JP4711497B2 - β-glucan extraction promoter - Google Patents

β-glucan extraction promoter Download PDF

Info

Publication number
JP4711497B2
JP4711497B2 JP2000295660A JP2000295660A JP4711497B2 JP 4711497 B2 JP4711497 B2 JP 4711497B2 JP 2000295660 A JP2000295660 A JP 2000295660A JP 2000295660 A JP2000295660 A JP 2000295660A JP 4711497 B2 JP4711497 B2 JP 4711497B2
Authority
JP
Japan
Prior art keywords
glucan
extraction
molecular weight
water
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000295660A
Other languages
Japanese (ja)
Other versions
JP2002105103A (en
Inventor
和文 椿
宏 杉山
義和 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2000295660A priority Critical patent/JP4711497B2/en
Publication of JP2002105103A publication Critical patent/JP2002105103A/en
Application granted granted Critical
Publication of JP4711497B2 publication Critical patent/JP4711497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、穀類等のβグルカン含有物から、水溶性βグルカンを効率よく抽出するためのβグルカン抽出促進剤に関する。
【0002】
【従来の技術】
国民栄養調査によると、我が国における国民1人あたりの食物繊維摂取量は、年々減少傾向にあり、食物繊維は、不足している栄養素に数えられ、積極的な摂取が推奨されている。食物繊維は、水への溶解性の違いから水溶性と不溶性の2つに分類される。不溶性食物繊維は、便容積の増加、腸内容物の通過時間の短縮、腸内圧、腹圧の低下があり、その結果、便秘、大腸ガン等各種大腸疾患の予防、治療効果があるとされる。一方、水溶性食物繊維は、消化管活動の活性化、食事成分、特に糖類や脂肪の消化吸収性の低下、消化管を循環する胆汁酸の吸着排出、消化管内での通過時間の遅延と大腸内で発酵しやすい点に特徴があり、その結果、その摂取によって便秘、大腸疾患、肥満、糖尿病、高脂血症等の予防、治療効果があるとされる。また、水溶性食物繊維の中には、免疫増強作用に優れたものがあり、抗腫瘍剤や抗ガン剤、インフルエンザ予防、その他感染症予防に役立つものがある。
【0003】
上記のように不溶性食物繊維と水溶性食物繊維はそれぞれ異なる機能を有しており、両者のバランスよい摂取が望まれている。水溶性食物繊維を多く含む食品として、海草類のアルギン酸ナトリウム、カラギーナン、穀類では、トウモロコシ外皮や小麦フスマのヘミセルロース、大麦やオーツ麦のβグルカン、微生物類(微生物の細胞壁や胆子菌きのこの菌糸体や子実体)のβグルカンが知られている。大麦やオーツ麦のβグルカンは、血清コレステロールの低下、血清インスリン濃度の低下による血糖値上昇抑制効果等の生理作用が特に強く、FDAにおいてもその摂取が心臓疾患などの生活習慣病のリスクを低減する素材として認められるに至っている。また、大麦あるいは微生物類のβグルカンは、免疫増強活性に優れていることが知られている。
【0004】
近年、我が国の食生活は、欧米諸外国と類似してきたのと同時に、グルメ志向、おいしさ追求のあまり、食品から食物繊維をなるべく除外するようになった。その結果、食物繊維の摂取量が減少し、現在の食物繊維の摂取不足を招くに至っている。また、味噌や納豆のような発酵食品の摂取量が減少、抗生物質の多用による微生物菌相の変化、環境からの微生物の排除等により、病原菌を含めた微生物全体に対して接触する機会が減少した。その結果、感染症に罹患する機会が減少したが、同時に免疫力の低下を招いて、自己免疫疾患やアレルギー、発ガン率等が増加傾向にある。そこで、生活習慣病や免疫力の維持・増強のためには、食品のおいしさを損ねず、食物繊維や免疫増強作用のある多糖体の摂取量を増加させることが必要となっている。このような状況の中で、食品素材より抽出・単離された水溶性食物繊維を他の食品あるいは加工食品に添加する方法が、食物繊維や多糖体の摂取量を増加させる1つの方法として非常に期待されている。
【0005】
大麦やオーツ麦由来の水溶性食物繊維は、その主成分がβグルカンであり、このような穀類由来のβグルカンは、でんぷん・脂質・蛋白質との相和性がきわめてよく、加工食品に対する添加剤として優れていることが知られている。しかし、大麦やオーツ麦、水溶性βグルカン以外の成分を多量に含んでいるため、そのまま食品に添加すると、食品の食感を損ね、あるいは小麦加工食品においては、製パン性等の加工適性を損ねることが一般的に指摘されている。そこで、これらβグルカンを含む食品から水溶性の食物繊維を濃縮あるいは単離して利用する方法が有効とされ、大麦あるいはオーツ麦に含まれる食物繊維であるβグルカンを抽出する方法が知られている。
【0006】
穀類から高分子量のβグルカンを得る方法としては、例えば、多ろう質大麦を原料とし、水抽出により製造する方法(特公平4−11197号公報)、あるいは、大麦、オーツ麦を原料として、アルカリ抽出、中和、アルコール沈殿により、重量平均分子量10万〜100万のβグルカンを得る方法(特公平6−83652号公報)、搗精歩留まり82%以下の大麦糠類を原料として、80〜90℃の熱水にてβグルカンを抽出する方法(特開平11−225706号公報)等が知られている。大麦のβグルカンは、麦粒の細胞壁を構成している多糖類の1種であり、分子量は、250万ともいわれている。抽出過程でβグルカンは、低分子化するが、通常、上記のような熱水抽出あるいはアルカリ性水溶液下では、比較的高分子量のβグルカンが得られる(分子量10万以上)。これら抽出されたβグルカンは、高分子量であるがゆえ、水溶液は高粘性を示す。また、乾燥物を水に再可溶させるのに時間がかかり、高濃度に溶解させることも困難であるという欠点がある。
【0007】
これらの欠点は、βグルカンを低分子化することで、改良できることが知られている。大麦粉砕物を温水で抽出することで、低分子化したβグルカンを得る方法が、WO98/13056号公報に記載されている。しかし、この公報記載の抽出温度、抽出時間を用いた方法では、必ずしも、低分子化したβグルカンを得ることはできず、公報記載の方法は、大麦原料に依存して大きく異なり、多くの大麦原料に適応できる方法でない、極めて限られたものであった。従って、作業性がよく水への溶解性に優れた、分子量10万以下に低分子化されたβグルカンを安定して効率よく得る方法は、これまでに知られておらず、その方法の開発が望まれていた。
【0008】
【発明が解決しようとする課題】
従って、本発明の目的は、穀類等のβグルカン含有物から、水溶性βグルカンを効率よく抽出するためのβグルカン抽出促進剤を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、大麦糠、大麦糠抽出物、米糠抽出物又は麦芽抽出物の何れかであるイネ科植物由来物からなる、大麦粉砕物又はオーツ麦粉砕物の何れかであるβグルカン含有物から水溶性βグルカンを抽出するためのβグルカン抽出促進剤を提供することにより、上記目的を達成したものである。
【0010】
【発明の実施の形態】
本発明は、水溶性食物繊維として多くの生理機能を持つβグルカンを効率よく抽出するためのβグルカン抽出促進剤、さらに詳しくは、分子量10万以下に低分子化されたβグルカンを効率よく安定に抽出するためのβグルカン抽出促進剤である。以下に本発明についてさらに詳しく説明する。
【0011】
本発明のβグルカン抽出促進剤とは、βグルカン含有物から、水、冷水、温水、熱水、各種溶剤等を用いて水溶性βグルカンを抽出する場合に、水溶性βグルカンを効率よくかつ純度よく抽出することができるβグルカン抽出促進剤である。
【0012】
本発明において水溶性βグルカンとは、グルコースを主成分とする重合体であり、分子内に1,2 、1,3 、1,4 、1,6-β-Dグルコース 結合を少なくとも1種類以上有するものをいい、分子量10万以下のβグルカン及び、分子量10万以下のβグルカンを主成分として水に溶解するβグルカンのことをいう。
【0013】
本発明のβグルカン抽出促進剤は、イネ科植物由来物である。イネ科植物由来物としては、大麦糠、大麦糠抽出物、米糠抽出物又は麦芽抽出物が挙げられる。
【0014】
本発明でいう糠とは、穀類の粒を外周部から連続して搗精したときの糠のことをいい、外周部から連続して30重量%以内まで搗精したときの糠、いわゆる搗精歩留まり70重量%以内の糠が好ましく、外周部から連続して20重量%以内まで搗精したときの糠、いわゆる搗精歩留まり80重量%以内の糠がより好ましく、外周部から連続して18重量%以内まで搗精したときの糠、いわゆる搗精歩留まり82重量%以内の糠がさらに好ましい。また、糠抽出物は、外周部から連続して30重量%以内まで搗精したときの糠、いわゆる搗精歩留まり70重量%以内の糠から抽出したものが好ましく、外周部から連続して20重量%以内まで搗精したときの糠、いわゆる搗精歩留まり80重量%以内の糠から抽出したものがより好ましく、外周部から連続して18重量%以内まで搗精したときの糠、いわゆる搗精歩留まり82重量%以内の糠から抽出したものがさらに好ましい。
【0016】
本発明のβグルカン抽出促進剤である糠抽出物の製造方法は、糠100重量部に温水200〜10000重量部、好ましくは300〜5000重量部、さらに好ましくは400〜1000重量部を加え、0.1〜12時間、好ましくは0.2〜6時間、さらに好ましくは0.5〜2時間、撹拌しながら抽出するのが望ましい。糠は、脱脂されたものであってもかまわない。抽出後の糠―温水の混合物は、遠心分離、濾過分離、膜分離、自然沈降等、固液分離方法として知られる任意の方法で固液分離し、糠抽出物(糠抽出液)を得ることができる。ここで抽出に用いる温水とは、温度80℃以下4℃以上の抽出用水であり、好ましくは70℃以下5℃以上、さらに好ましくは60℃以下10℃以上がよい。抽出用水は、水道水、地下水、井戸水等、食品衛生上問題なく、食品製造に使用可能であればいずれも使用できる。抽出用水のpHは、中性付近がよく、pH10〜pH4、好ましくはpH9〜pH5、さらに好ましくはpH8〜pH6がよい。抽出用水には、糠抽出物の安定性を保持するため、必要に応じて塩類、酸・アルカリ類を添加して用いることができる。
