# JP4703101B2 - Process control method - Google Patents

## Info

Publication number
JP4703101B2
JP4703101B2 JP2003030603A JP2003030603A JP4703101B2 JP 4703101 B2 JP4703101 B2 JP 4703101B2 JP 2003030603 A JP2003030603 A JP 2003030603A JP 2003030603 A JP2003030603 A JP 2003030603A JP 4703101 B2 JP4703101 B2 JP 4703101B2
Authority
JP
Japan
Prior art keywords
deviation
temperature
value
output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2003030603A
Other languages
Japanese (ja)
Other versions
JP2004240815A (en
Inventor

Original Assignee

Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2003030603A priority Critical patent/JP4703101B2/en
Publication of JP2004240815A publication Critical patent/JP2004240815A/en
Application granted granted Critical
Publication of JP4703101B2 publication Critical patent/JP4703101B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

## Description

【０００１】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION

【０００２】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION

ＭＶ＝１００／ＰＢ×（ｅ＋１／ＴＩ×∫ｅｄｔ＋ＴＤ×ｄｅ／ｄｔ）…（１） MV = 100 / PB × (e + 1 / TI × ∫edt + TD × de / dt) ... (1)
ここで、ＰＢは比例帯、ＴＩは積分時間、ＴＤは微分時間のそれぞれを示している。 Here, PB is a proportional band, TI is the integral time, TD represents the respective derivative time.
【０００３】 [0003]
しかしながら、ＰＩＤ制御の場合、積分出力において過去の偏差の全てを用いるため、出力値が大きくなりすぎている。 However, in the case of PID control, since the use of all previous deviation, the output value is too large in the integration output. そのため、目標値の近傍に実測値が到達して安定状態に入っているときに突発的に偏差の大きい値が加わると、その瞬間に制御出力が大きくなり安定状態での微妙な制御を困難にしてしまうといった問題がある。 Therefore, the larger the value of suddenly deviation is applied when the measured value in the vicinity of the target value is in the stable state is reached, make it difficult to subtle control at that moment to the control output becomes large stable state there is a problem that.
【０００４】 [0004]
このＰＩＤ制御における問題点を解消する方法として、アンチ・リセット・ワインダー（ＡＲＷ）という補正方式が実施されている。 As a method for solving the problems in the PID control, the correction method called anti-reset winder (ARW) is performed. つまり、目標値に対する偏差の閾値を予め設定し、実測値と目標値とから求まる実測偏差がその閾値内にあるときに限り実測偏差を加算しながら積分出力を求め、閾値外にあるときは、累積加算した過去の偏差をリセットする補正方式である。 In other words, setting the threshold value of the deviation from the target value in advance, the measured deviation obtained from the measured value and the target value search of the integrated output while adding the measured deviation only when in the threshold, when in the off threshold, it is a correction method for resetting a previous deviation obtained by accumulating. （特許文献１ 参照） (See Patent Document 1)
【０００５】 [0005]
【特許文献１】 [Patent Document 1]

【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、上記の補正方式を実施した場合においても、次のような問題がある。 However, in the case of performing the above correction method also has the following problems.
すなわち、積分出力を求めるには、目標偏差の閾値内に実測偏差が入ったときに偏差の加算処理が開始されるため、閾値の範囲に入った時点の閾値近傍では積分出力が小さくなり比例出力をメインにして制御することになる。 That is, determine the integration output, since the process of adding the deviation is started when the measured deviation is within the target deviation threshold, the integration output becomes small in the vicinity of the threshold at the time of entering the range of the threshold value proportional output the will be controlled in the main.
【０００７】 [0007]
したがって、積分出力に比べて出力レベルの低い比例出力のみでは操作量を操作して制御対象を目標値に達成させるのに時間がかかることになる。 Therefore, only lower than the integral output of the output level proportional output would take time to achieve the target value control object by operating the operation amount. この場合に目標値への達成時間を短縮する方法として、上記式（１）における比例帯の値ＰＢを小さくして比例出力を大きくする方法が考えられる。 As a method for shortening the achievement time to the target value in this case, a method of increasing the proportional output by reducing the value PB of the proportional band in the formula (1) can be considered. しかしながら、比例出力を大きくすると、実測値が目標値に近づいたときに微妙な制御をしづらくするといった問題がある。 However, increasing the proportional output, there is a problem actually measured value is difficult to subtle control when approaching the target value.
【０００８】 [0008]

