JP4735414B2 - Insulated gate semiconductor device - Google Patents

Insulated gate semiconductor device Download PDF

Info

Publication number
JP4735414B2
JP4735414B2 JP2006144109A JP2006144109A JP4735414B2 JP 4735414 B2 JP4735414 B2 JP 4735414B2 JP 2006144109 A JP2006144109 A JP 2006144109A JP 2006144109 A JP2006144109 A JP 2006144109A JP 4735414 B2 JP4735414 B2 JP 4735414B2
Authority
JP
Japan
Prior art keywords
region
gate
trench
film
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006144109A
Other languages
Japanese (ja)
Other versions
JP2007317779A (en
Inventor
恭輔 宮城
公守 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006144109A priority Critical patent/JP4735414B2/en
Publication of JP2007317779A publication Critical patent/JP2007317779A/en
Application granted granted Critical
Publication of JP4735414B2 publication Critical patent/JP4735414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring

Description

本発明は,トレンチゲート構造を有する絶縁ゲート型半導体装置に関する。さらに詳細には,ドリフト領域中にドリフト領域と異なる導電型の拡散層を設けることによってドリフト層にかかる電界を緩和する絶縁ゲート型半導体装置に関するものである。 The present invention relates to an insulated gate semiconductor device having a trench gate structure. More specifically, the present invention relates to an insulated gate semiconductor device that relaxes an electric field applied to a drift layer by providing a diffusion layer having a conductivity type different from that of the drift region in the drift region.

従来から,パワーデバイス用の絶縁ゲート型半導体装置として,トレンチゲート構造を有するトレンチゲート型半導体装置が提案されている。このトレンチゲート型半導体装置では,一般的に高耐圧化と低オン抵抗化とがトレードオフの関係にある。   Conventionally, a trench gate type semiconductor device having a trench gate structure has been proposed as an insulated gate type semiconductor device for power devices. In this trench gate type semiconductor device, a high breakdown voltage and a low on-resistance are generally in a trade-off relationship.

この問題に着目したトレンチゲート型半導体装置として,本願出願人は図6に示すような絶縁ゲート型半導体装置を提案している(特許文献1)。この絶縁ゲート型半導体装置900は,N+ ソース領域31と,N+ ドレイン領域11と,P- ボディ領域41と,N- ドリフト領域12とが設けられている。また,半導体基板の上面側の一部を掘り込むことによりP- ボディ領域41を貫通するゲートトレンチ21が形成されている。また,ゲートトレンチ21の底部には,絶縁物の堆積による絶縁層23が形成されている。さらに,絶縁層23上には,ゲート電極22が形成されている。そして,ゲート電極22は,ゲートトレンチ21の壁面に形成されているゲート絶縁膜24を介して,N+ ソース領域31およびP- ボディ領域41と対面している。さらに,N- ドリフト領域12内には,フローティング状態のP拡散領域51が形成されている。そして,ゲートトレンチ21の下端は,P拡散領域51内に位置している。 As a trench gate type semiconductor device paying attention to this problem, the present applicant has proposed an insulated gate type semiconductor device as shown in FIG. 6 (Patent Document 1). This insulated gate semiconductor device 900 is provided with an N + source region 31, an N + drain region 11, a P body region 41, and an N drift region 12. Further, the gate trench 21 penetrating the P body region 41 is formed by digging a part of the upper surface side of the semiconductor substrate. An insulating layer 23 is formed on the bottom of the gate trench 21 by depositing an insulator. Further, a gate electrode 22 is formed on the insulating layer 23. The gate electrode 22 faces the N + source region 31 and the P body region 41 via the gate insulating film 24 formed on the wall surface of the gate trench 21. Further, a floating P diffusion region 51 is formed in the N drift region 12. The lower end of the gate trench 21 is located in the P diffusion region 51.

この絶縁ゲート型半導体装置900は,N- ドリフト領域12内にフローティング状態のP拡散領域51が設けられている(以下,このような構造を「フローティング構造」とする)ことにより,次のような特性を有する。 This insulated gate semiconductor device 900 is provided with a floating P diffusion region 51 in the N drift region 12 (hereinafter, this structure is referred to as a “floating structure”). Has characteristics.

この絶縁ゲート型半導体装置900では,ゲート電圧のオフ時に,N- ドリフト領域12とP- ボディ領域41との間のPN接合箇所から空乏層が広がる。そして,その空乏層がP拡散領域51にまで到達することで,P拡散領域51がパンチスルー状態となって電位が固定される。さらに,P拡散領域51とのPN接合箇所からも空乏層が広がるため,P- ボディ領域41との間のPN接合箇所とは別に,P拡散領域51とのPN接合箇所も電界強度のピークが形成される。すなわち,電界強度のピークを2箇所に形成でき,最大ピーク値を低減することができる。従って,高耐圧化が図られる。また,高耐圧であることから,N- ドリフト領域12の不純物濃度を上げて低オン抵抗化を図ることができる。 In this insulated gate semiconductor device 900, when the gate voltage is turned off, a depletion layer spreads from the PN junction portion between the N drift region 12 and the P body region 41. When the depletion layer reaches the P diffusion region 51, the P diffusion region 51 enters a punch-through state, and the potential is fixed. Further, since the depletion layer also extends from the PN junction portion with the P diffusion region 51, the electric field intensity peak is also present at the PN junction portion with the P diffusion region 51 separately from the PN junction portion with the P body region 41. It is formed. That is, electric field intensity peaks can be formed at two locations, and the maximum peak value can be reduced. Therefore, a high breakdown voltage can be achieved. Further, since the withstand voltage is high, the on-resistance can be lowered by increasing the impurity concentration of the N drift region 12.

なお,特許文献1のように電界強度のピークを2箇所に形成して電界集中を緩和する構造とは異なるが,例えば特許文献2にゲート酸化膜よりも膜厚が厚い酸化膜をトレンチの底部に形成することにより,トレンチの底部の電界集中を緩和する技術が開示されている。また,フローティング構造とは異なるが,例えば特許文献3にゲート絶縁膜の下部の厚さを徐々に厚くすることでMOSFETの性能劣化を抑制する技術が開示されている。
特開2005−116822号公報 特開平10−98188号公報 特開2004−507092号公報
Although different from the structure in which the electric field intensity peaks are formed in two places as in Patent Document 1, the electric field concentration is reduced, for example, in Patent Document 2, an oxide film thicker than the gate oxide film is formed at the bottom of the trench. A technique for relaxing the electric field concentration at the bottom of the trench is disclosed. Although different from the floating structure, for example, Patent Document 3 discloses a technique for suppressing the performance deterioration of the MOSFET by gradually increasing the thickness of the lower portion of the gate insulating film.
JP-A-2005-116822 Japanese Patent Laid-Open No. 10-98188 JP 2004-507092 A

しかしながら,前記したトレンチゲート構造の絶縁ゲート型半導体装置には,次のような問題があった。すなわち,トレンチゲート構造の絶縁ゲート型半導体装置900では,ゲート電極22が深さ方向に対して急激に終端する形状になっている。そのため,ゲート電極22の底部近傍では,等電位線の間隔が狭く,局所的な電界集中が生じる。よって,本来,2箇所の電界強度のピーク位置(図7のX1,X2)に合わせた耐圧となるはずであるが,ゲート電極22の底部近傍の部位(図7のY)が耐圧を決定することとなり,設計耐圧が得られない。   However, the above-described insulated gate semiconductor device having the trench gate structure has the following problems. In other words, in the insulated gate semiconductor device 900 having a trench gate structure, the gate electrode 22 has a shape that abruptly terminates in the depth direction. Therefore, near the bottom of the gate electrode 22, the equipotential lines are narrow and local electric field concentration occurs. Therefore, the breakdown voltage should be matched to the peak positions (X1 and X2 in FIG. 7) of the electric field intensity at two locations, but the portion near the bottom of the gate electrode 22 (Y in FIG. 7) determines the breakdown voltage. As a result, the design withstand voltage cannot be obtained.

