JP4718159B2 - Engine oil composition - Google Patents

Engine oil composition Download PDF

Info

Publication number
JP4718159B2
JP4718159B2 JP2004322597A JP2004322597A JP4718159B2 JP 4718159 B2 JP4718159 B2 JP 4718159B2 JP 2004322597 A JP2004322597 A JP 2004322597A JP 2004322597 A JP2004322597 A JP 2004322597A JP 4718159 B2 JP4718159 B2 JP 4718159B2
Authority
JP
Japan
Prior art keywords
engine oil
oil composition
component
ppm
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004322597A
Other languages
Japanese (ja)
Other versions
JP2006131766A (en
Inventor
直人 並木
和寿 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2004322597A priority Critical patent/JP4718159B2/en
Publication of JP2006131766A publication Critical patent/JP2006131766A/en
Application granted granted Critical
Publication of JP4718159B2 publication Critical patent/JP4718159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内燃機関用のエンジン油組成物に関する。更に詳しくは、本発明は、優れた酸化安定性を持ち、劣化によってオイルの粘度上昇を引き起こさないエンジン油組成物に関する。   The present invention relates to an engine oil composition for an internal combustion engine. More particularly, the present invention relates to an engine oil composition that has excellent oxidation stability and does not cause an increase in oil viscosity due to deterioration.

自動車のエンジン油に求められることは、エンジン内部の潤滑を行い、清浄性を保つ機能に加え、近年の環境問題より、排ガス触媒を被毒させないエンジン油や省燃費機能を持つエンジン油等が求められている。こうした新しく求められている機能の中で、省燃費機能については、例えば、エンジン油の粘度を下げて粘性抵抗を少なくする方法や、有機モリブデン等を配合して潤滑時の摩擦係数を下げる方法等により、エンジン内部のエネルギー損失を少なくして対応してきた。   What is required of automobile engine oil is that, in addition to the function of lubricating the inside of the engine and maintaining cleanliness, engine oil that does not poison exhaust gas catalysts and has fuel saving functions are required due to recent environmental problems. It has been. Among these newly demanded functions, the fuel saving function includes, for example, a method of reducing the viscosity of engine oil to reduce the viscosity resistance, a method of reducing the friction coefficient during lubrication by blending organic molybdenum, etc. As a result, energy loss inside the engine has been reduced.

エンジン内の燃焼によって生じる排気ガスには、窒素酸化物(NOx)、硫黄酸化物(SOx)等が含まれており、これらの有害物質は、環境汚染、自然破壊、人体への悪影響等を引き起こすことが知られている。そこで排ガス触媒の改良等が行われてきたが、エンジン油に含まれるリン成分や硫黄成分は、排ガス触媒を被毒することが知られており、エンジン油内のリン成分や硫黄成分を削減することが必要になってきた。   The exhaust gas generated by combustion in the engine contains nitrogen oxides (NOx), sulfur oxides (SOx), etc., and these harmful substances cause environmental pollution, natural destruction, adverse effects on the human body, etc. It is known. Therefore, exhaust gas catalysts have been improved, but it is known that phosphorus and sulfur components contained in engine oil poison the exhaust gas catalyst, reducing phosphorus and sulfur components in engine oil. It has become necessary.

具体的にエンジン油内のリンを削減するということは、亜鉛ジチオホスフェートの含量を低減させるということである。亜鉛ジチオホスフェートは、耐摩耗性や酸化防止性を持つ添加剤であり、亜鉛ジチオホスフェートの削減は、エンジン油の耐摩耗性や酸化防止性の低下を引き起こす。耐摩耗性や酸化防止性は、配合の工夫や他の添加剤等で補うこともできたが、エンジン油の酸化劣化に伴い、エンジン油の粘度が上昇するという現象を抑えることはできなかった。エンジン油粘度の上昇は、エンジン油に含まれる成分の劣化や重合等によって引き起こされ、亜鉛ジチオフォスフェートを削減したエンジン油においては、粘度上昇が著しく大きくなる傾向にあった。   Specifically, reducing phosphorus in engine oil means reducing the content of zinc dithiophosphate. Zinc dithiophosphate is an additive having wear resistance and antioxidant properties, and reduction of zinc dithiophosphate causes a decrease in wear resistance and antioxidant properties of engine oil. Abrasion resistance and antioxidant properties could be compensated for by blending ingenuity and other additives, but it was not possible to suppress the phenomenon that the viscosity of the engine oil increased with the oxidative degradation of the engine oil. . The increase in the viscosity of the engine oil is caused by deterioration or polymerization of components contained in the engine oil, and the increase in the viscosity tends to be remarkably increased in the engine oil in which zinc dithiophosphate is reduced.

エンジン油の粘度が上昇すると、エンジン内の粘性抵抗が増えるため、エンジン油の粘度を下げて粘性抵抗を少なくするという効果が低下する。それにより、エンジン油に求められている省燃費機能も低下してしまった。そこで低リン、低硫黄処方のエンジン油が劣化しても、粘度上昇しないエンジン油が求められてきた。   When the viscosity of the engine oil increases, the viscosity resistance in the engine increases, so the effect of decreasing the viscosity resistance by decreasing the viscosity of the engine oil is reduced. As a result, the fuel saving function required for engine oil has also been reduced. Accordingly, there has been a demand for an engine oil that does not increase in viscosity even when engine oil with a low phosphorus and low sulfur prescription is deteriorated.

そこで特定の硫黄化合物とアミン系酸化防止剤との組み合わせにより、粘度上昇を防止する方法(例えば、特許文献1を参照)や、カルボン酸系分散剤と硼酸系分散剤の組み合わせにより、粘度上昇を防止する方法(例えば、特許文献2を参照)、金属塩清浄剤の組み合わせにより、潤滑油寿命を延ばして粘度上昇を防止する方法(例えば、特許文献3を参照)等が知られている。しかし特許文献1の方法は、硫黄化合物が増加してしまうという問題と共に、リン含量を削減したエンジン油では、粘度の上昇を防止する効果が不十分であった。また、特許文献2、3の方法では、リン含量を削減したエンジン油の粘度上昇を防止する効果が不十分であり、更に、耐磨耗性等のエンジン油に求められる基本的な性能も不十分であった。   Therefore, the viscosity increase can be achieved by combining a specific sulfur compound and an amine antioxidant to prevent the viscosity increase (see, for example, Patent Document 1) or by combining a carboxylic acid dispersant and a boric acid dispersant. There are known a method for preventing (see, for example, Patent Document 2), a method for extending the life of a lubricating oil and preventing an increase in viscosity by a combination of metal salt detergents (for example, see Patent Document 3), and the like. However, the method of Patent Document 1 has an insufficient effect of preventing an increase in viscosity with an engine oil with a reduced phosphorus content, together with a problem that sulfur compounds increase. In addition, the methods of Patent Documents 2 and 3 are insufficient in preventing the increase in viscosity of engine oil with a reduced phosphorus content, and further, basic performance required for engine oil such as wear resistance is not satisfactory. It was enough.

特表2002−507657号公報Japanese translation of PCT publication No. 2002-507657 特開2003−193078号公報JP 2003-193078 A 特表2003−517092号公報Special table 2003-517092 gazette

従って、本発明が解決しようとする課題は、低リン、低硫黄処方のエンジン油であっても、従来のエンジン油と同等又はそれ以上の酸化安定性、耐摩耗性、及び低摩擦性能を有し、劣化によってエンジン油粘度が上昇しないエンジン油組成物を提供することにある。   Therefore, the problem to be solved by the present invention is that even an engine oil with a low phosphorus and low sulfur formulation has oxidation stability, wear resistance, and low friction performance equivalent to or higher than those of conventional engine oils. And providing an engine oil composition in which the engine oil viscosity does not increase due to deterioration.

そこで本発明者等は、低リン処方のエンジン油について鋭意検討し、特定の構造のエステル化合物を配合することにより、低リン処方であっても、耐摩耗性、酸化防止性、持続性及び低摩擦性能に優れ、劣化しても粘度上昇しない、省燃費効果に優れたエンジン油を提供できることを見出し、本発明に至った。   Therefore, the present inventors have intensively studied an engine oil having a low phosphorus prescription, and by blending an ester compound having a specific structure, even with a low phosphorus prescription, the wear resistance, antioxidant property, sustainability and low The present inventors have found that an engine oil having excellent friction performance, no increase in viscosity even when deteriorated, and excellent fuel economy can be provided.

即ち本発明は、エンジン油組成物全体に対し、
(A)成分として下記の一般式(1)
That is, the present invention is based on the whole engine oil composition.
As the component (A), the following general formula (1)

Figure 0004718159
Figure 0004718159

(式中、R及びRは炭化水素基を表わし、aは0〜1/3の数を表わす。)で表わされる亜鉛ジチオホスフェートをリン含量として100〜500質量ppm、 (Wherein R 1 and R 2 represent a hydrocarbon group, and a represents a number of 0 to 1/3) 100 to 500 ppm by mass of zinc dithiophosphate represented by phosphorus content,

(B)成分として、下記の一般式(2)   As the component (B), the following general formula (2)

Figure 0004718159
Figure 0004718159

(式中、R〜Rは炭化水素基を表わし、X〜Xは硫黄原子又は酸素原子を表わす。)で表わされる硫化(オキシ)モリブデンジチオカーバメートをモリブデン含量として50〜1500ppm、(C)成分として、特定の構造を有するアミンと5価又は6価のモリブデン原子を有する化合物との反応物である有機モリブデン化合物をモリブデン含量として50〜1500ppm、(D)成分として、アミン系酸化防止剤を含有することを特徴とするエンジン油組成物である。 (Wherein R 3 to R 6 each represent a hydrocarbon group, and X 1 to X 4 each represent a sulfur atom or an oxygen atom) 50 to 1500 ppm in terms of molybdenum content of sulfurized (oxy) molybdenum dithiocarbamate represented by ( C) As an ingredient, an organomolybdenum compound, which is a reaction product of an amine having a specific structure and a compound having a pentavalent or hexavalent molybdenum atom, has a molybdenum content of 50 to 1500 ppm. It is an engine oil composition characterized by containing an agent.