【0017】
上記方法で得られた糠抽出物(糠抽出液)は、水溶液であり、これは、膜濃縮法、凍結濃縮法、減圧濃縮法、塩析沈殿法、有機溶媒沈殿法等、液体の濃縮方法として知られる任意の方法で濃縮し、糠抽出物濃縮物を得ることができる。また、糠抽出物、あるいは、糠抽出物濃縮物は、塩析沈殿法、有機溶媒沈殿法、凍結乾燥等、乾燥方法として知られる任意の方法で乾燥させ、糠抽出物乾燥物を得ることができる。糠抽出物乾燥物は粉砕して粉末化して使用することができる。
【0019】
本発明のβグルカン抽出促進剤を使用することで、βグルカン含有物から、分子量10万以下に低分子化されたβグルカンを安定して抽出することができる。
【0020】
本発明のβグルカン抽出促進剤を用いて抽出する抽出対象のβグルカン含有物として、大麦粉砕物又はオーツ麦粉砕物が挙げられる。大麦、オーツ麦は、主食用、醸造用、飼料用等、いずれも使用することができる。目的とするβグルカンを多く含むものが望ましく、例えば大麦ではβグルカンを比較的多量に含むことが知られている蛋白質含有量の高い性質を持った二条や六条の大麦種、あるいは、でんぷんがもち性の性質を持ったもち性皮つき大麦、もち性裸大麦等が望ましい。
【0021】
本発明のβグルカン抽出促進剤を用いての水溶性βグルカンの抽出方法は、抽出時に本発明のβグルカン抽出促進剤を添加すればよい。具体的な抽出方法としては、βグルカン含有物に本発明のβグルカン抽出促進剤を加えたもの100重量部に温水250〜1500重量部を加えるか、又はβグルカン含有物100重量部に、本発明のβグルカン抽出促進剤を加えた温水250〜1500重量部を加え、0.5〜24時間、好ましくは1〜12時間、さらに好ましくは1.5〜6時間、撹拌しながら抽出するのが望ましい。抽出後に、固液分離、精製等の工程を加え、水溶性βグルカンを得ることができる。
【0022】
βグルカン含有物に対する本発明のβグルカン抽出促進剤の添加量は、制限されることはないが、糠を抽出促進剤として使用する場合、βグルカン含有物100重量部に対して、抽出促進剤の添加量は、200〜0.1重量部、好ましくは100〜1重量部、さらに好ましくは50〜5重量部である。糠抽出物あるいは糠抽出物濃縮物を抽出促進剤として用いる場合の添加量は、βグルカン含有物1重量部に対して、0.01〜100重量部、好ましくは0.05〜50重量部、さらに好ましくは0.1〜10重量部である。糠抽出物乾燥物を抽出促進剤として用いる場合の添加量は、βグルカン含有物1重量部に対して、0.001〜10重量部、好ましくは0.01〜1重量部、さらに好ましくは0.05〜0.5重量部である。本発明のβグルカン抽出促進剤は、抽出原料(βグルカン含有物)にそのまま添加してもよいし、抽出に用いる温水に添加してもよい。
【0023】
水溶性βグルカン抽出時に用いる温水とは、温度80℃以下4℃以上の抽出用水であり、好ましくは70℃以下5℃以上、さらに好ましくは60℃以下10℃以上がよい。抽出用水は、水道水、地下水、井戸水等、食品衛生上問題なく、食品製造に使用可能であればいずれも使用できる。抽出用水のpHは、中性付近がよく、pH10〜pH4、好ましくはpH9〜pH5、さらに好ましくはpH8〜pH6がよい。抽出用水には、抽出されたβグルカンの安定性を保持するため、必要に応じて塩類、酸・アルカリ類を添加して用いることができる。
【0024】
水溶性βグルカン抽出時に、さらに本発明の効果を損なわない範囲で、αアミラーゼ、蛋白質分解酵素、グルコアミラーゼを添加して、低分子化βグルカンの抽出を促進することができる。αアミラーゼとは、糊化でんぷんやグリコーゲン等のα1-4 グリコシド結合を任意の位置で加水分解し、分解生成物としてデキストリンやオリゴ糖、グルコースを生じるものである。また、グリコアミラーゼとは、可溶性でんぷんのα1-4 グリコシド結合を非還元末端より順次グルコース単位で分解するものである。蛋白質分解酵素は、βグルカンを抽出時に同時に抽出される可溶性の蛋白質やβグルカンと複合化しているペプチド類を分解してβグルカンの抽出をさらに促進するために使用される。
【0025】
また、抽出後には、遠心分離、濾過分離、膜分離、自然沈降等、固液分離方法として知られる任意の方法で固液分離し、水溶性βグルカン抽出液を得ることができる。さらに水溶性βグルカン抽出液は、膜濃縮法、凍結濃縮法、減圧濃縮法、塩析沈殿法、有機溶媒沈殿法等、液体の濃縮方法として知られる任意の方法や、加熱して水分を蒸発させて濃縮することにより、水溶性βグルカン抽出液濃縮物とすることができる。さらに、水溶性βグルカン抽出液や水溶性βグルカン抽出液濃縮物は、塩析沈殿法、有機溶媒沈殿法、凍結乾燥、加熱乾燥法等、乾燥方法として知られる任意の方法で乾燥させ、水溶性βグルカン抽出乾燥物を得ることができる。水溶性βグルカン抽出乾燥物は粉砕して粉末化して使用することができる。加熱濃縮法や加熱乾燥法は、同操作により、抽出液に含まれる蛋白質やペプチド等を変性沈殿あるいは分解させることができ、水溶性βグルカンの純度を向上させるため、好ましい方法である。
【0026】
本発明のβグルカン抽出促進剤を使用すれば、βグルカン含有物に左右されずに安定して効率よく分子量10万以下の水溶性βグルカンを抽出することが可能となる。
【0027】
【実施例】
以下、実施例により本発明を更に説明するが、本発明はこれら実施例によって限定されるものではない。尚、特に記述がない限り、実施例中の%は重量によるものであり、分子量は重量平均分子量である。
【0028】
調製例1(βグルカン抽出促進剤の調製)
もち性裸大麦を研削式搗精機により削り、外周部より連続して18%(搗精歩留まり82%)まで精麦した。このとき発生した糠を糠−1とした。また、もち性裸大麦を研削式搗精機により削り、外周部より連続して30%(搗精歩留まり70%)まで精麦した。このとき発生した糠を糠−2とした。また、もち性裸大麦を研削式搗精機により削り、外周部より連続して10%(搗精歩留まり90%)まで精麦した。このとき発生した糠を糠−3とした。
【0029】
上記外周部より連続して18%(搗精歩留まり82%)まで精麦した大麦を、さらに研削式搗精機により削り、搗精歩留まり55%まで精麦した。このとき発生した粉砕物を粉砕物−1とした。得られた大麦精麦粒をさらに削り、搗精歩留まり35%までの粉砕物を粉砕物−2、搗精歩留まり35〜15%までを粉砕物―3、残った中心部15%を粉砕し、粉砕物―4とした。
【0030】
調製例2(βグルカン抽出促進剤:抽出液の調製)
調製例1で得た糠−1の粉砕物10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて25℃にて10分間、撹拌抽出した。抽出後、遠心分離上清を得て、抽出促進剤液−1とした。温度10℃、抽出時間を1時間としたこと以外は抽出促進剤液−1と同様に操作し、抽出促進剤液−2を得た。温度30℃、抽出時間を0.5時間としたこと以外は抽出促進剤液−1と同様に操作し、抽出促進剤液−3を得た。抽出促進剤液−2の20mlを分子量3000でカットする膜を用いた限外濃縮によって容量を半分となるまで濃縮し、抽出促進剤濃縮物を得た。抽出促進剤液−3の20mlを凍結乾燥して、0.4gの抽出促進剤乾燥物を得た。
【0031】
調製例3(βグルカン抽出促進剤の調製)
調製例1で得た糠−2の粉砕物20gを200mlコニカルビーカーにとり、100mlのアセトンを加えて4℃にて10分間、撹拌抽出した。抽出後、遠心分離にて沈殿を回収し、さらに100mlのアセトンを加え、脱脂操作を繰り返した。遠心分離で回収した沈殿をドラフトに放置し、脱脂糠−1を得た。
【0032】
調製例4(βグルカン抽出促進剤:抽出液の調製)
コシヒカリ玄米を搗精機により削り、外周部より連続して18%(搗精歩留まり92%)まで精米した。このとき発生した糠を米糠とした。米糠の5gを100mlのコニカルビーカーにとり、25mlの蒸留水を加えて20℃にて30分間、撹拌抽出した。抽出後、遠心分離上清を得て、抽出促進剤液−4とした。
【0033】
調製例5(βグルカン抽出促進剤:抽出液の調製)
麦芽を粉砕し麦芽粉砕物を得た。麦芽粉砕物の5gを100mlのコニカルビーカーにとり、50mlの蒸留水を加えて25℃にて40分間、撹拌抽出した。抽出後、遠心分離上清を得て、抽出促進剤液−5とした。
【0034】
試験例1
調製例1で得た各大麦分画物のβグルカン含有量を調べた。βグルカンの分析は、メガザイム社のβグルカン測定キットを用いて、McCleary法(酵素法)により行った。まず、500μm(30メッシュ)のふるいにかけた各分画物の水分含量を測定し、その100mgを17mlチューブに取り、50%エタノール溶液を200μl加え、分散させた。次に4mlの20mMリン酸緩衝液(pH6.5)を加え、よく混合した後、煮沸した湯浴中にて1分間加温した。よく混合し、さらに2分間、湯浴中で加熱した。50℃に冷却後、5分間放置してから、各チューブにリケナーゼ酵素溶液(キットに付属するバイアルを20mlの20mMリン酸緩衝液で希釈、残量は凍結保存)の200μl(10U)を加え、1時間、50℃にて反応させた。チューブに200mM酢酸緩衝液(pH4.0)を、5ml加えて、静かに混合した。室温に5分間放置し、遠心分離にて上清を得た。100μl を3 本のチューブに取り、1本には100μlの50mM酢酸緩衝液(pH4.0)を、他の2本には100μl(0.2U)のβグルコシターゼ溶液(キットに付属するバイアルを20mlの50mM酢酸緩衝液で希釈、残量は凍結保存)を加え、50℃にて10分間、反応させた。3mlのグスコースオキシターゼ/ペルオキシターゼ溶液を加えて、50℃にて20分間反応させ、各サンプルの510nmにおける吸光度(EA)を測定した。βグルカン含有量は、次式により求めた。
【0035】
βグルカン(%,W/W)=(EA)×(F/W)×8.46
F=(100)/(グスコース100μgの吸光度)
W=算出された無水物重量(mg)
【0036】
その結果、大麦分画物におけるβグルカン含有量は、糠−1は(3.3%)、糠−2は(3.6%)、糠−3は(2.7%)、粉砕物−1は(5.4%)、粉砕物−2は(6.5%)、粉砕物−3は(6.4%)、粉砕物−4は(8.0%)であり、外周部は、βグルカン含有量は低く、中心部がより多くβグルカンを含んでいることがわかった。βグルカンを抽出する原料としては、大麦粒の場合、より中心部に近い粉砕物を使用することが有利である。
【0037】
試験例2
