rotor based on the output pulse of the PG, and speed detection value output from the position / speed detection means And a speed adjusting means for generating a torque command value so that there is no deviation between the speed command value, a q-axis current command means for generating a q-axis current command value in a direction orthogonal to the magnetic pole position from the torque command value, A d-axis current command means for generating a d-axis current command value in the same direction as the magnetic pole position, a phase angle calculation means for calculating a phase angle based on a position detection value output from the position / velocity detection means, and an electric motor Current detection means for detecting current; first vector rotation means for decomposing the motor current into d-axis current and q-axis current using the phase angle; deviation between d-axis current and d-axis current command value; q Axial current and q-axis A d-axis current adjustment unit and a q-axis current adjustment unit that respectively generate a d-axis voltage command value and a q-axis voltage command value so that there is no deviation from the current command value; A synchronous motor comprising: a second vector rotating unit that converts a q-axis voltage command value into a three-phase AC voltage command; and a control unit that generates a drive pulse for the switching element of the inverter unit according to the three-phase voltage command In the drive device,
Means for outputting a voltage command value corresponding to a normalized primary resistance value as a constant of the synchronous motor, means for generating a d-axis voltage command value for magnetic pole position estimation by superimposing a high frequency signal on the voltage command value, and a first The high-frequency component detection means for detecting the high-frequency component of the detected d-axis current value output from the vector rotation means, and the magnetic pole position estimation based on the amplitude of the high-frequency component detected by the high-frequency component detection means The d-axis voltage command value is supplied to the second vector rotating means instead of the d-axis voltage command value from the d-axis current adjusting means, and the electrical angle for outputting the magnetic pole position estimation d-axis voltage command value is determined. And a phase angle calculation / switching unit that calculates a phase angle for applying the phase angle to the second vector rotation unit instead of the phase angle from the phase angle calculation unit, and
The true magnetic pole position is estimated from the phase angle at which the amplitude of the high frequency component detected by the high frequency component detecting means is maximized.

本発明によれば、インクリメンタルタイプのPGを使用する際に電源投入毎に必要となる磁極位置推定動作において、電動機の制御に使用する電動機定数である規格化一次抵抗値相当の電圧指令値(直流電圧)に高周波成分を重畳して磁極位置推定用d軸電圧指令値を生成することにより、同期電動機を確実に磁気飽和状態にすると共に、d軸電流の高周波成分の振幅が真の磁極位置に近づいたときのみ大きく現れることを利用して真の磁極位置を推定することができる。このため、電流検出器やA/Dコンバータ、マイコンに検出誤差や演算誤差があり、これらの精度や分解能に限界がある場合でも、磁極位置を大きく誤ることなく推定することが可能である。   According to the present invention, in the magnetic pole position estimation operation required every time the power is turned on when using an incremental type PG, a voltage command value (direct current) corresponding to a standardized primary resistance value, which is a motor constant used for motor control. By generating a magnetic pole position estimation d-axis voltage command value by superimposing the high-frequency component on the voltage), the synchronous motor is surely brought into a magnetic saturation state, and the amplitude of the high-frequency component of the d-axis current is set to the true magnetic pole position The true magnetic pole position can be estimated using the fact that it appears greatly only when approaching. For this reason, there are detection errors and calculation errors in the current detector, the A / D converter, and the microcomputer, and even when these precisions and resolutions are limited, it is possible to estimate the magnetic pole position without making a large error.

なお、規格化一次抵抗値を求めるための電動機定数は、通常のベクトル制御を行うためにも必要であり、同期電動機において定数が既知である場合には手動により、既知でない場合は、制御回路が持つ電気定数オートチューニング機能等を利用して設定することができる。従って、磁極位置推定のために改めて測定したりする必要はないものである。   The motor constant for obtaining the normalized primary resistance value is also necessary for normal vector control. If the constant is known in the synchronous motor, it is manually operated. It can be set using the electrical constant auto-tuning function. Therefore, there is no need to measure again for estimating the magnetic pole position.

以下、図に沿って本発明の実施形態を説明する。
図1はこの実施形態の全体構成図であり、その主回路において、100は三相交流電源、200はダイオード整流器、300は平滑コンデンサ、400はインバータ部、500は同期電動機である。また、2は同期電動機500に取り付けられたインクリメンタルタイプのPGであり、90°の位相差を持った2相信号及び1回転信号パルスを出力可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of this embodiment. In the main circuit, 100 is a three-phase AC power source, 200 is a diode rectifier, 300 is a smoothing capacitor, 400 is an inverter unit, and 500 is a synchronous motor. Reference numeral 2 denotes an incremental type PG attached to the synchronous motor 500, which can output a two-phase signal having a phase difference of 90 ° and a single rotation signal pulse.