本発明の効果は、酸化安定性、耐摩耗性、及び低摩擦性に優れ、エンジン油が劣化してもエンジン油粘度が上昇しない、低リン処方のエンジン油を提供することにある。   The effect of the present invention is to provide an engine oil having a low phosphorus formulation that is excellent in oxidation stability, wear resistance, and low friction properties, and does not increase the viscosity of the engine oil even when the engine oil is deteriorated.

本発明に用いられる潤滑基油に特に制約はなく、従来潤滑基油として慣用されている一般的な潤滑油、例えば、鉱油、合成油及びこれらの混合物が挙げられる。より具体的には、ポリ-α-オレフィン、エチレン-α-オレフィン共重合体、ポリブテン、アルキルベンゼン、アルキルナフタレン、ポリアルキレングリコール、ポリフェニルエーテル、アルキル置換ジフェニルエーテル、ポリオールエステル、二塩基酸エステル、炭酸エステル、シリコーン油、フッ素化油等の合成油、パラフィン系鉱油、ナフテン系鉱油あるいはこれらを精製した精製鉱油類等を用いることができる。これらの基油はそれぞれ単独で用いてもよく、混合物で用いてもよい。   There is no restriction | limiting in particular in the lubricating base oil used for this invention, The common lubricating oil conventionally used as a lubricating base oil, for example, mineral oil, synthetic oil, and mixtures thereof are mentioned. More specifically, poly-α-olefin, ethylene-α-olefin copolymer, polybutene, alkylbenzene, alkylnaphthalene, polyalkylene glycol, polyphenyl ether, alkyl-substituted diphenyl ether, polyol ester, dibasic acid ester, carbonate ester Synthetic oils such as silicone oils and fluorinated oils, paraffinic mineral oils, naphthenic mineral oils, or refined mineral oils obtained by purifying these can be used. These base oils may be used alone or in a mixture.

本発明で用いられる潤滑基油は、硫黄含量が200ppm以下で、100℃の粘度が3〜20mm2/Sの範囲にあるものが好ましい。中でも、硫黄含量が100ppm以下で、100℃の粘度が3〜10mm2/Sのものが好ましく、硫黄含量が100ppm以下で、100℃の粘度が3〜10mm2/Sの鉱油がより好ましい。排ガス触媒の活性低下が起こりやすくなるため、潤滑基油の硫黄含量はなるべく少ない方が好ましい。 The lubricating base oil used in the present invention preferably has a sulfur content of 200 ppm or less and a viscosity at 100 ° C. in the range of 3 to 20 mm 2 / S. Among them, the sulfur content of 100ppm or less, preferably has a viscosity of 100 ° C. is 3 to 10 mm 2 / S, the sulfur content of 100ppm or less, more preferably a viscosity of 100 ° C. is mineral oils 3 to 10 mm 2 / S. Since the activity of the exhaust gas catalyst is likely to decrease, it is preferable that the sulfur content of the lubricating base oil is as low as possible.

本発明の(A)成分について説明する。本発明の(A)成分は、一般式(1)で表わされる亜鉛ジチオホスフェートである。   The component (A) of the present invention will be described. The component (A) of the present invention is zinc dithiophosphate represented by the general formula (1).

一般式(1)において、R及びRは炭化水素基を表わす。炭化水素基としては、例えば、アルキル基、アルケニル基、アリール基、シクロアルキル基、シクロアルケニル基等が挙げられる。 In the general formula (1), R 1 and R 2 represent a hydrocarbon group. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, and a cycloalkenyl group.

アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、ターシャリブチル、ペンチル、イソペンチル、2級ペンチル、ネオペンチル、ターシャリペンチル、ヘキシル、2級ヘキシル、ヘプチル、2級ヘプチル、オクチル、2−エチルヘキシル、2級オクチル、ノニル、2級ノニル、デシル、2級デシル、ウンデシル、2級ウンデシル、ドデシル、2級ドデシル、トリデシル、イソトリデシル、2級トリデシル、テトラデシル、2級テトラデシル、ヘキサデシル、2級ヘキサデシル、ステアリル、エイコシル、ドコシル、テトラコシル、トリアコンチル、2−ブチルオクチル、2−ブチルデシル、2−ヘキシルオクチル、2−ヘキシルデシル、2−オクチルデシル、2−ヘキシルドデシル、2−オクチルドデシル、2−デシルテトラデシル、2−ドデシルヘキサデシル、2−ヘキサデシルオクタデシル、2−テトラデシルオクタデシル、モノメチル分枝−イソステアリル等が挙げられる。   Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, isopentyl, secondary pentyl, neopentyl, tertiary pentyl, hexyl, secondary hexyl, heptyl, 2 Secondary heptyl, octyl, 2-ethylhexyl, secondary octyl, nonyl, secondary nonyl, decyl, secondary decyl, undecyl, secondary undecyl, dodecyl, secondary dodecyl, tridecyl, isotridecyl, secondary tridecyl, tetradecyl, secondary tetradecyl , Hexadecyl, secondary hexadecyl, stearyl, eicosyl, docosyl, tetracosyl, triacontyl, 2-butyloctyl, 2-butyldecyl, 2-hexyloctyl, 2-hexyldecyl, 2-octyldecyl, 2-hexyldecyl 2-octyldodecyl, 2-decyltetradecyl, 2-dodecyl-hexadecyl, 2-hexadecyl octadecyl, 2-tetradecyl-octadecyl, monomethyl branched - include isostearyl.

アルケニル基としては、例えば、ビニル、アリル、プロペニル、イソプロペニル、ブテニル、イソブテニル、ペンテニル、イソペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、テトラデセニル、オレイル等が挙げられる。   Examples of the alkenyl group include vinyl, allyl, propenyl, isopropenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, oleyl and the like.

アリール基としては、例えば、フェニル、トルイル、キシリル、クメニル、メシチル、ベンジル、フェネチル、スチリル、シンナミル、ベンズヒドリル、トリチル、エチルフェニル、プロピルフェニル、ブチルフェニル、ペンチルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ウンデシルフェニル、ドデシルフェニル、スチレン化フェニル、p−クミルフェニル、フェニルフェニル、ベンジルフェニル、α−ナフチル、β−ナフチル基等が挙げられる。   Examples of the aryl group include phenyl, toluyl, xylyl, cumenyl, mesityl, benzyl, phenethyl, styryl, cinnamyl, benzhydryl, trityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, Nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, styrenated phenyl, p-cumylphenyl, phenylphenyl, benzylphenyl, α-naphthyl, β-naphthyl group and the like can be mentioned.

シクロアルキル基、シクロアルケニル基としては、例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、メチルシクロペンチル、メチルシクロヘキシル、メチルシクロヘプチル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、メチルシクロペンテニル、メチルシクロヘキセニル、メチルシクロヘプテニル基等が挙げられる。   Examples of the cycloalkyl group and cycloalkenyl group include a cyclopentyl, cyclohexyl, cycloheptyl, methylcyclopentyl, methylcyclohexyl, methylcycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, methylcyclopentenyl, methylcyclohexenyl, methylcycloheptenyl group. Etc.

これらの炭化水素基の中で、R及びRとしては、アルキル基が好ましく、2級アルキル基が更に好ましい。炭素数は、3〜14であることが好ましく、3〜10であることが更に好ましく、3〜8であることが最も好ましい。R及びRは、同一の炭化水素基でも異なる炭化水素基でもよい。 Among these hydrocarbon groups, R 1 and R 2 are preferably an alkyl group, and more preferably a secondary alkyl group. The number of carbon atoms is preferably 3 to 14, more preferably 3 to 10, and most preferably 3 to 8. R 1 and R 2 may be the same hydrocarbon group or different hydrocarbon groups.

また、一般式(1)において、a=0の場合、中性亜鉛ジチオホスフェート(中性塩)と呼ばれ、aが1/3の場合は、塩基性亜鉛ジチオホスフェート(塩基性塩)と呼ばれている。
亜鉛ジチオホスフェートは、これら中性塩と塩基性塩の混合物であるため、aは0〜1/3の数で表される。aの数は亜鉛ジチオホスフェートの製法によって異なるが、0.08〜0.3が好ましく、0.15〜0.3が更に好ましく、0.18〜0.3が最も好ましい。aが0.3より大きくなると、加水分解安定性が悪くなる場合があり、aが0.08より小さくなると、配合した潤滑油の耐磨耗性が悪くなる場合がある。
In general formula (1), when a = 0, it is called neutral zinc dithiophosphate (neutral salt), and when a is 1/3, it is called basic zinc dithiophosphate (basic salt). It is.
Since zinc dithiophosphate is a mixture of these neutral and basic salts, a is represented by a number from 0 to 1/3. The number of a varies depending on the production method of zinc dithiophosphate, but is preferably 0.08 to 0.3, more preferably 0.15 to 0.3, and most preferably 0.18 to 0.3. When a is larger than 0.3, the hydrolysis stability may be deteriorated. When a is smaller than 0.08, the wear resistance of the blended lubricating oil may be deteriorated.