【０００９】 [0009]
【課題を解決するための手段】 In order to solve the problems]
【００１０】 [0010]

すなわち、請求項１に記載の発明は、 出力、積出力および微分出力を含んだプロセス制御方法おいて、 That is, a first aspect of the present invention, proportional output, keep the process control method including the integrals output and the differential output,

（Ａ）前記目標偏差の閾値と前記実測偏差を比較し、前記実測偏差が前記目標偏差の閾値を超える場合、積分出力をリセットすることなく、前記実測偏差の微分値の正負に応じて、次のようにして小さくした積分出力を求める、 (A) comparing the threshold value with the actual deviation of the target deviation, when the measured deviation exceeds a threshold value of the target deviation, without resetting the integrated output, depending on the sign of the differential value of the actual deviation, following Request was smaller integrated output as,
（Ａ１） 前記実測偏差の微分値が正、即ち、前記実測値が前記目標値から離れてゆく方向に変化している場合、予め定めた０から１未満の範囲の補正係数を前記範囲内で大きな値に変更し、その変更した補正係数を前記実測偏差と目標偏差の閾値の差分に乗算した値を求め、当該値を目標偏差の閾値に加算して実測偏差よりも小さい補正偏差を求め、 前記補正偏差を前回までの偏差の累積値に加算することにより、前記実測偏差をそのまま使って得られる積分出力よりも小さな値の積分出力を求める、 (A1) a differential value of the actual deviation is positive, i.e., if the measured value is changed in a direction Yuku away from the target value, the correction coefficient in the range from 0 to a predetermined less than 1 within the range change to a larger value, the changed correction coefficient determined a value obtained by multiplying the difference between the threshold value of the measured deviation and target deviation obtains a smaller correction deviation than the measured deviation those that value is added to the threshold of the target deviation , by adding the correction deviation accumulated value of the deviation up to the previous, obtaining the integrated output value smaller than the integrated output obtained by using as the actual deviation,
（Ａ２） 前記微分値が負、即ち、前記実測値が目標値に近づいてゆく方向に変化している場合、予め定めた０から１未満の範囲の補正係数を前記範囲内で小さな値に変更し、その変更した補正係数を前記実測偏差と目標偏差の閾値の差分に乗算した値を求め、当該値を目標偏差の閾値に加算して実測偏差よりも小さい補正偏差を求め、前記補正偏差を前回までの偏差の累積値に加算することにより、前記実測偏差をそのまま使って得られる積分出力よりも小さく、かつ、前記（Ａ１）の積分出力よりも小さな積分出力を求め、 (A2) said differential value is negative, i.e., if the measured value is changed in a direction Yuku approaches the target value, changes the correction coefficient in the range from 0 to a predetermined smaller than 1 to a value within the range and a value obtained by multiplying the difference between the threshold of the changed correction coefficient the measured deviation and target deviation determined, determine the smaller correction deviation than the measured deviation by adding the value to the threshold value of the target deviation, the correction deviation by adding to the accumulated value of the deviation up to the previous, the actual deviation smaller than the integrated output obtained by using it, and obtains a smaller integral power than integrated output of the (A1),
（Ｂ）前記実測偏差が前記目標偏差の閾値以内に収まっている場合は、前記実測偏差をそのまま求め、 この実測偏差を前回までの偏差に累積値に加算して積分出力を求めることを特徴とするものである。 (B) if said measured deviation is kept within the threshold of the target deviation, and characterized by determining said actual deviation calculated as the integral output is added to the cumulative value of the actual deviation of the deviation up to the previous it is intended to.
【００１１】 [0011]
（作用・効果）請求項１に記載の発明によれば、実測偏差が目標偏差よりも大きいときに、積分出力を求めるのに用いる偏差を実測偏差よりも小さい値にすることにより、過去の偏差の累積値を単純な実測偏差の累積値よりも小さくして積分出力される。 According to the invention described in (Function and Effect) claim 1, when the measured deviation is greater than the target deviation, by a value smaller than the measured deviation deviation used to determine the integration output, the past deviation It is the integrated output to be smaller than the accumulated value of a simple measured deviation accumulated value of. したがって、上記式（１）のＰＩＤ制御に比べ、実測偏差が目標値近傍に到達したとき、操作量を小さくして微妙な制御を可能とする。 Therefore, compared with the PID control of the above formula (1), when the measured deviation has reached the vicinity of the target value, enabling subtle control by reducing the operation amount.