WO98/13056号公報に記載の方法にて低分子化βグルカンの製造を試みた。得られた抽出物は、さらにHPLCゲル濾過法にて分画し、βグルカンの分子量測定を行った。試験例1に示したように、中心部に近いほどβグルカン量が多いことがわかったので、外周部45%を除去した精製大麦を原料とした。すなわち、市販の精製大麦粒(米粒様に加工されたもの)を粉砕し、500μm(30メッシュ)のふるいにかけ大麦粉砕物を得た。試験例―1と同様にβグルカン含有量を測定したところ、6.5%であった。得られた大麦粉砕物20gに100mlの蒸留水を加え、温度25,40、45、55℃にて撹拌抽出した。抽出時間を0.5〜5時間まで変化させて、経時的に5mlをサンプリングした。抽出混合液を10分間、遠心分離(10000rpm)して、遠心上清を得た。遠心上清を−10℃に冷却して一昼夜そのまま放置してから解凍した。遠心分離後、上清を捨て、沈殿を凍結乾燥させた。得られた沈殿の5mgをチューブに取り、0.5mlの蒸留水を加えて、沸騰水中で溶解させた。0.22μmのフィルターを通してHPLC用のサンプルとした。分離にはHPLCゲル濾過カラムであるShodexのパックドカラムKS−805(昭和電工社製)を用い、流速0.6ml/min.、温度50℃、検出にはRI検出器、分離溶媒は水で実施した。分子量マーカーとしてはShodexプルラン標準液P−82(昭和電工社製)を用いた。温度55℃においては、3時間の抽出まで分子量10万以下3000以上の範囲にピークは得られず、主に分子量40万〜20万のピークをもつ抽出物が得られた。5時間の抽出で得られた抽出物は分子量40万〜20万のピークが分子量11万〜10万にピークがシフトしたが10万以下で分子量3000以上の範囲にピークは認めなかった。45℃で抽出したところ、2時間の抽出で分子量20万、5時間の抽出で分子量11万のピークを示す抽出物が得られたが、分子量10万以下で分子量3000以上の範囲にピークは認められなかった。40℃の0.5時間抽出では、得られたピークは分子量40万を示し、分子量10万以下で3000以上の範囲にピークは認められなかった。25℃抽出では、0.5時間〜3時間までの抽出で、分子量40万〜20万のピークをもつ抽出物が得られ、分子量10万以下で分子量3000以上の範囲にピークは認められなかった。HPLC分離で分子量10万以上に溶出される画分は、試験例1記載の方法でβグルカンであることを確認した。外周部より45%を削除した精製大麦粒を温水抽出したが、低分子化βグルカンは得られなかった。
【0038】
実施例1
調製例1で得た糠−1の1gと試験例−2で得られた大麦粉砕物10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。抽出後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。その0.5mlに1mlのエタノールを加え、1時間放置後、遠心分離にて沈殿を回収した。凍結乾燥機で、エタノール・水分を除去し、沈殿に0.5mlの蒸留水を加え、沸騰水中で溶解させた。遠心分離上清を0.22μmのフィルターを通した後、サンプル1とした。また、調製例1で得た糠−1の1gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。以後、サンプル1の抽出後の操作と同様に操作し、サンプル2を得た。試験例−2で得られた大麦粉砕物の10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。以後、サンプル1の抽出後の操作と同様に操作し、サンプル3を得た。調製例1で得た糠−1の10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。以後、サンプル1の抽出後の操作と同様に操作し、サンプル4を得た。サンプル1〜4は、試験例−2と同様にピークの分子量を測定するとともに、ピーク面積値を算出した。その結果、サンプル1は、分子量40万〜1万に検出され、最大ピークは、分子量3万であり、分子量10万以下に検出されたエリア面積値は33万であった。サンプル2は、分子量40万〜1万にピークを認め、最大ピークは、分子量3万であり、分子量10万以下に検出されたエリア面積値は0.5万であった。サンプル1とサンプル2で分子量10万以下の面積値を比較したところ、サンプル1は、サンプル2に対して66倍であった。サンプル3は、分子量10万以下3000以上の範囲に検出されず、主に分子量40万〜20万のピークを認めた。分子量3万に検出される面積値は0であった。サンプル4は、分子量40万〜1万にピークを認め、最大ピークは、分子量3万であり、分子量10万以下に検出されたエリア面積値は12万であった。サンプル1〜2、4で分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。実施例1より、低分子化βグルカンが抽出されない大麦粒の中心部へ糠を添加してβグルカンを抽出することで、大麦粒の中心に近い部分に含まれるβグルカンが低分子化し、その抽出が促進されていることがわかった。
【0039】
実施例2
調製例1で得た糠−1の1gと粉砕物−1の10gを100mlコニカルビーカーにとり、60mlの蒸留水を加えて55℃にて1.5時間、撹拌抽出した。抽出後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。その0.5mlに1mlのエタノールを加え、1時間放置後、遠心分離にて沈殿を回収した。凍結乾燥機で、エタノール・水分を除去し、沈殿に0.5mlの蒸留水を加え、沸騰水中で溶解させた。遠心分離上清を0.22μmのフィルターを通した後、サンプル5とした。また、粉砕物−1の10gを100mlコニカルビーカーにとり、60mlの蒸留水を加えて55℃にて1.5時間、撹拌抽出した。以後、前記サンプル1の抽出後の操作と同様に操作し、サンプル6を得た。また、調製例1で得た糠−2の0.5gと粉砕物−2の10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。以後、前記サンプル1の抽出後の操作と同様に操作し、サンプル7を得た。また、粉砕物−2の10gを100mlコニカルビーカーにとり、50mlの蒸留水を加えて40℃にて2時間、撹拌抽出した。以後、前記サンプル1の抽出後の操作と同様に操作し、サンプル8を得た。また、調製例1で得た糠−3の2gと粉砕物−3の10gを200mlコニカルビーカーにとり、80mlの蒸留水を加えて50℃にて1時間、撹拌抽出した。以後、前記サンプル1の抽出後の操作と同様に操作し、サンプル9を得た。また、調製例1で得た糠−3の0.8gと粉砕物−4の10gを200mlコニカルビーカーにとり、100mlの蒸留水を加えて45℃にて3時間、撹拌抽出した。以後、前記サンプル1の抽出後の操作と同様に操作し、サンプル10を得た。サンプル5〜10は、試験例2と同様にピークの分子量を測定するとともに、ピーク面積値を算出した。その結果、サンプル5は、分子量40万〜1万に検出され、最大ピークは、分子量4.5万であり、分子量10万以下に検出されたエリア面積値は43万であった。サンプル6およびサンプル8は、分子量10万以下3000以上の範囲に検出されず、主に分子量40万〜20万のピークを認めた。分子量10万以下に検出される面積値は0であった。サンプル7は、分子量40万〜1万に検出され、最大ピークは、分子量5.5万であり、分子量10万以下に検出されたエリア面積値は40万であった。サンプル9は、分子量40万〜1万に検出され、最大ピークは、分子量5万であり、分子量10万以下に検出されたエリア面積値は42万であった。サンプル10は、分子量40万〜1万に検出され、最大ピークは、分子量3万であり、分子量10万以下に検出されたエリア面積値は47万であった。サンプル5〜10で分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0040】
実施例3
調製例2で得た抽出促進剤液−1の10mlと試験例2の大麦粉砕物の15gを200mlコニカルビーカーにとり、90mlの蒸留水を加えて40℃にて15分間、30分間、1時間、2時間、3時間、4時間、5時間、6時間、12時間、24時間、撹拌抽出した。各抽出時間が経過の後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。その0.5mlに1mlのエタノールを加え、1時間放置後、遠心分離にて沈殿を回収した。凍結乾燥機で、エタノール・水分を除去し、沈殿に0.5mlの蒸留水を加え、沸騰水中で溶解させた。遠心分離上清を0.22μmのフィルターを通した後、サンプル11〜20とした。サンプル11〜20は、すべて分子量40万〜1万に検出され、最大ピークは、分子量9万、8.5万、7万、5.5万、4.5万、3万、2.5万、2万、1万、6000であり、分子量10万以下に検出されたエリア面積値は、それぞれ、15万、14万、18万、25万、37万、41万、43万、42万、40万、32万であった。分子量10万以下のピーク面積値は、抽出時間とともに増加し、6時間より減少に転じた。分子量10万以下の最大ピークは、抽出時間とともに分子量が低分子化される傾向にあり、最大ピークは、分子量9万から分子量6000程度に移行した。分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0041】
実施例4
調製例2で得た抽出促進剤液−2の0ml、1ml、2ml、5ml、10ml、20mlと調製例1の粉砕物−4の10gを100mlコニカルビーカーにとり、全容量が50mlとなるように蒸留水を加えて、55℃にて2時間、撹拌抽出した。抽出後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。その0.5mlに1mlのエタノールを加え、1時間放置後、遠心分離にて沈殿を回収した。凍結乾燥機で、エタノール・水分を除去し、沈殿に0.5mlの蒸留水を加え、沸騰水中で溶解させた。遠心分離上清を0.22μmのフィルターを通した後、サンプル21〜26とした。サンプル21は、分子量10万以下3000以上の範囲に検出されず、主に分子量40万〜20万のピークを認めた。分子量10万以下に検出される面積値は0であった。サンプル22〜26は、分子量40万〜1万に検出され、最大ピークは、分子量8万、8万、4.5万、4.5万、3万であり、分子量10万以下に検出されたエリア面積値は、それぞれ、18万、26万、53万、55万、56万であった。分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0042】
実施例5