また,ウェットエッチングのような等方的なエッチングを利用して,底部に丸みを有するゲート電極22を形成することが考えられる。しかし,ウェットエッチングを行うと次のような問題がある。すなわち,通常,ゲート電極22下の絶縁層23の中心部分は,両側壁部から堆積した絶縁膜を張り合わせてなる部分であり,シームやボイドが生じている。そのため,ウェットエッチングを行うと,シーム等が発生している部分はエッチングレートが早いことから,絶縁層23の中央部分にくさび状の溝が形成される。そして,くさび状の溝内にゲート材が進入することで,ゲート電圧のスイッチオフ時における空乏層の伸び方が設計と異なってしまう。その結果,所望の電界分布が形成されず,耐圧の低下を招いてしまう。また,このくさび状の溝の形状には再現性がないため,安定した形状のゲート電極22を形成することが困難となる。   It is also conceivable to form the gate electrode 22 having a rounded bottom by using isotropic etching such as wet etching. However, wet etching has the following problems. That is, normally, the central portion of the insulating layer 23 under the gate electrode 22 is a portion formed by laminating insulating films deposited from both side walls, and seams and voids are generated. Therefore, when wet etching is performed, a portion where seam or the like is generated has a high etching rate, so that a wedge-shaped groove is formed in the central portion of the insulating layer 23. When the gate material enters the wedge-shaped groove, the depletion layer grows differently from the design when the gate voltage is switched off. As a result, a desired electric field distribution is not formed, resulting in a decrease in breakdown voltage. Further, since the shape of the wedge-shaped groove is not reproducible, it is difficult to form the gate electrode 22 having a stable shape.

また,特許文献2にはゲートトレンチおよびゲート電極の底部に丸みを有する角部が開示されているが,具体的にゲートトレンチの底部の角部に丸みを設ける方法が開示されていない。そのため,実際には,絶縁ゲート型半導体装置900と同様に急激に終端する形状となるか,あるいは複雑な製造工程が必要となると考えられる。   Further, Patent Document 2 discloses a rounded corner at the bottom of the gate trench and the gate electrode, but does not specifically disclose a method of rounding the corner at the bottom of the gate trench. Therefore, in reality, it is considered that the shape ends rapidly like the insulated gate semiconductor device 900 or a complicated manufacturing process is required.

また,特許文献3には,ゲートトレンチの壁面上および底面上に酸化膜を形成し,さらにゲートトレンチの側壁の酸化膜上に窒化膜を形成し,その状態で熱酸化することで,ゲートトレンチの底部の酸化膜の膜厚を側壁部の膜厚よりも厚くすることが開示されている。しかしながら,この方法では,ゲートトレンチの底部の酸化膜の膜厚が均等に厚くなり,ゲート電極が深さ方向に対して急激に終端する形状となることには変わりない。よって,設計耐圧が得られない。   Further, in Patent Document 3, an oxide film is formed on the wall surface and the bottom surface of the gate trench, a nitride film is formed on the oxide film on the side wall of the gate trench, and thermal oxidation is performed in that state. It is disclosed that the thickness of the oxide film at the bottom of the substrate is thicker than the thickness of the sidewall. However, in this method, the thickness of the oxide film at the bottom of the gate trench is uniformly increased, and the gate electrode does not change into a shape that terminates rapidly in the depth direction. Therefore, the design withstand voltage cannot be obtained.

また,ゲートトレンチの全体形状をテーパ状にすることでゲート電極の急激な終端を回避することも考えられるが,P拡散領域51を形成する際のイオン注入で,トレンチの底部の他に側壁部にも不純物が打ち込まれてしまう。そのため,フローティング構造の半導体装置を製造する上で,全体をテーパ状にすることは好ましくない。   In addition, it is conceivable to avoid abrupt termination of the gate electrode by making the entire shape of the gate trench into a tapered shape. However, in the ion implantation for forming the P diffusion region 51, in addition to the bottom portion of the trench, a side wall portion is formed. Impurities are also implanted into the surface. Therefore, it is not preferable to taper the whole when manufacturing a semiconductor device having a floating structure.

本発明は,前記した従来のトレンチゲート構造の絶縁ゲート型半導体装置が有する問題点を解決するためになされたものである。すなわちその課題とするところは,ゲート電極の下端近傍の局所的な電界集中を回避した絶縁ゲート型半導体装置を提供することにある。 The present invention has been made to solve the problems of the above-described conventional insulated gate semiconductor device having a trench gate structure. That is, the problem is to provide an insulated gate semiconductor device that avoids local electric field concentration near the lower end of the gate electrode.

この課題の解決を目的としてなされた絶縁ゲート型半導体装置は,半導体基板内の上面側に位置し第1導電型半導体であるボディ領域と,ボディ領域の下面と接し第2導電型半導体であるドリフト領域と,半導体基板の上面からボディ領域を貫通するトレンチ部とを有する絶縁ゲート型半導体装置であって,トレンチ部の底上に位置し,絶縁物にて構成される絶縁層と,トレンチ部内であって絶縁層上に位置し,下面がボディ領域の下面よりも深い位置に位置するゲート電極層と,ボディ領域とゲート電極層との間に位置するゲート絶縁膜と,ゲート絶縁膜の下端と,絶縁層の上面の端部と,ゲート電極層の下面の角部と接し,トレンチ部の幅方向の膜厚がゲート絶縁膜の膜厚よりも厚い拡張絶縁領域とを有し,トレンチ部の側壁は,拡張絶縁領域の外形に沿ってトレンチ部の外側に膨らんだ形状をなし,ゲート電極層の下面の両角部は,拡張絶縁領域と接するとともに拡張絶縁領域の外形に沿って内側に窪む形状をなし,トレンチ部内のうち,ゲート電極層よりも下側は,絶縁層によって充填されていることを特徴としている。 An insulated gate semiconductor device for solving this problem includes a body region which is a first conductivity type semiconductor located on the upper surface side in a semiconductor substrate, and a drift which is a second conductivity type semiconductor in contact with the lower surface of the body region. An insulated gate semiconductor device having a region and a trench portion penetrating the body region from the upper surface of the semiconductor substrate, wherein the insulating layer is located on the bottom of the trench portion and is made of an insulator, A gate electrode layer positioned on the insulating layer and having a lower surface deeper than the lower surface of the body region, a gate insulating film positioned between the body region and the gate electrode layer, a lower end of the gate insulating film, , Having an extended insulating region in contact with the edge of the upper surface of the insulating layer and the corner of the lower surface of the gate electrode layer and having a thickness in the width direction of the trench larger than that of the gate insulating film. Side wall is completely unextended Forms a bulged to the outside of the trench portion along the outer shape of the region, both corner portions of the lower surface of the gate electrode layer, a shape recessed inward along the outer shape of the expanded insulating region with contact with the expanded insulating region, the trench The inside of the portion is characterized by being filled with an insulating layer below the gate electrode layer.

本発明によれば,ゲート電極の下端近傍の局所的な電界集中を回避した絶縁ゲート型半導体装置が実現されるAccording to the present invention, an insulated gate semiconductor device that avoids local electric field concentration near the lower end of the gate electrode is realized .

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,絶縁ゲートへの電圧印加により,ドレイン−ソース間の導通をコントロールするパワーMOSに本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, the present invention is applied to a power MOS that controls conduction between a drain and a source by applying a voltage to an insulated gate.

実施の形態に係る絶縁ゲート型半導体装置100(以下,「半導体装置100」とする)は,図1の断面図に示す構造を有している。なお,本明細書においては,出発基板と,出発基板上にエピタキシャル成長により形成した単結晶シリコンの部分とを合わせた全体を半導体基板と呼ぶこととする。   An insulated gate semiconductor device 100 (hereinafter referred to as “semiconductor device 100”) according to the embodiment has a structure shown in the cross-sectional view of FIG. Note that in this specification, the whole of the starting substrate and the single crystal silicon portion formed by epitaxial growth on the starting substrate is referred to as a semiconductor substrate.