本発明のエンジン油組成物全量に対する、(A)成分である一般式(1)で表わされる亜鉛ジチオホスフェートの含量は、リン含量として100〜500質量ppmであり、好ましくは150〜500質量ppm、更に好ましくは200〜500質量ppm、最も好ましくは250〜500質量ppmである。(A)成分の含量がリン含量として100質量ppm未満では、耐摩耗性及び酸化防止性が不充分となり、500質量ppmを超えると、排ガス浄化触媒の活性低下が起こり易くなる。   The content of zinc dithiophosphate represented by the general formula (1) as the component (A) with respect to the total amount of the engine oil composition of the present invention is 100 to 500 ppm by mass, preferably 150 to 500 ppm by mass, as the phosphorus content. More preferably, it is 200-500 mass ppm, Most preferably, it is 250-500 mass ppm. When the content of the component (A) is less than 100 ppm by mass as the phosphorus content, the wear resistance and the antioxidant properties are insufficient, and when it exceeds 500 ppm by mass, the activity of the exhaust gas purification catalyst tends to decrease.

次に、本発明の(B)成分について説明する。本発明の(B)成分は、前記一般式(1)で表される、硫化(オキシ)モリブデンジチオカーバメート(MoDTC)である。
一般式(1)において、R3〜R6は炭化水素基であり、例えば、アルキル基、アルケニル基、アリール基、シクロアルキル基、シクロアルケニル基等である。
Next, (B) component of this invention is demonstrated. The component (B) of the present invention is sulfurized (oxy) molybdenum dithiocarbamate (MoDTC) represented by the general formula (1).
In General formula (1), R < 3 > -R < 6 > is a hydrocarbon group, for example, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, a cycloalkenyl group etc.

アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、ターシャリブチル、ペンチル、イソペンチル、2級ペンチル、ネオペンチル、ターシャリペンチル、ヘキシル、2級ヘキシル、ヘプチル、2級ヘプチル、オクチル、2―エチルヘキシル、2級オクチル、ノニル、2級ノニル、デシル、2級デシル、ウンデシル、2級ウンデシル、ドデシル、2級ドデシル、トリデシル、イソトリデシル、2級トリデシル、テトラデシル、2級テトラデシル、ヘキサデシル、2級ヘキサデシル、ステアリル、イコシル、ドコシル、テトラコシル、トリアコンチル、2―ブチルオクチル、2―ブチルデシル、2―ヘキシルオクチル、2―ヘキシルデシル、2―オクチルデシル、2―ヘキシルドデシル、2―オクチルドデシル、2―デシルテトラデシル、2―ドデシルヘキサデシル、2―ヘキサデシルオクタデシル、2―テトラデシルオクタデシル、モノメチル分枝―イソステアリル等が挙げられる。   Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, isopentyl, secondary pentyl, neopentyl, tertiary pentyl, hexyl, secondary hexyl, heptyl, 2 Secondary heptyl, octyl, 2-ethylhexyl, secondary octyl, nonyl, secondary nonyl, decyl, secondary decyl, undecyl, secondary undecyl, dodecyl, secondary dodecyl, tridecyl, isotridecyl, secondary tridecyl, tetradecyl, secondary tetradecyl Hexadecyl, secondary hexadecyl, stearyl, icosyl, docosyl, tetracosyl, triacontyl, 2-butyloctyl, 2-butyldecyl, 2-hexyloctyl, 2-hexyldecyl, 2-octyldecyl, 2-hexyldecyl, - octyldodecyl, 2-decyltetradecyl, 2-dodecyl-hexadecyl, 2-hexadecyl octadecyl, 2-tetradecyl-octadecyl, monomethyl branched - include isostearyl and the like.

アルケニル基としては、例えば、ビニル、アリル、プロペニル、ブテニル、イソブテニル、ペンテニル、イソペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、テトラデセニル、オレイル等が挙げられる。   Examples of the alkenyl group include vinyl, allyl, propenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, oleyl and the like.

アリール基としては、例えば、フェニル、トルイル、キシリル、クメニル、メシチル、ベンジル、フェネチル、スチリル、シンナミル、ベンズヒドリル、トリチル、エチルフェニル、プロピルフェニル、ブチルフェニル、ペンチルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ウンデシルフェニル、ドデシルフェニル、フェニルフェニル、ベンジルフェニル、スチレン化フェニル、p―クミルフェニル、α―ナフチル、β―ナフチル基等が挙げられる。   As an aryl group, for example, phenyl, toluyl, xylyl, cumenyl, mesityl, benzyl, phenethyl, styryl, cinnamyl, benzhydryl, trityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, Nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, phenylphenyl, benzylphenyl, styrenated phenyl, p-cumylphenyl, α-naphthyl, β-naphthyl group and the like can be mentioned.

シクロアルキル基、シクロアルケニル基としては、例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、メチルシクロペンチル、メチルシクロヘキシル、メチルシクロヘプチル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、メチルシクロペンテニル、メチルシクロヘキセニル、メチルシクロヘプテニル基等が挙げられる。   Examples of the cycloalkyl group and cycloalkenyl group include a cyclopentyl, cyclohexyl, cycloheptyl, methylcyclopentyl, methylcyclohexyl, methylcycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, methylcyclopentenyl, methylcyclohexenyl, methylcycloheptenyl group. Etc.

3〜R6は互いに同一でも異なってもよいが、本発明のエンジン油組成物のロングドレイン化を図る上で、R3〜R6は互いに異なっているのが好ましい。 R 3 to R 6 may be the same as or different from each other, but R 3 to R 6 are preferably different from each other in order to achieve a long drain of the engine oil composition of the present invention.

また、R3〜R6はアルキル基、アルケニル基が好ましく、アルキル基が更に好ましい。炭素数があまりに少ないと、潤滑基油への溶解性が乏しくなり、あまりに炭素数が多いと、融点が高くなるとともに活性が低くなることから、R3〜R6は炭素数6〜18のアルキル基が好ましく、炭素数8〜15のアルキル基が更に好ましく、炭素数8〜13のアルキル基が最も好ましい。 R 3 to R 6 are preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. If the carbon number is too small, the solubility in the lubricating base oil will be poor. If the carbon number is too large, the melting point will be high and the activity will be low, so R 3 to R 6 are alkyls having 6 to 18 carbon atoms. Group is preferable, an alkyl group having 8 to 15 carbon atoms is more preferable, and an alkyl group having 8 to 13 carbon atoms is most preferable.

また、一般式(1)において、X〜Xは硫黄原子又は酸素原子であり、X〜Xの全てが硫黄原子又は酸素原子であってもよく、4つのX〜Xが硫黄原子と酸素原子の混合であってもよいが、潤滑性及び腐食性を考慮した場合、硫黄原子/酸素原子の存在比が1/3〜3/1であるのが特に好ましい。 In the general formula (1), X 1 ~X 4 is a sulfur atom or an oxygen atom, all of X 1 to X 4 is may be a sulfur atom or an oxygen atom, four X 1 to X 4 is Although a mixture of sulfur atoms and oxygen atoms may be used, it is particularly preferable that the abundance ratio of sulfur atoms / oxygen atoms is 1/3 to 3/1 in consideration of lubricity and corrosivity.

次に、本発明の(C)成分について説明する。本発明の(C)成分は、硫黄原子及びリン原子を含まない有機モリブデン酸アミン塩のことであり、より具体的には、有機アミン化合物に5価又は6価のモリブデン原子を有する化合物を反応させたものである。有機アミン化合物は、1級アミン、2級アミン、3級アミンのいずれでもよく、例えば、モノアルキルアミン、モノアルケニルアミン、モノアルカノールアミン、モノアリールアミン等の1級アミン;ジアルキルアミン、ジアルケニルアミン、ジアルカノールアミン、ジアリールアミン等の2級アミン;トリアルキルアミン、トリアルケニルアミン、トリアルカノールアミン、トリアリールアミン、ピリジン等の3級アミンが挙げられるが、これらの中でも、一般式(3)で表される2級アミン化合物が好ましい。   Next, the component (C) of the present invention will be described. The component (C) of the present invention is an organic molybdate amine salt containing no sulfur atom or phosphorus atom, and more specifically, a compound having a pentavalent or hexavalent molybdenum atom is reacted with an organic amine compound. It has been made. The organic amine compound may be any of primary amine, secondary amine, and tertiary amine. For example, primary amine such as monoalkylamine, monoalkenylamine, monoalkanolamine, monoarylamine; dialkylamine, dialkenylamine Secondary amines such as dialkanolamine and diarylamine; tertiary amines such as trialkylamine, trialkenylamine, trialkanolamine, triarylamine and pyridine. Among these, general formula (3) The secondary amine compound represented is preferred.

Figure 0004718159
Figure 0004718159

一般式(3)において、R7、R8は水素原子又は炭化水素基であり、例えば、アルキル基、アルケニル基、アリール基、シクロアルキル基、シクロアルケニル基等である。 In the general formula (3), R 7 and R 8 are a hydrogen atom or a hydrocarbon group, and examples thereof include an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, and a cycloalkenyl group.

アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、ターシャリブチル、ペンチル、イソペンチル、2級ペンチル、ネオペンチル、ターシャリペンチル、ヘキシル、2級ヘキシル、ヘプチル、2級ヘプチル、オクチル、2―エチルヘキシル、2級オクチル、ノニル、2級ノニル、デシル、2級デシル、ウンデシル、2級ウンデシル、ドデシル、2級ドデシル、トリデシル、イソトリデシル、2級トリデシル、テトラデシル、2級テトラデシル、ヘキサデシル、2級ヘキサデシル、ステアリル、イコシル、ドコシル、テトラコシル、トリアコンチル、2―ブチルオクチル、2―ブチルデシル、2―ヘキシルオクチル、2―ヘキシルデシル、2―オクチルデシル、2―ヘキシルドデシル、2―オクチルドデシル、2―デシルテトラデシル、2―ドデシルヘキサデシル、2―ヘキサデシルオクタデシル、2―テトラデシルオクタデシル、モノメチル分枝―イソステアリル等が挙げられる。   Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, isopentyl, secondary pentyl, neopentyl, tertiary pentyl, hexyl, secondary hexyl, heptyl, 2 Secondary heptyl, octyl, 2-ethylhexyl, secondary octyl, nonyl, secondary nonyl, decyl, secondary decyl, undecyl, secondary undecyl, dodecyl, secondary dodecyl, tridecyl, isotridecyl, secondary tridecyl, tetradecyl, secondary tetradecyl Hexadecyl, secondary hexadecyl, stearyl, icosyl, docosyl, tetracosyl, triacontyl, 2-butyloctyl, 2-butyldecyl, 2-hexyloctyl, 2-hexyldecyl, 2-octyldecyl, 2-hexyldecyl, - octyldodecyl, 2-decyltetradecyl, 2-dodecyl-hexadecyl, 2-hexadecyl octadecyl, 2-tetradecyl-octadecyl, monomethyl branched - include isostearyl and the like.