調製例2で得た抽出促進剤濃縮物5mlを300mlコニカルビーカーにとり、蒸留水100mlおよび調製例1で得た粉砕物−1の18gを加え、42℃にて2.5時間、撹拌抽出した。抽出後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。以後、実施例1と同様に操作し、HPLC検査用のサンプル27を得た。また、調製例2で得た抽出促進剤乾燥物の0.25gを300mlコニカルビーカーにとり、蒸留水100mlに溶解させてから、調製例1で得た粉砕物−1の18gを加え、42℃にて2.5時間、撹拌抽出した。抽出後、遠心分離上清を得て、沸騰水中に10分間放置し、再度、遠心分離して、上清を得た。以後、実施例1と同様に操作し、HPLC検査用のサンプル28を得た。試験例2と同様にピークの分子量および、分子量10万以下に検出される面積値を算出した。サンプル27、28は、ともに分子量40万〜1万にピークを認め、最大ピークは、分子量3.5万であった。分子量10万以下の面積値は、それぞれ、62万、55万であった。分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0043】
実施例6
抽出促進剤として調製例3で得た脱脂糠−1を用いた。すなわち、脱脂糠−1の0.7gと調製例1で得た粉砕物−3の10gを100mlコニカルビーカーに取り、蒸留水40mlを加えて、50℃にて3時間、撹拌抽出した。抽出後、遠心分離上清を得て、以後、実施例1と同様に操作し、HPLC検査用のサンプル29を得た。サンプル29は、分子量40万〜1万にピークを認め、最大ピークは、分子量3万で、分子量10万以下の検出される面積値は60万であった。分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0044】
実施例7
抽出促進剤として調製例4、5で得た抽出促進剤液−4、−5を用いた。すなわち、300mlコニカルビーカーに各抽出促進剤液の1ml、および蒸留水90mlを加え混合した。調製例1で得た粉砕物−1の20gを加え、40℃にて4時間、撹拌抽出した。抽出後、遠心分離上清を得て、以後、実施例1と同様に操作し、HPLC検査用のサンプル30、31を得た。サンプル30、31は、分子量40万〜1万にピークを認め、最大ピークは、分子量5万、3.5万で、分子量10万以下3000以上に検出される面積値は24万、30万であった。分子量10万以下にHPLCで溶出された画分は、試験例1記載の方法でβグルカンであることを確認した。
【0045】
【発明の効果】
本発明のβグルカン抽出促進剤は、穀類等のβグルカン含有物から水溶性βグルカンを効率よく抽出する際に、抽出原料又は抽出用液に添加することにより、βグルカン含有物に左右されずに、作業性がよく水への溶解性に優れた、分子量10万以下に低分子化されたβグルカンを安定して効率よく得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a β-glucan extraction accelerator for efficiently extracting water-soluble β-glucan from a β-glucan-containing material such as cereals.
[0002]
[Prior art]
According to the National Nutrition Survey, dietary fiber intake per capita in Japan is declining year by year, and dietary fiber is counted as a lack of nutrients, and active intake is recommended. Dietary fiber is classified into water-soluble and insoluble based on the difference in solubility in water. Insoluble dietary fiber increases stool volume, shortens the transit time of intestinal contents, decreases intestinal pressure, and abdominal pressure. As a result, it is said to have preventive and therapeutic effects on various colon diseases such as constipation and colon cancer. . Water-soluble dietary fiber, on the other hand, activates gastrointestinal activity, reduces the digestibility and absorption of dietary components, especially sugars and fats, adsorbs and excretes bile acids that circulate in the digestive tract, delays transit time in the digestive tract, and the large intestine. It is characterized by being easily fermented, and as a result, its ingestion is said to have preventive and therapeutic effects on constipation, colon disease, obesity, diabetes, hyperlipidemia and the like. Some water-soluble dietary fibers have an excellent immunity enhancing action, and some are useful for antitumor agents, anticancer agents, influenza prevention, and other infection prevention.
[0003]
As described above, insoluble dietary fiber and water-soluble dietary fiber have different functions, and a balanced intake of both is desired. As foods rich in water-soluble dietary fiber, seaweed sodium alginate, carrageenan, cereals, corn hulls and wheat bran hemicellulose, barley and oats β-glucan, microorganisms (microbe cell walls and mycelium of mushrooms (Grant entity) β-glucan is known. Barley and oat β-glucans are particularly strong in physiological effects such as lowering serum cholesterol and suppressing blood glucose level increase due to lower serum insulin concentration, and their intake in FDA also reduces the risk of lifestyle-related diseases such as heart disease Has been recognized as a material to do. Further, barley or microbial β-glucan is known to have excellent immune enhancing activity.
[0004]
In recent years, Japan's diet has been similar to other countries in Europe and the United States, and at the same time, it has been excluded from food as much as possible because it is more gourmet-oriented and delicious. As a result, the intake of dietary fiber is reduced, leading to a lack of current intake of dietary fiber. In addition, the intake of fermented foods such as miso and natto has decreased, the microbial flora change due to heavy use of antibiotics, the elimination of microorganisms from the environment, etc., and the chance of contact with all microorganisms including pathogenic bacteria has decreased did. As a result, the chances of suffering from infectious diseases have decreased, but at the same time the immunity has been reduced, and autoimmune diseases, allergies, carcinogenic rates and the like are increasing. Therefore, in order to maintain / enhance lifestyle-related diseases and immunity, it is necessary to increase the intake of dietary fiber and polysaccharides that have an immune enhancing effect without impairing the deliciousness of food. Under such circumstances, the method of adding water-soluble dietary fiber extracted and isolated from food materials to other foods or processed foods is one way to increase the intake of dietary fiber and polysaccharides. Is expected.