半導体装置100では,半導体基板内における図1中の上面側に,N+ ソース領域31が設けられている。一方,下面側にはN+ ドレイン領域11が設けられている。それらの間には上面側から順に,P- ボディ領域41およびN- ドリフト領域12が設けられている。また,半導体基板の上面側の一部を掘り込むことによりゲートトレンチ21が形成されている。ゲートトレンチ21は,N+ ソース領域31およびP- ボディ領域41を貫通している。 In the semiconductor device 100, an N + source region 31 is provided on the upper surface side in FIG. On the other hand, an N + drain region 11 is provided on the lower surface side. Between them, a P body region 41 and an N drift region 12 are provided in this order from the upper surface side. In addition, a gate trench 21 is formed by digging a part of the upper surface side of the semiconductor substrate. Gate trench 21 penetrates N + source region 31 and P body region 41.

ゲートトレンチ21の底上には,絶縁層23が形成されている。具体的に,本形態の絶縁層23は,2層構造をなしており,ゲートトレンチ21の側壁側から,熱酸化処理によって形成されたシリコン酸化膜231(以下,「熱酸化膜231」とする)と,CVD法によって堆積させたシリコン酸化膜232(以下,「CVD酸化膜232」とする)とが順に積層されている。   An insulating layer 23 is formed on the bottom of the gate trench 21. Specifically, the insulating layer 23 of this embodiment has a two-layer structure, and is formed from the side wall side of the gate trench 21 by a silicon oxide film 231 (hereinafter referred to as “thermal oxide film 231”) formed by thermal oxidation. ) And a silicon oxide film 232 (hereinafter referred to as “CVD oxide film 232”) deposited by the CVD method are sequentially stacked.

さらに,絶縁層23上には,ゲート電極22が形成されている。また,ゲート電極22は,ゲートトレンチ21の壁面に形成されているゲート絶縁膜24を介して,半導体基板のN+ ソース領域31およびP- ボディ領域41と対面している。すなわち,ゲート電極22は,ゲート絶縁膜24によりN+ ソース領域31およびP- ボディ領域41から絶縁されている。 Further, a gate electrode 22 is formed on the insulating layer 23. The gate electrode 22 faces the N + source region 31 and the P body region 41 of the semiconductor substrate through a gate insulating film 24 formed on the wall surface of the gate trench 21. That is, the gate electrode 22 is insulated from the N + source region 31 and the P body region 41 by the gate insulating film 24.

このような構造を持つ半導体装置100では,ゲート電極22への電圧印加によりP- ボディ領域41にチャネル効果を生じさせ,もってN+ ソース領域31とN+ ドレイン領域11との間の導通をコントロールしている。 In the semiconductor device 100 having such a structure, a channel effect is generated in the P body region 41 by applying a voltage to the gate electrode 22, thereby controlling conduction between the N + source region 31 and the N + drain region 11. is doing.

また,ゲート絶縁膜24と絶縁層23との間(すなわち,ゲート電極22の下側の角部周辺)には,トレンチの幅方向の膜厚がゲート絶縁膜24の膜厚よりも大きい拡張絶縁領域241が形成されている。この拡張絶縁領域241により,ゲートトレンチ21の側部(すなわち,シリコンと絶縁物領域との界面)は,ゲート電極22の下端付近で拡張絶縁層241の形状に合わせて外側に膨らんだ形状となっている。つまり,局所的に電界集中の生じ易い部位(図7のY)に膜厚が厚い絶縁領域が形成されている。また,ゲート電極22の下側の角部は,拡張絶縁層241の形状に合わせて内側に窪む形状となっている。そのため,ゲート電極22は深さ方向に対して徐々に幅が狭くなる,つまり徐々に終端する形状になっている。   Further, between the gate insulating film 24 and the insulating layer 23 (that is, around the corner on the lower side of the gate electrode 22), an extended insulation in which the film thickness in the width direction of the trench is larger than the film thickness of the gate insulating film 24. Region 241 is formed. Due to the extended insulating region 241, the side portion of the gate trench 21 (that is, the interface between the silicon and the insulator region) has a shape that bulges outward in accordance with the shape of the extended insulating layer 241 near the lower end of the gate electrode 22. ing. That is, a thick insulating region is formed at a site where electric field concentration is likely to occur locally (Y in FIG. 7). Further, the lower corner of the gate electrode 22 has a shape that is recessed inward in accordance with the shape of the extended insulating layer 241. Therefore, the gate electrode 22 has a shape that gradually becomes narrower in the depth direction, that is, has a shape that gradually ends.

さらに,半導体装置100には,ゲートトレンチ21の底部の周囲に,N- ドリフト領域12に囲まれ,フローティング状態のP拡散領域51が形成されている。P拡散領域51はゲートトレンチ21の底面から不純物を注入することにより形成された領域である。半導体装置100の製造方法についての詳細は後述する。P拡散領域51の断面は,各トレンチの底部を中心とした略円形形状となっている。なお,フローティング構造にて高耐圧化を図るには,ゲート電圧のオフ時の電界強度のピークがP- ボディ領域41とN- ドリフト領域12のPN接合箇所と,P拡散領域51とN- ドリフト領域12のPN接合箇所との2箇所(図7のX1,X2)に形成される位置に埋め込み領域であるP拡散領域51を配置する。さらに好ましくは,両ピーク値が同等となるように配置する。 Further, in the semiconductor device 100, a floating P diffusion region 51 is formed around the bottom of the gate trench 21 and surrounded by the N drift region 12. The P diffusion region 51 is a region formed by implanting impurities from the bottom surface of the gate trench 21. Details of the manufacturing method of the semiconductor device 100 will be described later. The cross section of the P diffusion region 51 has a substantially circular shape centering on the bottom of each trench. In order to increase the breakdown voltage in the floating structure, the peak of the electric field strength when the gate voltage is turned off is the PN junction portion of the P body region 41 and the N drift region 12, the P diffusion region 51 and the N drift. A P diffusion region 51 which is a buried region is arranged at two positions (X1 and X2 in FIG. 7) of the region 12 with the PN junction portion. More preferably, it arrange | positions so that both peak values may become equivalent.

続いて,半導体装置100の製造プロセスについて,図2,図3,図4を基に説明する。まず,あらかじめ,N+ ドレイン領域11となるN+ 基板上に,N- 型シリコン層をエピタキシャル成長により形成しておく。このN- 型シリコン層(エピタキシャル層)は,N- ドリフト領域12,P- ボディ領域41,N+ ソース領域31,コンタクトP+ 領域32の各領域となる部分である。なお,P- ボディ領域41およびN- ドリフト領域12を合わせた領域(以下,「エピタキシャル層」とする)の厚さは,80V耐圧でおよそ7.0μm(そのうち,P- ボディ領域41の厚さは,およそ1.2μm)である。なお,耐圧に応じて寸法が異なるのは言うまでもない。 Next, a manufacturing process of the semiconductor device 100 will be described with reference to FIGS. First, an N type silicon layer is formed by epitaxial growth on an N + substrate to be the N + drain region 11 in advance. This N -type silicon layer (epitaxial layer) is a portion that becomes each of the N drift region 12, the P body region 41, the N + source region 31, and the contact P + region 32. The total thickness of the P body region 41 and the N drift region 12 (hereinafter referred to as “epitaxial layer”) is approximately 7.0 μm at 80V breakdown voltage (including the thickness of the P body region 41). Is approximately 1.2 μm). Needless to say, the dimensions differ depending on the pressure resistance.