さらに、微分出力の値によって補正係数の値を変更することによって、より一層精度の高いプロセス制御を実施することができる。 Further, by changing the value of the correction coefficient by the value of the differential output, it can be carried out more precise process control. 例えば、温度偏差が目標値から離れてゆくような場合に、補正係数の値を大きくすることで、積分出力を大きくすることができる、結果、冷却または加熱を積極的に行うことができ、短時間で目標値に近づくようにすることができる。 For example, if the temperature difference is as Yuku away from the target value, by increasing the value of the correction coefficient, it is possible to increase the integration output, results can be cooled or heated actively, short it can be made to approach the target value at the time.
【００１６】 [0016]

【００１７】 [0017]
なお、押出機１からロールに塗工されてフィルム成形された材料２は、厚み調節ロール９、搬送ロール群Ｒ、フィルム化された材料２の表面処理（例えばコロナ処理など）を行う表面処理部１０の順で搬送処理され、回収部であるターレット１１に巻取り回収されるようになっている。 Incidentally, the extruder 1 from being applied to the roll film forming material 2 has a thickness regulating roll 9, conveying rolls R, the surface treatment of the film of material 2 (e.g., corona treatment) surface processing unit for conveyed treated 10 sequentially with a, and is a turret 11 wound up recovering a recovery unit. 以下、各部の構成について具体的に説明する。 Hereinafter, specifically describes the structure of each part.
【００１８】 [0018]
シリンダ６は、搬送部５の基端から先端に向かって略等間隔に複数個（図１では５個）付設されている。 Cylinder 6 is attached a plurality at substantially equal intervals (in Fig. 1 5) toward the tip from the base end of the transport unit 5. 各シリンダ内には、図２に示すように、搬送部内を搬送される固形の材料２を加熱して溶融させるためのヒータ１２を備えるとともに、温度調節するための冷却水が循環する構成になっている。 Within each cylinder, as shown in FIG. 2, provided with a heater 12 for heating and melting the material 2 solid conveyed on the conveying portion, turned to the configuration coolant for adjusting the temperature is circulated ing. なお、各シリンダ４のヒータ１２は、独立して温度制御可能に構成されている。 Incidentally, the heater 12 of each cylinder 4 is temperature-controllable configured independently.
【００１９】 [0019]

【００２０】 [0020]

【００２１】 [0021]

【００２２】 [0022]

【００２３】 [0023]
コントローラ切替器１６は、目標値と実測値との偏差を確認して実測値の温度が低いと判断すると、加熱用ＰＩＤコントローラ１７の側へと切り替える。 Controller switch 16, the temperature of the measured values ​​to check the difference between the target value and the measured value is determined to be low, switching to the side of the heating PID controller 17. 逆に実測値の温度が目標温度よりも高いと判断すると冷却用ＰＩＤコントローラ１９の側へと切り替える。 Temperature measured value conversely switches and determines that higher than the target temperature to the side of the cooling PID controller 19.
【００２４】 [0024]

【００２５】 [0025]