アルケニル基としては、例えば、ビニル、アリル、プロペニル、ブテニル、イソブテニル、ペンテニル、イソペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、テトラデセニル、オレイル等が挙げられる。   Examples of the alkenyl group include vinyl, allyl, propenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, oleyl and the like.

アリール基としては、例えば、フェニル、トルイル、キシリル、クメニル、メシチル、ベンジル、フェネチル、スチリル、シンナミル、ベンズヒドリル、トリチル、エチルフェニル、プロピルフェニル、ブチルフェニル、ペンチルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ウンデシルフェニル、ドデシルフェニル、フェニルフェニル、ベンジルフェニル、スチレン化フェニル、p―クミルフェニル、α―ナフチル、β―ナフチル基等が挙げられる。   As an aryl group, for example, phenyl, toluyl, xylyl, cumenyl, mesityl, benzyl, phenethyl, styryl, cinnamyl, benzhydryl, trityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, Nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, phenylphenyl, benzylphenyl, styrenated phenyl, p-cumylphenyl, α-naphthyl, β-naphthyl group and the like can be mentioned.

シクロアルキル基、シクロアルケニル基としては、例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、メチルシクロペンチル、メチルシクロヘキシル、メチルシクロヘプチル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、メチルシクロペンテニル、メチルシクロヘキセニル、メチルシクロヘプテニル基等が挙げられる。   Examples of the cycloalkyl group and cycloalkenyl group include a cyclopentyl, cyclohexyl, cycloheptyl, methylcyclopentyl, methylcyclohexyl, methylcycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, methylcyclopentenyl, methylcyclohexenyl, methylcycloheptenyl group. Etc.

これらの中でも、R7、R8はアルキル基、アルケニル基が好ましく、アルキル基が更に好ましい。更に詳細には、R7、R8は互いに同一でも異なってもよい2級アミンが好ましい。また、炭素数があまりに少ないと、潤滑基油への溶解性が乏しくなり、あまりに炭素数が多いと、融点が高くなるとともに活性が低くなることから、R7、R8は炭素数6〜20のアルキル基が好ましく、炭素数8〜18のアルキル基が更に好ましく、炭素数10〜15のアルキル基が最も好ましい。 Among these, R 7 and R 8 are preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. More specifically, R 7 and R 8 are preferably secondary amines which may be the same or different from each other. If the carbon number is too small, the solubility in the lubricating base oil becomes poor. If the carbon number is too large, the melting point increases and the activity decreases, so R 7 and R 8 have 6 to 20 carbon atoms. Alkyl groups having 8 to 18 carbon atoms are more preferable, and alkyl groups having 10 to 15 carbon atoms are most preferable.

また、一般式(3)で表わされるアミン化合物と反応させる、5価又は6価のモリブデン化合物としては、例えば、三酸化モリブデン又はその水和物(MoO・nHO)、モリブデン酸(HMoO)、モリブデン酸アルカリ金属塩(MMoO)、モリブデン酸アンモニウム{(NHMoO又は(NH[Mo24]・4HO}、MoCl、MoOCl、MoOCl、MoOBr、MoCl等が挙げられるが、反応生成物である有機モリブデン酸アミン塩の収率を考慮すると、6価のモリブデン化合物が好ましい。6価のモリブデン化合物の中では、入手しやすい三酸化モリブデン又はその水和物、モリブデン酸、モリブデン酸アルカリ金属塩、モリブデン酸アンモニウム等が好ましく、三酸化モリブデン又はその水和物が更に好ましい。 Examples of the pentavalent or hexavalent molybdenum compound to be reacted with the amine compound represented by the general formula (3) include molybdenum trioxide or a hydrate thereof (MoO 3 .nH 2 O), molybdic acid (H 2 MoO 4 ), alkali metal molybdate (M 2 MoO 4 ), ammonium molybdate {(NH 4 ) 2 MoO 4 or (NH 4 ) 6 [Mo 7 O 24 ] · 4H 2 O}, MoCl 5 , MoOCl 4 , MoO 2 Cl 2 , MoO 2 Br 2 , Mo 2 O 3 Cl 6 and the like. In consideration of the yield of the organic molybdate amine salt which is a reaction product, a hexavalent molybdenum compound is preferable. Among the hexavalent molybdenum compounds, easily available molybdenum trioxide or hydrate thereof, molybdic acid, alkali metal molybdate, ammonium molybdate and the like are preferable, and molybdenum trioxide or hydrate thereof is more preferable.

一般式(3)で表わされるアミン化合物と、5価又は6価のモリブデン化合物との反応比は、アミン1モルに対して、モリブデン原子が0.5〜5モルの比であることが好ましい。モリブデン原子のモル比が0.5よりも少ない場合には、モリブデンと反応していない遊離のアミンが多く、5よりも多い場合には未反応のモリブデン化合物が多くなり、いずれの場合も反応精製物中の有機モリブデン酸アミン塩の濃度が低下するからである。更に好ましい反応比は、アミン1モルに対して、モリブデン原子が0.6〜4モルであり、最も好ましくは、0.9〜2.5モルである。   The reaction ratio between the amine compound represented by the general formula (3) and the pentavalent or hexavalent molybdenum compound is preferably a ratio of 0.5 to 5 mol of molybdenum atom with respect to 1 mol of amine. When the molar ratio of molybdenum atoms is less than 0.5, there are many free amines that have not reacted with molybdenum, and when there are more than 5, there are many unreacted molybdenum compounds. This is because the concentration of the organic molybdate amine salt in the product is lowered. A more preferable reaction ratio is 0.6 to 4 mol, most preferably 0.9 to 2.5 mol of molybdenum atom per mol of amine.

本発明の(C)成分である、有機モリブデン酸アミン塩の製造方法は、上記のアミン化合物と上記の5価又は6価のモリブデン化合物を、50〜120℃で1〜10時間、撹拌、混合すればよい。この時、溶媒を加えて反応することもできる。使用できる溶媒としては、例えば、ヘキサン、シクロヘキサン、オクタン、イソオクタン、ベンセン、トルエン、キシレン、テトラリン、デカリン、ミネラルスピリット、ノルマルパラフィン、イソパラフィン等の炭化水素系有機溶媒;エタノール、イソプロパノール、ブタノール、2−エチルヘキサノール、エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルコール;ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリフェニル、リン酸トリクレジル等の非プロトン性極性溶媒;ガソリン、軽油、灯油等の炭化水素系燃料油;鉱油、ポリブテン、アルキルベンゼン等の炭化水素系潤滑性基油等、そして水が挙げられる。これらの溶媒の中でも、水は反応を促進する効果があり、アミン化合物1モルに対して水を1〜5モル添加することが好ましく、1.5〜4モルであることが更に好ましく、1.8〜3モルであることが最も好ましい。   The method for producing an organomolybdate amine salt, which is the component (C) of the present invention, comprises stirring and mixing the above amine compound and the above pentavalent or hexavalent molybdenum compound at 50 to 120 ° C. for 1 to 10 hours. do it. At this time, the reaction can be carried out by adding a solvent. Examples of the solvent that can be used include hydrocarbon organic solvents such as hexane, cyclohexane, octane, isooctane, benzene, toluene, xylene, tetralin, decalin, mineral spirit, normal paraffin, and isoparaffin; ethanol, isopropanol, butanol, and 2-ethyl. Alcohols such as hexanol, ethylene glycol, diethylene glycol, propylene glycol; non-diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, triphenyl phosphate, tricresyl phosphate, etc. Protic polar solvent: hydrocarbons such as gasoline, light oil, kerosene Fuel oil; mineral oils, polybutenes, hydrocarbon lubricating base oil of alkylbenzene such as, and include water. Among these solvents, water has an effect of accelerating the reaction, and 1 to 5 mol of water is preferably added to 1 mol of the amine compound, more preferably 1.5 to 4 mol. Most preferably 8 to 3 moles.

反応終了後、過剰の水は、減圧脱水等の方法により除去される。その他の溶媒は、必要に応じて除去すればよい。例えば、炭化水素系潤滑性基油を用いた場合には、脱水終了後、炭化水素系潤滑性基油を除くことなく潤滑油添加剤等として使用することもできる。   After completion of the reaction, excess water is removed by a method such as vacuum dehydration. Other solvents may be removed as necessary. For example, when a hydrocarbon-based lubricating base oil is used, it can be used as a lubricating oil additive or the like without removing the hydrocarbon-based lubricating base oil after completion of dehydration.