次に、本実施形態に係る駆動装置の構成を作用と共に説明する。
図1において、1は速度指令値を与える速度設定器、3はPG2の出力パルスを位置、速度情報に変換する位置・速度検出器、4は速度設定器1からの速度設定値Nと位置・速度検出器3からの速度検出値Nとの偏差がなくなるように調節動作を行ってトルク指令値を出力する速度調節器、5はトルク指令値を磁極位置と直交する軸(以下、q軸)方向のq軸電流指令値i に変換して出力するq軸電流指令器、6は位置・速度検出器3からの位置検出値に基づいて同期電動機の磁極位置に平行な軸(以下、d軸)方向のd軸電流指令値i を生成するd軸電流指令器、7は電動機電流を検出する電流検出器、8は位置・速度検出器3からの位置検出値に基づいて電動機電流をベクトル分解するための位相角を求める位相角演算器、9はその位相角によって電流をd軸電流i及びq軸電流iに分解する第1のベクトル回転器、10はd軸電流指令値i とd軸電流検出値iとの偏差がなくなるように調節動作を行ってd軸電圧指令値を出力するd軸電流調節器、11はq軸電流指令値i とq軸電流検出値iとの偏差がなくなるように調節動作を行ってq軸電圧指令値を出力するq軸電流調節器、12はd軸、q軸それぞれの電圧指令値を三相交流電圧指令値に変換する第2のベクトル回転器、13は三相電圧指令値に応じてパルス幅変調(PWM)制御を行い、インバータ400部の半導体スイッチング素子に与えるスイッチングパターンを生成するインバータ制御回路、14は制御に使用する電動機電気定数を入力するための操作器、15は操作器14により入力された電気定数を記憶する記憶装置である。
上述した各構成要素については、PG2がインクリメンタルタイプであることを除けば一般的な同期電動機駆動装置と異なるところはない。
Next, the structure of the drive device according to the present embodiment will be described together with the operation.
In FIG. 1, 1 is a speed setting device that gives a speed command value, 3 is a position / speed detector that converts the output pulse of PG2 into position and speed information, and 4 is a speed setting value N * and position from the speed setting device 1. A speed adjuster that outputs a torque command value by performing an adjustment operation so that there is no deviation from the speed detection value N from the speed detector 3, and an axis (hereinafter referred to as q-axis) where the torque command value is orthogonal to the magnetic pole position. ) Direction q-axis current command value i q * converted to output q-axis current command device, 6 is an axis parallel to the magnetic pole position of the synchronous motor based on the position detection value from the position / speed detector 3 , D-axis) direction d-axis current command device for generating a d-axis current command value i d * , 7 is a current detector for detecting the motor current, 8 is based on the position detection value from the position / speed detector 3 Phase angle calculator to obtain phase angle for vector decomposition of motor current 9 deviation of the current by the phase angle d-axis current i d and the q-axis current i a first vector rotator decomposed into q, 10 and d-axis current command value i d * and the d-axis current detection value i d The d-axis current regulator 11 performs an adjusting operation so as to eliminate the d-axis and outputs a d-axis voltage command value, and the adjusting operation 11 causes the deviation between the q-axis current command value i q * and the q-axis current detected value i q to disappear. A q-axis current regulator that outputs a q-axis voltage command value, 12 is a second vector rotator that converts each of the d-axis and q-axis voltage command values into a three-phase AC voltage command value, and 13 is a three-phase An inverter control circuit that performs pulse width modulation (PWM) control according to the voltage command value and generates a switching pattern to be applied to the semiconductor switching element of the inverter 400 unit, and 14 is an operating device for inputting an electric constant of the motor used for the control , 15 is a controller A storage device for storing electrical constants input by 4.
About each component mentioned above, except PG2 being an incremental type, there is no place different from a general synchronous motor drive device.