[0005]
The main component of water-soluble dietary fiber derived from barley and oats is β-glucan, and β-glucan derived from such cereals has a very good compatibility with starch, lipids and proteins, and is an additive for processed foods. As known to be excellent. However, since it contains a large amount of ingredients other than barley, oats, and water-soluble β-glucan, adding it to food as it is will impair the texture of the food. It is generally pointed out that Therefore, a method of concentrating or isolating water-soluble dietary fiber from these β-glucan-containing foods is effective, and a method of extracting β-glucan, which is a dietary fiber contained in barley or oats, is known. .
[0006]
As a method for obtaining high molecular weight β-glucan from cereals, for example, a method in which waxy barley is used as a raw material and is produced by water extraction (Japanese Patent Publication No. 4-11197), or barley and oats are used as a raw material. A method for obtaining β-glucan having a weight average molecular weight of 100,000 to 1,000,000 by extraction, neutralization, and alcohol precipitation (Japanese Patent Publication No. 6-83652), using barley koji with a fine yield of 82% or less as a raw material at 80 to 90 ° C. A method of extracting β-glucan with hot water (Japanese Patent Laid-Open No. 11-225706) is known. Barley β-glucan is a kind of polysaccharide that constitutes the cell wall of wheat grains, and the molecular weight is said to be 2.5 million. Although β-glucan is reduced in molecular weight during the extraction process, a relatively high molecular weight β-glucan is usually obtained under the hot water extraction or alkaline aqueous solution as described above (molecular weight of 100,000 or more). Since these extracted β-glucans have a high molecular weight, the aqueous solution exhibits high viscosity. In addition, it takes time to re-solubilize the dried product in water, and it is difficult to dissolve the dried product at a high concentration.
[0007]
It is known that these drawbacks can be improved by reducing the molecular weight of β-glucan. A method for obtaining β-glucan having a low molecular weight by extracting barley pulverized material with warm water is described in WO 98/13056. However, the method using the extraction temperature and the extraction time described in this publication cannot necessarily obtain a low-molecular β-glucan, and the method described in the publication differs greatly depending on the barley raw material. It was a very limited method that could not be applied to the raw material. Therefore, a method for stably and efficiently obtaining β-glucan having a low workability and excellent solubility in water and having a molecular weight of 100,000 or less has not been known so far. Was desired.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a β-glucan extraction accelerator for efficiently extracting water-soluble β-glucan from β-glucan-containing materials such as cereals.
[0009]
[Means for Solving the Problems]
The present invention It is either barley koji, barley koji extract, rice koji extract or malt extract Made of grasses, Either barley or oat grind The object is achieved by providing a β-glucan extraction accelerator for extracting water-soluble β-glucan from a β-glucan-containing material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a β-glucan extraction accelerator for efficiently extracting β-glucan having many physiological functions as a water-soluble dietary fiber, and more specifically, β-glucan having a molecular weight of 100,000 or less is efficiently stabilized. It is a β-glucan extraction accelerator for extraction. The present invention will be described in more detail below.
[0011]
The β-glucan extraction accelerator of the present invention is an effective method for extracting water-soluble β-glucan from a β-glucan-containing material using water, cold water, hot water, hot water, various solvents, and the like. It is a β-glucan extraction accelerator that can be extracted with high purity.
[0012]
In the present invention, the water-soluble β-glucan is a polymer containing glucose as a main component, and has at least one 1,2,1,3,1,4,1,6-β-D glucose bond in the molecule. It means a β-glucan having a molecular weight of 100,000 or less and a β-glucan having a molecular weight of 100,000 or less and dissolved in water.
[0013]
The β-glucan extraction promoter of the present invention is derived from a grass family plant . I With the origin do it Is Barley meal, barley meal extract, rice bran extract or malt extract Is mentioned.
[0014]
The cocoon as used in the present invention refers to a cocoon obtained when cereal grains are continuously refined from the outer periphery, and the soot obtained when semen is continuously refined to within 30% by weight from the outer periphery, so-called cocoon yield 70 weight. % Of the cocoons are preferred, and cocoons when the semen is refined to 20% by weight or less continuously from the outer periphery, more preferably cocoons within 80% by weight of the so-called refined yield, and semen is continuously refined to 18% by weight or less from the outer part. Even more preferred is a soot that is less than 82% by weight of the soot yield. In addition, the koji extract is preferably extracted from koji that has been refined to within 30% by weight from the outer peripheral portion, that is, soot extracted within 70% by weight of the soot yield, and within 20% by weight continuously from the outer peripheral portion. It is more preferable to extract from the soot when the soot is refined, so-called soot yield within 80% by weight, and soot when the soot is continuously refined within 18% by weight from the outer periphery, so-called soot yield within 82% by weight Those extracted from are more preferred.
[0016]
In the method for producing a koji extract which is a β-glucan extraction accelerator of the present invention, 200 to 10,000 parts by weight of hot water, preferably 300 to 5,000 parts by weight, more preferably 400 to 1,000 parts by weight are added to 100 parts by weight of koji. It is desirable to extract with stirring for 1 to 12 hours, preferably 0.2 to 6 hours, more preferably 0.5 to 2 hours. The cocoon may be defatted. The extracted soot-warm water mixture is subjected to solid-liquid separation by any method known as solid-liquid separation methods such as centrifugation, filtration, membrane separation, and natural sedimentation to obtain a soot extract (salt extract). Can do. The warm water used for extraction here is water for extraction at a temperature of 80 ° C. or lower and 4 ° C. or higher, preferably 70 ° C. or lower, 5 ° C. or higher, more preferably 60 ° C. or lower and 10 ° C. or higher. Any extraction water can be used as long as it can be used for food production without any problem in food sanitation, such as tap water, groundwater and well water. The pH of the extraction water is close to neutral, and is preferably pH 10 to pH 4, preferably pH 9 to pH 5, and more preferably pH 8 to pH 6. In order to maintain the stability of the koji extract, the extraction water can be used by adding salts, acids and alkalis as necessary.
[0017]
The soot extract (salt extract) obtained by the above method is an aqueous solution, which is a liquid concentration method such as membrane concentration method, freeze concentration method, vacuum concentration method, salting out precipitation method, organic solvent precipitation method, etc. Can be concentrated by any method known as to obtain a koji extract concentrate. The koji extract or koji extract concentrate can be dried by any method known as a drying method such as salting out precipitation method, organic solvent precipitation method, freeze drying, etc. to obtain a koji extract dried product. it can. The dried koji extract can be used after being pulverized and powdered.
[0019]
By using the β-glucan extraction accelerator of the present invention, β-glucan having a molecular weight reduced to 100,000 or less can be stably extracted from a β-glucan-containing material.
[0020]
Β-glucan-containing material to be extracted, which is extracted using the β-glucan extraction accelerator of the present invention As Is ,Big Crushed wheat Or Crushed oats Can be mentioned. Big Wheat and oats can be used for staple foods, brewing, and feed. It is desirable that the target contains a large amount of β-glucan. For example, barley has a high protein content and is known to contain a relatively large amount of β-glucan. Barley with glutinous skin and glutinous naked barley having the properties of sexuality are desirable.
[0021]
In the method for extracting water-soluble β-glucan using the β-glucan extraction accelerator of the present invention, the β-glucan extraction accelerator of the present invention may be added at the time of extraction. As a specific extraction method, 250 to 1500 parts by weight of warm water is added to 100 parts by weight of the β-glucan-containing material plus the β-glucan extraction accelerator of the present invention, or 100 parts by weight of the β-glucan-containing material. Add 250 to 1500 parts by weight of warm water to which the β-glucan extraction accelerator of the invention is added, and extract with stirring for 0.5 to 24 hours, preferably 1 to 12 hours, more preferably 1.5 to 6 hours. desirable. After extraction, steps such as solid-liquid separation and purification can be added to obtain water-soluble β-glucan.
[0022]
The amount of the β-glucan extraction accelerator of the present invention added to the β-glucan-containing product is not limited. Is added in an amount of 200 to 0.1 parts by weight, preferably 100 to 1 parts by weight, and more preferably 50 to 5 parts by weight. The addition amount when using the koji extract or koji extract concentrate as an extraction accelerator is 0.01 to 100 parts by weight, preferably 0.05 to 50 parts by weight, with respect to 1 part by weight of the β-glucan-containing material. More preferably, it is 0.1-10 weight part. The amount of addition when the dried cocoon extract is used as an extraction accelerator is 0.001 to 10 parts by weight, preferably 0.01 to 1 part by weight, more preferably 0 to 1 part by weight of the β-glucan-containing product. 0.05 to 0.5 parts by weight. The β-glucan extraction accelerator of the present invention may be added as it is to the extraction raw material (β-glucan-containing material) or may be added to warm water used for extraction.
[0023]
The warm water used at the time of water-soluble β-glucan extraction is extraction water having a temperature of 80 ° C. or lower and 4 ° C. or higher, preferably 70 ° C. or lower, 5 ° C. or higher, more preferably 60 ° C. or lower and 10 ° C. or higher. Any extraction water can be used as long as it can be used for food production without any problem in food sanitation, such as tap water, groundwater and well water. The pH of the extraction water is close to neutral, and is preferably pH 10 to pH 4, preferably pH 9 to pH 5, and more preferably pH 8 to pH 6. In order to maintain the stability of the extracted β-glucan in the extraction water, salts, acids and alkalis can be added and used as necessary.