次に、本発明の(D)成分について説明する。本発明の(D)成分は、アミン系酸化防止剤である。アミン系酸化防止剤としては、例えば、1―ナフチルアミン、フェニル―1―ナフチルアミン、p―オクチルフェニル―1―ナフチルアミン、p―ノニルフェニル―1―ナフチルアミン、p―ドデシルフェニル―1―ナフチルアミン、フェニル―2―ナフチルアミン等のナフチルアミン系酸化防止剤;N,N’―ジイソプロピル―p―フェニレンジアミン、N,N’―ジイソブチル―p―フェニレンジアミン、N,N’―ジフェニル―p―フェニレンジアミン、N,N’―ジ―β―ナフチル―p―フェニレンジアミン、N―フェニル―N’―イソプロピル―p―フェニレンジアミン、N―シクロヘキシル―N’―フェニル―p―フェニレンジアミン、N―1,3―ジメチルブチル―N’―フェニル―p―フェニレンジアミン、ジオクチル―p―フェニレンジアミン、フェニルヘキシル―p―フェニレンジアミン、フェニルオクチル―p―フェニレンジアミン等のフェニレンジアミン系酸化防止剤;ジピリジルアミン、ジフェニルアミン、p,p’―ジ―n―ブチルジフェニルアミン、p,p’―ジ―t―ブチルジフェニルアミン、p,p’―ジ―t―ペンチルジフェニルアミン、p,p’―ジオクチルジフェニルアミン、p,p’―ジノニルジフェニルアミン、p,p’―ジデシルジフェニルアミン、p,p’―ジドデシルジフェニルアミン、p,p’―ジスチリルジフェニルアミン、p,p’―ジメトキシジフェニルアミン、4,4’―ビス(4―α,α―ジメチルベンゾイル)ジフェニルアミン、p―イソプロポキシジフェニルアミン、ジピリジルアミン等のジフェニルアミン系酸化防止剤;フェノチアジン、N−メチルフェノチアジン、N−エチルフェノチアジン、3,7−ジオクチルフェノチアジン、フェノチアジンカルボン酸エステル、フェノセレナジン等のフェノチアジン系酸化防止剤が挙げられる。   Next, (D) component of this invention is demonstrated. The component (D) of the present invention is an amine antioxidant. Examples of amine-based antioxidants include 1-naphthylamine, phenyl-1-naphthylamine, p-octylphenyl-1-naphthylamine, p-nonylphenyl-1-naphthylamine, p-dodecylphenyl-1-naphthylamine, and phenyl-2. -Naphthylamine antioxidants such as naphthylamine; N, N'-diisopropyl-p-phenylenediamine, N, N'-diisobutyl-p-phenylenediamine, N, N'-diphenyl-p-phenylenediamine, N, N ' -Di-β-naphthyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, N-1,3-dimethylbutyl-N '-Phenyl-p-phenylenediamine, dioctyl-p Phenylenediamine antioxidants such as phenylenediamine, phenylhexyl-p-phenylenediamine, phenyloctyl-p-phenylenediamine; dipyridylamine, diphenylamine, p, p'-di-n-butyldiphenylamine, p, p'-di -T-butyldiphenylamine, p, p'-di-t-pentyldiphenylamine, p, p'-dioctyldiphenylamine, p, p'-dinonyldiphenylamine, p, p'-didecyldiphenylamine, p, p'-di Diphenylamines such as dodecyldiphenylamine, p, p'-distyryldiphenylamine, p, p'-dimethoxydiphenylamine, 4,4'-bis (4-α, α-dimethylbenzoyl) diphenylamine, p-isopropoxydiphenylamine, dipyridylamine Antioxidant; phenothiazine, N- methyl phenothiazine, N- ethylphenothiazine, 3,7-dioctylphenothiazine, phenothiazine carboxylate ester, phenothiazine-based antioxidants such as phenol Serena gin and the like.

これらの中でも、エンジン油の増粘を抑制する効果に優れていることから、ジフェニルアミン系酸化防止剤の使用が好ましい。   Among these, since it is excellent in the effect which suppresses the thickening of engine oil, use of a diphenylamine antioxidant is preferable.

本発明のエンジン油組成物において、(B)成分の含量は、モリブデン含量として50〜1500質量ppmであることが好ましく、350〜1500質量ppmであることがより好ましい。(B)成分のモリブデン含量が50質量ppm未満の場合、摩擦係数を低下させる性能に劣ったり、エンジン油の粘度が上昇したりする場合があり、1500質量ppmを超えると、潤滑基油へ溶解させることが困難になる場合や、酸化劣化時にスラッジが発生する場合がある。   In the engine oil composition of the present invention, the content of the component (B) is preferably 50 to 1500 mass ppm, more preferably 350 to 1500 mass ppm as the molybdenum content. When the molybdenum content of the component (B) is less than 50 mass ppm, the performance of reducing the friction coefficient may be inferior, or the viscosity of the engine oil may increase. If it exceeds 1500 mass ppm, it will dissolve in the lubricating base oil. In some cases, it may be difficult to cause sludge, or sludge may be generated during oxidative degradation.

(C)成分の含量は、モリブデン含量として50〜1500質量ppmであることが好ましく、100〜1000量ppmがより好ましく、100〜700質量ppmが更に好ましい。50質量ppm未満の場合、酸化劣化時にエンジン油の粘度が上昇する場合があり、1500質量ppmを超えると、潤滑基油へ溶解させることが困難になる場合や、酸化劣化時にスラッジが発生する場合がある。   The content of the component (C) is preferably 50 to 1500 mass ppm as molybdenum content, more preferably 100 to 1000 ppm by mass, and still more preferably 100 to 700 ppm by mass. If it is less than 50 mass ppm, the viscosity of the engine oil may increase during oxidative degradation. If it exceeds 1500 mass ppm, it may be difficult to dissolve in the lubricating base oil, or sludge may be generated during oxidative degradation. There is.

更に、(B)成分と(C)成分の合計量は、モリブデン含量として1500質量ppm以下であることが好ましい。1500質量ppmを超えると、潤滑基油へ溶解させることが困難になる場合や、スラッジが発生する場合がある。   Furthermore, the total amount of the component (B) and the component (C) is preferably 1500 ppm by mass or less as the molybdenum content. If it exceeds 1500 mass ppm, it may be difficult to dissolve in the lubricating base oil, or sludge may be generated.

(D)成分の含量は、0.1〜2質量%が好ましく、0.1〜1.5質量%がより好ましく、0.2〜1.0質量%が更に好ましく、0.2〜0.7質量%が最も好ましい。0.1質量%未満の場合は、酸化劣化時にエンジン油の粘度が上昇する場合があり、2質量%を超えると、添加量に見合う効果を得られない場合がある。   The content of component (D) is preferably 0.1 to 2% by mass, more preferably 0.1 to 1.5% by mass, still more preferably 0.2 to 1.0% by mass, and 0.2 to 0. 0%. 7% by mass is most preferred. If the amount is less than 0.1% by mass, the viscosity of the engine oil may increase during oxidative degradation. If the amount exceeds 2% by mass, an effect commensurate with the amount added may not be obtained.

本発明のエンジン油組成物全体のリン濃度は、(A)成分によるところが多いが、下記に記すその他の成分の中にはリン原子を含有するものもある。これらの成分を添加した場合、リン濃度は上昇するが、エンジン油組成物全体に対するリン濃度は500ppm以下が好ましい。また、本発明のエンジン油組成物全体の硫黄濃度は、3000ppm以下が好ましく、2500ppm以下がさらに好ましい。これらのリン濃度や硫黄濃度が好ましい範囲を超えると、排ガス触媒の活性低下が起こる場合がある。   The phosphorus concentration of the entire engine oil composition of the present invention is mostly due to the component (A), but some of the other components described below contain phosphorus atoms. When these components are added, the phosphorus concentration increases, but the phosphorus concentration relative to the entire engine oil composition is preferably 500 ppm or less. Moreover, 3000 ppm or less is preferable and, as for the sulfur concentration of the whole engine oil composition of this invention, 2500 ppm or less is more preferable. When these phosphorus concentration and sulfur concentration exceed the preferable ranges, the activity of the exhaust gas catalyst may be reduced.

リンや硫黄成分を過度に配合した従来のエンジン油組成物であれば、エンジン油組成物の劣化抑制、粘度上昇の抑制、長寿命、低摩擦効果等は基本的に可能である。本発明のエンジン油組成物は、極力リンと硫黄成分を低減したものである。こうした低リン低硫黄のエンジン油に、各種の添加剤を配合した場合は、従来のリンや硫黄成分を過度に配合したエンジン油組成物と違い、添加剤の示す挙動が大きく変わることが知られている。本発明のエンジン油組成物は、低リン低硫黄という今までと違う環境下において、劣化制御、粘度上昇の制御、長寿命、低摩擦効果を著しく向上することができるものである。   If it is the conventional engine oil composition which mix | blended phosphorus and the sulfur component excessively, the deterioration suppression of an engine oil composition, suppression of a viscosity rise, long life, a low friction effect, etc. are fundamentally possible. The engine oil composition of the present invention is one in which phosphorus and sulfur components are reduced as much as possible. It is known that when various additives are blended with these low phosphorus and low sulfur engine oils, the behavior of the additives changes significantly, unlike conventional engine oil compositions that contain excessive amounts of phosphorus and sulfur components. ing. The engine oil composition of the present invention can remarkably improve deterioration control, viscosity increase control, long life, and low friction effect under a different environment of low phosphorus and low sulfur.

更に、本発明のエンジン油組成物は、公知の潤滑油添加剤の添加を拒むものではなく、使用目的に応じて、フェノール系酸化防止剤、極圧剤、油性向上剤、清浄剤、分散剤、粘度指数向上剤、流動点降下剤、防錆剤、腐食防止剤、消泡剤などを本発明の効果を損なわない範囲で添加してもよい。但し、これらの中でリン系及び硫黄系の添加剤を使用する場合は、エンジン油中の総リン含量及び総硫黄含量が増えるので、その他のリン化合物や硫黄化合物は、出来ることであれば、なるべく使用しないことが好ましい。   Furthermore, the engine oil composition of the present invention does not refuse the addition of known lubricating oil additives, and phenolic antioxidants, extreme pressure agents, oiliness improvers, detergents, dispersants depending on the purpose of use. Further, a viscosity index improver, a pour point depressant, a rust inhibitor, a corrosion inhibitor, an antifoaming agent, and the like may be added as long as the effects of the present invention are not impaired. However, when using phosphorus-based and sulfur-based additives among these, the total phosphorus content and total sulfur content in the engine oil increase, so other phosphorus compounds and sulfur compounds can be used if possible. It is preferable not to use as much as possible.