さて、16は高周波発振器である。本実施形態では、磁極位置を推定する際に、加算器19において、前記記憶装置15に記憶された同期電動機500の規格化一次抵抗値(%R:パーセント抵抗)相当の電圧指令値に、高周波発振器16から出力される高周波信号を重畳して磁極位置推定用d軸電圧指令値を生成している。
ここで、上述した規格化一次抵抗値は、数式1によって与えられる。
[数式1]
%R=(一次抵抗値〔Ω〕+配線用ケーブルの抵抗値〔Ω〕)×電動機定格電流〔A〕/(電動機定格電圧〔V〕/√3)×100〔%〕
Now, 16 is a high frequency oscillator. In the present embodiment, when the magnetic pole position is estimated, the adder 19 adds a high frequency to the voltage command value corresponding to the normalized primary resistance value (% R: percent resistance) of the synchronous motor 500 stored in the storage device 15. A high-frequency signal output from the oscillator 16 is superimposed to generate a magnetic pole position estimation d-axis voltage command value.
Here, the normalized primary resistance value described above is given by Equation 1.
[Formula 1]
% R = (primary resistance value [Ω] + wiring cable resistance value [Ω]) × motor rated current [A] / (motor rated voltage [V] / √3) × 100 [%]

また、17はd軸電流検出値iの高周波成分を検出する高周波成分検出器であり、その出力は位相角演算・切替器18に入力されている。この位相角演算・切替器18は、高周波成分検出器17により検出したd軸電流検出値iの高周波成分の振幅とそれまでに取得した高周波成分の振幅とを比較した結果に応じて、ベクトル回転器12に入力させる位相角の演算、切り替えを行うと共に、磁極位置推定動作時に、高周波発振器16による高周波が重畳された磁極位置推定用d軸電圧指令値v ’と、位相角演算・切替器18から出力される位相角とをベクトル回転器12に入力させるべく、切替スイッチ20,21を操作する機能を持っている。
すなわち、電源投入直後の磁極位置推定動作時には、切替スイッチ20により、前記加算器19から出力される磁極位置推定用d軸電圧指令値v ’とq軸電圧指令値v (=ゼロ)とをベクトル回転器12に入力すると共に、切替スイッチ21により、ベクトル回転器12への位相角の入力を位相角演算器8から位相角演算・切替器18側に切り替えるように動作する。
Further, 17 is a high-frequency component detector for detecting a high frequency component of the d-axis current detection value i d, and its output is input to the phase angle calculation and the switching device 18. The phase angle calculation-switch 18, in response to a result of comparison of the amplitudes of the high frequency component obtained so far of the high frequency component of the detected by the high-frequency component detector 17 d-axis current detection value i d, vector The phase angle to be input to the rotator 12 is calculated and switched, and the magnetic pole position estimation d-axis voltage command value v d * ′ superimposed with the high frequency by the high frequency oscillator 16 and the phase angle calculation In order to input the phase angle output from the switch 18 to the vector rotator 12, it has a function of operating the switches 20 and 21.
That is, during the magnetic pole position estimation operation immediately after the power is turned on, the magnetic pole position estimation d-axis voltage command value v d * ′ and q-axis voltage command value v q * (= zero) output from the adder 19 by the changeover switch 20. ) To the vector rotator 12 and the selector switch 21 operates to switch the phase angle input to the vector rotator 12 from the phase angle calculator 8 to the phase angle calculator / switcher 18 side.

次に、本実施形態における磁極位置の推定原理について説明する。
前述した各文献に記載されているように、一般的な同期電動機は磁気飽和特性を有しており、増磁する方向へ電圧を印加すると磁束が飽和し、インダクタンスが減少するため電流が大きく変化する。逆に減磁する方向に電圧を印加した場合、インダクタンスがほとんど変化せず、電流の発生は増磁した時よりも小さくなる。そして、この磁気飽和の度合いは、同期電動機の磁極位置によって変化する。
Next, the principle of estimating the magnetic pole position in this embodiment will be described.
As described in the above-mentioned documents, general synchronous motors have a magnetic saturation characteristic. When a voltage is applied in the direction of increasing magnetism, the magnetic flux is saturated and the inductance decreases, so the current changes greatly. To do. Conversely, when a voltage is applied in the direction of demagnetization, the inductance hardly changes, and the generation of current becomes smaller than when the magnetization is increased. The degree of magnetic saturation changes depending on the magnetic pole position of the synchronous motor.