[0024]
During the extraction of water-soluble β-glucan, α-amylase, proteolytic enzyme, and glucoamylase can be added to the extent that the effects of the present invention are not impaired to facilitate the extraction of low-molecular β-glucan. α-Amylase is a product that hydrolyzes α1-4 glycoside bonds such as gelatinized starch and glycogen at any position to produce dextrin, oligosaccharide and glucose as degradation products. Glycoamylase is a substance that sequentially degrades α1-4 glycoside bonds of soluble starch in units of glucose from the non-reducing end. Proteolytic enzymes are used to further promote the extraction of β-glucan by degrading soluble proteins extracted simultaneously with β-glucan and peptides complexed with β-glucan.
[0025]
In addition, after extraction, solid-liquid separation can be performed by an arbitrary method known as a solid-liquid separation method such as centrifugation, filtration separation, membrane separation, and natural sedimentation to obtain a water-soluble β-glucan extract. In addition, the water-soluble β-glucan extract can be heated by any method known as a liquid concentration method, such as membrane concentration method, freeze concentration method, vacuum concentration method, salting out precipitation method, organic solvent precipitation method, etc. And then concentrating to obtain a water-soluble β-glucan extract concentrate. Furthermore, the water-soluble β-glucan extract or the water-soluble β-glucan extract concentrate can be dried by any method known as a drying method such as salting out precipitation method, organic solvent precipitation method, freeze drying, heat drying method, etc. Sex β-glucan extracted dry product can be obtained. The water-soluble β-glucan extracted dried product can be used after being pulverized and powdered. The heat concentration method and the heat drying method are preferable methods because the protein, peptide and the like contained in the extract can be denatured and precipitated or decomposed by the same operation and the purity of the water-soluble β-glucan is improved.
[0026]
By using the β-glucan extraction accelerator of the present invention, it becomes possible to extract water-soluble β-glucan having a molecular weight of 100,000 or less stably and efficiently without being influenced by the β-glucan-containing material.
[0027]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. Unless otherwise specified,% in the examples is by weight, and the molecular weight is a weight average molecular weight.
[0028]
Preparation Example 1 (Preparation of β-glucan extraction accelerator)
The glutinous bare barley was shaved with a grinding-type scouring machine, and sewed to 18% (spinning yield 82%) continuously from the outer periphery. The soot generated at this time was designated as 糠 -1. Moreover, glutinous bare barley was shaved with a grinding-type scouring machine, and sewed to 30% continuously from the outer periphery (70% scouring yield). The soot generated at this time was designated as 糠 -2. Moreover, glutinous bare barley was shaved with a grinding-type scouring machine, and sewed to 10% continuously from the outer circumference (90% scouring yield). The soot generated at this time was designated as 糠 -3.
[0029]
The barley that had been polished to 18% (82% of milling yield) continuously from the outer periphery was further shaved by a grinding mill and milled to 55% of milling yield. The pulverized material generated at this time was designated as pulverized material-1. The obtained barley barley grains are further shaved, the pulverized product up to 35% of the milling yield is pulverized product-2, the pulverized product of 35-15% is crushed product-3, the remaining 15% of the central part is crushed, It was set to 4.
[0030]
Preparation Example 2 (β-glucan extraction accelerator: preparation of extract)
10 g of the pulverized product of 糠 -1 obtained in Preparation Example 1 was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was stirred and extracted at 25 ° C. for 10 minutes. After extraction, a centrifugal supernatant was obtained and used as an extraction accelerator liquid-1. Except that the temperature was 10 ° C. and the extraction time was 1 hour, the same operation as in the extraction accelerator liquid-1 was performed to obtain an extraction accelerator liquid-2. An extraction accelerator liquid-3 was obtained in the same manner as in the extraction accelerator liquid-1, except that the temperature was 30 ° C. and the extraction time was 0.5 hours. 20 ml of the extraction accelerator liquid-2 was concentrated until the volume was halved by ultraconcentration using a membrane having a molecular weight of 3000 to obtain an extraction accelerator concentrate. 20 ml of the extraction accelerator liquid-3 was freeze-dried to obtain 0.4 g of a dried extraction accelerator.
[0031]
Preparation Example 3 (Preparation of β-glucan extraction accelerator)
20 g of the crushed product of koji-2 obtained in Preparation Example 1 was placed in a 200 ml conical beaker, 100 ml of acetone was added, and the mixture was extracted with stirring at 4 ° C. for 10 minutes. After extraction, the precipitate was collected by centrifugation, and 100 ml of acetone was further added, and the degreasing operation was repeated. The precipitate recovered by centrifugation was left in a draft to obtain defatted soot-1.
[0032]
Preparation Example 4 (β-Glucan Extraction Promoter: Preparation of Extract)
Koshihikari brown rice was shaved with a milling machine and polished continuously from the outer periphery to 18% (milling yield 92%). The rice bran generated at this time was used as a rice bran. 5 g of rice bran was placed in a 100 ml conical beaker, 25 ml of distilled water was added, and the mixture was stirred and extracted at 20 ° C. for 30 minutes. After extraction, a centrifugal supernatant was obtained and used as extraction promoter solution-4.
[0033]
Preparation Example 5 (β-glucan extraction accelerator: preparation of extract)
The malt was pulverized to obtain a pulverized malt. 5 g of the malt pulverized product was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was extracted by stirring at 25 ° C. for 40 minutes. After the extraction, a centrifugal supernatant was obtained and used as an extraction accelerator liquid-5.
[0034]
Test example 1
The β-glucan content of each barley fraction obtained in Preparation Example 1 was examined. Analysis of β-glucan was performed by McCleary method (enzyme method) using a β-glucan measurement kit manufactured by Megazyme. First, the water content of each of the fractions passed through a 500 μm (30 mesh) sieve was measured, 100 mg of the fraction was taken in a 17 ml tube, and 200 μl of a 50% ethanol solution was added and dispersed. Next, 4 ml of 20 mM phosphate buffer (pH 6.5) was added and mixed well, and then heated in a boiling water bath for 1 minute. Mix well and heat in hot water bath for another 2 minutes. After cooling to 50 ° C. and allowing to stand for 5 minutes, add 200 μl (10 U) of the lichenase enzyme solution (diluted with 20 ml of 20 mM phosphate buffer, the remaining amount is stored frozen) to each tube, The reaction was carried out at 50 ° C. for 1 hour. 5 ml of 200 mM acetate buffer (pH 4.0) was added to the tube and mixed gently. It was left to stand at room temperature for 5 minutes, and the supernatant was obtained by centrifugation. Take 100 μl in three tubes, one with 100 μl 50 mM acetate buffer (pH 4.0), the other two with 100 μl (0.2 U) β-glucosidase solution (20 ml of vials supplied with the kit) Diluted with 50 mM acetic acid buffer solution, and the remaining amount was stored frozen), and reacted at 50 ° C. for 10 minutes. 3 ml of a gucose oxidase / peroxidase solution was added and reacted at 50 ° C. for 20 minutes, and the absorbance (EA) at 510 nm of each sample was measured. β-glucan content was determined by the following formula.
[0035]
β-glucan (%, W / W) = (EA) × (F / W) × 8.46
F = (100) / (absorbance of 100 μg of glucose)
W = calculated anhydride weight (mg)
[0036]
As a result, the content of β-glucan in the barley fraction was (3.3%) for 糠 -1, (3.6%) for 糠 -2, (2.7%) for 、 -3, 1 is (5.4%), pulverized product-2 is (6.5%), pulverized product-3 is (6.4%), pulverized product-4 is (8.0%), It was found that the β-glucan content was low and the central part contained more β-glucan. As a raw material for extracting β-glucan, it is advantageous to use a pulverized product closer to the center in the case of barley grains.
[0037]
Test example 2
Production of low molecular weight β-glucan was attempted by the method described in WO98 / 13056. The obtained extract was further fractionated by HPLC gel filtration, and the molecular weight of β-glucan was measured. As shown in Test Example 1, it was found that the closer to the center, the greater the amount of β-glucan, so purified barley from which 45% of the outer periphery was removed was used as a raw material. That is, commercially available refined barley grains (processed into rice grains) were pulverized and sieved to 500 μm (30 mesh) to obtain a crushed barley product. The β-glucan content was measured in the same manner as in Test Example 1, and it was 6.5%. 100 ml of distilled water was added to 20 g of the obtained barley pulverized product, followed by stirring and extraction at temperatures of 25, 40, 45 and 55 ° C. The extraction time was varied from 0.5 to 5 hours and 5 ml was sampled over time. The extraction mixture was centrifuged (10000 rpm) for 10 minutes to obtain a centrifugal supernatant. The centrifuged supernatant was cooled to −10 ° C. and allowed to stand for a whole day and then thawed. After centrifugation, the supernatant was discarded and the precipitate was lyophilized. 5 mg of the obtained precipitate was taken in a tube, 0.5 ml of distilled water was added, and dissolved in boiling water. A sample for HPLC was obtained through a 0.22 μm filter. For separation, Shodex packed column KS-805 (manufactured by Showa Denko KK), which is an HPLC gel filtration column, was used at a flow rate of 0.6 ml / min. The temperature was 50 ° C., the detection was performed with an RI detector, and the separation solvent was water. As a molecular weight marker, Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used. At a temperature of 55 ° C., no peak was obtained in the molecular weight range of 100,000 or more and 3000 or more until extraction for 3 hours, and an extract having a peak with a molecular weight of 400,000 to 200,000 was obtained. In the extract obtained by extraction for 5 hours, the peak having a molecular weight of 400,000 to 200,000 was shifted to a molecular weight of 110,000 to 100,000, but no peak was observed in the range of 100,000 or less and a molecular weight of 3000 or more. When extracted at 45 ° C., an extract having a molecular weight of 200,000 was obtained by extraction for 2 hours, and a peak having a molecular weight of 110,000 was obtained by extraction for 5 hours. I couldn't. In extraction at 40 ° C. for 0.5 hour, the peak obtained showed a molecular weight of 400,000, and no peak was observed in the range of 3000 or more with a molecular weight of 100,000 or less. In the extraction at 25 ° C., an extract having a peak with a molecular weight of 400,000 to 200,000 was obtained by extraction from 0.5 hours to 3 hours, and no peak was observed in the range of a molecular weight of 100,000 or less and a molecular weight of 3000 or more. . The fraction eluted with a molecular weight of 100,000 or more by HPLC separation was confirmed to be β-glucan by the method described in Test Example 1. Purified barley grains with 45% removed from the outer periphery were extracted with warm water, but low molecular weight β-glucan was not obtained.