フェノール系酸化防止剤としては、例えば、2,6―ジ―ターシャリブチルフェノール(以下、ターシャリブチルをt−ブチルと略記する。)、2,6―ジ―t−ブチル−p―クレゾール、2,6―ジ―t―ブチル―4―メチルフェノール、2,6―ジ―t―ブチル―4―エチルフェノール、2,6―ジ―t―ブチル―4―オクチルフェノール、2,4―ジメチル―6―t−ブチルフェノール、3−(4−ヒドロキシ−3,5−ジ―t−ブチルフェニル)プロピオン酸ドデシル、3−(4−ヒドロキシ−3,5−ジ―t−ブチルフェニル)プロピオン酸デシル、3−(4−ヒドロキシ−3,5−ジ―t−ブチルフェニル)プロピオン酸オクチル等が挙げられる。これらのフェノール系酸化防止剤の好ましい配合量は、基油に対して0.1〜1質量%である。   Examples of the phenolic antioxidant include 2,6-di-tert-butylphenol (hereinafter, tertiary butyl is abbreviated as t-butyl), 2,6-di-t-butyl-p-cresol, 2 , 6-Di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-octylphenol, 2,4-dimethyl-6 -T-butylphenol, 3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, decyl 3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, 3 -(4-Hydroxy-3,5-di-t-butylphenyl) propionate octyl and the like. The preferable compounding quantity of these phenolic antioxidants is 0.1-1 mass% with respect to base oil.

極圧剤としては、例えば、硫化油脂、オレフィンポリスルフィド、ジベンジルスルフィド等の硫黄系添加剤;モノオクチルフォスフェート、トリブチルフォスフェート、トリフェニルフォスファイト、トリブチルフォスファイト、チオリン酸エステル等のリン系化合物;チオリン酸金属塩、チオカルバミン酸金属塩、酸性リン酸エステル金属塩等の有機金属化合物などが挙げられる。これら極圧剤の好ましい配合量は、基油に対して0.01〜1質量%である。   Examples of extreme pressure agents include sulfur additives such as sulfurized fats and oils, olefin polysulfides, and dibenzyl sulfide; phosphorus compounds such as monooctyl phosphate, tributyl phosphate, triphenyl phosphite, tributyl phosphite, and thiophosphate An organic metal compound such as a thiophosphate metal salt, a thiocarbamic acid metal salt, and an acidic phosphate metal salt; A preferable blending amount of these extreme pressure agents is 0.01 to 1% by mass with respect to the base oil.

油性向上剤としては、例えば、オレイルアルコール、ステアリルアルコール等の高級アルコール類;オレイン酸、ステアリン酸等の脂肪酸類;オレイルグリセリンエステル、ステリルグリセリンエステル、ラウリルグリセリンエステル等のエステル類;ラウリルアミド、オレイルアミド、ステアリルアミド等のアミド類;ラウリルアミン、オレイルアミン、ステアリルアミン等のアミン類;ラウリルグリセリンエーテル、オレイルグリセリンエーテル等のエーテル類が挙げられる。これら油性向上剤の好ましい配合量は、基油に対して0.1〜5質量%である。   Examples of the oil improver include higher alcohols such as oleyl alcohol and stearyl alcohol; fatty acids such as oleic acid and stearic acid; esters such as oleyl glycerin ester, steryl glycerin ester and lauryl glycerin ester; lauryl amide and oleyl Amides such as amide and stearylamide; amines such as laurylamine, oleylamine and stearylamine; ethers such as laurylglycerol ether and oleylglycerol ether. The preferable compounding quantity of these oiliness improvers is 0.1-5 mass% with respect to base oil.

清浄剤としては、例えば、カルシウム、マグネシウム、バリウムなどのスルフォネート、フェネート、サリシレート、フォスフェート及びこれらの過塩基性塩が挙げられる。これらの中でもリン及び硫黄原子のないサリシレート系の清浄剤が好ましい。これらの清浄剤の配合量は、基油に対して0.5〜10質量%である。   Examples of the detergent include sulfonates such as calcium, magnesium, and barium, phenates, salicylates, phosphates, and overbased salts thereof. Of these, salicylate-based detergents having no phosphorus and sulfur atoms are preferred. The compounding quantity of these detergents is 0.5-10 mass% with respect to base oil.

分散剤としては、例えば、分子量約700〜3000のアルキル基またはアルケニル基が付加されたコハク酸イミド、コハク酸エステル、ベンジルアミン又はこれらのホウ素変性物等が挙げられる。これらの分散剤の好ましい配合量は、基油に対して0.5〜10質量%である。   Examples of the dispersant include succinimides, succinates, benzylamines, and boron-modified products thereof to which an alkyl group or alkenyl group having a molecular weight of about 700 to 3000 is added. A preferable blending amount of these dispersants is 0.5 to 10% by mass with respect to the base oil.

粘度指数向上剤としては、例えば、ポリ(C1〜18)アルキルメタクリレート、(C1〜18)アルキルアクリレート/(C1〜18)アルキルメタクリレート共重合体、ジエチルアミノエチルメタクリレート/(C1〜18)アルキルメタクリレート共重合体、エチレン/(C1〜18)アルキルメタクリレート共重合体、ポリイソブチレン、ポリアルキルスチレン、エチレン/プロピレン共重合体、スチレン/マレイン酸エステル共重合体、スチレン/イソプレン水素化共重合体等が挙げられる。あるいは、分散性能を付与した分散型もしくは多機能型粘度指数向上剤を用いてもよい。平均分子量は10,000〜1,500,000程度である。これらの粘度指数向上剤の好ましい配合量は、基油に対して0.1〜20質量%である。   Examples of the viscosity index improver include poly (C1-18) alkyl methacrylate, (C1-18) alkyl acrylate / (C1-18) alkyl methacrylate copolymer, diethylaminoethyl methacrylate / (C1-18) alkyl methacrylate copolymer. Polymers, ethylene / (C1-18) alkyl methacrylate copolymers, polyisobutylene, polyalkylstyrene, ethylene / propylene copolymers, styrene / maleic ester copolymers, styrene / isoprene hydrogenated copolymers, and the like. . Alternatively, a dispersion-type or multifunctional viscosity index improver imparted with dispersion performance may be used. The average molecular weight is about 10,000 to 1,500,000. A preferable blending amount of these viscosity index improvers is 0.1 to 20% by mass with respect to the base oil.

流動点降下剤としては、例えば、ポリアルキルメタクリレート、ポリアルキルアクリレート、ポリアルキルスチレン、ポリビニルアセテート等が挙げられ、平均分子量は1000〜100,000である。これらの流動点降下剤の好ましい配合量は、基油に対して0.005〜3質量%である。   Examples of the pour point depressant include polyalkyl methacrylate, polyalkyl acrylate, polyalkyl styrene, polyvinyl acetate and the like, and the average molecular weight is 1000 to 100,000. A preferable blending amount of these pour point depressants is 0.005 to 3% by mass with respect to the base oil.

防錆剤としては、例えば、亜硝酸ナトリウム、酸化パラフィンワックスカルシウム塩、酸化パラフィンワックスマグネシウム塩、牛脂脂肪酸アルカリ金属塩、アルカリ土類金属塩又はアミン塩、アルケニルコハク酸又はアルケニルコハク酸ハーフエステル(アルケニル基の分子量は100〜300程度)、ソルビタンモノエステル、ノニルフェノールエトキシレート、ラノリン脂肪酸カルシウム塩等が挙げられる。これらの防錆剤の好ましい配合量は、基油に対して0.01〜3質量%である。   Examples of the rust preventive include sodium nitrite, oxidized paraffin wax calcium salt, oxidized paraffin wax magnesium salt, beef tallow fatty acid alkali metal salt, alkaline earth metal salt or amine salt, alkenyl succinic acid or alkenyl succinic acid half ester (alkenyl The molecular weight of the group is about 100 to 300), sorbitan monoester, nonylphenol ethoxylate, lanolin fatty acid calcium salt and the like. The preferable compounding quantity of these rust preventives is 0.01-3 mass% with respect to base oil.

腐食防止剤としては、例えば、ベンゾトリアゾール ベンゾイミダゾール ベンゾチアゾール テトラアルキルチウラムジサルファイド等が挙げられる。これら腐食防止剤の好ましい配合量は、基油に対して0.01〜3質量%である。   Examples of the corrosion inhibitor include benzotriazole, benzimidazole, benzothiazole, tetraalkylthiuram disulfide, and the like. The preferable compounding quantity of these corrosion inhibitors is 0.01-3 mass% with respect to base oil.

消泡剤としては、例えば、ポリジメチルシリコーン、トリフルオロプロピルメチルシリコーン、コロイダルシリカ、ポリアルキルアクリレート、ポリアルキルメタクリレート、アルコールエトキシ/プロポキシレート、脂肪酸エトキシ/プロポキシレート、ソルビタン部分脂肪酸エステル等が挙げられる。これらの消泡剤の好ましい配合量は、基油に対して0.001〜0.1質量%である。   Examples of the antifoaming agent include polydimethyl silicone, trifluoropropylmethyl silicone, colloidal silica, polyalkyl acrylate, polyalkyl methacrylate, alcohol ethoxy / propoxylate, fatty acid ethoxy / propoxylate, sorbitan partial fatty acid ester and the like. The preferable compounding quantity of these antifoaming agents is 0.001-0.1 mass% with respect to base oil.