【００２６】 [0026]
ＭＶｐ＝１００/ＰＢ×ｅ … （２） MVp = 100 / PB × e ... (2)
ＭＶｉ＝１００/ＰＢ（１/Ｔｉ×∫ｅ'ｄｔ） … （３） MVi = 100 / PB (1 / Ti × ∫e'dt) ... (3)
ＭＶｄ＝１００/ＰＢ（ＴＤ×ｄｅ/ｄｔ） … （４） MVd = 100 / PB (TD × de / dt) ... (4)
ＭＶ＝ＭＶｐ＋ＭＶｉ＋ＭＶｄ … （５） MV = MVp + MVi + MVd ... (5)
ここで、ＰＢは比例帯、Ｔｉは積分時間、ＴＤは微分時間のそれぞれを示している。 Here, PB is a proportional band, Ti is the integration time, TD represents the respective derivative time.
【００２７】 [0027]
このとき、積分出力演算器２３では、入力された実測温度偏差のレベルに応じて、その実測温度偏差の値を適時に操作して積分出力を求めるようになっている。 In this case, the integrator output operator 23, depending on the level of the input actual temperature difference, and obtains the integrated output by manipulating the value of the actual temperature deviation in a timely manner. つまり、図５に示すように、目標温度ＳＶに対する温度偏差の閾値Ａを予め設定し、積分出力演算器２３に入力される実測温度偏差が閾値Ａ内に入っている場合は、入力時の実測温度偏差を用いるようにする。 That is, as shown in FIG. 5, when setting the threshold value A of the temperature deviation from the target temperature SV advance, measured temperature deviation is inputted to the integrator output calculator 23 is within the threshold A is measured at the input so that use of the temperature deviation.
【００２８】 [0028]
また、入力される実測温度偏差が閾値Ａ内に入っていない場合は、実測温度偏差の値に所定の補正係数αを乗算するなどし、実測温度偏差の値よりも小さい補正温度偏差ｅ'を算出し、この補正温度偏差ｅ'を加算しながら積分出力を求めるようになっている。 Also, if the measured temperature difference to be inputted is not within threshold A, for example, by multiplying a predetermined correction coefficient to the value of the measured temperature deviation alpha, a smaller correction temperature deviation e 'than the value of the measured temperature deviation calculated, and obtains the integrated output while adding the corrected temperature deviation e '. 以下、その手順を図６のフローチャートに沿って説明する。 It will be described below with respect to the procedure in the flowchart of FIG.
【００２９】 [0029]
＜ステップＳ１＞ 温度偏差比較処理 予め設定した温度偏差の閾値Ａと、 目標値ＳＶから実測値ＰＶを減算することにより求まる実測温度偏差とが比較される。 And the threshold A of the temperature deviation set <Step S1> temperature deviation comparison process in advance, the measured temperature deviation obtained by subtracting the measured value PV from the target value SV is compared. 比較の結果、実測温度偏差ｅが閾値Ａよりも大きい場合には、ステップＳ２に進む。 Result of the comparison, if the measured temperature deviation e is larger than the threshold value A, the process proceeds to step S2. 実測温度偏差ｅが閾値Ａよりも小さい場合は、ステップＳ４に進む。 If the measured temperature deviation e is less than the threshold value A, the process proceeds to step S4.
【００３０】 [0030]
＜ステップＳ２＞ 補正温度偏差算出 入力された実測温度偏差ｅから閾値Ａの差分をとり、予め実験などよって求めた補正係数αを乗算し、閾値Ａを超えた分の温度偏差の値を小さくする。 <Step S2> takes the difference threshold value A from the corrected temperature deviation calculated input actual temperature deviation e, multiplied by the correction coefficient α determined depending on an experiment or the like in advance, reducing the value of minute temperature deviation exceeding the threshold value A to. この求まる値を閾値Ａに加算し、実際に入力された実測温度偏差の値よりも小さい値となる補正温度偏差を求める。 The obtained value is added to the threshold value A, and actually the value of the input actual temperature difference becomes smaller than the seek compensation temperature deviation. ただし、補正係数αは０≦α＜１の範囲の値をとる。 However, the correction coefficient alpha takes a value of 0 ≦ α <1 range.
【００３１】 [0031]
＜ステップＳ３＞ 補正温度偏差の加算ステップＳ２で逐次に求まる補正温度偏差ｅ'を加算し、その結果を次のステップＳ５に送る。 <Step S3> is added sequentially to the obtained correction temperature deviation e 'in the addition step S2 of the correction temperature deviation, and sends the result to the next step S5.
【００３２】 [0032]
＜ステップＳ４＞ 温度偏差の加算ステップＳ２で逐次に求まる閾値Ａを超えていない実測温度偏差ｅを加算し、その結果を次のステップＳ５に送る。 <Step S4> adds sequential determined threshold measured does not exceed the A temperature deviation e in the addition step S2 of the temperature deviation, and sends the result to the next step S5.
【００３３】 [0033]
＜ステップＳ５＞ 積分出力の算出ステップＳ３およびＳ４で求まった補正温度偏差ｅ'の加算値と閾値Ａを超えていないときの実測温度偏差ｅの加算値とが入力され、これらの加算値を用いて積分出力ＭＶiを求める。 <Step S5> and the sum of the measured temperature deviation e at which does not exceed the sum value and the threshold value A of the integrated output correction temperature deviation e which Motoma' in calculating steps S3 and S4 of 'is input, with these added values determine the integral output MVi Te.
【００３４】 [0034]
このようにして求まる積分出力ＭＶiは、例えば、図５に示すよう、閾値（−Ａ）を超える温度偏差は、実測温度偏差ｅの値よりも小さい値を加算することになり、補正温度偏差ｅ'と実測補正偏差ｅとの曲線で囲まれた斜線部分だけ積分出力ＭＶｉを小さくすることができる。 Integral output MVi which is obtained in this way, for example, as shown in FIG. 5, the temperature deviations above a threshold (-A) will become adding a value smaller than the value of the measured temperature deviation e, the correction temperature deviation e can only reduce the integrated output MVi hatched portion surrounded by the curve of the actually measured correction deviation e '. したがって、実測値が目標値ＳＶの近くに到達したときに、積分出力を弱めた状態でシリンダ６の温度制御が可能となり、結果、小さい出力に突発的に大きい偏差が加わったとしても比較的安定し、かつ精度の高い温度制御ができるようになる。 Therefore, when the measured value reaches near the target value SV, it is possible to control the temperature of the cylinder 6 in a state in which weakened integrated output, a result, relatively stable even joined by sudden large deviation smaller output and, and so that it is high temperature control accuracy.
【００３５】 [0035]