この特性を利用し、本実施形態では、電源投入直後に磁極位置を推定する際に、図2に示すごとく、規格化一次抵抗値相当のd軸電圧指令値(直流電圧)に高周波発振器16による高周波信号(交番電圧)を重畳してなる磁極位置推定用d軸電圧指令値v を、切替スイッチ20を介してベクトル回転器12に入力する。また、これにより発生するd軸電流の高周波成分の振幅を高周波成分検出器17により測定する。
ここで、推定磁極位置とd軸電流の高周波成分との関係は図3に示すとおりであり、磁極位置の真値に近づくほど高周波成分の振幅が大きく現れるため、位相角演算・切替器18では、上記高周波成分の振幅が最大となる位置を検出することにより、真の磁極位置を推定することができる。
Using this characteristic, in this embodiment, when estimating the magnetic pole position immediately after the power is turned on, as shown in FIG. 2, the d-axis voltage command value (DC voltage) corresponding to the normalized primary resistance value is set by the high frequency oscillator 16. A magnetic pole position estimation d-axis voltage command value v d * formed by superposing a high-frequency signal (alternating voltage) is input to the vector rotator 12 via the changeover switch 20. Further, the amplitude of the high frequency component of the d-axis current generated thereby is measured by the high frequency component detector 17.
Here, the relationship between the estimated magnetic pole position and the high-frequency component of the d-axis current is as shown in FIG. 3, and the amplitude of the high-frequency component appears larger as it approaches the true value of the magnetic pole position. The true magnetic pole position can be estimated by detecting the position where the amplitude of the high frequency component becomes maximum.

位相角演算・切替器18では、d軸電流の高周波成分の振幅が大きくなるように位相角を切り替えていくので、最終的に収束する位相角が磁極位置推定値となる。
位相角演算・切替器18から出力される位相角(電気角データ)としては、まず、360°を4分割して90°ごとの0°,180°,90°,270°の順に変更し、その都度、検出したd軸電流の高周波成分の振幅を比較してその振幅が大きくなる方の角度範囲に絞り込む。図2の例では、180°から270°の角度範囲が選択されている。
The phase angle calculator / switcher 18 switches the phase angle so that the amplitude of the high-frequency component of the d-axis current is increased, so that the finally converged phase angle becomes the magnetic pole position estimated value.
As the phase angle (electrical angle data) output from the phase angle calculator / switcher 18, first, 360 ° is divided into four and changed in the order of 0 °, 180 °, 90 °, 270 ° every 90 °, In each case, the amplitude of the high frequency component of the detected d-axis current is compared and narrowed down to an angle range in which the amplitude becomes larger. In the example of FIG. 2, an angle range of 180 ° to 270 ° is selected.

次に、上記の角度範囲(180°〜270°)において、90°を4分割した22.5°ごとの202.5°,225°,……の順に変更し、その都度、前記同様に高周波成分の振幅を比較してその振幅が大きくなる方の角度範囲に絞り込む。
更に、絞り込んだ角度範囲において、22.5°を複数の角度範囲に分割し、最終的に0.7°の角度範囲になるまで絞り込みを繰り返す作業を3回実行し、その平均値をとって最終的に収束する位相角を求める。ここで、3回分の平均値をとるのは、電流検出器7による検出誤差等の影響を少なくするためである。
なお、図4は、磁極位置の真値を検出するために角度範囲を絞り込んでいく概念を示した図であり、(b),(c)における角度22.5°,0.7°は誇張して表してある。
Next, in the above angle range (180 ° to 270 °), 90 ° is divided into 42.5 in order of 202.5 °, 225 °,... Every 22.5 °. The amplitudes of the components are compared and narrowed down to an angle range in which the amplitude becomes larger.
Further, in the narrowed angle range, 22.5 ° is divided into a plurality of angle ranges, and the operation of repeating the narrowing until the final angle range is 0.7 ° is executed three times, and the average value is taken. The phase angle that finally converges is obtained. Here, the reason why the average value for three times is taken is to reduce the influence of detection error and the like by the current detector 7.
FIG. 4 is a diagram showing the concept of narrowing the angle range in order to detect the true value of the magnetic pole position, and the angles 22.5 ° and 0.7 ° in (b) and (c) are exaggerated. It is expressed as

