JP4761804B2 - 放射線検査装置及び放射線検査方法 - Google Patents

放射線検査装置及び放射線検査方法 Download PDF

Info

Publication number
JP4761804B2
JP4761804B2 JP2005093199A JP2005093199A JP4761804B2 JP 4761804 B2 JP4761804 B2 JP 4761804B2 JP 2005093199 A JP2005093199 A JP 2005093199A JP 2005093199 A JP2005093199 A JP 2005093199A JP 4761804 B2 JP4761804 B2 JP 4761804B2
Authority
JP
Japan
Prior art keywords
data
transmission data
radiation
detector
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005093199A
Other languages
English (en)
Other versions
JP2006275664A (ja
Inventor
喜一郎 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2005093199A priority Critical patent/JP4761804B2/ja
Publication of JP2006275664A publication Critical patent/JP2006275664A/ja
Application granted granted Critical
Publication of JP4761804B2 publication Critical patent/JP4761804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、放射線検査装置及び放射線検査方法に関する。
放射線検査装置には、コンピュータ断層撮影装置(CT:Computed Tomography Scanner)やラインセンサ式透視検査装置等の種類がある。
CTには、放射線ビームに対して相対的に被検体に1回転の走査をさせて断面像を得るRR(Rotate/Rotate)方式や放射線ビームに対して相対的に被検体に平行移動走査(Translate)とステップ回転(Rotate)を数回行わせて断面像を得るTR方式とがある。また、被検体を中心に固定されたリング状の放射線検出器と被検体の周りを回転する放射線を持つSR(Stationary/Rotate)方式のCT等もある。
このような従来のCTは、放射線ビームの発生強度の時間変動(線源変動)により生じる断面像の劣化の軽減のため、安定度の高い放射線源を用いたり、線源変動を補正している。特に、交流電源に同期した変動のように早い変動は、画像に与える影響が大きく補正が必要である。なお、上記の各方式のCTの中では、特にTR方式のCTが線源変動の影響を受けやすい。
従来、例えば線源変動の補正には、TR方式CTでは、主検出器とは別に被検体に遮られないよう線源の近傍に設置した比較検出器で測定された放射線強度を用いる技術がある。また、RR方式CTでは、主検出器の両端部のチャンネルを比較検出器として用いる技術がある。さらに、RR方式CTあるいはSR方式CTにおいて、比較検出器を備えずに主検出器の出力のみを利用して線源変動の補正を行う技術もある(例えば、特許文献1)。
一方、ラインセンサ式透視検査装置は、1次元に並べたチャンネルを持つ放射線検出器を持ち、被検体をチャンネルと直交方向に相対的に動かしながら放射線を検出し、被検体の透過画像を得ている。このラインセンサ式透視検査装置においても、従来より、線源変動による画像の劣化を防止するため、被検体により遮られないよう線源の近傍に主検出器とは別に比較検出器を配置する技術がある。また、主検出器の両端のチャンネルを比較検出器として用いる技術がある。
特開2003−79612号公報
しかしながら、CT及びラインセンサ式透視検査装置共に、比較検出器を主検出器とは別に被検体に遮られないように線源の近傍に設置する場合、主検出器で検出されるデータと主検出器とは別構造の比較検出器で検出されるデータとでデータの特性が異なるものになりやすい。そのため、正確な補正をすることが困難である。また、比較検出器は線源の被検体側に配置するために被検体と干渉しやすく、また、配線は主検出器の出力配線と一緒にするため主検出器側まで引き回す必要があり比較検出器本体及び配線ともに邪魔なものである。
一方、主検出器の端部チャンネルを比較検出器として使用すればこのデータの特性が異なる問題及び比較検出器本体や配線が邪魔になる問題は生じないが、比較検出器が被検体に遮られる点が新たな問題となる。特にTR方式のCTでは放射線ビームを覆う大きな被検体をスキャンするので、主検出器の両端チャンネルが同時に遮られることがあり、比較検出器の役目を果たさなくなる。また、RR方式のCTでは通常のスキャンはできるが、被検体が放射線ビームを覆うようなはみ出しスキャンが出来なくなり、正確な補正ができなくなる。また、ラインセンサ式透視検査装置の場合も、同様に、被検体による遮りが問題である。
このような問題を解決するため、上述した特許文献1では、RR方式のCTにおいて、主検出器の出力により線源変動を補正する技術が記載されている。具体的には、ファンビームのデータを平行ビームのデータ(パラレルデータ)に変換するいわゆるファンパラ変換で平行ビームのデータに並び替えられた投影データはその面積が一定である前提を利用して補正している。