【００３６】 [0036]
ヒータ加熱温度制御プロセス１８では、制御出力ＭＶが図２のＳＳＲに入力され、時間値に変換される。 In heater temperature control process 18, the control output MV is inputted to the SSR in FIG. 2, it is converted to a time value. この変換処理がされると、シリンダ温度制御プロセスでシリンダ６の温度制御が実行される。 When the conversion process is the temperature control of the cylinder 6 is performed at a cylinder temperature control process. つまり、ＳＳＲをオン状態する時間を操作して電力調節器１３から供給される電力の量を変化させてヒータ１２の加熱温度を調節し、シリンダ６の温度を制御する。 That is, by operating the time to turn on the SSR varying the amount of power supplied from the power controller 13 to adjust the heating temperature of the heater 12 controls the temperature of the cylinder 6.
【００３７】 [0037]

【００３８】 [0038]

【００３９】 [0039]

【００４０】 [0040]
（１）上記実施例ではＰＩＤ制御を用いて説明したが、微分要素（Ｄ）を除くＰＩ制御にも適用することができる。 (1) In the above embodiment has been described with reference to PID control, but can also be applied to a PI control except differentiating element (D).
【００４１】 [0041]
（２）上記実施例において、補正係数αの値を実測温度偏差ｅの微分値に応じて設定変更するようにしてもよい。 (2) In the above embodiments, it may be set changes according to the value of the correction coefficient α on the differential value of the measured temperature deviation e. 例えば、実測値が目標値から離れてゆく場合、つまりｄｅ／ｄｔ≧０のときにαの値を大きくすることによって積分出力を大きくすることができ、短時間で目標温度に到達するように温度制御することができる。 For example, if the measured value Yuku away from the target value, it is possible to increase the integration output by increasing the value of α when the words de / dt ≧ 0, the temperature to reach the target temperature in a short time it is possible to control. 逆に、温度偏差が目標値に近づく場合、つまりｄｅ／ｄｔ≦０のときにαの値を小さくることによって、積分出力を小さくすることができ、目標値近傍で安定した温度制御することができる。 Conversely, if the temperature deviation approaches the target value, i.e. the smaller to Rukoto the value of α when the de / dt ≦ 0, the integration output can be reduced, stable to temperature control in the target value near the can.
【００４２】 [0042]
【発明の効果】 【Effect of the invention】