本発明のエンジン油組成物は、ガソリンエンジン、ディーゼルエンジン、ジェットエンジン等の内燃機関用の潤滑油として使用できる。中でもガソリンエンジン用の潤滑油として好適に使用することができる。   The engine oil composition of the present invention can be used as a lubricating oil for internal combustion engines such as gasoline engines, diesel engines, and jet engines. Among them, it can be suitably used as a lubricating oil for gasoline engines.

以下、実施例により本発明の潤滑油組成物を詳細に説明する。尚、以下の実施例中、%は特に記載が無い限り質量基準である。   Hereinafter, the lubricating oil composition of the present invention will be described in detail by way of examples. In the following examples,% is based on mass unless otherwise specified.

まず、基油として下記性状の鉱物油を使用し、各種添加剤を添加した基準油を作り、それに本発明の潤滑剤を添加して試験を行った。基油の性状及び、試験に使用した各成分及び配合量は以下のとおりである。   First, a mineral oil having the following properties was used as a base oil, a reference oil to which various additives were added was prepared, and the lubricant of the present invention was added thereto for testing. The properties of the base oil and the components and blending amounts used in the test are as follows.

<基油>
鉱油系高度VI油。動粘度4.1mm/s(100℃)、18.3mm/s(40℃)、粘度指数(VI)=126、硫黄含量80ppm
<基準油配合表>
基油 100質量部
メタクリレート系粘度指数向上剤 3.5質量部
コハク酸イミド系分散剤 5.0質量部
サリシレート系清浄剤 2.5質量部
<Base oil>
Mineral oil based advanced VI oil. Kinematic viscosity 4.1mm 2 /s(100℃),18.3mm 2 / s (40 ℃), viscosity index (VI) = 126, sulfur content 80ppm
<Reference oil recipe>
Base oil 100 parts by weight Methacrylate viscosity index improver 3.5 parts by weight Succinimide dispersant 5.0 parts by weight Salicylate detergent 2.5 parts by weight

<A成分>
(A−1) R1=2−オクチル、R2=2−オクチルの亜鉛ジチオホスフェート リン含量7.8%
(A−2) R1=n−ブチル、R2=1−オクチルの亜鉛ジチオホスフェート リン含量8.2%
<A component>
(A-1) R 1 = 2-octyl, R 2 = 2-octyl zinc dithiophosphate Phosphorus content 7.8%
(A-2) zinc dithiophosphate phosphorus content of R 1 = n-butyl, R 2 = 1-octyl 8.2%

<B成分>
(B−1) 一般式(2)においてR〜Rが2−エチルヘキシル基であり、
1及びX2が硫黄原子、X3及びX4が酸素原子であるMoDTC
モリブデン含量20.9%
(B−2) 一般式(2)においてR及びRが2−エチルヘキシル基であり、
及びRがイソトリデシル基であり、X1及びX2が硫黄原子、
3及びX4が酸素原子であるMoDTC
モリブデン含量18.1%
<B component>
(B-1) In the general formula (2), R 3 to R 6 are 2-ethylhexyl groups,
MoDTC in which X 1 and X 2 are sulfur atoms, and X 3 and X 4 are oxygen atoms
Molybdenum content 20.9%
(B-2) In the general formula (2), R 3 and R 4 are 2-ethylhexyl groups,
R 5 and R 6 are isotridecyl groups, X 1 and X 2 are sulfur atoms,
MoDTC in which X 3 and X 4 are oxygen atoms
Molybdenum content 18.1%

<C成分>
(C−1)
攪拌機、滴下ロート、温度計及び窒素導入管を備えたガラス製反応容器に、三酸化モリブデン1モル及び水540gを仕込み、窒素気流下で攪拌して三酸化モリブデンを分散させた。この後、窒素気流下で50〜60℃に保ちつつ1.0モルの、ジ−n−オクチルアミンを1時間かけて滴下し、更に1時間同温度で熟成した後、攪拌を停止して静置し目視したところ、水中に分散していた三酸化モリブデン粉末は消失しており、反応液は水層と油層からなる2層に分離していた。この後、水層を分離し、油層を100℃で1.4kPa以下に減圧して水分を除去して、淡青色オイル状のC−1を得た。また、C−1のIR分析では、三酸化モリブデン由来の990cm−1付近の吸収が消失していることから、原料の三酸化モリブデンが完全に反応していることを確認した。モリブデン含量23.8%
(C−2)
C−1のジ−n−オクチルアミンに代えて、1.0モルのモノ牛脂由来アルキルアミンを使用した以外はMoAm1と同様にしてC−2を得た。C−2をIR分析することにより、原料の三酸化モリブデンが完全に反応していることを確認した。モリブデン含量22.4%
<C component>
(C-1)
A glass reaction vessel equipped with a stirrer, a dropping funnel, a thermometer, and a nitrogen introduction tube was charged with 1 mol of molybdenum trioxide and 540 g of water, and stirred under a nitrogen stream to disperse the molybdenum trioxide. Thereafter, 1.0 mol of di-n-octylamine was added dropwise over 1 hour while maintaining the temperature at 50 to 60 ° C. under a nitrogen stream, and the mixture was further aged at the same temperature for 1 hour. When placed and visually observed, the molybdenum trioxide powder dispersed in water disappeared, and the reaction solution was separated into two layers consisting of an aqueous layer and an oil layer. Thereafter, the water layer was separated, and the oil layer was depressurized to 100 kPa or lower to 1.4 kPa or less to remove moisture, thereby obtaining pale blue oily C-1. Moreover, in the IR analysis of C-1, since absorption near 990 cm −1 derived from molybdenum trioxide disappeared, it was confirmed that the raw material molybdenum trioxide was completely reacted. Molybdenum content 23.8%
(C-2)
C-2 was obtained in the same manner as MoAm1 except that 1.0 mol of mono-beef tallow-derived alkylamine was used instead of C-1 di-n-octylamine. IR analysis of C-2 confirmed that the raw material molybdenum trioxide was completely reacted. Molybdenum content 22.4%

<D成分>
(D−1) p,p’―ジドデシルジフェニルアミン
(D−2) フェニルオクチル―p―フェニレンジアミン
<D component>
(D-1) p, p'-didodecyldiphenylamine (D-2) phenyloctyl-p-phenylenediamine

<その他成分>
(E−1) 3−(4−ヒドロキシ−3,5−ジ―t−ブチルフェニル)プロピオン酸
オクチル
<Other ingredients>
(E-1) 3- (4-Hydroxy-3,5-di-t-butylphenyl) propionic acid
Octyl

Figure 0004718159
(カッコ内は配合量で単位は質量%、下段はそれぞれの添加剤の組成物全体に対するリン又はモリブデン量)
Figure 0004718159
(The amount in parentheses is the amount, the unit is mass%, the lower row is the amount of phosphorus or molybdenum with respect to the total composition of each additive)

表1に示した組成物は以下の方法で試験を行った。
<試験油の劣化試験>
表1に示した組成物を、JIS K−2514(潤滑油−酸化安定度試験方法)に準拠して、触媒として銅板と鉄板を入れたガラス容器に試料250mlを入れ、1300rpmで空気を巻き込むよう攪拌しながら、165.5℃で168時間加熱することにより、試験油を酸化劣化させた。劣化試験前及び試験後の試験油について、動粘度(40℃)を測定した。その結果から、粘度比(劣化後の動粘度を劣化前の動粘度で割った値)が小さいものほど、劣化しても粘度が上がらないことを示す。また、劣化後の試験油をろ紙でろ過し、ヘキサンでよく洗浄したあと乾燥して、スラッジの重量を測定した。
The composition shown in Table 1 was tested by the following method.
<Degradation test of test oil>
In accordance with JIS K-2514 (lubricating oil-oxidation stability test method), 250 ml of the sample shown in Table 1 is placed in a glass container containing a copper plate and an iron plate as a catalyst, and air is introduced at 1300 rpm. The test oil was oxidized and deteriorated by heating at 165.5 ° C. for 168 hours with stirring. Kinematic viscosity (40 ° C.) was measured for the test oil before and after the deterioration test. From the results, it is shown that the smaller the viscosity ratio (the value obtained by dividing the deteriorated kinematic viscosity by the kinematic viscosity before deterioration), the viscosity does not increase even when deteriorated. Moreover, the test oil after deterioration was filtered with a filter paper, washed thoroughly with hexane and dried, and the weight of sludge was measured.

<潤滑性能試験>
本発明品及び比較品の潤滑性組成物(新油)を用いて、シェル式高速四球試験機にて、荷重30kg、室温、回転数1,500rpm、時間10分間の条件で、平均摩擦係数及びボールの摩耗痕径を測定した。
<Lubrication performance test>
Using the lubricating composition (new oil) of the product of the present invention and the comparative product, the average friction coefficient and the conditions under a load of 30 kg, room temperature, rotation speed of 1,500 rpm, and time of 10 minutes using a shell type high-speed four-ball tester The wear scar diameter of the ball was measured.