[0038]
Example 1
1 g of koji-1 obtained in Preparation Example 1 and 10 g of the barley pulverized product obtained in Test Example 2 were placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was stirred and extracted at 40 ° C. for 2 hours. After extraction, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. 1 ml of ethanol was added to 0.5 ml, and the mixture was allowed to stand for 1 hour, and then the precipitate was collected by centrifugation. Ethanol / water was removed with a lyophilizer, 0.5 ml of distilled water was added to the precipitate, and dissolved in boiling water. The centrifuged supernatant was passed through a 0.22 μm filter, and then designated as sample 1. Further, 1 g of 糠 -1 obtained in Preparation Example 1 was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was stirred and extracted at 40 ° C. for 2 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 2. 10 g of the barley grind obtained in Test Example-2 was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was extracted with stirring at 40 ° C. for 2 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 3. 10 g of 糠 -1 obtained in Preparation Example 1 was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was extracted by stirring at 40 ° C. for 2 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 4. In Samples 1 to 4, the molecular weight of the peak was measured in the same manner as in Test Example-2, and the peak area value was calculated. As a result, Sample 1 was detected at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 30,000, and the area area value detected at a molecular weight of 100,000 or less was 330,000. Sample 2 had a peak at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 30,000, and the area area value detected at a molecular weight of 100,000 or less was 50,000. Sample 1 and sample 2 were compared in area value with a molecular weight of 100,000 or less, and sample 1 was 66 times that of sample 2. Sample 3 was not detected in a molecular weight range of 100,000 or less and 3,000 or more, and a peak having a molecular weight of 400,000 to 200,000 was observed. The area value detected at a molecular weight of 30,000 was zero. Sample 4 had a peak at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 30,000, and the area area value detected at a molecular weight of 100,000 or less was 120,000. It was confirmed that the fractions eluted by HPLC in samples 1-2, 4 with a molecular weight of 100,000 or less by HPLC were β-glucan by the method described in Test Example 1. From Example 1, β-glucan contained in a portion near the center of the barley grain is reduced in molecular weight by adding straw to the center part of the barley grain from which low-molecular-weight β-glucan is not extracted. It was found that the extraction was promoted.
[0039]
Example 2
1 g of Koji-1 obtained in Preparation Example 1 and 10 g of pulverized product-1 were placed in a 100 ml conical beaker, 60 ml of distilled water was added, and the mixture was extracted by stirring at 55 ° C. for 1.5 hours. After extraction, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. 1 ml of ethanol was added to 0.5 ml, and the mixture was allowed to stand for 1 hour, and then the precipitate was collected by centrifugation. Ethanol / water was removed with a lyophilizer, 0.5 ml of distilled water was added to the precipitate, and dissolved in boiling water. The centrifuged supernatant was passed through a 0.22 μm filter, and then designated as sample 5. Further, 10 g of the pulverized product-1 was placed in a 100 ml conical beaker, 60 ml of distilled water was added, and the mixture was stirred and extracted at 55 ° C. for 1.5 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 6. Further, 0.5 g of Koji-2 obtained in Preparation Example 1 and 10 g of pulverized product-2 were placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was extracted by stirring at 40 ° C. for 2 hours. Thereafter, the same operation as that after extraction of the sample 1 was performed to obtain a sample 7. Further, 10 g of pulverized product-2 was placed in a 100 ml conical beaker, 50 ml of distilled water was added, and the mixture was stirred and extracted at 40 ° C. for 2 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 8. Further, 2 g of 糠 -3 obtained in Preparation Example 1 and 10 g of pulverized product-3 were placed in a 200 ml conical beaker, 80 ml of distilled water was added, and the mixture was stirred and extracted at 50 ° C. for 1 hour. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 9. Further, 0.8 g of 糠 -3 obtained in Preparation Example 1 and 10 g of pulverized product-4 were placed in a 200 ml conical beaker, 100 ml of distilled water was added, and the mixture was extracted by stirring at 45 ° C. for 3 hours. Thereafter, the same operation as that after the extraction of Sample 1 was performed to obtain Sample 10. In Samples 5 to 10, the molecular weight of the peak was measured as in Test Example 2, and the peak area value was calculated. As a result, the sample 5 was detected at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 45,000, and the area area value detected at a molecular weight of 100,000 or less was 430,000. Samples 6 and 8 were not detected in a molecular weight range of 100,000 or less and 3000 or more, and peaks having a molecular weight of 400,000 to 200,000 were mainly observed. The area value detected at a molecular weight of 100,000 or less was 0. Sample 7 was detected at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 55,000, and the area area value detected at a molecular weight of 100,000 or less was 400,000. Sample 9 was detected at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 50,000, and the area area value detected at a molecular weight of 100,000 or less was 420,000. Sample 10 was detected at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 30,000, and the area area value detected at a molecular weight of 100,000 or less was 470,000. It was confirmed that the fractions eluted by HPLC with samples 5 to 10 having a molecular weight of 100,000 or less were β-glucan by the method described in Test Example 1.
[0040]
Example 3
10 ml of the extraction accelerator liquid-1 obtained in Preparation Example 2 and 15 g of the barley pulverized product of Test Example 2 were placed in a 200 ml conical beaker, 90 ml of distilled water was added, and 40 ° C. for 15 minutes, 30 minutes, 1 hour, The mixture was extracted by stirring for 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 12 hours, and 24 hours. After each extraction time, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. 1 ml of ethanol was added to 0.5 ml, and the mixture was allowed to stand for 1 hour, and then the precipitate was collected by centrifugation. Ethanol / water was removed with a lyophilizer, 0.5 ml of distilled water was added to the precipitate, and dissolved in boiling water. The centrifuged supernatant was passed through a 0.22 μm filter, and then samples 11 to 20 were obtained. Samples 11 to 20 were all detected with molecular weights of 400,000 to 10,000, and the maximum peaks were molecular weights of 90,000, 85,000, 70,55,000, 45,000, 30,000, 25,000. 20,000, 10,000, and 6000, and the area area values detected at a molecular weight of 100,000 or less are 150,000, 140,000, 180,000, 250,000, 370,000, 410,000, 430,000, 420,000, It was 400,000 and 320,000. The peak area value with a molecular weight of 100,000 or less increased with the extraction time and turned to decrease after 6 hours. The maximum peak with a molecular weight of 100,000 or less tended to decrease in molecular weight with the extraction time, and the maximum peak shifted from a molecular weight of 90,000 to about 6000. The fraction eluted by HPLC with a molecular weight of 100,000 or less was confirmed to be β-glucan by the method described in Test Example 1.
[0041]
Example 4
Take 0 ml, 1 ml, 2 ml, 5 ml, 10 ml, 20 ml of the extraction accelerator liquid-2 obtained in Preparation Example 2 and 10 g of the pulverized product-4 of Preparation Example 1 in a 100 ml conical beaker and distill so that the total volume is 50 ml. Water was added and the mixture was extracted with stirring at 55 ° C. for 2 hours. After extraction, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. 1 ml of ethanol was added to 0.5 ml, and the mixture was allowed to stand for 1 hour, and then the precipitate was collected by centrifugation. Ethanol / water was removed with a lyophilizer, 0.5 ml of distilled water was added to the precipitate, and dissolved in boiling water. The centrifuged supernatant was passed through a 0.22 μm filter and then designated as samples 21 to 26. Sample 21 was not detected in the molecular weight range of 100,000 or less and 3,000 or more, and a peak having a molecular weight of 400,000 to 200,000 was observed. The area value detected at a molecular weight of 100,000 or less was 0. Samples 22 to 26 were detected with molecular weights of 400,000 to 10,000, and the maximum peaks were molecular weights of 80,000, 80,000, 45,000, 45,000, and 30,000, and were detected with molecular weights of 100,000 or less. The area area values were 180,000, 260,000, 530,000, 550,000, and 560,000, respectively. The fraction eluted by HPLC with a molecular weight of 100,000 or less was confirmed to be β-glucan by the method described in Test Example 1.