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図１】実施例に用いる押出機およびその周辺の概略構成を示す側面図である。 1 is a side view showing a schematic configuration of the extruder and its vicinity used in Example.
【図２】シリンダの構成を示すブロック図である。 2 is a block diagram showing the configuration of a cylinder.
【図３】シリンダの制御プロセスを示したブロック図である。 3 is a block diagram showing a control process of the cylinder.
【図４】図３の加熱用・冷却用ＰＩＤコントローラ内の構成を示したブロック図である。 4 is a block diagram showing a configuration of the heating and cooling PID in the controller of FIG.
【図５】実施例と従来例の積分出力を比較する図である。 5 is a diagram comparing the integrated output of the embodiment and the conventional example.
【図６】図４の積分出力演算器の演算処理を示したフローチャートである。 6 is a flowchart showing the operation process of the integrated output calculator in FIG.
【符号の説明】 DESCRIPTION OF SYMBOLS
１ … 押出機６ … シリンダ１３ … 電力調節器１４ … 冷却ユニット１５ … 電磁弁２２ … 比例出力演算器２３ … 積分出力演算器２４ … 微分出力演算器 1 ... extruder 6 ... cylinder 13 ... power regulator 14 ... cooling unit 15 ... solenoid valves 22 ... proportional output calculator 23 ... integrated output calculator 24 ... differentiated output calculator

## Claims (1)

1. 出力、積出力および微分出力を含んだプロセス制御方法おいて、 Proportional output, keep the process control method including the integrals output and the differential output,
制御対象の目標値に対して予め設定した目標偏差の閾値と、 前記目標値から実測値を減算して得られた実測偏差との比較に応じて積分出力を以下のようにして求める、 And the threshold of the target deviation preset the target value of the control target, obtained as follows integration output in response to a comparison between the measured deviation obtained by subtracting the measured value from the target value,
（Ａ）前記目標偏差の閾値と前記実測偏差を比較し、前記実測偏差が前記目標偏差の閾値を超える場合、積分出力をリセットすることなく、前記実測偏差の微分値の正負に応じて、次のようにして小さくした積分出力を求める、 (A) comparing the threshold value with the actual deviation of the target deviation, when the measured deviation exceeds a threshold value of the target deviation, without resetting the integrated output, depending on the sign of the differential value of the actual deviation, following Request was smaller integrated output as,
（Ａ１） 前記実測偏差の微分値が正、即ち、前記実測値が前記目標値から離れてゆく方向に変化している場合、予め定めた０から１未満の範囲の補正係数を前記範囲内で大きな値に変更し、その変更した補正係数を前記実測偏差と目標偏差の閾値の差分に乗算した値を求め、当該値を目標偏差の閾値に加算して実測偏差よりも小さい補正偏差を求め、 前記補正偏差を前回までの偏差の累積値に加算することにより、前記実測偏差をそのまま使って得られる積分出力よりも小さな値の積分出力を求める (A1) a differential value of the actual deviation is positive, i.e., if the measured value is changed in a direction Yuku away from the target value, the correction coefficient in the range from 0 to a predetermined less than 1 within the range change to a larger value, the changed correction coefficient determined a value obtained by multiplying the difference between the threshold value of the measured deviation and target deviation obtains a smaller correction deviation than the measured deviation those that value is added to the threshold of the target deviation , by adding the correction deviation accumulated value of the deviation up to the previous, obtaining the integrated output value smaller than the integrated output obtained by using as the actual deviation,
（Ａ２） 前記微分値が負、即ち、前記実測値が目標値に近づいてゆく方向に変化している場合、予め定めた０から１未満の範囲の補正係数を前記範囲内で小さな値に変更し、その変更した補正係数を前記実測偏差と目標偏差の閾値の差分に乗算した値を求め、当該値を目標偏差の閾値に加算して実測偏差よりも小さい補正偏差を求め、前記補正偏差を前回までの偏差の累積値に加算することにより、前記実測偏差をそのまま使って得られる積分出力よりも小さく、かつ、前記（Ａ１）の積分出力よりも小さな積分出力を求め、 (A2) said differential value is negative, i.e., if the measured value is changed in a direction Yuku approaches the target value, changes the correction coefficient in the range from 0 to a predetermined smaller than 1 to a value within the range and a value obtained by multiplying the difference between the threshold of the changed correction coefficient the measured deviation and target deviation determined, determine the smaller correction deviation than the measured deviation by adding the value to the threshold value of the target deviation, the correction deviation by adding to the accumulated value of the deviation up to the previous, the actual deviation smaller than the integrated output obtained by using it, and obtains a smaller integral power than integrated output of the (A1),
（Ｂ）前記実測偏差が前記目標偏差の閾値以内に収まっている場合は、前記実測偏差をそのまま求め、 この実測偏差を前回までの偏差に累積値に加算して積分出力を求める If (B) the actual deviation is kept within the threshold of the target deviation, calculated as the measured deviation, obtains the integrated output is added to the cumulative value of the actual deviation of the deviation up to the previous
ことを特徴とするプロセス制御方法。 Process control wherein the.
JP2003030603A 2003-02-07 2003-02-07 Process control method Active JP4703101B2 (en)

## Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030603A JP4703101B2 (en) 2003-02-07 2003-02-07 Process control method

## Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030603A JP4703101B2 (en) 2003-02-07 2003-02-07 Process control method

## Publications (2)

Publication Number Publication Date
JP2004240815A JP2004240815A (en) 2004-08-26
JP4703101B2 true JP4703101B2 (en) 2011-06-15

# Family

## Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030603A Active JP4703101B2 (en) 2003-02-07 2003-02-07 Process control method

## Country Status (1)

JP (1) JP4703101B2 (en)

## Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470496C2 (en) 2006-12-11 2012-12-20 Конинклейке Филипс Электроникс Н.В. System and method of control over illuminators
WO2008070977A1 (en) * 2006-12-11 2008-06-19 Tir Technology Lp Method and apparatus for digital control of a lighting device
JP4814806B2 (en) * 2007-01-25 2011-11-16 東邦電子株式会社 Controller, control method and program

## Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567401U (en) * 1978-10-30 1980-05-09
JPH03111901A (en) * 1989-09-26 1991-05-13 Toshiba Corp Non-linear feedback controller
JPH07219601A (en) * 1994-02-02 1995-08-18 Toshiba Corp Controller
JPH11154002A (en) * 1997-11-21 1999-06-08 Toshiba Corp Nonlinear 2-freedom degree pid controller

## Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567401U (en) * 1978-10-30 1980-05-09
JPH03111901A (en) * 1989-09-26 1991-05-13 Toshiba Corp Non-linear feedback controller
JPH07219601A (en) * 1994-02-02 1995-08-18 Toshiba Corp Controller
JPH11154002A (en) * 1997-11-21 1999-06-08 Toshiba Corp Nonlinear 2-freedom degree pid controller

## Also Published As

Publication number Publication date
JP2004240815A (en) 2004-08-26

## Similar Documents

Publication Publication Date Title
US5272621A (en) Method and apparatus using fuzzy logic for controlling a process having dead time
CN1267216C (en) Control method for a finishing mashine and finishing mashine executing said method
US6496749B1 (en) Semiconductor producing apparatus and temperature control method therefor
US6225609B1 (en) Coiling temperature control method and system
Zhao et al. Fuzzy PI control design for an industrial weigh belt feeder
US6866729B2 (en) Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device
DE19508476A1 (en) Control system for a plant of the basic materials or the manufacturing industry o. Ä.
US4430698A (en) Three-mode process control
WO1992014563A1 (en) Control system for a hot and/or cold rolling process
CN100471999C (en) Continuous pickling method and continuous pickling device
US5988259A (en) Method and apparatus for controlling the cooling of a strand in a continuous casting installation
CN1178016A (en) Intelligent computerized control system
CN1033960C (en) Temp.-controlling method for injection molding machine
Wang et al. Optimal-setting control for complicated industrial processes and its application study
CN101844215B (en) Dynamic secondary cooling control method for slab continuous casting based on double-cooling mode
AU783700B2 (en) Method for operating extruder temperature controller with stable temperature reset
CN100493748C (en) Control method for dynamically correcting strip steel thickness deviation by forward slip adaption
CN1082203C (en) Process controlling method and apparatus
Oosthuizen et al. Economic evaluation and design of an electric arc furnace controller based on economic objectives
JPH08174618A (en) Uniform heating of injection molding machine unit for resin treatment and casting mold-tool unit
EP2634519B1 (en) Device for controlling furnace temperature of burning heating furnace
JP3799273B2 (en) Temperature control of the extrusion molding machine having a stable temperature reset
CN101832618A (en) Frequency control method and control device of compressor of air conditioner
RU2245214C2 (en) Method and apparatus for making cast metallic billets
WO2004076086A3 (en) Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train

## Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100225

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250