図5は、ある同期電動機に対して、直流電圧としての図2における規格化一次抵抗値(%R)を3段階に変化させたときの、各位相角(磁極位置)に対するd軸電流の高周波成分の振幅値を示している。
この図5から判るように、規格化一次抵抗値が小さい場合には、真の磁極位置(56.8°)付近においてそれ以外の位置との振幅値の差が小さく、また、180°ずれた位置での振幅値との差も小さいため、電流検出器やA/Dコンバータ及びマイコンの組合せによる検出回路によってこの差を検出する場合、差が増加したかどうかの判断を誤り、磁極位置の真値に対してずれた位置で収束してしまう可能性がある。その結果、磁極位置を誤って推定してしまうおそれがある。
FIG. 5 shows a high frequency of the d-axis current with respect to each phase angle (magnetic pole position) when the normalized primary resistance value (% R) in FIG. The amplitude value of the component is shown.
As can be seen from FIG. 5, when the normalized primary resistance value is small, the difference in amplitude value from the other positions is small in the vicinity of the true magnetic pole position (56.8 °), and it is shifted by 180 °. Since the difference from the amplitude value at the position is also small, when this difference is detected by a detection circuit using a combination of a current detector, an A / D converter and a microcomputer, it is erroneously determined whether the difference has increased, and the magnetic pole position is There is a possibility of convergence at a position shifted from the value. As a result, the magnetic pole position may be estimated incorrectly.

従って、磁極位置の推定精度をなるべく高くするために、d軸電流の高周波成分の振幅が駆動装置の電流容量を越えない範囲でできるだけ大きくなるように、規格化一次抵抗値を予め設定することが必要である。この規格化一次抵抗値は、同期電動機をベクトル制御する上で必要な電動機定数の一つであり、定数が既知である場合には手動により設定し、既知でない場合は、制御回路が持つ電気定数オートチューニング機能等を利用して設定すればよく、磁極位置を推定するためにわざわざ測定したり計算する必要がないため、使用者にとって負担になることはない。   Therefore, in order to make the estimation accuracy of the magnetic pole position as high as possible, the normalized primary resistance value can be set in advance so that the amplitude of the high-frequency component of the d-axis current is as large as possible without exceeding the current capacity of the driving device. is necessary. This normalized primary resistance value is one of the motor constants necessary for vector control of the synchronous motor. If the constant is known, it is set manually, and if it is not known, the control circuit has an electrical constant. What is necessary is just to set using an auto-tuning function etc., and since it does not need to measure and calculate in order to estimate a magnetic pole position, it does not become a burden for a user.

以上述べたように本実施形態によれば、磁極位置を推定する際に、所定の大きさの規格化一次抵抗値に高周波成分を重畳して得たd軸電圧指令値を用いることで同期電動機を確実に磁気飽和させ、その時のd軸電流の高周波成分の振幅から磁極位置を確実に推定することが可能である。   As described above, according to the present embodiment, when estimating the magnetic pole position, a synchronous motor is used by using a d-axis voltage command value obtained by superimposing a high-frequency component on a standardized primary resistance value having a predetermined magnitude. Can be reliably magnetically saturated, and the magnetic pole position can be reliably estimated from the amplitude of the high-frequency component of the d-axis current at that time.

本発明の実施形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 磁極位置推定動作の説明図である。It is explanatory drawing of magnetic pole position estimation operation | movement. 推定磁極位置とd軸電流の高周波成分の振幅との関係を示す図である。It is a figure which shows the relationship between an estimated magnetic pole position and the amplitude of the high frequency component of d-axis current. 磁極位置の真値を検出するために角度範囲を絞り込んでいく概念を示す図である。It is a figure which shows the concept which narrows down an angle range in order to detect the true value of a magnetic pole position. ある同期電動機に対して、規格化一次抵抗値を変更させたときの各位相角に対するd軸電流の高周波成分の振幅を示す図である。It is a figure which shows the amplitude of the high frequency component of d-axis current with respect to each phase angle when a standardized primary resistance value is changed with respect to a certain synchronous motor.

符号の説明Explanation of symbols

1:速度設定器
2:パルスジェネレータ(PG)
3:位置・速度検出器
4:速度調節器
5:q軸電流指令器
6:d軸電流指令器
7:電流検出器
8:位相角演算器
9:ベクトル回転器
10:d軸電流調節器
11:q軸電流調節器
12:ベクトル回転器
13:インバータ制御回路
14:操作器
15:記憶装置
16:高周波発振器
17:高周波成分検出器
18:位相角演算・切替器
19:加算器
20,21:切替スイッチ
100:三相交流電源
200:ダイオード整流器
300:平滑コンデンサ
400:インバータ部
500:同期電動機
1: Speed setter 2: Pulse generator (PG)
3: Position / speed detector 4: Speed controller 5: q-axis current command device 6: d-axis current command device 7: current detector 8: phase angle calculator 9: vector rotator 10: d-axis current controller 11 : Q-axis current regulator 12: vector rotator 13: inverter control circuit 14: controller 15: storage device 16: high frequency oscillator 17: high frequency component detector 18: phase angle calculator / switcher 19: adder 20, 21: Changeover switch 100: Three-phase AC power supply 200: Diode rectifier 300: Smoothing capacitor 400: Inverter unit 500: Synchronous motor