Figure 0004718159
Figure 0004718159

スラッジ量については0.1g未満であれば良好な酸化安定性があると判断できるので、本発明品は全て良好な酸化安定性を有していることがわかる。また、平均摩擦係数は0.1以下であれば低摩擦エンジンオイルと呼ばれることから、本発明品は全て低摩擦性能を有していることがわかる。更に、磨耗痕は0.3mm未満であれば良好な耐磨耗性を示しているといえるので、本発明品は全て良好な耐摩耗性を有していることがわかる。そして、本発明品の劣化後の粘度については明らかに上昇が抑えられている。以上の結果から本発明のエンジン油組成物は、酸化安定性、低摩擦性、及び耐磨耗性が良好で、劣化してもオイルの粘度が上昇しないエンジンオイルであることが確認された。   If the amount of sludge is less than 0.1 g, it can be judged that there is good oxidation stability, so it can be seen that all the products of the present invention have good oxidation stability. In addition, if the average coefficient of friction is 0.1 or less, it is called a low friction engine oil. Therefore, it can be seen that all the products of the present invention have low friction performance. Furthermore, it can be said that if the wear scar is less than 0.3 mm, it shows good wear resistance, so that all the products of the present invention have good wear resistance. And as for the viscosity after degradation of the product of the present invention, an increase is clearly suppressed. From the above results, it was confirmed that the engine oil composition of the present invention is an engine oil that has good oxidation stability, low friction properties, and wear resistance, and does not increase in viscosity even when deteriorated.

Claims (7)

エンジン油組成物全体に対し、
(A)成分として下記の一般式(1)
Figure 0004718159
(式中、R及びRは炭化水素基を表わし、aは0〜1/3の数を表わす。)
で表わされる亜鉛ジチオホスフェートをリン含量として100〜500質量ppm、
(B)成分として、下記の一般式(2)
Figure 0004718159
(式中、R〜Rは炭化水素基を表わし、X〜Xは硫黄原子又は酸素原子を表わす。)で表わされる硫化(オキシ)モリブデンジチオカーバメートをモリブデン含量として50〜1500ppm、
(C)成分として、下記の一般式(3)
Figure 0004718159
(式中、R 7 及びR 8 は水素原子又は炭化水素基を表わすが、同時に水素原子であることは無い。)で表されるアミンと、5価又は6価のモリブデン原子を有する化合物との反応物である有機モリブデン化合物をモリブデン含量として50〜1500ppm、および
(D)成分として、アミン系酸化防止剤を含有するエンジン油組成物。
For the whole engine oil composition,
As the component (A), the following general formula (1)
Figure 0004718159
(In the formula, R 1 and R 2 represent a hydrocarbon group, and a represents a number of 0 to 1/3.)
100-500 mass ppm as a phosphorus content zinc dithiophosphate represented by
As the component (B), the following general formula (2)
Figure 0004718159
(Wherein R 3 to R 6 represent a hydrocarbon group, and X 1 to X 4 represent a sulfur atom or an oxygen atom) 50 to 1500 ppm in terms of molybdenum content of sulfurized (oxy) molybdenum dithiocarbamate represented by
As the component (C), the following general formula (3)
Figure 0004718159
(Wherein R 7 and R 8 represent a hydrogen atom or a hydrocarbon group, but are not simultaneously a hydrogen atom) and a compound having a pentavalent or hexavalent molybdenum atom An engine oil composition comprising an organic molybdenum compound as a reactant in a molybdenum content of 50 to 1500 ppm, and an amine-based antioxidant as a component (D).
前記エンジン油組成物全体のリン濃度が500ppm以下であることを特徴とする請求項1記載のエンジン油組成物。   The engine oil composition according to claim 1, wherein the phosphorus concentration of the entire engine oil composition is 500 ppm or less. 前記エンジン油組成物全体の硫黄濃度が3000ppm以下であることを特徴とする請求項1または2記載のエンジン油組成物。   The engine oil composition according to claim 1 or 2, wherein a sulfur concentration of the whole engine oil composition is 3000 ppm or less. (D)成分がジフェニルアミン系酸化防止剤であることを特徴とする、請求項1〜のいずれかに記載のエンジン油組成物。 (D), wherein the component is a diphenylamine-based antioxidant, an engine oil composition according to any one of claims 1-3. (C)成分がモリブデン含量として50〜500ppmであり、(B)成分と(C)成分の合計のモリブデン含量が1500ppm以下であることを特徴とする、請求項1〜のいずれかに記載のエンジン油組成物。 A 50~500ppm as the component (C) is molybdenum content, (B), wherein the component and (C) a total molybdenum content of components is less than 1500 ppm, of any of claims 1-4 Engine oil composition. 前記エンジン油組成物に対して、(D)成分が0.1〜2.0質量%であることを特徴とする、請求項1〜のいずれかに記載のエンジン油組成物。 The engine oil composition according to any one of claims 1 to 5 , wherein the component (D) is 0.1 to 2.0 mass% with respect to the engine oil composition. フェノール系酸化防止剤、極圧剤、油性向上剤、清浄剤、分散剤、粘度指数向上剤、流動点降下剤、防錆剤、腐食防止剤及び消泡剤からなる群から選択される1種または2種以上を含有することを特徴とする、請求項1〜のいずれかに記載のエンジン油組成物。 One selected from the group consisting of phenolic antioxidants, extreme pressure agents, oiliness improvers, detergents, dispersants, viscosity index improvers, pour point depressants, rust inhibitors, corrosion inhibitors and antifoaming agents Or the engine oil composition in any one of Claims 1-6 characterized by containing 2 or more types.
JP2004322597A 2004-11-05 2004-11-05 Engine oil composition Active JP4718159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322597A JP4718159B2 (en) 2004-11-05 2004-11-05 Engine oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322597A JP4718159B2 (en) 2004-11-05 2004-11-05 Engine oil composition

Publications (2)

Publication Number Publication Date
JP2006131766A JP2006131766A (en) 2006-05-25
JP4718159B2 true JP4718159B2 (en) 2011-07-06

Family

ID=36725601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322597A Active JP4718159B2 (en) 2004-11-05 2004-11-05 Engine oil composition

Country Status (1)

Country Link
JP (1) JP4718159B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090163392A1 (en) * 2007-12-20 2009-06-25 Boffa Alexander B Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate
JP5373300B2 (en) * 2008-03-10 2013-12-18 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5764556B2 (en) * 2010-06-15 2015-08-19 株式会社Adeka Lubricating oil composition for internal combustion engines
CN103710116B (en) * 2013-12-27 2015-07-22 杨毅 Coating material for preventing engine crankshaft from being locked, and preparation method and application method of coating material
JP6296503B2 (en) * 2014-09-05 2018-03-20 株式会社Adeka Method for increasing self-ignition point of engine oil of direct injection engine with supercharger, and self-ignition point increasing agent for engine oil of the same engine
WO2018109125A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176579A (en) * 1994-12-27 1996-07-09 Asahi Denka Kogyo Kk Lubricating oil composition
JPH0931483A (en) * 1995-07-20 1997-02-04 Tonen Corp Lubricant composition
JPH0953088A (en) * 1995-08-09 1997-02-25 Asahi Denka Kogyo Kk Lube oil composition
JPH0959662A (en) * 1995-08-23 1997-03-04 Asahi Denka Kogyo Kk Lubricant composition
JP2002060776A (en) * 2000-08-22 2002-02-26 Idemitsu Kosan Co Ltd Lubricant oil composition for diesel engine with device for removing diesel fine particle
JP2004051758A (en) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk Lubricating oil composition based on mineral oil having high sulfur content
JP2004131742A (en) * 2000-06-02 2004-04-30 Chevron Texaco Japan Ltd Lubricating oil composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176579A (en) * 1994-12-27 1996-07-09 Asahi Denka Kogyo Kk Lubricating oil composition
JPH0931483A (en) * 1995-07-20 1997-02-04 Tonen Corp Lubricant composition
JPH0953088A (en) * 1995-08-09 1997-02-25 Asahi Denka Kogyo Kk Lube oil composition
JPH0959662A (en) * 1995-08-23 1997-03-04 Asahi Denka Kogyo Kk Lubricant composition
JP2004131742A (en) * 2000-06-02 2004-04-30 Chevron Texaco Japan Ltd Lubricating oil composition
JP2002060776A (en) * 2000-08-22 2002-02-26 Idemitsu Kosan Co Ltd Lubricant oil composition for diesel engine with device for removing diesel fine particle
JP2004051758A (en) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk Lubricating oil composition based on mineral oil having high sulfur content

Also Published As

Publication number Publication date
JP2006131766A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
US7615520B2 (en) Additives and lubricant formulations for improved antioxidant properties
JP5344540B2 (en) Lubricants with increased protection against wear and corrosion
JP5646295B2 (en) Lubricating oil and lubricating oil composition
JP5405483B2 (en) Additive composition comprising Michael adduct of N-substituted phenylenediamine
JP5457388B2 (en) Lubricating oil composition for improving engine performance
JP5543607B2 (en) Lubricating and lubricating oil compositions
JP5390092B2 (en) Lubricating oil with enhanced piston cleanliness
US10227546B2 (en) Multifunctional molybdenum containing compounds, method of making and using, and lubricating oil compositions containing same
WO2008029756A1 (en) Lubricant composition for internal combustion engine
KR102649415B1 (en) Lubricating oil composition
JP2010242085A (en) Lubricating oil composition
CN102952609A (en) Lubricant compositions containing a functionalized dispersant
JP5973301B2 (en) Lubricating oil composition
WO2011158595A1 (en) Lubricant composition for internal combustion engines
JP5829823B2 (en) Morpholine derivative as ashless TBN source and lubricating oil composition containing the same
JP2014019873A (en) Lubricating oil compositions containing sterically hindered amines as ashless tbn sources
SG181268A1 (en) A lubricating oil composition
JP2007153946A (en) Friction-reducing agent and lubricating oil composition
KR102375204B1 (en) Lubricating oil compositions
JP4718159B2 (en) Engine oil composition
CN1990840B (en) Lubricating oil compositions
CA2735524A1 (en) A lubricating oil composition
JP2012041536A (en) Egr-equipped diesel engine and lubricating oil composition
JP4559115B2 (en) Engine oil composition
JP3719534B2 (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R151 Written notification of patent or utility model registration

Ref document number: 4718159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3