次に,半導体基板の上面側に,イオン注入等によってP- ボディ領域41を形成する。これにより,図2(A)に示すように,基板上面にP- ボディ領域41を有する半導体基板が形成される。 Next, a P body region 41 is formed on the upper surface side of the semiconductor substrate by ion implantation or the like. Thereby, as shown in FIG. 2A, a semiconductor substrate having a P body region 41 on the upper surface of the substrate is formed.

次に,半導体基板上にパターンマスク91を形成し,トレンチドライエッチングを行う。このトレンチドライエッチングにより,図2(B)に示すように,N+ ソース領域31およびP- ボディ領域41を貫通するゲートトレンチ21が形成される。なお,ゲートトレンチ21は,その深さが2.3μm〜3.0μmであり,その幅が0.4μm〜0.5μmである。また,トレンチ側壁のテーパ角度は,86.5度〜89.0度である。その後,適当な洗浄処理を行い,さらにケミカルドライエッチング法等の等方性エッチング手法を利用してゲートトレンチ21の壁面を平滑化する。 Next, a pattern mask 91 is formed on the semiconductor substrate, and trench dry etching is performed. By this trench dry etching, as shown in FIG. 2B, the gate trench 21 penetrating the N + source region 31 and the P body region 41 is formed. The gate trench 21 has a depth of 2.3 μm to 3.0 μm and a width of 0.4 μm to 0.5 μm. The taper angle of the trench side wall is 86.5 degrees to 89.0 degrees. Thereafter, an appropriate cleaning process is performed, and the wall surface of the gate trench 21 is smoothed by using an isotropic etching method such as a chemical dry etching method.

次に,所望の厚さの熱酸化膜(犠牲酸化膜)を形成する。その後,イオン注入により各トレンチの底面から不純物を打ち込む。その後,熱拡散処理を行うことにより,図2(C)に示すように,P拡散領域51が形成される。なお,熱拡散処理は,後述の絶縁層23を形成する際に行ってもよい。その後,犠牲酸化膜およびパターンマスク91を除去し,清浄なシリコン表面を露出させる。   Next, a thermal oxide film (sacrificial oxide film) having a desired thickness is formed. Thereafter, impurities are implanted from the bottom of each trench by ion implantation. Thereafter, by performing a thermal diffusion process, a P diffusion region 51 is formed as shown in FIG. The thermal diffusion process may be performed when an insulating layer 23 described later is formed. Thereafter, the sacrificial oxide film and the pattern mask 91 are removed to expose a clean silicon surface.

次に,熱酸化処理により,図2(D)に示すように,清浄なシリコン表面に薄層の熱酸化膜231を形成する。具体的に熱酸化膜231の成膜条件としては,例えば反応ガスをO2,H2O,あるいはO2 を含む混合ガスとし,酸化温度を800℃〜1100℃とし,20nm〜100nmの膜厚の熱酸化膜を形成する。熱酸化膜231は,後の工程でゲートトレンチ21内に埋め込まれるCVD酸化膜とシリコン界面との安定化を図るため,CVD酸化膜の下地として形成する。なお,本熱酸化工程を省略し,後の犠牲酸化工程における埋め込み酸化膜界面の再酸化により熱酸化膜を形成してもよい。 Next, as shown in FIG. 2D, a thin thermal oxide film 231 is formed on a clean silicon surface by thermal oxidation. Specifically, as the film forming conditions of the thermal oxide film 231, for example, the reaction gas is a mixed gas containing O 2 , H 2 O, or O 2 , the oxidation temperature is 800 ° C. to 1100 ° C., and the film thickness is 20 nm to 100 nm. The thermal oxide film is formed. The thermal oxide film 231 is formed as a base of the CVD oxide film in order to stabilize the CVD oxide film embedded in the gate trench 21 in a later step and the silicon interface. The thermal oxidation process may be omitted, and the thermal oxide film may be formed by reoxidation of the buried oxide film interface in a later sacrificial oxidation process.

次に,CVD(Chemical Vapor Deposition)法により,図2(E)に示すように,熱酸化膜231上にゲートトレンチ21内を充填するCVD酸化膜232を堆積する。CVD酸化膜232としては,例えばSiH4 を原料とし,成膜温度を750℃〜825℃とした減圧CVDによって形成された300nm〜700nmの膜厚のSiO2 膜が該当する。またこの他,TEOS(Tetra-Ethyl-Orso-Silicate)を原料とし,成膜温度を600℃〜700℃とした減圧CVD法によって形成されるSiO2 膜,あるいはオゾンとTEOSとを原料としたCVD法によって形成されるSiO2 膜が該当する。 Next, as shown in FIG. 2E, a CVD oxide film 232 filling the gate trench 21 is deposited on the thermal oxide film 231 by CVD (Chemical Vapor Deposition). As the CVD oxide film 232, for example, a SiO 2 film having a thickness of 300 nm to 700 nm formed by low pressure CVD using SiH 4 as a raw material and a film forming temperature of 750 ° C. to 825 ° C. corresponds. In addition, a SiO 2 film formed by a low pressure CVD method using TEOS (Tetra-Ethyl-Orso-Silicate) as a raw material and a film forming temperature of 600 ° C. to 700 ° C., or CVD using ozone and TEOS as raw materials. The SiO 2 film formed by the method is applicable.

次に,RIE(Reactive Ion Etching)法等の異方性ドライエッチングにより,図3(F)に示すように,熱酸化膜231およびCVD酸化膜232,つまり絶縁層23の一部を除去する。具体的には,ドライエッチングより,絶縁層23の上面がP- ボディ領域41の下面と同等の位置になるまで絶縁層23をエッチバックする。これにより,ゲート電極22を内蔵するためのスペースが確保される。ドライエッチングでは,酸化膜の疎密性やSi−O結合力の強弱に関わらず異方的にエッチングされる。そのため,CVD酸化膜232の張り合わせ面に存在するボイドはエッチバックに影響しない。また,膜種間のエッチング速度差も極めて小さい。よって,絶縁層23は均等にエッチバックされ,その上面は平坦である。 Next, as shown in FIG. 3F, the thermal oxide film 231 and the CVD oxide film 232, that is, a part of the insulating layer 23 are removed by anisotropic dry etching such as RIE (Reactive Ion Etching) method. Specifically, the insulating layer 23 is etched back by dry etching until the upper surface of the insulating layer 23 is at the same position as the lower surface of the P body region 41. Thereby, a space for incorporating the gate electrode 22 is secured. In dry etching, etching is anisotropic regardless of the density of the oxide film and the strength of the Si-O bond. Therefore, voids present on the bonding surface of the CVD oxide film 232 do not affect the etch back. Also, the etching rate difference between the film types is extremely small. Therefore, the insulating layer 23 is uniformly etched back, and its upper surface is flat.

次に,特開2005−340552号公報に開示されているように,酸化性雰囲気下でアニール処理を行うことにより,図3(G)に示すように,シリコンの露出面,特にゲートトレンチ21の側壁に酸化膜94を形成する。具体的に酸化膜94の成膜条件としては,例えば反応ガスをO2,H2O,あるいはO2 を含む混合ガスとし,酸化温度を800℃〜1100℃とし,20nm〜100nmの膜厚の犠牲酸化膜を形成する。この酸化アニール処理は,CVD酸化膜232の張り合わせ面におけるシームの解消,シリコン原子の未結合子が酸素と反応することによる化学的結合力の強化等の役割を有する。 Next, as disclosed in Japanese Patent Application Laid-Open No. 2005-340552, by performing an annealing process in an oxidizing atmosphere, as shown in FIG. An oxide film 94 is formed on the side wall. Specifically, as the film forming conditions for the oxide film 94, for example, the reaction gas is O 2 , H 2 O, or a mixed gas containing O 2 , the oxidation temperature is 800 ° C. to 1100 ° C., and the film thickness is 20 nm to 100 nm. A sacrificial oxide film is formed. This oxidation annealing treatment has roles such as elimination of seams on the bonding surface of the CVD oxide film 232 and enhancement of chemical bonding force due to reaction of unbonded silicon atoms with oxygen.