Claims (1)

インクリメンタルタイプのパルスジェネレータを備えた同期電動機をインバータ部により可変速駆動する同期電動機の駆動装置であって、
同期電動機の速度指令値を与える速度設定手段と、
前記パルスジェネレータの出力パルスに基づいて回転子の位置及び速度を検出する位置・速度検出手段と、
この位置・速度検出手段から出力される速度検出値と前記速度指令値との偏差がなくなるようにトルク指令値を生成する速度調節手段と、
前記トルク指令値から磁極位置と直交する方向のq軸電流指令値を生成するq軸電流指令手段と、
前記磁極位置と同一方向のd軸電流指令値を生成するd軸電流指令手段と、
前記位置・速度検出手段から出力される位置検出値に基づいて位相角を演算する位相角演算手段と、
電動機電流を検出する電流検出手段と、
前記位相角を用いて電動機電流をd軸電流、q軸電流に分解する第1のベクトル回転手段と、
d軸電流とd軸電流指令値との偏差、q軸電流とq軸電流指令値との偏差がなくなるようにd軸電圧指令値、q軸電圧指令値をそれぞれ生成するd軸電流調節手段及びq軸電流調節手段と、
前記位相角を用いてd軸電圧指令値及びq軸電圧指令値を三相交流電圧指令に変換する第2のベクトル回転手段と、
三相電圧指令に応じて前記インバータ部のスイッチング素子に対する駆動パルスを生成する制御手段と、
を備えた同期電動機駆動装置において、
同期電動機の定数としての規格化一次抵抗値相当の電圧指令値を出力する手段と、
この電圧指令値に高周波信号を重畳して磁極位置推定用d軸電圧指令値を生成する手段と、
第1のベクトル回転手段から出力されるd軸電流検出値の高周波成分を検出する高周波成分検出手段と、
この高周波成分検出手段により検出した高周波成分の振幅に基づいて、磁極位置推定時に、前記磁極位置推定用d軸電圧指令値を前記d軸電流調節手段からのd軸電圧指令値に代えて第2のベクトル回転手段に与えると共に、前記磁極位置推定用d軸電圧指令値を出力する電気角を決定するための位相角を演算し、かつ、この位相角を前記位相角演算手段からの位相角に代えて第2のベクトル回転手段に与える位相角演算・切替手段と、
を備え、
前記高周波成分検出手段により検出した高周波成分の振幅が最大となる位相角から真の磁極位置を推定することを特徴とする同期電動機駆動装置。
A synchronous motor driving device that drives a synchronous motor including an incremental type pulse generator at a variable speed by an inverter unit,
Speed setting means for giving a speed command value of the synchronous motor;
Position / speed detection means for detecting the position and speed of the rotor based on the output pulse of the pulse generator;
Speed adjusting means for generating a torque command value so that there is no deviation between the speed detection value output from the position / speed detection means and the speed command value;
Q-axis current command means for generating a q-axis current command value in a direction orthogonal to the magnetic pole position from the torque command value;
D-axis current command means for generating a d-axis current command value in the same direction as the magnetic pole position;
A phase angle calculation means for calculating a phase angle based on a position detection value output from the position / velocity detection means;
Current detection means for detecting the motor current;
First vector rotation means for decomposing the motor current into a d-axis current and a q-axis current using the phase angle;
d-axis current adjusting means for generating a d-axis voltage command value and a q-axis voltage command value so as to eliminate a deviation between the d-axis current and the d-axis current command value and a deviation between the q-axis current and the q-axis current command value, and q-axis current adjusting means;
Second vector rotation means for converting a d-axis voltage command value and a q-axis voltage command value into a three-phase AC voltage command using the phase angle;
Control means for generating a driving pulse for the switching element of the inverter unit according to a three-phase voltage command;
In a synchronous motor drive device comprising:
Means for outputting a voltage command value corresponding to a normalized primary resistance value as a constant of the synchronous motor;
Means for generating a magnetic pole position estimation d-axis voltage command value by superimposing a high-frequency signal on the voltage command value;
High-frequency component detection means for detecting a high-frequency component of the d-axis current detection value output from the first vector rotation means;
Based on the amplitude of the high-frequency component detected by the high-frequency component detection means, when the magnetic pole position is estimated, the second magnetic pole position estimation d-axis voltage command value is replaced with the d-axis voltage command value from the d-axis current adjustment means. The phase angle for determining the electrical angle for outputting the magnetic pole position estimation d-axis voltage command value is calculated, and this phase angle is converted into the phase angle from the phase angle calculation unit. Instead, a phase angle calculation / switching means to be given to the second vector rotating means,
With
A synchronous motor driving device characterized in that a true magnetic pole position is estimated from a phase angle at which an amplitude of a high frequency component detected by the high frequency component detecting means is maximized.
JP2005281142A 2005-09-28 2005-09-28 Synchronous motor drive Expired - Fee Related JP4771126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281142A JP4771126B2 (en) 2005-09-28 2005-09-28 Synchronous motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281142A JP4771126B2 (en) 2005-09-28 2005-09-28 Synchronous motor drive