[0042]
Example 5
5 ml of the extraction accelerator concentrate obtained in Preparation Example 2 was placed in a 300 ml conical beaker, 100 ml of distilled water and 18 g of the ground product-1 obtained in Preparation Example 1 were added, and the mixture was extracted by stirring at 42 ° C. for 2.5 hours. After extraction, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. Thereafter, the same operation as in Example 1 was performed to obtain a sample 27 for HPLC inspection. In addition, 0.25 g of the dried extraction accelerator obtained in Preparation Example 2 was taken in a 300 ml conical beaker and dissolved in 100 ml of distilled water, and then 18 g of the pulverized product-1 obtained in Preparation Example 1 was added to the mixture at 42 ° C. For 2.5 hours. After extraction, a centrifugal supernatant was obtained, left in boiling water for 10 minutes, and centrifuged again to obtain a supernatant. Thereafter, the same operation as in Example 1 was performed to obtain a sample 28 for HPLC inspection. Similar to Test Example 2, the peak molecular weight and the area value detected at a molecular weight of 100,000 or less were calculated. Samples 27 and 28 both had a peak at a molecular weight of 400,000 to 10,000, and the maximum peak had a molecular weight of 35,000. The area values with a molecular weight of 100,000 or less were 620,000 and 550,000, respectively. The fraction eluted by HPLC with a molecular weight of 100,000 or less was confirmed to be β-glucan by the method described in Test Example 1.
[0043]
Example 6
The defatted koji-1 obtained in Preparation Example 3 was used as an extraction accelerator. That is, 0.7 g of defatted lees 1 and 10 g of the pulverized product-3 obtained in Preparation Example 1 were placed in a 100 ml conical beaker, 40 ml of distilled water was added, and the mixture was stirred and extracted at 50 ° C. for 3 hours. After extraction, a centrifugal supernatant was obtained, and thereafter the same operation as in Example 1 was performed to obtain a sample 29 for HPLC inspection. Sample 29 had a peak at a molecular weight of 400,000 to 10,000, the maximum peak was a molecular weight of 30,000, and the detected area value with a molecular weight of 100,000 or less was 600,000. The fraction eluted by HPLC with a molecular weight of 100,000 or less was confirmed to be β-glucan by the method described in Test Example 1.
[0044]
Example 7
As the extraction accelerator, the extraction accelerator liquids-4 and -5 obtained in Preparation Examples 4 and 5 were used. That is, 1 ml of each extraction accelerator liquid and 90 ml of distilled water were added to a 300 ml conical beaker and mixed. 20 g of pulverized product-1 obtained in Preparation Example 1 was added, and the mixture was extracted with stirring at 40 ° C. for 4 hours. After extraction, a centrifugal supernatant was obtained, and thereafter, the same operation as in Example 1 was performed to obtain samples 30 and 31 for HPLC inspection. Samples 30 and 31 have peaks at molecular weights of 400,000 to 10,000, the maximum peaks are molecular weights of 50,000 and 35,000, and the area values detected at molecular weights of 100,000 or more and 3000 or more are 240,000 and 300,000. there were. The fraction eluted by HPLC with a molecular weight of 100,000 or less was confirmed to be β-glucan by the method described in Test Example 1.
[0045]
【The invention's effect】
The β-glucan extraction promoter of the present invention is not affected by the β-glucan-containing material by adding it to the extraction raw material or the extraction liquid when efficiently extracting water-soluble β-glucan from the β-glucan-containing material such as cereals. In addition, β-glucan having a low molecular weight of 100,000 or less and excellent workability and excellent solubility in water can be stably and efficiently obtained.

Claims (3)

大麦糠、大麦糠抽出物、米糠抽出物又は麦芽抽出物の何れかであるイネ科植物由来物からなる、大麦粉砕物又はオーツ麦粉砕物の何れかであるβグルカン含有物から水溶性βグルカンを抽出するためのβグルカン抽出促進剤。Water-soluble β-glucan from a β-glucan-containing product that is a barley crushed product or an oat pulverized product, which is made from a grass family plant that is one of barley meal, barley meal extract, rice bran extract or malt extract Β-glucan extraction promoter for extracting 大麦糠、大麦糠抽出物又は米糠抽出物が、穀類粒の外周部より連続して30重量%以内まで搗精したときの糠、又は該糠の抽出物である請求項1記載のβグルカン抽出促進剤。 The promotion of β-glucan extraction according to claim 1, wherein the barley koji, barley koji extract or rice koji extract is koji when it is refined to within 30% by weight from the outer periphery of the cereal grain, or an extract of the koji. Agent. 大麦糠抽出物又は米糠抽出物が、糠を70℃以下5℃以上の温水により抽出して得られる抽出物である請求項又は記載のβグルカン抽出促進剤。 Barley bran extract or rice bran extract, beta-glucan extraction enhancer according to claim 1 or 2 wherein the extract obtained by extraction by hot water of 5 ° C. inclusive 70 ° C. bran.
JP2000295660A 2000-09-28 2000-09-28 β-glucan extraction promoter Expired - Lifetime JP4711497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295660A JP4711497B2 (en) 2000-09-28 2000-09-28 β-glucan extraction promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295660A JP4711497B2 (en) 2000-09-28 2000-09-28 β-glucan extraction promoter

Publications (2)

Publication Number Publication Date
JP2002105103A JP2002105103A (en) 2002-04-10
JP4711497B2 true JP4711497B2 (en) 2011-06-29

Family

ID=18778056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295660A Expired - Lifetime JP4711497B2 (en) 2000-09-28 2000-09-28 β-glucan extraction promoter

Country Status (1)

Country Link
JP (1) JP4711497B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097203A (en) * 2000-09-22 2002-04-02 Asahi Denka Kogyo Kk METHOD FOR EXTRACTING beta-GLUCAN
JP4969178B2 (en) * 2006-08-21 2012-07-04 三栄源エフ・エフ・アイ株式会社 Method for producing macrohomopsis gum
JP5528718B2 (en) * 2008-03-31 2014-06-25 株式会社Adeka Glucan composition elevation inhibitor and insulin secretagogue using β-glucan composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013056A1 (en) * 1996-09-25 1998-04-02 Gracelinc Limited Beta-glucan products and extraction processes from cereals
JP2002097203A (en) * 2000-09-22 2002-04-02 Asahi Denka Kogyo Kk METHOD FOR EXTRACTING beta-GLUCAN

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683652B2 (en) * 1990-03-30 1994-10-26 雪印乳業株式会社 Lipid metabolism-improved product and method for producing the same
JP3243559B2 (en) * 1998-02-18 2002-01-07 株式会社はくばく Process for producing water-soluble dietary fiber mainly composed of barley bran-derived β-glucan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013056A1 (en) * 1996-09-25 1998-04-02 Gracelinc Limited Beta-glucan products and extraction processes from cereals
JP2002097203A (en) * 2000-09-22 2002-04-02 Asahi Denka Kogyo Kk METHOD FOR EXTRACTING beta-GLUCAN

Also Published As

Publication number Publication date
JP2002105103A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
KR940004889B1 (en) Dietary fiber, its process and physiologically active composition containing the same as an active ingredient
JP3020387B2 (en) Antiviral substance
JP2015510014A (en) Hypoglycemic hyperbranched maltodextrin
US20070231449A1 (en) Non-starchy rice bran polysaccharides
FI94015B (en) Method for enriching soluble dietary fiber
JP3243559B2 (en) Process for producing water-soluble dietary fiber mainly composed of barley bran-derived β-glucan
Zhu et al. Structure elucidation and bioactivities of a new polysaccharide from Xiaojin Boletus speciosus Frost
JP2002209598A (en) Yeast-originated soluble polysaccharide
KR100716490B1 (en) Composition and foods for lowering glycemic index
AU2006328983A1 (en) Ethanol-precipitated Phaseolus vulgaris extracts, their use and formulations
JP4484014B2 (en) Hyaluronidase inhibition, antiallergic activity and immunostimulatory substances
JP4711497B2 (en) β-glucan extraction promoter
JP2002097203A (en) METHOD FOR EXTRACTING beta-GLUCAN
JP4451100B2 (en) Immunostimulant and anticancer agent containing Tamogitake fruit body composition as active ingredient
JP3459815B2 (en) Composition having inhibitory action on fatty liver separated from distillation residue of barley shochu and process for producing the composition
Mälkki Oat fiber: Production, composition, physicochemical properties, physiological effects, safety, and food applications
Berlanga-Reyes et al. Effect of drying method and process conditions on physicochemical and rheological properties of arabinoxylans extracted from corn-lime-cooking-liquor on a pilot plant scale
JP3753305B2 (en) Composition having fatty liver inhibitory action separated from barley koji and method for producing the composition
JPH03175951A (en) Insoluble edible fiber and same fiber-containing food
JP3638975B2 (en) Bowel movement improving agent, intestinal mucosa growth enhancer and enteral nutrition
WO2005122785A1 (en) Concentration of beta-glucans
JPH0678236B2 (en) Liver function activator
JPH0434527B2 (en)
JPH07121867B2 (en) Liver function activator
JP4673357B2 (en) Protein derived from rice or rice brewed food, lipid metabolism improving agent and food material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3