図6を用いて、具体的に説明する。これは、「投影角をφとして、被検体41の投影Diのプロファイルの面積Dref(φ)は、φによらず一定である」という前提である。ここで、線源変動があると面積は一定でなくなる。そこで、Dref(φ)を1回転分平均した値をDrefとして、各投影DiにφごとにDref/Dref(φ)をかけて面積を一定値Drefに補正することで、線源変動を補正する。
しかし、ファンパラ変換後の平行ビームデータは互いに収集時間(収集した時刻)が異なっており、各データの一端から他端まではファン角分回転するだけの時間差がある。したがって、この時間差内で変化する、例えば交流電源に同期した変動のような早い変動を補正することができないという問題がある。また、スキャン中に、被検体がX線ビームからはみ出すと、投影データの(プロファイルの)面積は投影角によらずに一定となる前提が成り立たずに誤差が生じるという問題がある。さらに、特許文献1に記載されているような平行ビームに並び替えずに同じ補正をする方法の場合、時間の同一性の問題は起こらないが、投影データの面積は投影角によらずに一定となる前提が成り立たすに誤差が生じるという問題がある。
図7は、このファンビームにおいて投影データの面積がその投影角によらずに一定となる前提が成立しなくなることを説明する図である。最も簡単な例として、回転中心Cに対して均質な円形の被検体41を偏芯して配置してある。被検体41がビームの焦点Fから遠いとき投影Diの面積Dref(φ)は小さくなり、近いときに大きくなる。また、ファンビームの場合も、被検体がファンビームからはみ出ると、はみ出た分の面積がさらにずれる。
また、このように投影データの面積は投影角によらずに一定となる前提を利用する特許文献1に記載の方法は、TR方式CTについても同様の問題がある。TR方式CTの場合は、ファンパラ変換を必要とせずに平行ビームデータを得ることができるが、平行ビームデータの一端から他端にかけて収集に時間差がある。同様に、早い変動の場合は、全く補正できない。ファンビームとして同じ補正を加えた場合、時間の同一性は良いが、TR方式では被検体がファンビームを横切るようにスキャンするので、大きくはみ出しが起こり、面積が一定であるという前提が成立しなくなるため、適用することすらできない。
さらに、このように投影データの面積は投影角によらずに一定となる前提をラインセンサ式透視検査装置に適用することはできない。ラインセンサ式透視検査装置では、平行ビームデータに変換することができず、ファンビームとして補正すると、スキャンにつれて被検体の透視部位が換わるので、透視部位の変化に伴って面積も変化する為である。
そこで、本発明は、上記課題に鑑み、線源変動を測定するための被検体に遮られることのない検出器すなわち比較検出器が無い場合でも、交流電源に同期した変動のような比較的速い線源変動の影響を緩和できる放射線検査装置及び放射線検査方法を提供することを目的とする。
上記課題を解決するため、第1の特徴に係る本発明は、放射線源の線源変動を補正する放射線検査装置であって、放射線源に対向して複数チャンネルを有する放射線検出器を配置し、この複数チャンネルそれぞれで時系列で検出される被検体の透過データを対数変換してから時間ごとにチャンネル間で平均して1つの平均透過データを算出し、該平均透過データを時間方向に高周波通過処理して前記時間ごとの線源変動の比較的早い変動成分である比較データを求め、前記透過データに対し時間ごとにこの比較データを減算あるいは除算して補正された透過データを得ることを要旨としている。
上記構成の本発明によれば、放射線源の放射線発生強度に早い時間変動があるとき、複数チャンネルそれぞれで検出される透過データには同期した時間変動成分が加算され、複数チャンネルの平均透過データの時間方向プロファイルは、被検体の構造成分はチャンネル平均により均されてなだらかになるのに対し、時間変動成分は均されずにそのまま残るので、このプロファイルに高周波通過処理を施すことで速い時間変動成分だけが取り出せて比較データとすることができ、各チャンネルデータからこの比較データを減算することで放射線発生強度の変動を補正することができる。
以上、説明したように本発明によれば、線源変動を測定するための被検体に遮られることのない検出器すなわち比較検出器が無い場合でも、交流電源に同期した変動のような比較的速い線源変動の影響を緩和できる放射線検査装置及び放射線検査方法を提供することができる。
以下に、図面を用いて本発明の各実施の形態について説明する。
(第1の実施の形態)
(TR方式CT)
図1に示すように、第1の実施の形態に係るTR方式コンピュータ断層撮影装置(TR方式CT)1は、X線管11、X線検出器12、回転テーブル13、機構部14、データ処理部15および表示部16を有している。
X線管11は、被検体41を透過させて透過画像を得るために用いるX線ビーム42を発生する。X線検出器12は、X線管11と対向して配置され、X線管11から発生したファン状のX線ビーム42が被検体41を透過したX線を検出する。具体的には、X線検出器12は、X線ビーム42に沿った各チャンネルnで検出することにより得られた1次元の透過データを出力する。
回転テーブル13には、被検体41が載置される。機構部14は、回転軸13aに基づいて回転テーブル13を回転させる。また、機構部14は、回転軸13aと共に、X線ビーム42に沿って、X線ビーム42を横切るように、回転テーブル13を平行移動させる。
データ処理部15は、X線検出器12で検出された透過データを入力して処理し、断面像を生成する。データ処理部15は、中央処理制御装置やメモリを有する一般的なコンピュータで、ソフトウェアの機能ブロックとして、スキャン制御部15a、比較データ生成部15bおよび再構成部15cを有している。具体的に、スキャン制御部15aは、TR方式CT1におけるスキャンを制御する。比較データ生成部15bは、X線検出器12から入力した透過データに基づいて、比較データを生成する。再構成部15cは、比較データを用いて補正された透過データから被検体の断面像を再構成して出力する。
表示部16は、データ処理部15の再構成部15cで生成された断面像等を表示する。また、図示は省略しているが、TR方式CT1は、データ処理部15からの指令に基づいて、機構部14を制御する機構制御部と、X線管11を制御するX線制御部を有している。
この図1における点Fは、X線ビーム42の焦点であり、角度θ0は測定されるファンビームであるX線ビーム42のファン角である。TR方式CT1では、被検体41に対して角度θ0のステップ回転と平行移動走査とを交互に繰り返してスキャンが行われる。
(検査方法)
次に、第1の実施の形態に係るTR方式CT1における検査方法について説明する。第1の実施の形態に係るTR方式CT1の検査におけるスキャン方法は、一般的なTR方式のスキャン方法と同一であり、θ0のステップ回転と平行移動走査とが交互に繰り返される。
回転テーブル13の回転位置をφ、平行移動位置をxとし、例えばθ0=30°の場合、TR方式CT1で被検体41の検査が開始されると、まず、回転テーブル13が回転位置φ=0°の状態で機構部14により往路の平行移動走査がされる。この機構部14による平行移動の間にX線検出器12の各チャンネルnで同時に平行移動位置xについて等間隔で透過データが検出され、検出された透過データがデータ処理部15に対して出力される。次に、回転テーブル13が30°回転され、φ=30°で復路の平行移動が行われ、同様に透過データが検出される。
上述した条件の場合、TR方式CT1では、平行移動が終わる毎に回転テーブル13が30°回転して6回の平行移動走査がされて透過データの検出が繰り返され、スキャンが終了する。
平行移動走査は略一定速度で行われるため、1回の平行移動で得られる透過データは略一定時間間隔で得られる。また、これらの各平行移動走査でチャンネルnで得られた透過データは時系列であり、時間をtとして、I(n,t)と表すことができる。なお、この透過データI(n,t)は、測定X線量に比例している。
このステップ回転及び平行移動走査は、データ処理部15の入力手段を介して、スキャン開始指示がスキャン制御部15aに入力されると、スキャン制御部15aがX線管11、X線検出器12、機構部14を制御することで行われる。
図2に示すフローチャートを用いて、データ処理部15における透過データの補正処理を説明する。
まず、データ処理部15では、X線検出器12から入力されて、メモリに記憶された透過データI(n,t)に対し、オフセット補正と対数変換及びエアー補正(ゲイン補正)を加えて、透過データP(n,t)を得る(S01)。オフセット補正を省略すると、透過データP(n,t)を求める式は、式(1)で表される。
Figure 0004761804
ここで、IA(n)は、被検体の無い状態で取得し、メモリに予め記憶させたチャンネルnにおけるデータであるエアーデータである。
次に、比較データ生成部15bは、式(1)により求めた透過データP(n,t)から比較データを生成する(S02,S03)。
具体的には、比較データ生成部15bは、時間t毎に透過データP(n,t)を全てのチャンネルnについて平均し、平均透過データPm(t)を算出する(S02)。平均透過データPm(t)を求める式は、式(2)で表される。
Figure 0004761804
ここで、Nは、全チャンネル数(例えば、数十ないし数百)である。
次に、ステップS02で求められた平均透過データPm(t)について、時間方向に高周波通過処理(ハイパス処理)して比較データPref(t)を求める(S03)。
ここで、高周波通過処理は、具体的には、まず、平均透過データPm(t)を各時間tで時間tを中心とする2・t1幅の区間内のデータ点で平均することで、低周波通過処理(ローパス処理)して、低周波データPmlp(t)を求める。この低周波通過処理は、式(3)で表される。なお、式(3)における「点数」とは、シグマの加算に用いる加算点数とされる値である。
Figure 0004761804
次に、低周波データPmlp(t)と平均透過データPm(t)により、各時間tについて、式(4)を用いて比較データPref(t)を算出する。すなわち、低周波通過処理したデータを減算することで、高周波通過処理の代用とする。
Figure 0004761804
続いて、求めた比較データPref(t)について、比較検出器で得たデータのように用いてREF補正すなわち線源変動の補正を行う。具体的には、各チャンネルn及び時間tで式(5)を用いてREF補正を行って、補正済み透過データP’(n,t)を求める(S04)。
Figure 0004761804
その後、全ての平行移動走査で得られた透過データI(n,t)に対して、同様にそれぞれ式(1)乃至式(5)の処理を施し、補正済み透過データP’(n,t)を得る。
再構成部15cは、これらの補正済み透過データP’(n,t)に基づいて被検体41の断面像を再構成して出力する。
その後、表示部16は、再構成部15cから出力された断面像を表示する。
図3は、本発明の第1の実施の形態に係るTR方式CT1の効果を説明する図である。本発明の第1の実施の形態に係るTR方式CT1では、上述したような処理により補正することで、放射線源であるX線管11から放射されるX線の強度の変動を補正することが出来るようになった。これは、透過データP(n,t)も、時間tについて変動を生じるが、その変動は全てのチャンネルnについて同期し、全チャンネルで取得する透過データについて同一の変動をしていることを利用するものである。
具体的に、図3を用いて説明すると、X線管11から出力されるX線ビーム42のX線強度50が±10%幅で周期が20msで変動する場合を例にして説明する。この場合、透過データI(n,t)が、±10%幅の一定の割合で変動するので、対数変換した透過データP(n,t)は、±0.1の一定幅で変動する。なお、図3では、透過データP(n,t)のt方向全体を示すが、分かり易いように全体長(数秒)に比べ、変動周期(20ms)を長めに描いている。
図3において、透過データP(n,t)は、変動がない場合の各元プロファイル511〜51Nに対し、各チャンネルnで共通の±0.1の変動を加算したものとなる。透過データP(n,t)をチャンネルnで平均した平均透過データPm(t)は、変動がない場合の元プロファイル52に変動を加算したものとなるが、この変動成分は、各チャンネルnに共通の±0.1の変動成分そのままである。
また、変動成分は、速い変化をするのに対し、元プロファイル52は、なだらかな変化である。これは、元プロファイル52は、元プロファイル511〜51Nの平均であり、元プロファイル511〜51Nは被検体41の構造を反映した細かい凹凸をもつが、これらの凹凸が各チャンネルnで揃っていないので、多数のチャンネルnで平均したとき均されてなだらかになるためである。
このため、平均透過データPm(t)に高周波通過処理を行うことで、±0.1の速い速度成分のみを取り出すことができ、変動成分である比較データPref(t)が求められる。透過データP(n,t)からこの比較データPref(t)を減算することで、±0.1の変動成分をなくした元プロファイル511〜51Nを取り出すことが出来る。すなわち、X線の強度変動を補正することが出来る。
ここで、仮に高周波通過処理を行わない場合、元プロファイル511〜51Nを取り出すことができないことは明らかである。また、この補正で、速い速度なら周期的でない変動も補正できることは明らかである。
上述した本発明の第1の実施の形態によれば、線源変動を測定するための被検体にさえぎられることのない検出器である比較検出器がない場合であっても、交流電源に同期した変動のような比較的速い線源変動の影響を取り除くこと、または、緩和させることが出来る。
また、本発明の第1の実施の形態によれば、線源変動以外の原因によるチャンネル間で同期した変動も取り除くこと、または、緩和させることが出来る。例えば、X線検出器出力に電源周波数に同期したノイズが乗る場合、また、平行移動の速度むらがX線検出器のX線測定時間(積算時間)を変動させて出力させる場合などである。
(第2の実施の形態)
(ラインセンサ式透視検査装置)
図4に示すように、第2の実施の形態に係るラインセンサ式透視検査装置2は、X線管21、X線検出器22、搬送機構23、データ処理部24、表示部25を有している。
X線管21は、被検体41を透過させて透過画像を得るために用いるX線ビーム42を発生する。X線検出器22は、X線管21と対向して配置され、X線管21から発生したファン状のX線ビーム42が被検体41を透過したX線を検出する。具体的には、X線検出器22は、X線ビーム42に沿った各チャンネルnで検出することにより得られた1次元の透過データを出力する。搬送機構23は、載置された被検体41をX線ビーム42を横切るように平行移動させる。
データ処理部24は、X線検出器22で検出された透過データを入力して処理し、透過画像を生成する。このデータ処理部24は、図示しない中央処理制御装置やメモリを有する一般的なコンピュータで、ソフトウェアの機能ブロックとして、比較データ生成部24aを有している。具体的に比較データ生成部24aは、X線検出器22から入力した透過データに基づいて、比較データを生成する。
表示部25は、データ処理部24で生成された透過画像等を表示する。また、図示は省略しているが、ラインセンサ式透視検査装置2は、搬送機構23を制御する機構制御部と、X線管21を制御するX線管制御部を有している。
(検査方法)
次に、第2の実施の形態に係るラインセンサ式透視検査装置2における検査方法について説明する。第2の実施の形態に係るラインセンサ式透視検査装置2は、一般的なラインセンサ式透視検査装置の検査方法と同一であり、平行移動される被検体の透過データが用いられる。
X線検出器22は、被検体41が搬送機構23に載置されて平行移動し、X線ビーム42を通過するとき、X線検出器22の各チャンネルnで同時にこの平行移動の一定間隔で透過データを検出して出力する。X線検出器22から出力された透過データは、データ処理部24に入力され、図示しないメモリに記憶される。
平行移動は略一定速度で行われるので、平行移動走査で得られる透過データは、時系列で、略一定時間間隔で得られる。平行移動走査において、X線検出器22の各チャンネルnにおいて時間tで得られた透過データをI(n,t)と記載する。なお、上述した第1の実施の形態における場合と同様に、透過データI(n,t)は、測定X線量に比例している。
データ処理部24は、透過データI(n,t)に対して、第1の実施の形態で上述した式(1)乃至(5)の処理を施す。具体的に、データ処理部24において入力された透過データI(n,t)から式(1)を用いてP(n,t)が生成されると、比較データ生成部24aでは、式(1)乃至(4)を用いて比較データPref(t)を求める。その後、データ処理部24は、この比較データPref(t)を用いて式(5)により補正された透過データP’(n,t)を求める。さらに、データ処理部24は、この透過データP’(n,t)を各チャンネルn及び時間tで縦横に並べて透過画像を生成して出力する。
表示部25にデータ処理部24により出力された透過画像が入力されて表示される。
上述した本発明の第2の実施の形態によれば、第1の実施の形態と同様に、線源変動を測定するための被検体に遮られることのない検出器である比較検出器が無い場合でも、交流電源に同期した変動のような比較的速い線源変動の影響を取り除くこと、または、緩和させることができる。
また、本発明の第2の実施の形態によれば、第1の実施の形態と同様に、線源変動以外の原因によるチャンネル間で同期した変動も取り除くこと、または、緩和させることができる。
(第3の実施の形態)
(RR方式CT)
図5に示すように、本発明の第3の実施の形態に係るRR方式CT3は、X線管31、X線検出器32、回転テーブル33、機構部34、データ処理部35、表示部36を有している。
X線管31は、被検体41を透過させて透過画像を得るために用いるX線ビーム42を発生する。X線検出器32は、X線管31と対向して配置され、X線管31から発生したファン状のX線ビーム42が被検体41を透過したX線を検出する。具体的には、X線検出器32は、X線ビーム42に沿った各チャンネルnで検出することにより得られた1次元の透過データを出力する。
回転テーブル33には、被検体41が載置される。機構部34は、回転軸33aに基づいて回転テーブル33を回転させる。
データ処理部35は、X線検出器32からの透過データを処理する。このデータ処理部35は、図示しない中央処理制御装置やメモリを有する一般的なコンピュータで、ソフトウェアの機能ブロックとして、比較データ生成部35bを有している。具体的に、スキャン制御部35aは、RR方式CT3におけるスキャンを制御する。比較データ生成部35bは、X線検出器32から入力した透過データに基づいて、比較データを生成する。再構成部35cは、比較データを用いて補正された透過データから被検体の断面像を再構成して出力する。
表示部36は、データ処理部35の再構成部35cで生成された断面像等を表示する。
(検査方法)
次に、第3の実施の形態に係るRR方式CT3における検査方法について説明する。
本発明の第3の実施の形態に係るRR方式CT3のスキャンは、一般的なRR方式CTのスキャンと同様で、被検体41を回転させて行う。被検体41が載置される回転テーブル33の回転位置をφとして説明する。
スキャンが開始されると、被検体41は回転テーブル33の回転により1回転され、X線検出器32の各チャンネルnにより、この回転の間にφの一定間隔おきに被検体41の透過データが同時に検出され、出力される。X線検出器32から出力された被検体41の透過データは、データ処理部35に入力されて図示しないメモリに記憶される。
回転は略一定速度で行われるので、X線検出器32では、略一定時間間隔で透過データが得られる。回転中に得られた透過データは、時系列であり、時間をtとしてI(n,t)と表すことができる。なお、上述した第1の実施の形態における場合と同様に、透過データI(n,t)は、測定X線量に比例した量とする。
データ処理部35は、入力した透過データI(n,t)に対して、第1の実施の形態で上述した式(1)乃至(5)の処理を施す。具体的に、データ処理部35において入力された透過データI(n,t)から式(1)を用いてP(n,t)が生成されると、比較データ生成部35bでは、式(2)乃至(4)を用いて比較データPref(t)を求める。その後、データ処理部35は、この比較データPref(t)を用いて式(5)により、補正された透過データP’(n,t)を求める。再構成部35cは、これらの補正済み透過データP’(n,t)を用いて、被検体41の断面像を再構成して出力する。
表示部36は、データ処理部35の再構成部35cから出力された断面像画を表示する。
本発明の第3の実施の形態に係るRR方式CTによれば、上述した第1の実施の形態と同様に、線源変動を測定するための被検体に遮られることのない検出器である比較検出器が無い場合であっても、交流電源に同期した変動のような比較的速い線源変動の影響を取り除くこと、または、緩和させることができる。
また、本発明の第3の実施の形態に係るRR方式CTによれば、上述した第1の実施の形態と同様に、線源変動以外の原因によるチャンネル間で同期した変動も取り除くこと、または、緩和させることができる。
さらに、本発明の第3の実施の形態に係るRR方式CTによれば、RR方式のスキャン中に被検体がX線ビームからはみ出した場合であっても、その影響を受けることなく、線源変動の影響を取り除くこと、または、緩和させることができる。
(第1の変形例)
上述した第1乃至第3の実施の形態で、比較検出器を取り付け、線源変動補正を二重に行うこともできる。この場合、比較検出器は被検体41に遮られないように、X線管の近傍に配置する。この比較検出器で検出された透過データIrefch.(t)に式(6)を用いて対数変換を施した透過データPrefch.(t)を得る。なお、式(6)における「定数」は、放射線検査装置ごとにあらかじめ定められた数である。
Figure 0004761804
その後、式(1)で得られた透過データP(n,t)に対し、式(7)に示すようにREF補正を施す。
Figure 0004761804
また、式(7)により得られた透過データP(n,t)に式(2)乃至(5)の演算を加えて補正済み透過データP’(n,t)を得る。すなわち、式(1),(6),(7),(2),(3),(4),(5)の順番で演算する。
ここで、REF補正は、式(7)および(5)で2重にされる。このように2重に線源変動補正をすることにより、線源変動を測定するための検出器である比較検出器による1回目のREF補正(式(7))が不正確であることにより残存する変動を、2回目のREF補正(式(5))を加えて緩和することが出来る。
(第2の変形例)
上述した第1乃至第3の実施の形態では、対数変換した透過データにREF補正を加えたが、対数変換せずにREF補正を加えることもできる。この場合、式(1)乃至(5)は、次の式(1)’乃至(5)’で置き換えることが出来る。
まず、式(1)’により、エアー補正(ゲイン補正)を加えて透過データL(n,t)を得る。
Figure 0004761804
次に、式(2)’により、透過データL(n,t)を調和平均し、平均透過データLm(t)を算出する。
Figure 0004761804
次に、式(3)’により、平均透過データLm(t)を各時間tで、時間tを中心とする2・t1幅の区間で調和平均することで、低周波通過処理した低周波データLmlp(t)を求める。なお、式(3)’における「点数」とは、Πの乗算に用いられる乗算点数とされる値である。
Figure 0004761804
続いて、各時間tについて、式(4)’を用いて低周波データLmlp(t)により、比較データLref(t)を求める。
Figure 0004761804
このように、低周波通過処理したデータで除算することで、高周波通過処理の代用とする。次に、求められた比較データLref(t)で式(5)’により、REF補正を行う。
Figure 0004761804
このように対数変換せずにREF補正を行なう場合は除算が用いられる。これにより、上述した各実施の形態と同様の効果を得ることが出来る。
式(1)’乃至(5)’は、数学的に第1の実施の形態で上述した式(1)乃至(5)と等価である。これは、式(1)’乃至(5)’は、それぞれ両辺を対数変換して、さらに記号の置き換えを行なえば、式(1)乃至(5)に全く同じになることで証明される。具体的にこの置き換えは、log(L(n,t))をP(n,t)とし、log(Lm(t))をPm(t)とし、Log(Lmlp(t))をPmlp(t)とし、Log(Lref(t))をPref(t)とし、log(L’(n,t))をP’(n,t)と置き換えることである。
(第3の変形例)
上述した第1乃至第3の実施の形態では、平均透過データPm(t)を求めるとき、全チャンネルで平均したが、全チャンネルをゾーン分けし、各ゾーンでそれぞれ平均透過データPm(t)を求めても良い。この場合、各ゾーンそれぞれで比較データPref(t)を求めゾーンごとにREF補正を行うようにする。これは、線源変動に方向性がある場合、すなわちX線ビーム内の位置によって線源変動が異なるような場合に用いると効果がある。
このゾーン分けを細かくして、チャンネルごとにゾーンを変えるような方法もある。例えば、チャンネルnの周囲n1〜n2チャンネル(n1=n−p,n2=n+p:pは放射線検査装置ごとに定められる定数)の範囲で平均透過データPm(t)を求め、さらに、比較データPref(t)を求めて、チャンネルごとに異なった比較データPref(t)を用いることもできる。
(第4の変形例)
上述した第1乃至第3の実施の形態において、高周波通過処理は他の方法でもよい。たとえば、Pm(t)をフーリエ変換し、周波数空間でハイパスフィルタ掛けし、逆フーリエ変換で元に戻すような処理であってもよい。
(第5の変形例)
上述した第1乃至第3の実施の形態において、2次元分解能のX線検出器を用いてもよい。この場合、X線ビーム42の厚みを増やし、厚み方向にチャンネル列mを持ったX線検出器を用いる。
この場合、同様に、各走査で得られた透過データはそれぞれ時系列であり、時間をtとして、I(m,n,t)で表せる。上述した各実施の形態と同様に処理を行うが、式(1)乃至(5)の代わりに、以下の式(8)、(9)、(3)、(4)、(10)を計算する。
Figure 0004761804
ここで、IA(m,n)は、チャンネルm,nにおけるエアーデータである。なお、式(9)における「点数」とは、Σの加算に用いる加算点数とされる数である。
Figure 0004761804
ここで加算は全チャンネルか、あるいは所定のゾーンを定めて行う。高域通過処理は全く同じに式(3)、(4)で行う。
REF補正は各m,n,tで、式(10)により、補正済み透過データP’(m,n,t)を得る。
Figure 0004761804
次に、1スキャン分のP’(m,n,t)を用いて、第1及び第3の実施の形態のCTの場合、複数枚の断面像を作成する。また、第2の実施の形態のラインセンサ式透視検査装置の場合、各列mごとに透視画像を作成するか、あるいは、各列mのデータを組合せて透過画像を作成する。
(その他の変形例)
上述した各変形例を組み合わせることもできる。
また、上述した本発明の第1乃至第3の実施の形態によれば、放射線としてX線を用いたが、X線でなくても透過性の放射線であれば良い。例えば、赤外線、電波、γ線などの電磁波、または、電子や中性子などの粒子線などを用いた放射線検査装置にも適用することができる。
さらに、上述した本発明の第1乃至第3の実施の形態によれば、被検体を動かしてスキャンを行っているが、被検体の代わりにX線源やX線検出器側を動かして相対的にスキャンを行うようにすることもできる。
また、上述した本発明の第2の実施の形態に係るラインセンサ式透視検査装置2では、平行移動走査してスキャンしているが、直線には限られない。例えば、被検体をX線管中心に回転させたり、また、被検体がパイプである場合には、パイプ軸をX線ビーム面に配置し、パイプをパイプ軸の周りに回転させてスキャンすることもできる。
また、第1及び第3の実施の形態に係るCTは他の方式に係るCTの場合にも、適用することができる。さらには、CT以外の断層撮影装置(ラミノグラフあるいはトモシンセンス装置)にも適用することが出来る。
さらに、本発明は、多数チャンネルの放射線検出器で時系列でデータ収集する放射線検査装置であれば、どのような形式の装置にも適用することができる。
上述したように、本発明に係る放射線検査装置によれば、線源変動を測定するための被検体に遮られることのない検出器すなわち比較検出器が無い場合でも、交流電源に同期した変動のような比較的速い線源変動影響を緩和することができる。
あるいは、線源変動を測定するための検出器すなわち比較検出器による補正が不正確であることを緩和できる放射線検査装置を提供することができる。
あるいは、放射線検出器の出力に生じる線源変動の影響と類似したノイズを緩和できる放射線検査装置を提供することができる。
本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施の形態に係るTR方式CTの概略構成図である。 本発明の第1の実施の形態に係るTR方式CTの処理部における透過データの補正処理を説明するフローチャートである。 本発明の第1の実施の形態に係るTR方式CTの効果を説明する図である。 本発明の第2の実施の形態に係るラインセンサ式透視検査装置2の概略構成図である。 本発明の第3の実施の形態に係るRR方式CTの概略構成図である。 投影データの(プロファイルの)面積が投影角によらずに一定となることについて説明する図である。 ファンビームの場合に図6の前提が成り立たなくなることを説明する図である。
符号の説明
1…TR方式CT
2…ラインセンサ式透視検査装置
3…RR方式CT
11…X線管
12…X線検出器
13…回転テーブル
13a…回転軸
14…機構部
15…データ処理部
15a…スキャン制御部
15b…比較データ生成部
15c…再構成部
16…表示部
21…X線管
22…X線検出器
23…搬送機構
24…データ処理部
24a…比較データ生成部
25…表示部
31…X線管
32…X線検出器
33…回転テーブル
33a…回転軸
34…機構部
35…データ処理部
35a…スキャン制御部
35b…比較データ生成部
35c…再構成部
36…表示部
41…被検体
42…X線ビーム
50…X線強度
52…元プロファイル
511〜51N…元プロファイル

Claims (2)

  1. 放射線源の線源変動を補正する放射線検査装置であって、
    放射線源に対向して複数チャンネルを有する放射線検出器を配置し、この複数チャンネルそれぞれで時系列で検出される被検体の透過データを対数変換してから時間ごとにチャンネル間で平均して1つの平均透過データを算出し、該平均透過データを時間方向に高周波通過処理して前記時間ごとの線源変動の比較的早い変動成分である比較データを求め、前記透過データに対し時間ごとにこの比較データを減算あるいは除算して補正された透過データを得るように構成されたことを特徴とする放射線検査装置。
  2. 放射線源の線源変動を補正する放射線検査方法であって、
    放射線源に対向して複数チャンネルを有する放射線検出器を配置し、この複数チャンネルそれぞれで時系列で検出される被検体の透過データを対数変換してから時間ごとにチャンネル間で平均して1つの平均透過データを算出し、該平均透過データを時間方向に高周波通過処理して前記時間ごとの線源変動の比較的早い変動成分である比較データを求め、前記透過データに対し時間ごとにこの比較データを減算あるいは除算して補正された透過データを得ることを特徴とする放射線検査方法。
JP2005093199A 2005-03-28 2005-03-28 放射線検査装置及び放射線検査方法 Active JP4761804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093199A JP4761804B2 (ja) 2005-03-28 2005-03-28 放射線検査装置及び放射線検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093199A JP4761804B2 (ja) 2005-03-28 2005-03-28 放射線検査装置及び放射線検査方法

Publications (2)

Publication Number Publication Date
JP2006275664A JP2006275664A (ja) 2006-10-12
JP4761804B2 true JP4761804B2 (ja) 2011-08-31

Family

ID=37210593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093199A Active JP4761804B2 (ja) 2005-03-28 2005-03-28 放射線検査装置及び放射線検査方法

Country Status (1)

Country Link
JP (1) JP4761804B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133627A1 (ja) 2008-05-02 2009-11-05 独立行政法人放射線医学総合研究所 放射線源から放出される荷電粒子エネルギーの評価方法、装置、プログラム、放射線検出器の校正方法、装置、及び、放射線源
US10663412B2 (en) 2014-12-03 2020-05-26 Total Sa Device for analyzing a fluid in a sample of porous medium, and corresponding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104890A (en) * 1976-02-27 1977-09-02 Shimadzu Corp Tomography apparatus using x-ray
JPH0664019B2 (ja) * 1985-07-16 1994-08-22 株式会社日立製作所 画像表示処理装置
JPH1026592A (ja) * 1996-07-10 1998-01-27 Shimadzu Corp X線式異物検査装置
JP4377571B2 (ja) * 2001-09-11 2009-12-02 株式会社東芝 X線平面検出器、x線画像診断装置、及びx線画像補正方法
JP2003144427A (ja) * 2001-11-06 2003-05-20 Ge Medical Systems Global Technology Co Llc X線ctシステム、操作コンソールおよびその制御方法、ならびにプログラム

Also Published As

Publication number Publication date
JP2006275664A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
US9459358B2 (en) Reference calibration in photon counting based spectral CT
US9924916B2 (en) X-ray CT apparatus and controlling method
JP6456699B2 (ja) X線フォトンカウンティングコンピュータ断層撮影装置、スペクトル補正方法およびスペクトル補正プログラム
US9285326B2 (en) Sparse and energy discriminating collimated detector elements to assist scatter evaluation in CT imaging
JP5194095B2 (ja) 半撮影域のみをカバーする縮小サイズ検出器を利用するコンピュータ断層撮影システムに用いる装置及び方法
JP6342437B2 (ja) 放射線断層撮影システム及びその制御プログラム
US20190180482A1 (en) Image reconstruction device, x-ray ct device, and image reconstruction method
US20120328076A1 (en) Systems and methods for focal spot motion correction
US20120014618A1 (en) System and method for measuring x-ray beam profile using an area detector
KR20070011176A (ko) X선 ct 장치
US10342503B2 (en) Medical image processing apparatus, X-ray diagnostic apparatus, and X-ray computed tomography apparatus
US20090161814A1 (en) Method for calibrating a dual -spectral computed tomography (ct) system
JP5808734B2 (ja) X線撮像装置
JP2020501760A (ja) 自己較正ct検出器、自己較正を行うためのシステムおよび方法
JP6293461B2 (ja) 放射線焦点位置検出方法および放射線検出装置並びに放射線断層撮影装置
JP5579505B2 (ja) X線ct装置
US5530731A (en) Spiral scan computed tomography apparatus and method for operating same
JP4761804B2 (ja) 放射線検査装置及び放射線検査方法
JP2006102299A (ja) X線線量補正方法およびx線ct装置
EP2866203B1 (en) X-ray computed tomography apparatus, medical image processing apparatus, and medical image processing method
JP6777556B2 (ja) X線ct装置
JP2020533059A (ja) 動的ボウタイフィルタ及びその使用方法
JP2009050361A (ja) 放射線ct装置
US20200015769A1 (en) X-ray computed tomography apparatus and correction method
EP2433265B1 (en) Interpolation free fan-to-parallel beam rebinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250