次に,ウェットエッチングにより,ゲートトレンチ21の側壁の酸化膜94を除去し,図3(H)に示すように,清浄なシリコン面を露出させる。具体的にエッチバックの条件としては,薬液を希フッ酸あるいはバッファドフッ酸とし,熱酸化膜に対して100nm〜300nmの厚さ分のエッチバックを行う。エッチバック後は,清浄なシリコン表面を得るために適当な洗浄処理を行う。   Next, the oxide film 94 on the side wall of the gate trench 21 is removed by wet etching, and a clean silicon surface is exposed as shown in FIG. Specifically, the etch-back condition is that the chemical solution is diluted hydrofluoric acid or buffered hydrofluoric acid, and the thermal oxide film is etched back by a thickness of 100 nm to 300 nm. After etch back, an appropriate cleaning process is performed to obtain a clean silicon surface.

次に,図3(I)に示すように,熱酸化処理またはCVD法による成膜処理あるいはこれらの兼用により,ゲート絶縁膜24を形成する。具体的に熱酸化処理を行う場合には,例えば反応ガスをO2,H2O,あるいはO2 を含む混合ガスとし,酸化温度を800℃〜1100℃とした熱酸化処理によって形成される熱酸化膜が該当する。また,CVD法による酸化膜を形成する場合には,例えばSiH4 を原料とし,成膜温度を750℃〜825℃とした減圧CVDによって形成されたSiO2 膜が該当する。またこの他,TEOSを原料とし,成膜温度を600℃〜700℃とした減圧CVD法によって形成されるSiO2 膜が該当する。本形態のゲート絶縁膜24の膜厚は,50nm〜100nmの範囲内とする。 Next, as shown in FIG. 3I, a gate insulating film 24 is formed by thermal oxidation, film formation by CVD, or a combination thereof. Specifically, when performing the thermal oxidation treatment, for example, the reaction gas is O 2 , H 2 O, or a mixed gas containing O 2 , and the heat formed by the thermal oxidation treatment at an oxidation temperature of 800 ° C. to 1100 ° C. This corresponds to an oxide film. In the case of forming an oxide film by the CVD method, for example, a SiO 2 film formed by low pressure CVD using SiH 4 as a raw material and a film forming temperature of 750 ° C. to 825 ° C. is applicable. In addition, a SiO 2 film formed by a low pressure CVD method using TEOS as a raw material and a film forming temperature of 600 ° C. to 700 ° C. is applicable. The thickness of the gate insulating film 24 in this embodiment is in the range of 50 nm to 100 nm.

次に,CVD法により,図3(J)に示すように,ゲート酸化膜24上および絶縁層23上に膜厚が10nm〜30nmのCVD窒化膜244を堆積する。CVD窒化膜244としては,例えばSiNを原料とし,成膜温度を700℃〜800℃とした減圧CVDによって形成されたSiN膜が該当する。   Next, as shown in FIG. 3J, a CVD nitride film 244 having a thickness of 10 nm to 30 nm is deposited on the gate oxide film 24 and the insulating layer 23 by CVD. The CVD nitride film 244 corresponds to, for example, a SiN film formed by low pressure CVD using SiN as a raw material and a film forming temperature of 700 ° C. to 800 ° C.

次に,RIE法等の異方性ドライエッチングにより,図4(K)に示すように,基板表面上および絶縁層23上のCVD窒化膜244を除去する。具体的には,ドライエッチングより,絶縁層23の上面が露出するまでCVD窒化膜244をエッチバックする。異方的にエッチバックすることにより,チャネル領域と対向する部分,すなわちトレンチの側壁上のCVD窒化膜244は残留する。なお,基板表面上の酸化膜は,必ずしも残留させる必要はない。エッチバック後は,適当な洗浄処理を行う。   Next, the CVD nitride film 244 on the substrate surface and on the insulating layer 23 is removed by anisotropic dry etching such as RIE as shown in FIG. Specifically, the CVD nitride film 244 is etched back by dry etching until the upper surface of the insulating layer 23 is exposed. By anisotropically etching back, the CVD nitride film 244 on the channel region, that is, on the sidewall of the trench, remains. Note that the oxide film on the substrate surface does not necessarily remain. Appropriate cleaning is performed after etch back.

次に,熱酸化処理により,図4(L)に示すように,ゲート絶縁膜24と絶縁層23との間に,ゲート絶縁膜24よりも幅が大きい拡張絶縁領域241を形成する。すなわち,チャネル領域となるトレンチの側壁は,CVD窒化膜244によって保護されているため,酸化膜厚は増大しない。そのため,閾値電圧を増大させる問題は生じない。一方,基板表面や絶縁層23の上面では,CVD窒化膜244が除去されているため,酸素の供給が可能である。しかし,絶縁層23上面の中央部分では基板の厚さ方向に厚い酸化膜が存在するため,ゲートトレンチ21の底部のシリコンは酸化されない。一方,絶縁層23上面の両端部分では,露出面からシリコン部分までの距離が近い。そのため,SiO2 領域が増大する。すなわち,ゲートトレンチ21の側壁をCVD窒化膜244で覆うことで,局所的に電界が集中し易い絶縁層23の上面(ゲート電極22の下面)の両端部付近を強調して酸化する。この拡張絶縁領域244は,絶縁層23の上面の端部近傍のシリコンを集中して酸化するため,端部近傍の絶縁領域をゲートトレンチ21の外側に拡張する。つまり,ゲートトレンチ21の側壁(すなわち,シリコンと絶縁物領域との界面)を,その端部(ゲート絶縁膜24と絶縁層23との繋ぎ目部分)にてゲートトレンチ21の外側に膨らんだ形状にする。また,拡張絶縁領域241は,端部近傍の絶縁領域をゲートトレンチ21の内側にも拡張する。具体的に拡張絶縁領域241の形成条件としては,例えば反応ガスをO2,H2O,あるいはO2 を含む混合ガスとし,酸化温度を800℃〜1100℃とし,トレンチの幅方向の膜厚が50nm〜300nmの拡張絶縁領域241を形成する。 Next, as shown in FIG. 4L, an extended insulating region 241 having a width larger than that of the gate insulating film 24 is formed between the gate insulating film 24 and the insulating layer 23 by thermal oxidation treatment. That is, since the sidewall of the trench that becomes the channel region is protected by the CVD nitride film 244, the oxide film thickness does not increase. Therefore, there is no problem of increasing the threshold voltage. On the other hand, since the CVD nitride film 244 is removed on the substrate surface and the upper surface of the insulating layer 23, oxygen can be supplied. However, since a thick oxide film exists in the thickness direction of the substrate at the central portion of the upper surface of the insulating layer 23, the silicon at the bottom of the gate trench 21 is not oxidized. On the other hand, at both end portions of the upper surface of the insulating layer 23, the distance from the exposed surface to the silicon portion is short. Therefore, the SiO 2 region increases. That is, by covering the side wall of the gate trench 21 with the CVD nitride film 244, the vicinity of both ends of the upper surface of the insulating layer 23 (the lower surface of the gate electrode 22) where the electric field tends to concentrate locally is emphasized and oxidized. Since the extended insulating region 244 concentrates and oxidizes silicon near the end of the upper surface of the insulating layer 23, the insulating region near the end extends to the outside of the gate trench 21. In other words, the shape of the sidewall of the gate trench 21 (that is, the interface between the silicon and the insulator region) swells outside the gate trench 21 at the end (the joint portion between the gate insulating film 24 and the insulating layer 23). To. Further, the extended insulating region 241 extends the insulating region in the vicinity of the end portion to the inside of the gate trench 21. Specifically, as the conditions for forming the extended insulating region 241, for example, the reaction gas is O 2 , H 2 O, or a mixed gas containing O 2 , the oxidation temperature is 800 ° C. to 1100 ° C., and the film thickness in the width direction of the trench. The extended insulating region 241 having a thickness of 50 nm to 300 nm is formed.

次に,ウェットエッチングにより,ゲートトレンチ21の側壁のCVD窒化膜244を除去し,図4(M)に示すように,ゲートトレンチ21の側壁にゲート絶縁膜24を露出させる。具体的にエッチバックの条件としては,薬液を熱リン酸としてエッチバックを行う。すなわち,CVD窒化膜244をドライエッチングにてエッチバックする際,残されたCVD窒化膜244に付着物が生じる。そのため,CVD窒化膜244を完全に除去することで,界面を清浄化する。また,CVD窒化膜244を除去することで,ゲート絶縁膜24を薄くすることができる。よって,閾値電圧特性が安定する。   Next, the CVD nitride film 244 on the side wall of the gate trench 21 is removed by wet etching, and the gate insulating film 24 is exposed on the side wall of the gate trench 21 as shown in FIG. Specifically, the etch back is performed using a chemical solution as hot phosphoric acid. That is, when the CVD nitride film 244 is etched back by dry etching, deposits are generated on the remaining CVD nitride film 244. Therefore, the interface is cleaned by completely removing the CVD nitride film 244. Further, by removing the CVD nitride film 244, the gate insulating film 24 can be thinned. Therefore, the threshold voltage characteristic is stabilized.

次に,図4(N)に示すように,絶縁層23のエッチバックにて確保したスペースに対し,ゲート材22を堆積する。具体的にゲート材22の成膜条件としては,例えば反応ガスをSiH4 を含む混合ガスとし,成膜温度を580℃〜640℃とし,常圧CVD法によって800nm程度の膜厚のポリシリコン膜を形成する。ポリシリコン膜22の下面は,拡張絶縁領域241がスペースの内側に突出した形状になっていることから,ゲートトレンチ21の幅方向の中央部に向かってゆるやかに傾斜する形状をなす。すなわち,ポリシリコン膜22は深さ方向に対してゆるやかに終端する形状になっている。 Next, as shown in FIG. 4N, the gate material 22 is deposited in the space secured by the etch back of the insulating layer 23. Specifically, the film formation conditions for the gate material 22 include, for example, a reactive gas mixed gas containing SiH 4 , a film formation temperature of 580 ° C. to 640 ° C., and a polysilicon film having a thickness of about 800 nm by atmospheric pressure CVD. Form. The bottom surface of the polysilicon film 22 has a shape in which the extended insulating region 241 protrudes to the inside of the space, so that it gently tilts toward the center in the width direction of the gate trench 21. That is, the polysilicon film 22 has a shape that terminates gently in the depth direction.

次に,ポリシリコン膜22に対してエッチングを行う。これにより,ゲート電極22が形成される。その後,そのP- ボディ領域41が形成されている部分に,ボロンやリン等のイオン注入およびその後の熱拡散処理によりN+ ソース領域31およびコンタクトP+ 領域32を形成する。なお,ゲートトレンチ21の形成前に,N+ ソース領域31およびコンタクトP+ 領域32をあらかじめ形成しておいてもよい。さらに,半導体基板上に層間絶縁膜等を形成し,最後に,ソース電極,ドレイン電極を形成することにより,図1に示したトレンチゲート型の半導体装置100が作製される。 Next, the polysilicon film 22 is etched. Thereby, the gate electrode 22 is formed. Thereafter, an N + source region 31 and a contact P + region 32 are formed in the portion where the P body region 41 is formed by ion implantation of boron, phosphorus or the like and subsequent thermal diffusion treatment. Note that the N + source region 31 and the contact P + region 32 may be formed in advance before the gate trench 21 is formed. Further, an interlayer insulating film or the like is formed on the semiconductor substrate, and finally a source electrode and a drain electrode are formed, whereby the trench gate type semiconductor device 100 shown in FIG. 1 is manufactured.

なお,本形態では,ゲート絶縁膜24の保護膜であるCVD窒化膜244を熱リン酸によって除去しているが,そのまま残留させてゲート絶縁膜の一部として利用してもよい。すなわち,ゲート絶縁膜を酸化膜,窒化膜,酸化膜の多層構造としてもよい。CVD窒化膜244を残すことで窒化膜のウェットエッチング工程(図4(M))を省くことができ,製造が簡便になる。   In this embodiment, the CVD nitride film 244 that is a protective film for the gate insulating film 24 is removed by hot phosphoric acid, but it may be left as it is and used as a part of the gate insulating film. That is, the gate insulating film may have a multilayer structure of an oxide film, a nitride film, and an oxide film. By leaving the CVD nitride film 244, the wet etching process of the nitride film (FIG. 4M) can be omitted, and the manufacturing becomes simple.

また,本形態では,ゲート電極22下の絶縁層23が熱酸化膜231とCVD酸化膜232との2層構造であるが,単層構造であってもよい。すなわち,ゲートトレンチ21の形成後の,熱酸化膜231の形成のための熱酸化処理(図2(D))を省略してもよい。   In this embodiment, the insulating layer 23 under the gate electrode 22 has a two-layer structure of the thermal oxide film 231 and the CVD oxide film 232, but may have a single-layer structure. That is, the thermal oxidation process (FIG. 2D) for forming the thermal oxide film 231 after the formation of the gate trench 21 may be omitted.

また,CVD窒化膜244の一部を除去するドライエッチング工程(図4(K))と,拡張絶縁領域241を形成する熱酸化工程(図4(L))との間に,図5に示すように,酸化膜のウェットエッチング工程(図5(K’))を追加してもよい。酸化膜である絶縁膜23のウェットエッチングを行うことで,絶縁膜23の上面が下方に下がり,絶縁膜23の上面とCVD窒化膜244の下端との間に大きな隙間が生じる。これにより,ゲート電極22の下面の角部周辺のシリコンを酸化し易くなり,より幅広の拡張絶縁領域241を形成することができる。また,拡張絶縁領域241は,絶縁膜23の上面とCVD窒化膜244の下端との隙間から膨張することから,隙間が殆ど無い実施の形態と比較して膨張による応力増大の影響が少ない。   Further, a dry etching process (FIG. 4K) for removing a part of the CVD nitride film 244 and a thermal oxidation process (FIG. 4L) for forming the extended insulating region 241 are shown in FIG. Thus, an oxide film wet etching step (FIG. 5 (K ′)) may be added. By performing wet etching of the insulating film 23 that is an oxide film, the upper surface of the insulating film 23 is lowered downward, and a large gap is generated between the upper surface of the insulating film 23 and the lower end of the CVD nitride film 244. As a result, silicon around the corners on the lower surface of the gate electrode 22 is easily oxidized, and a wider expanded insulating region 241 can be formed. In addition, since the expanded insulating region 241 expands from the gap between the upper surface of the insulating film 23 and the lower end of the CVD nitride film 244, the influence of an increase in stress due to expansion is less than that in the embodiment having almost no gap.

以上詳細に説明したように本形態の半導体装置100は,ゲートトレンチ21内に絶縁物を堆積し,その後の絶縁物のエッチバックにより,ゲートトレンチ21内に基板厚さ方向の膜厚が厚い絶縁層23を形成することとしている。絶縁層23は,後の熱酸化工程でゲートトレンチ21の底部近傍のシリコンを酸化させない膜厚を有している。その後,エッチバックによって再開口したゲートトレンチ21の側壁にゲート絶縁膜24(熱酸化膜)を形成し,さらにそのゲート絶縁膜24上に薄膜のCVD窒化膜244を形成することとしている。さらにそのCVD窒化膜244を,異方性ドライエッチングによって除去することとしている。これにより,CVD窒化膜244のうち,ゲート絶縁膜24上に位置するCVD窒化膜244を残したまま絶縁層23上に位置するCVD窒化膜244が除去される。   As described above in detail, in the semiconductor device 100 of this embodiment, an insulator is deposited in the gate trench 21, and then the insulating film having a large thickness in the substrate thickness direction is formed in the gate trench 21 by etching back the insulator. The layer 23 is to be formed. The insulating layer 23 has a film thickness that does not oxidize the silicon near the bottom of the gate trench 21 in the subsequent thermal oxidation step. Thereafter, a gate insulating film 24 (thermal oxide film) is formed on the side wall of the gate trench 21 reopened by etch back, and a thin CVD nitride film 244 is formed on the gate insulating film 24. Further, the CVD nitride film 244 is removed by anisotropic dry etching. As a result, the CVD nitride film 244 located on the insulating layer 23 is removed from the CVD nitride film 244 while leaving the CVD nitride film 244 located on the gate insulating film 24.

その後,CVD窒化膜244がゲート絶縁膜24(すなわち,チャネル領域)を保護した状態で,熱酸化処理を行うこととしている。このとき,ゲートトレンチ21の側壁は,CVD窒化膜244によって酸化が抑制されている。また,ゲートトレンチ21の底部は,膜厚が厚い絶縁層23によって酸化が抑制されている。一方,絶縁層23の上面の端部近傍(CVD窒化膜244の下端近傍)では,露出面とシリコン部分との距離が近く,シリコンが酸化される。つまり,CVD窒化膜244と絶縁層23とにより,絶縁層23の上面の両端部分を強調して酸化することができ,その両端部分でゲート絶縁膜24よりも膜厚が厚い拡張絶縁領域241が形成される。   Thereafter, thermal oxidation is performed with the CVD nitride film 244 protecting the gate insulating film 24 (that is, the channel region). At this time, oxidation of the side walls of the gate trench 21 is suppressed by the CVD nitride film 244. Further, oxidation at the bottom of the gate trench 21 is suppressed by the thick insulating layer 23. On the other hand, in the vicinity of the end portion of the upper surface of the insulating layer 23 (near the lower end of the CVD nitride film 244), the distance between the exposed surface and the silicon portion is short, and silicon is oxidized. That is, the CVD nitride film 244 and the insulating layer 23 can oxidize the two ends of the upper surface of the insulating layer 23 with emphasis, and the extended insulating region 241 having a thickness larger than that of the gate insulating film 24 at the both ends. It is formed.

この拡張絶縁領域241は,絶縁層23の上面とゲート絶縁膜24の下端との繋ぎ目近傍のシリコンを酸化することによってなる領域であり,絶縁層23およびゲート絶縁膜24と一体の絶縁領域となる。そして,拡張絶縁領域241は,繋ぎ目付近のシリコンを集中して酸化することによってなるため,その繋ぎ目近傍の絶縁領域をゲートトレンチ21の外側に拡張する。つまり,ゲートトレンチ21の側壁(すなわち,シリコンと絶縁物領域との界面)を,その繋ぎ目部分にてトレンチの外側に膨らんだ形状にする。つまり,局所的に電界集中の生じ易い部位(図7のY)に膜厚が厚い酸化膜領域が形成される。これにより,当該部位での絶縁破壊が抑制される。また,拡張絶縁領域241は,繋ぎ目近傍の絶縁領域をゲートトレンチ21の内側にも拡張する。そのため,ゲート電極22の下面の両角部を拡張絶縁領域241の外形に沿って内側に窪む形状とすることができる。これにより,ゲート電極22の底部が深さ方向に対してゆるやかに終端する形状となる。よって,ゲート電極22の下面の角部での局所的な電界集中が緩和される。従って,ゲート電極の下端近傍の局所的な電界集中を回避した絶縁ゲート型半導体装置,およびその絶縁ゲート型半導体装置を高精度でかつ容易に作製することができる製造方法が実現している。   The extended insulating region 241 is a region formed by oxidizing silicon in the vicinity of the joint between the upper surface of the insulating layer 23 and the lower end of the gate insulating film 24. The extended insulating region 241 includes an insulating region integrated with the insulating layer 23 and the gate insulating film 24. Become. Since the extended insulating region 241 is formed by concentrating and oxidizing silicon near the joint, the insulating region near the joint is extended outside the gate trench 21. That is, the side wall of the gate trench 21 (that is, the interface between the silicon and the insulator region) is shaped to bulge outside the trench at the joint. That is, a thick oxide film region is formed at a site where electric field concentration is likely to occur locally (Y in FIG. 7). Thereby, the dielectric breakdown in the said site | part is suppressed. Further, the extended insulating region 241 extends the insulating region near the joint to the inside of the gate trench 21. Therefore, both corners of the lower surface of the gate electrode 22 can be formed to be recessed inward along the outer shape of the extended insulating region 241. As a result, the bottom of the gate electrode 22 has a shape that gently terminates in the depth direction. Therefore, local electric field concentration at the corners on the lower surface of the gate electrode 22 is alleviated. Therefore, an insulated gate semiconductor device that avoids local electric field concentration near the lower end of the gate electrode, and a manufacturing method that can easily produce the insulated gate semiconductor device with high accuracy have been realized.

特に,ゲートトレンチ21の底部からイオン注入することでPフローティング領域51を形成する半導体装置100では,Pフローティング領域51を形成するための深さが深い(アスペクト比が大きい)ゲートトレンチ21と,ゲートトレンチ21の底部からゲート電極22の下端までの間を充填する膜厚が厚い絶縁層23とを備えた構成となる。そのため,このようなフローティング構造を有する半導体装置に本発明を適用することは特に有用である。   In particular, in the semiconductor device 100 in which the P floating region 51 is formed by ion implantation from the bottom of the gate trench 21, the gate trench 21 having a deep depth (a large aspect ratio) for forming the P floating region 51, the gate A thick insulating layer 23 that fills the space from the bottom of the trench 21 to the lower end of the gate electrode 22 is provided. Therefore, it is particularly useful to apply the present invention to a semiconductor device having such a floating structure.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,各半導体領域については,P型とN型とを入れ替えてもよい。また,半導体についても,シリコンに限らず,他の種類の半導体(SiC,GaN,GaAs等)であってもよい。また,実施の形態の絶縁ゲート型半導体装置は,IGBTに対しても適用可能である。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, for each semiconductor region, P-type and N-type may be interchanged. Also, the semiconductor is not limited to silicon, but may be other types of semiconductors (SiC, GaN, GaAs, etc.). The insulated gate semiconductor device of the embodiment can also be applied to an IGBT.

実施の形態にかかる絶縁ゲート型半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the insulated gate semiconductor device concerning embodiment. 実施の形態にかかる絶縁ゲート型半導体装置の製造工程を示す図(その1)である。FIG. 6 is a diagram (part 1) illustrating a manufacturing process of the insulated gate semiconductor device according to the embodiment; 実施の形態にかかる絶縁ゲート型半導体装置の製造工程を示す図(その2)である。FIG. 6 is a diagram (part 2) for illustrating a manufacturing process of the insulated gate semiconductor device according to the embodiment; 実施の形態にかかる絶縁ゲート型半導体装置の製造工程を示す図(その3)である。FIG. 6 is a diagram (part 3) illustrating a process for manufacturing the insulated gate semiconductor device according to the embodiment; 変形例にかかる絶縁ゲート型半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the insulated gate semiconductor device concerning a modification. 従来の絶縁ゲート型半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional insulated gate semiconductor device. フローティング構造を有する絶縁ゲート型半導体装置の電界集中箇所を示す図である。It is a figure which shows the electric field concentration location of the insulated gate semiconductor device which has a floating structure.

符号の説明Explanation of symbols

11 N+ ドレイン領域
12 N- ドリフト領域
21 ゲートトレンチ(トレンチ部)
22 ゲート電極(ゲート電極層)
23 絶縁層
24 ゲート絶縁膜
241 拡張絶縁領域
244 CVD窒化膜(酸化保護膜)
31 N+ ソース領域
41 P- ボディ領域
51 P拡散領域
100 絶縁ゲート型半導体装置
11 N + drain region 12 N drift region 21 Gate trench (trench portion)
22 Gate electrode (gate electrode layer)
23 Insulating layer 24 Gate insulating film 241 Extended insulating region 244 CVD nitride film (oxidation protective film)
31 N + source region 41 P - body region 51 P diffusion region 100 insulated gate semiconductor device

Claims (2)

半導体基板内の上面側に位置し第1導電型半導体であるボディ領域と,前記ボディ領域の下面と接し第2導電型半導体であるドリフト領域と,半導体基板の上面から前記ボディ領域を貫通するトレンチ部とを有する絶縁ゲート型半導体装置において,
前記トレンチ部の底上に位置し,絶縁物にて構成される絶縁層と,
前記トレンチ部内であって前記絶縁層上に位置し,下面が前記ボディ領域の下面よりも深い位置に位置するゲート電極層と,
前記ボディ領域と前記ゲート電極層との間に位置するゲート絶縁膜と,
前記ゲート絶縁膜の下端と,前記絶縁層の上面の端部と,前記ゲート電極層の下面の角部と接し,前記トレンチ部の幅方向の膜厚が前記ゲート絶縁膜の膜厚よりも厚い拡張絶縁領域とを有し,
前記トレンチ部の側壁は,前記拡張絶縁領域の外形に沿って前記トレンチ部の外側に膨らんだ形状をなし,
前記ゲート電極層の下面の両角部は,前記拡張絶縁領域と接するとともに前記拡張絶縁領域の外形に沿って内側に窪む形状をなし
前記トレンチ部内のうち,前記ゲート電極層よりも下側は,前記絶縁層によって充填されていることを特徴とする絶縁ゲート型半導体装置。
A body region which is located on the upper surface side of the semiconductor substrate and is a first conductivity type semiconductor, a drift region which is in contact with the lower surface of the body region and is a second conductivity type semiconductor, and a trench which penetrates the body region from the upper surface of the semiconductor substrate In an insulated gate semiconductor device having a portion,
An insulating layer located on the bottom of the trench and made of an insulator;
A gate electrode layer located in the trench and on the insulating layer, the lower surface being located deeper than the lower surface of the body region ;
A gate insulating film located between the body region and the gate electrode layer;
The film thickness in the width direction of the trench portion is larger than the film thickness of the gate insulating film, in contact with the lower end of the gate insulating film, the edge of the upper surface of the insulating layer, and the corner of the lower surface of the gate electrode layer An extended insulation region,
The sidewall of the trench portion has a shape that bulges outside the trench portion along the outer shape of the extended insulating region,
Both corners of the lower surface of the gate electrode layer are in contact with the extended insulating region and are recessed inward along the outer shape of the extended insulating region ,
The insulated gate semiconductor device , wherein a portion of the trench portion below the gate electrode layer is filled with the insulating layer .
請求項1に記載する絶縁ゲート型半導体装置において,The insulated gate semiconductor device according to claim 1,
前記ドリフト領域に囲まれるとともに第1導電型半導体であるフローティング領域を有し,A floating region surrounded by the drift region and being a first conductivity type semiconductor;
前記トレンチ部は,底部が前記フローティング領域内に位置し,The trench portion has a bottom located in the floating region,
前記フローティング領域と前記ドリフト領域との接合箇所での電界強度が前記ボディ領域と前記ドリフト領域との接合箇所での電界強度と同等となる位置に,前記フローティング領域が配置されていることを特徴とする絶縁ゲート型半導体装置。The floating region is disposed at a position where the electric field strength at the junction between the floating region and the drift region is equal to the electric field strength at the junction between the body region and the drift region. An insulated gate semiconductor device.
JP2006144109A 2006-05-24 2006-05-24 Insulated gate semiconductor device Active JP4735414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144109A JP4735414B2 (en) 2006-05-24 2006-05-24 Insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144109A JP4735414B2 (en) 2006-05-24 2006-05-24 Insulated gate semiconductor device

Publications (2)

Publication Number Publication Date
JP2007317779A JP2007317779A (en) 2007-12-06
JP4735414B2 true JP4735414B2 (en) 2011-07-27

Family

ID=38851401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144109A Active JP4735414B2 (en) 2006-05-24 2006-05-24 Insulated gate semiconductor device

Country Status (1)

Country Link
JP (1) JP4735414B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266738B2 (en) * 2007-12-05 2013-08-21 トヨタ自動車株式会社 Manufacturing method of trench gate type semiconductor device
JP2009164558A (en) * 2007-12-10 2009-07-23 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
JP5472309B2 (en) 2009-10-01 2014-04-16 トヨタ自動車株式会社 Semiconductor device
JP5483693B2 (en) * 2009-12-17 2014-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP5569162B2 (en) * 2010-06-10 2014-08-13 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5637916B2 (en) * 2011-03-31 2014-12-10 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
JP2015072999A (en) 2013-10-02 2015-04-16 株式会社デンソー Silicon carbide semiconductor device
EP3951885A1 (en) * 2020-08-05 2022-02-09 Nexperia B.V. A semiconductor device and a method of manufacture of a semiconductor device
CN115172322A (en) * 2022-09-08 2022-10-11 深圳芯能半导体技术有限公司 MOSFET structure, manufacturing method, power device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US6444528B1 (en) * 2000-08-16 2002-09-03 Fairchild Semiconductor Corporation Selective oxide deposition in the bottom of a trench
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated-gate semiconductor device and its manufacturing method
JP2008546189A (en) * 2005-05-26 2008-12-18 フェアチャイルド・セミコンダクター・コーポレーション Trench gate field effect transistor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US6444528B1 (en) * 2000-08-16 2002-09-03 Fairchild Semiconductor Corporation Selective oxide deposition in the bottom of a trench
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated-gate semiconductor device and its manufacturing method
JP2008546189A (en) * 2005-05-26 2008-12-18 フェアチャイルド・セミコンダクター・コーポレーション Trench gate field effect transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2007317779A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4735414B2 (en) Insulated gate semiconductor device
JP4414863B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP5510309B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4735224B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP5767857B2 (en) Trench-type MOSFET and manufacturing method thereof
US7998808B2 (en) Semiconductor device fabrication using spacers
WO2012127821A1 (en) Semiconductor device and method for producing same
JP2018060924A (en) Semiconductor device and semiconductor device manufacturing method
WO2006132284A1 (en) Trench-type mosfet and method for manufacturing same
JP7054403B2 (en) Manufacturing method of semiconductor device
JP5054735B2 (en) Method for producing a material layer in a semiconductor substrate
JP4500558B2 (en) Insulated gate type semiconductor device manufacturing method
JP5446297B2 (en) Manufacturing method of semiconductor device
US7391077B2 (en) Vertical type semiconductor device
JP4622905B2 (en) Method of manufacturing insulated gate semiconductor device
JP4491307B2 (en) Semiconductor device and manufacturing method thereof
US10707342B2 (en) Transistor having at least one transistor cell with a field electrode
WO2016076055A1 (en) Silicon carbide semiconductor switching element and method for manufacturing same
JP2005252204A (en) Insulating gate type semiconductor device and method of manufacturing the same
JP4447377B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP5353174B2 (en) Manufacturing method of semiconductor device
JP4500598B2 (en) Insulated gate type semiconductor device manufacturing method
JP2009054638A (en) Semiconductor device and manufacturing method thereof
JP2009026809A (en) Semiconductor apparatus and manufacturing method thereof
JP2005252203A (en) Insulated gate type semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R151 Written notification of patent or utility model registration

Ref document number: 4735414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3