Publications (2)

Publication Number Publication Date
JP2007097275A JP2007097275A (en) 2007-04-12
JP4771126B2 true JP4771126B2 (en) 2011-09-14

Family

ID=37982286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281142A Expired - Fee Related JP4771126B2 (en) 2005-09-28 2005-09-28 Synchronous motor drive

Country Status (1)

Country Link
JP (1) JP4771126B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265962B2 (en) 2008-05-09 2013-08-14 東芝機械株式会社 Current control method, current control program, recording medium, servo motor and injection molding machine for servo motor
JP5281339B2 (en) * 2008-09-01 2013-09-04 株式会社日立製作所 Synchronous motor drive system and control device used therefor
DE102009001955A1 (en) * 2009-03-27 2010-10-07 Beckhoff Automation Gmbh Method and amplifier for operating a synchronous motor
JP5644820B2 (en) 2012-08-17 2014-12-24 株式会社安川電機 Motor control device
WO2020110315A1 (en) * 2018-11-30 2020-06-04 三菱電機株式会社 Motor driving device
JP7447835B2 (en) 2021-01-28 2024-03-12 株式会社豊田自動織機 motor control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687603B2 (en) * 2001-12-10 2005-08-24 株式会社明電舎 PM motor magnetic pole position estimation method
JP4370754B2 (en) * 2002-04-02 2009-11-25 株式会社安川電機 Sensorless control device and control method for AC motor
JP2004187396A (en) * 2002-12-03 2004-07-02 Fuji Electric Fa Components & Systems Co Ltd Control device for permanent magnet type synchronous motor

Also Published As

Publication number Publication date
JP2007097275A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US6781333B2 (en) Drive control apparatus and method of alternating current motor
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
US20170264227A1 (en) Inverter control device and motor drive system
JP4771126B2 (en) Synchronous motor drive
US20190356255A1 (en) Device and a method for estimating inductances of an electric machine
JP6159659B2 (en) Power converter control device and electric vehicle
JP2008220096A (en) Sensorless controller of synchronous electric motor
JP6536473B2 (en) Control device of rotating electric machine
JP5238241B2 (en) Control device for synchronous motor
JP7361924B2 (en) Motor control device, motor control method
JP6102768B2 (en) Motor control device
WO2019150984A1 (en) Control device for three-phase synchronous electric motor
KR102359356B1 (en) Control device for three-phase synchronous motor, and electric power steering device using the same
JP2018125955A (en) Motor controller
JP4735287B2 (en) Synchronous motor control device and control method using the synchronous motor control device
JP4604760B2 (en) AC motor drive system
JP2004023920A (en) Ac motor controller
JP4127000B2 (en) Motor control device
JP6574711B2 (en) Method for measuring the inductance of a permanent magnet synchronous motor
WO2022259624A1 (en) Inverter control device, inverter control method
JPH07222486A (en) Method and apparatus for starting drive of ac servo- motor
WO2022195921A1 (en) Device for driving synchronous electric motor and method for driving synchronous electric motor
JP2006050766A (en) Induction motor drive device and tuning method therefor
KR100319374B1 (en) Torque Control Method of Embedded Permanent Magnet Motor
KR100319943B1 (en) Pole position detection apparatus for synchronous motor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4771126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees