JP4701389B2 - Defect inspection system for electrode surface of fuel cell - Google Patents

Defect inspection system for electrode surface of fuel cell Download PDF

Info

Publication number
JP4701389B2
JP4701389B2 JP2005149180A JP2005149180A JP4701389B2 JP 4701389 B2 JP4701389 B2 JP 4701389B2 JP 2005149180 A JP2005149180 A JP 2005149180A JP 2005149180 A JP2005149180 A JP 2005149180A JP 4701389 B2 JP4701389 B2 JP 4701389B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrode surface
defect
defect inspection
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005149180A
Other languages
Japanese (ja)
Other versions
JP2006329642A (en
Inventor
久 賀戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2005149180A priority Critical patent/JP4701389B2/en
Publication of JP2006329642A publication Critical patent/JP2006329642A/en
Application granted granted Critical
Publication of JP4701389B2 publication Critical patent/JP4701389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池の電極面の欠陥検査装置に関し、さらに詳しくは、燃料電池の電極面の実際の欠陥を直接的に且つ容易に検知することが出来る燃料電池の電極面の欠陥検査装置に関する。 The present invention relates to a defect inspection apparatus of the electrode surface of the fuel cell, and more particularly, relates to a defect inspection apparatus of the electrode surface directly and easily the fuel cell is able to detect actual defects on the electrode surface of the fuel cell .

従来、固体電解質型燃料電池の陰極−陽極間に交流電圧を印加して負荷インピーダンスを測定し、その負荷インピーダンスに基づいて電気的ショートやガスリークを判定する燃料電池の検査装置が知られている(例えば、特許文献1参照。)。
他方、固体酸化物型燃料電池の燃料極層および空気極層のいずれか一方側に温度分布検出器を配置し、他方側に熱源または冷却源を配置し、透過熱の分布を測定し、その透過熱の分布に基づいて欠陥の有無を判定する固体酸化物型燃料電池用セルの検査装置が知られている(例えば、特許文献2参照。)。
2. Description of the Related Art Conventionally, an inspection apparatus for a fuel cell is known in which an AC voltage is applied between a cathode and an anode of a solid oxide fuel cell to measure a load impedance, and an electrical short circuit and a gas leak are determined based on the load impedance ( For example, see Patent Document 1.)
On the other hand, a temperature distribution detector is arranged on one side of the fuel electrode layer and air electrode layer of the solid oxide fuel cell, a heat source or cooling source is arranged on the other side, and the distribution of transmitted heat is measured. 2. Description of the Related Art A solid oxide fuel cell inspection device that determines the presence or absence of defects based on the distribution of transmitted heat is known (see, for example, Patent Document 2).

特開2005−44715号公報([0012])Japanese Patent Laying-Open No. 2005-44715 ([0012]) 特開2005−108801号公報([請求項10])Japanese Patent Laying-Open No. 2005-108801 ([Claim 10])

上記従来の燃料電池の検査装置は、固体電解質型燃料電池を等価回路で置き換えて間接的に欠陥の存在を推定するものであり、実際の欠陥を直接的に検知するものではないという問題点がある。
他方、上記従来の固体酸化物型燃料電池用セルの検査装置は、実際の欠陥を直接的に検知するものであるが、燃料電池の被検査領域に熱線をほぼ均一に透過させる必要があり、実施が容易でない問題点がある。
そこで、本発明の目的は、燃料電池の電極面の実際の欠陥を直接的に且つ容易に検知することが出来る燃料電池の電極面の欠陥検査装置を提供することにある。
The conventional fuel cell inspection apparatus replaces the solid oxide fuel cell with an equivalent circuit and estimates the existence of defects indirectly, and does not directly detect actual defects. is there.
On the other hand, the above-described conventional solid oxide fuel cell inspection device directly detects actual defects, but it is necessary to transmit the heat rays almost uniformly to the inspection region of the fuel cell, There is a problem that is not easy to implement.
An object of the present invention is to provide an inspection apparatus of the electrode surface directly and easily the fuel cell is able to detect actual defects on the electrode surface of the fuel cell.

第1の観点では、本発明は、燃料電池の電極面に平行に載置されるセンサ面に分布して配設された複数の磁気センサと、電流が取り出されている状態の燃料電池の電極面について前記複数の磁気センサで得た検出信号に基づいて前記燃料電池の電極面に欠陥が有るか否かを判定する判定手段とを具備したことを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第1の観点による燃料電池の電極面の欠陥検査装置では、電流が取り出されている状態の燃料電池の電極面から発生する磁気分布を複数の磁気センサで検出して燃料電池の電極面に欠陥が有るか否かを判定する。すなわち、燃料電池に電流が流れている状態で発生する電極面に対応する磁気分布を複数の磁気センサで検出して欠陥が有るか否かを判定する。これによれば、燃料電池の電極面の実際の欠陥を複数の磁気センサで直接的に検知することが出来る。また、燃料電池の被検査領域に熱線をほぼ均一に透過させるような実施困難性がなく、実施が容易である。
In a first aspect , the present invention relates to a plurality of magnetic sensors distributed on a sensor surface placed in parallel to an electrode surface of a fuel cell, and an electrode of the fuel cell in a state where current is taken out. And a determination means for determining whether or not there is a defect in the electrode surface of the fuel cell based on detection signals obtained by the plurality of magnetic sensors with respect to the surface. Providing equipment.
In the defect inspection apparatus for a fuel cell electrode surface according to the first aspect , a magnetic distribution generated from the electrode surface of the fuel cell in a state where current is taken out is detected by a plurality of magnetic sensors and is detected on the electrode surface of the fuel cell. It is determined whether there is a defect. That is, it is determined whether or not there is a defect by detecting magnetic distribution corresponding to the electrode surface generated in a state where current flows through the fuel cell with a plurality of magnetic sensors. According to this, the actual defect on the electrode surface of the fuel cell can be directly detected by the plurality of magnetic sensors. Further, there is no implementation difficulty that allows the heat rays to pass through the inspected area of the fuel cell almost uniformly, and the implementation is easy.

第2の観点では、本発明は、前記第1の観点による燃料電池の電極面の欠陥検査装置において、前記判定手段は、電流が取り出されている状態の燃料電池の電極面について前記複数の磁気センサで得た検出信号の平均値との差に基づいて欠陥が有るか否かを判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第2の観点による燃料電池の電極面の欠陥検査装置では、複数の磁気センサで得た検出信号の平均値から各磁気センサで得た検出信号がどれだけ外れるかによって欠陥の有無を検知する。欠陥のない燃料電池の電極面に対応する磁気分布が一様または略一様であると見なせる場合に有効である。
In a second aspect, the present invention provides the defect inspection apparatus for a fuel cell electrode surface according to the first aspect , wherein the determination means includes the plurality of magnetic fields for the electrode surface of the fuel cell in a state where a current is taken out. Provided is a defect inspection apparatus for an electrode surface of a fuel cell, which determines whether or not there is a defect based on a difference from an average value of detection signals obtained by a sensor.
In the defect inspection device for the electrode surface of the fuel cell according to the second aspect, the presence or absence of a defect is detected by how much the detection signal obtained by each magnetic sensor deviates from the average value of the detection signals obtained by a plurality of magnetic sensors. . This is effective when the magnetic distribution corresponding to the electrode surface of the fuel cell having no defect can be regarded as uniform or substantially uniform.

第3の観点では、本発明は、前記第1の観点による燃料電池の電極面の欠陥検査装置において、前記判定手段は、欠陥の有無を判定する基準となる基準データを記憶しており、電流が取り出されている状態の燃料電池の電極面について前記複数の磁気センサで得た検出信号に基づく検査データと前記基準データとを比較して欠陥が有るか否かを判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第3の観点による燃料電池の電極面の欠陥検査装置では、欠陥のない燃料電池の電極面について複数の磁気センサで得た検出信号に基づく基準データを記憶しておき、各磁気センサで得た検出信号に基づく検査データと記憶していた基準データとを比較して欠陥の有無を検知する。欠陥のない燃料電池の電極面に対応する磁気分布が一様または略一様であると見なせない場合でも有効である。
In a third aspect, the present invention provides a defect inspection apparatus of the electrode surface of the fuel cell according to the first aspect, the judging unit stores a reference data as a reference determining the presence or absence of a defect, the current The inspection data based on the detection signals obtained by the plurality of magnetic sensors and the reference data are compared with the reference data for the electrode surface of the fuel cell in a state where the fuel cell is taken out to determine whether or not there is a defect. A defect inspection apparatus for an electrode surface of a fuel cell is provided.
In the defect inspection apparatus for a fuel cell electrode surface according to the third aspect, reference data based on detection signals obtained by a plurality of magnetic sensors is stored for each electrode surface of a fuel cell having no defect, and obtained by each magnetic sensor. The inspection data based on the detected signal is compared with the stored reference data to detect the presence or absence of a defect. This is effective even when the magnetic distribution corresponding to the electrode surface of the fuel cell having no defect cannot be regarded as uniform or substantially uniform.

第4の観点では、本発明は、前記第1の観点による燃料電池の電極面の欠陥検査装置において、前記判定手段は、電流が取り出されている状態の燃料電池の電極面について前記複数の磁気センサで得た検出信号の経時変化に基づいて欠陥が生じたか否かを判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第4の観点による燃料電池の電極面の欠陥検査装置では、欠陥のない燃料電池の電極面に欠陥が生じたときの磁気分布の変化により欠陥の発生を検知することが出来る。
In a fourth aspect, the present invention provides the defect inspection apparatus for a fuel cell electrode surface according to the first aspect , wherein the determining means includes the plurality of magnetic fields on the electrode surface of the fuel cell in a state where a current is taken out. Provided is a defect inspection device for a fuel cell electrode surface, wherein it is determined whether or not a defect has occurred based on a change with time of a detection signal obtained by a sensor.
In the defect inspection apparatus for the electrode surface of the fuel cell according to the fourth aspect , the occurrence of the defect can be detected by a change in magnetic distribution when a defect occurs on the electrode surface of the fuel cell having no defect.

第5の観点では、本発明は、前記第1から前記第4のいずれかの観点による燃料電池の電極面の欠陥検査装置において、前記判定手段は、前記複数の磁気センサの位置と各検出信号とに基づいて欠陥が前記燃料電池の電極面のどの部分に有るかを判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第5の観点による燃料電池の電極面の欠陥検査装置では、欠陥と磁気センサの距離が近いほど検出信号への影響が大きいことを利用して、欠陥がどの磁気センサに最も近いかを推定し、その最も近い磁気センサの位置から欠陥がどの部分に存在しているかを判定する。
In a fifth aspect, the present invention provides the defect inspection apparatus for an electrode surface of a fuel cell according to any one of the first to fourth aspects , wherein the determination means includes positions of the plurality of magnetic sensors and detection signals. defects provides an electrode surface defect inspection apparatus for a fuel cell and judging whether there a portion of the electrode surface throat of the fuel cell on the basis of and.
In the defect inspection apparatus for the electrode surface of the fuel cell according to the fifth aspect, the magnetic sensor is estimated to be closest to the defect by using the fact that the closer the defect is to the magnetic sensor, the greater the influence on the detection signal. Then, it is determined in which part the defect exists from the position of the closest magnetic sensor.

第6の観点では、本発明は、前記第1から前記第5のいずれかの観点による燃料電池の電極面の欠陥検査装置において、前記磁気センサがフラックスゲート型磁気検出素子であることを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
上記第6の観点による燃料電池の電極面の欠陥検査装置では、小さな欠陥による小さな磁気の変化をも検出できる高感度のフラックスゲート型磁気検出素子を用いるため、小さな欠陥でも確実に検知できる。
In a sixth aspect, the present invention provides the defect inspection apparatus for the electrode surface of the fuel cell according to any one of the first to fifth aspects , wherein the magnetic sensor is a flux gate type magnetic detection element. Provided is a defect inspection device for an electrode surface of a fuel cell .
In the defect inspection apparatus for the electrode surface of the fuel cell according to the sixth aspect, a highly sensitive flux gate type magnetic detection element capable of detecting even a small change in magnetism due to a small defect is used, so even a small defect can be detected reliably.

第7の観点では、本発明は、前記第の観点による燃料電池の電極面の欠陥検査装置において、前記磁気センサは前記センサ面に交差する方向に対になって配設されており、前記判定手段は、前記対になっている磁気センサで得た検出信号の差分に基づいて判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
外来磁気の変化を磁気センサが検出して誤動作する可能性がある。
そこで、上記第7の観点による燃料電池の電極面の欠陥検査装置では、磁気センサを近接して対にしておき、磁気センサの検出信号の差分をとる。外来磁気の変化は対の磁気センサの検出信号に同じ影響を与えるため、差分をとれば相殺される。よって、外来磁気の影響を抑制できる。一方、この対はセンサ面に交差する方向に配設されているため燃料電池の電極面に対しては遠近があり、欠陥に起因する磁気は対の磁気センサの検出信号に異なった影響を与える。よって、差分から欠陥の存否を判定できる。
In a seventh aspect, the present invention provides the defect inspection apparatus for an electrode surface of a fuel cell according to the first aspect , wherein the magnetic sensors are arranged in pairs in a direction intersecting the sensor surface, The determination means provides a defect inspection device for an electrode surface of a fuel cell, characterized in that determination is made based on a difference between detection signals obtained by the paired magnetic sensors.
There is a possibility that a magnetic sensor detects a change in external magnetism and malfunctions.
Therefore, in the defect inspection apparatus for the electrode surface of the fuel cell according to the seventh aspect , the magnetic sensors are placed in close proximity to each other, and the difference between the detection signals of the magnetic sensors is obtained. Since the change in the external magnetism has the same effect on the detection signal of the pair of magnetic sensors, it is canceled out if the difference is taken. Therefore, the influence of external magnetism can be suppressed. On the other hand, since this pair is arranged in a direction crossing the sensor surface, there is a distance to the electrode surface of the fuel cell, and the magnetism caused by the defect affects the detection signal of the paired magnetic sensor differently. . Therefore, the presence or absence of a defect can be determined from the difference.

第8の観点では、本発明は、前記第2から第5のいずれかの観点による燃料電池の電極面の欠陥検査装置において、前記磁気センサは前記センサ面に交差する方向に対になって配設されており、前記判定手段は、前記第2から第5のいずれかの観点に記載の検出信号に代えて前記対になっている磁気センサで得た検出信号の差分に基づいて判定することを特徴とする燃料電池の電極面の欠陥検査装置を提供する。
外来磁気の変化を磁気センサが検出して誤動作する可能性がある。
そこで、上記第8の観点による燃料電池の電極面の欠陥検査装置では、磁気センサを近接して対にしておき、磁気センサの検出信号の差分をとる。外来磁気の変化は対の磁気センサの検出信号に同じ影響を与えるため、差分をとれば相殺される。よって、外来磁気の影響を抑制できる。一方、この対はセンサ面に交差する方向に配設されているため燃料電池の電極面に対しては遠近があり、欠陥に起因する磁気は対の磁気センサの検出信号に異なった影響を与える。よって、前記第2から第5のいずれかの観点に記載の「検出信号」に代えて「対になっている磁気センサで得た検出信号の差分」を用いることにより、外来磁気の影響を抑制して欠陥の存否を判定できる。
In an eighth aspect, the present invention provides the defect inspection apparatus for a fuel cell electrode surface according to any one of the second to fifth aspects, wherein the magnetic sensors are arranged in pairs in a direction intersecting the sensor surface. The determination means is configured to determine based on a difference between detection signals obtained by the paired magnetic sensors instead of the detection signals according to any one of the second to fifth aspects. An electrode surface defect inspection apparatus for a fuel cell is provided.
There is a possibility that a magnetic sensor detects a change in external magnetism and malfunctions.
Therefore, in the defect inspection apparatus for the electrode surface of the fuel cell according to the eighth aspect, the magnetic sensors are placed close to each other and the difference between the detection signals of the magnetic sensors is obtained. Since the change in the external magnetism has the same effect on the detection signal of the pair of magnetic sensors, it is canceled out if the difference is taken. Therefore, the influence of external magnetism can be suppressed. On the other hand, since this pair is arranged in a direction crossing the sensor surface, there is a distance to the electrode surface of the fuel cell, and the magnetism caused by the defect affects the detection signal of the paired magnetic sensor differently. . Therefore, instead of the “detection signal” described in any one of the second to fifth aspects, the “difference of the detection signal obtained by the paired magnetic sensors” is used to suppress the influence of external magnetism. Thus, the presence or absence of a defect can be determined.

本発明の燃料電池の電極面の欠陥検査装置によれば、燃料電池の電極面の実際の欠陥を複数の磁気センサで直接的に検知することが出来る。また、燃料電池の被検査領域に熱線をほぼ均一に透過させるような実施困難性がなく、実施が容易である。 According to the defect inspection apparatus for the electrode surface of the fuel cell of the present invention, an actual defect of the electrode surface of the fuel cell can be directly detected by a plurality of magnetic sensors. Further, there is no implementation difficulty that allows the heat rays to pass through the inspected area of the fuel cell almost uniformly, and the implementation is easy.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る燃料電池の電極面の欠陥検査装置100を示す構成図である。
この燃料電池の電極面の欠陥検査装置100は、センサ面1aに多数のフラックスゲート型磁気検出素子10が分布して配設されているセンサユニット1と、センサユニット1からの検出信号に基づいて欠陥の有無を判定するコントロールボックス2とを具備してなる。
FIG. 1 is a configuration diagram illustrating a defect inspection apparatus 100 for an electrode surface of a fuel cell according to a first embodiment.
The fuel cell electrode surface defect inspection apparatus 100 is based on a sensor unit 1 in which a large number of fluxgate magnetic detection elements 10 are distributed on a sensor surface 1 a and a detection signal from the sensor unit 1. And a control box 2 for determining the presence or absence of defects.

図2に示すように、センサユニット1は、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nと、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nの励磁用コイルに励磁電流を通電する第1〜第Nの励磁部50−1〜50−Nと、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nの検出用コイルに誘起される信号を処理して第1〜第Nの検出信号を出力する第1〜第Nの信号処理部20−1〜20−Nと、第1〜第Nの検出信号をアナログ/デジタル変換する第1〜第NのA/D変換器40−1〜40−Nとを備えている。
また、コントロールボックス2は、第1〜第NのA/D変換器40−1〜40−Nより第1〜第Nの検出信号を読み込んで、各検出信号に基づいて欠陥が存在するか否かを判定するマイクロプロセッサ60と、操作者からの指示を受け付けると共に判定結果を出力する入出力部61とを具備している。
As shown in FIG. 2, the sensor unit 1 includes first to Nth fluxgate magnetic detection elements 10-1 to 10 -N and first to Nth fluxgate magnetic detection elements 10-1 to 10-10. Detection of first to N-th exciting units 50-1 to 50-N and a first to N-th flux gate type magnetic sensing elements 10-1 to 10-N for energizing an exciting current to -N exciting coils First to N-th signal processing units 20-1 to 20-N that process signals induced in the coils for use to output first to N-th detection signals, and analog to first to N-th detection signals 1 to N-th A / D converters 40-1 to 40-N for digital conversion.
Further, the control box 2 reads the first to Nth detection signals from the first to Nth A / D converters 40-1 to 40-N, and whether or not there is a defect based on each detection signal. A microprocessor 60 for determining whether or not, and an input / output unit 61 for receiving an instruction from an operator and outputting a determination result.

図3は、フラックスゲート型磁気検出素子10(10−1〜10−N)と、励磁部50(50−1〜50−N)と、信号処理部20(20−1〜20−N)を示す構成図である。   FIG. 3 shows the flux gate type magnetic sensing element 10 (10-1 to 10-N), the excitation unit 50 (50-1 to 50-N), and the signal processing unit 20 (20-1 to 20-N). FIG.

フラックスゲート型磁気検出素子10は、例えばパーマロイまたはセンダストなどの軟磁気特性(保持力が小さく、透磁率が大きい。)を有する材料を環状に成形した磁心11に励磁用コイル12および検出用コイル13を設けた構造である。なお、棒状の磁心に励磁用コイルと検出用コイルとを付設した構造でもよい。   The fluxgate type magnetic sensing element 10 includes an excitation coil 12 and a detection coil 13 formed on a magnetic core 11 formed in an annular shape from a material having soft magnetic properties (low coercive force and high magnetic permeability) such as permalloy or sendust. It is the structure which provided. A structure in which an excitation coil and a detection coil are attached to a rod-shaped magnetic core may be used.

励磁部50は、周波数f0(例えばf0=2kHz)の矩形波を発振する発振器51と、発振器51が発振した矩形波を分周し周波数f0/2の交流電流を励磁用コイル12に通電するコイル駆動回路52とを含んでおり、フラックスゲート型磁気検出素子10の励磁用コイル12に交流電流を通電する。   The excitation unit 50 includes an oscillator 51 that oscillates a rectangular wave having a frequency f0 (for example, f0 = 2 kHz), and a coil that divides the rectangular wave oscillated by the oscillator 51 and energizes the excitation coil 12 with an alternating current having a frequency f0 / 2. A drive circuit 52 is included, and an alternating current is passed through the exciting coil 12 of the fluxgate magnetic detection element 10.

信号処理部20は、検出用コイル13に誘起される検出信号Isに帰還信号Ibを重畳する帰還回路26と、フラックスゲート型磁気検出素子10の励磁移相から移相をずらせた同期信号を出力する移相器31と、帰還信号Ibを重畳した検出信号Isを増幅する前置増幅器32と、遮断周波数fc1(>f0/2)で励磁信号成分を遮断するためのハイパスフィルタ33と、ハイパスフィルタ33からの出力信号を同期信号で位相検波する位相検波器34と、遮断周波数fc2(≪f0)で所望帯域の出力信号Vpを取り出すローパスフィルタ35と、出力信号Vpを時定数τ1で積分し第1の積分信号Vi1を出力する第1の積分器41と、第1の積分信号Vi1を時定数τ2(>τ1)で積分し第2の積分信号Vi2を出力する第2の積分器42と、第2の積分信号Vi2を時定数τ3(>τ2)で積分し第3の積分信号Vi3を出力する第3の積分器43と、第1〜第3の積分信号Vi1〜Vi3を減衰/増幅する第1〜第3の積分信号調整器201〜203と、積分信号調整器201〜203を経た第1〜第3の積分信号Vi1’〜Vi3’を加算して加算信号Vdを出力する加算器21と、感度を調整するべく加算信号Vdを減衰/増幅する帰還量調整器22と、帰還量調整器22を経た加算信号Vd’にバイアス信号Vaを加えて帰還信号Ibを出力するバイアス調整器23とを具備している。   The signal processing unit 20 outputs a feedback circuit 26 that superimposes the feedback signal Ib on the detection signal Is induced in the detection coil 13, and a synchronization signal that is shifted in phase from the excitation phase shift of the flux gate type magnetic detection element 10. A phase shifter 31, a preamplifier 32 for amplifying the detection signal Is superimposed with the feedback signal Ib, a high-pass filter 33 for cutting off the excitation signal component at the cutoff frequency fc1 (> f0 / 2), and a high-pass filter 33, a phase detector 34 for detecting the phase of the output signal from the synchronization signal, a low-pass filter 35 for extracting the output signal Vp in the desired band at the cutoff frequency fc2 (<< f0), and integrating the output signal Vp with a time constant τ1. A first integrator 41 that outputs one integration signal Vi1, a second integrator 42 that integrates the first integration signal Vi1 with a time constant τ2 (> τ1), and outputs a second integration signal Vi2. First A second integrator 43 that integrates the second integrated signal Vi2 with a time constant τ3 (> τ2) and outputs a third integrated signal Vi3; and a first integrator 3 that attenuates / amplifies the first to third integrated signals Vi1 to Vi3. An adder 21 that adds the first to third integration signal adjusters 201 to 203 and the first to third integration signals Vi1 ′ to Vi3 ′ that have passed through the integration signal adjusters 201 to 203 and outputs an addition signal Vd; A feedback amount adjuster 22 for attenuating / amplifying the added signal Vd to adjust the sensitivity, and a bias adjuster 23 for adding the bias signal Va to the added signal Vd ′ having passed through the feedback amount adjuster 22 and outputting the feedback signal Ib, It has.

バイアス信号Vaは、磁性物体が近傍に存在しないときに加算信号Vdが0になるように(つまり、ノイズ磁気の直流成分を打ち消すように)調整しておく。   The bias signal Va is adjusted so that the addition signal Vd becomes 0 (that is, the DC component of noise magnetism is canceled) when there is no magnetic object in the vicinity.

各積分器41,42,43の時定数τ1,τ2,τ3やフィードバック特性を積分信号調整器201〜203で調整することで、出力信号Vpから抽出される信号成分の帯域を積分器ごとに変えることが可能となり、異なる複数の帯域の信号成分をそれぞれ検出信号として同時に得ることが出来る。すなわち、第1〜第3の積分信号Vi1〜Vi3のいずれか適当なものを検出信号として選べばよい。   By adjusting the time constants τ1, τ2, τ3 and feedback characteristics of the integrators 41, 42, and 43 with the integral signal adjusters 201 to 203, the band of the signal component extracted from the output signal Vp is changed for each integrator. Thus, signal components of different bands can be obtained simultaneously as detection signals. That is, an appropriate one of the first to third integration signals Vi1 to Vi3 may be selected as the detection signal.

図4は、燃料電池Fの欠陥を検査する状態の説明図である。なお、判りやすくするため、燃料電池Fをセンサユニット1より小さく描いているが、実際には同面積である。
燃料電池Fは、陽極ガス導入部Aと、多孔性陽極Pと、電解質Yと、多孔性陰極Nと、陰極ガス導入部Hとからなっている。多孔性陽極Pと多孔性陰極Nの間に負荷Rが接続され、電流Iが取り出される。
燃料電池の電極面の欠陥検査装置100は、そのセンサ面1aを燃料電池Fの多孔性陰極Nと平行にして設置される。
FIG. 4 is an explanatory diagram of a state in which a defect of the fuel cell F is inspected. In addition, in order to make it easy to understand, although the fuel cell F is drawn smaller than the sensor unit 1, it is actually the same area.
The fuel cell F includes an anode gas introduction part A, a porous anode P, an electrolyte Y, a porous cathode N, and a cathode gas introduction part H. A load R is connected between the porous anode P and the porous cathode N, and a current I is taken out.
The defect inspection apparatus 100 for the electrode surface of the fuel cell is installed with its sensor surface 1a parallel to the porous cathode N of the fuel cell F.

図5は、実施例1に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。
ステップS1では、マイクロプロセッサ60は、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nから第1〜第Nの検出信号を読み込む。
ステップS2では、第1〜第Nの検出信号の平均値を求める。
ステップS3では、第1〜第Nの検出信号の平均値と第1〜第Nの検出信号の各差(絶対値)と所定値(正の値)とを比較し、全ての差が所定値より小さいならステップS4へ進み、1つでも差が所定値以上ならステップS5へ進む。
FIG. 5 is a flowchart illustrating a defect inspection process for the electrode surface of the fuel cell according to the first embodiment.
In step S1, the microprocessor 60 reads the first to Nth detection signals from the first to Nth fluxgate magnetic detection elements 10-1 to 10-N.
In step S2, an average value of the first to Nth detection signals is obtained.
In step S3, the average value of the first to Nth detection signals and each difference (absolute value) between the first to Nth detection signals and a predetermined value (positive value) are compared, and all the differences are predetermined values. If it is smaller, the process proceeds to step S4, and if even one difference is equal to or greater than the predetermined value, the process proceeds to step S5.

ステップS4では、欠陥が存在しないと判定する。そして、ステップS7へ進む。   In step S4, it is determined that there is no defect. Then, the process proceeds to step S7.

ステップS5では、欠陥が存在していると判定する。
ステップS6では、第1〜第Nの検出信号の平均値と第1〜第Nの検出信号の各差と第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nの位置(予め判っている)とを基に、図6に概念的に示すように等高線図hを作成し、等高線図hの頂き領域を欠陥の推定存在領域として抽出する。そして、ステップS7へ進む。
In step S5, it is determined that a defect exists.
In step S6, the average value of the first to Nth detection signals and the difference between the first to Nth detection signals and the positions of the first to Nth fluxgate magnetic detection elements 10-1 to 10-N ( As shown conceptually in FIG. 6, a contour map h is created based on the information obtained in advance, and a region on the contour map h is extracted as an estimated defect existence region. Then, the process proceeds to step S7.

ステップS7では、欠陥が存在しないと判定した場合は、その旨を報知する。他方、欠陥が存在すると判定した場合は、図7に示すように、欠陥が存在する旨のメッセージ表示Mおよび推定存在領域Lを表示する。そして、処理を終了する。   In step S7, if it is determined that there is no defect, this is notified. On the other hand, when it is determined that a defect exists, a message display M and an estimated presence area L indicating that a defect exists are displayed as shown in FIG. Then, the process ends.

実施例1に係る燃料電池の電極面の欠陥検査装置100によれば、次の効果が得られる。
(1)第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nで燃料電池Fの電極面の実際の欠陥を直接的に検知することが出来る。
(2)燃料電池Fの被検査領域に熱線をほぼ均一に透過させるような実施困難性がなく、実施が容易である。
(3)小さな欠陥による小さな磁気の変化をも検知できる高感度のフラックスゲート型磁気検出素子10−1〜10−Nを用いるため、小さな欠陥でも確実に検知できる。
(4)欠陥の存在位置を検知することが出来る。
(5)燃料電池の実際の運転状態(電流Iを取り出している状態)を反映した検査が出来る。なお、陰極−陽極間に交流電圧を印加して検査することも出来る。
According to the defect inspection apparatus 100 for the electrode surface of the fuel cell according to the first embodiment, the following effects can be obtained.
(1) The actual defects on the electrode surface of the fuel cell F can be directly detected by the first to Nth fluxgate type magnetic sensing elements 10-1 to 10-N.
(2) The implementation is easy because there is no implementation difficulty that allows heat rays to pass through the inspected area of the fuel cell F almost uniformly.
(3) Since the high-sensitivity fluxgate type magnetic detection elements 10-1 to 10-N that can detect small magnetic changes due to small defects are used, even small defects can be detected reliably.
(4) The position of the defect can be detected.
(5) The inspection reflecting the actual operation state of the fuel cell (the state where the current I is taken out) can be performed. It is also possible to inspect by applying an AC voltage between the cathode and the anode.

図8は、実施例2に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。
マイクロプロセッサ60は、欠陥のない燃料電池Fについて第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nで得た検出信号に基づく各基準データを予め記憶している。
ステップS11では、マイクロプロセッサ60は、記憶していた各基準データを読み出す。
ステップS12では、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nから第1〜第Nの検出信号を読み込む。
ステップS13では、各基準データと第1〜第Nの検出信号の各差(絶対値)と所定値(正の値)とを比較し、全ての差が所定値より小さいならステップS14へ進み、1つでも差が所定値以上ならステップS15へ進む。
FIG. 8 is a flowchart showing the defect inspection process for the electrode surface of the fuel cell according to the second embodiment.
The microprocessor 60 stores in advance each reference data based on detection signals obtained by the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N for the fuel cell F having no defect.
In step S11, the microprocessor 60 reads out the stored reference data.
In step S12, the first to Nth detection signals are read from the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N.
In step S13, the difference (absolute value) between each reference data and the first to Nth detection signals is compared with a predetermined value (positive value). If all the differences are smaller than the predetermined value, the process proceeds to step S14. If even one difference is greater than or equal to the predetermined value, the process proceeds to step S15.

ステップS14では、欠陥が存在しないと判定する。そして、ステップS17へ進む。   In step S14, it is determined that there is no defect. Then, the process proceeds to step S17.

ステップS15では、欠陥が存在していると判定する。
ステップS16では、各基準データと第1〜第Nの検出信号の各差と第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nの位置とを基に、等高線図を作成し、等高線図の頂き領域を欠陥の推定存在領域として抽出する。そして、ステップS17へ進む。
In step S15, it is determined that a defect exists.
In step S16, a contour map is created based on the differences between the reference data, the first to Nth detection signals, and the positions of the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N. Then, the region of the contour map is extracted as the estimated existence region of the defect. Then, the process proceeds to step S17.

ステップS17では、欠陥が存在しないと判定した場合は、その旨を報知する。他方、欠陥が存在すると判定した場合は、欠陥が存在する旨のメッセージ表示および推定存在領域を表示する。そして、処理を終了する。   In step S17, if it is determined that there is no defect, this is notified. On the other hand, when it is determined that a defect exists, a message display indicating that a defect exists and an estimated presence area are displayed. Then, the process ends.

図9は、実施例3に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。
この処理は所定時間(例えば30分)ごとに反復実行される。そして、初回の実行時は、ステップS22だけが実行され、燃料電池Fについて第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nで得た各検出信号が記憶される。2回目以降の実行時はステップS21〜S27が実行される。
FIG. 9 is a flowchart showing the defect inspection process for the electrode surface of the fuel cell according to the third embodiment.
This process is repeatedly executed every predetermined time (for example, 30 minutes). In the first execution, only step S22 is executed, and the detection signals obtained by the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N for the fuel cell F are stored. In the second and subsequent executions, steps S21 to S27 are executed.

ステップS21では、マイクロプロセッサ60は、記憶していた前回の各検出信号を読み出す。
ステップS22では、第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nから第1〜第Nの検出信号を読み込む。
ステップS23では、前回と今回の第1〜第Nの検出信号の各差(絶対値)と所定値(正の値)とを比較し、全ての差が所定値より小さいならステップS24へ進み、1つでも差が所定値以上ならステップS25へ進む。
In step S21, the microprocessor 60 reads each previous detection signal stored.
In step S22, the first to Nth detection signals are read from the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N.
In step S23, each difference (absolute value) of the first to Nth detection signals of the previous time and this time is compared with a predetermined value (positive value). If all the differences are smaller than the predetermined value, the process proceeds to step S24. If even one difference is equal to or greater than the predetermined value, the process proceeds to step S25.

ステップS24では、欠陥が存在しないと判定する。そして、ステップS27へ進む。   In step S24, it is determined that there is no defect. Then, the process proceeds to step S27.

ステップS25では、欠陥が存在していると判定する。
ステップS26では、前回と今回の第1〜第Nの検出信号の各差と第1〜第Nのフラックスゲート型磁気検出素子10−1〜10−Nの位置とを基に、等高線図を作成し、等高線図の頂き領域を欠陥の推定存在領域として抽出する。そして、ステップS27へ進む。
In step S25, it is determined that a defect exists.
In step S26, a contour map is created based on the differences between the first to Nth detection signals of the previous time and the current time and the positions of the first to Nth fluxgate type magnetic detection elements 10-1 to 10-N. Then, the region of the contour map is extracted as the estimated existence region of the defect. Then, the process proceeds to step S27.

ステップS27では、欠陥が存在しないと判定した場合は、その旨を報知する。他方、欠陥が存在すると判定した場合は、欠陥が存在する旨のメッセージ表示および推定存在領域を表示する。そして、処理を終了する。   In step S27, if it is determined that there is no defect, this is notified. On the other hand, when it is determined that a defect exists, a message display indicating that a defect exists and an estimated presence area are displayed. Then, the process ends.

図10は、実施例4に係る燃料電池の電極面の欠陥検査装置200を示す構成図である。
この燃料電池の電極面の欠陥検査装置200は、実施例1の燃料電池の電極面の欠陥検査装置100の各フラックスゲート型磁気検出素子10の下側に、それらと対になるフラックスゲート型磁気検出素子10を備えた構成である。
FIG. 10 is a configuration diagram illustrating a defect inspection apparatus 200 for an electrode surface of a fuel cell according to a fourth embodiment.
Defect inspection apparatus 200 of the electrode surface of the fuel cell, the underside of each flux gate type magnetic sensor 10 of the defect inspection apparatus 100 of the electrode surface of the fuel cell of Example 1, fluxgate magnetic them to become paired The configuration includes a detection element 10.

燃料電池の電極面の欠陥検査処理は、図5,図8および図9における「第1〜第Nの検出信号」を「第1〜第Nの検出信号およびそれらと対になる第N+1〜第2Nの検出信号の各差分(絶対値)である第1〜第Nの差分」と読み替えればよい。 The defect inspection process for the electrode surface of the fuel cell is performed by replacing the “first to Nth detection signals” in FIGS. 5, 8, and 9 with “the first to Nth detection signals and the N + 1 to Nth detection signals paired therewith”. What is necessary is just to read as 1st-Nth difference which is each difference (absolute value) of 2N detection signals.

実施例4の燃料電池の電極面の欠陥検査装置200によれば、フラックスゲート型磁気検出素子の検出信号の対の差分をとるため、外来磁気の影響を抑制することが出来る。 According to the defect inspection apparatus 200 for the electrode surface of the fuel cell of Example 4, the difference between the detection signal pairs of the fluxgate type magnetic detection element is taken, so that the influence of external magnetism can be suppressed.

フラックスゲート型磁気検出素子の代わりに、SQUIDや、ホール素子や、MR素子などを用いてもよい。   A SQUID, a Hall element, an MR element, or the like may be used instead of the fluxgate type magnetic detection element.

本発明の燃料電池の電極面の欠陥検査装置は、燃料電池の欠陥検査装置として利用できる。 The electrode surface defect inspection apparatus of the present invention can be used as a fuel cell defect inspection apparatus.

実施例1に係る燃料電池の電極面の欠陥検査装置の構成を示す模式図である。1 is a schematic diagram illustrating a configuration of a defect inspection apparatus for an electrode surface of a fuel cell according to Example 1. FIG. 実施例1に係る燃料電池の電極面の欠陥検査装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a defect inspection device for an electrode surface of a fuel cell according to Example 1. FIG. フラックスゲート型磁気検出素子と励磁部と信号処理部を示す構成図である。It is a block diagram which shows a fluxgate type | mold magnetic detection element, an excitation part, and a signal processing part. 燃料電池の欠陥を検査する状態の説明図である。It is explanatory drawing of the state which test | inspects the defect of a fuel cell. 実施例1に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。2 is a flowchart showing a defect inspection process for an electrode surface of a fuel cell according to Example 1. FIG. 等高線図の説明図である。It is explanatory drawing of a contour map. 欠陥を検知した場合の表示例を示す説明図である。It is explanatory drawing which shows the example of a display when a defect is detected. 実施例2に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。6 is a flowchart showing a defect inspection process for an electrode surface of a fuel cell according to Example 2. FIG. 実施例3に係る燃料電池の電極面の欠陥検査処理を示すフロー図である。6 is a flowchart showing a defect inspection process for an electrode surface of a fuel cell according to Example 3. FIG. 実施例4に係る燃料電池の電極面の欠陥検査装置の構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a defect inspection apparatus for an electrode surface of a fuel cell according to Example 4;

1 センサユニット
2 コントロールボックス
10,10−1〜10−2N フラックスゲート型磁気検出素子
11 磁心
12 励磁用コイル
13 検出用コイル
20,20−1〜20−N 信号処理部
50,50−1〜50−N 励磁部
60 マイクロプロセッサ
61 入出力部
100,200 燃料電池の電極面の欠陥検査装置
F 燃料電池
DESCRIPTION OF SYMBOLS 1 Sensor unit 2 Control box 10, 10-1 to 10-2N Flux gate type magnetic detection element 11 Magnetic core 12 Excitation coil 13 Detection coil 20, 20-1 to 20-N Signal processor 50, 50-1 to 50 -N Excitation Unit 60 Microprocessor 61 Input / Output Unit 100,200 Defect inspection device for fuel cell electrode surface F Fuel cell

Claims (1)

燃料電池の電極面に平行に載置されるセンサ面に分布して配設された複数の磁気センサと、運転時の状態の燃料電池の電極面について前記複数の磁気センサで得た検出信号に基づいて前記燃料電池の電極面に欠陥が有るか否かを判定する判定手段とを具備し、前記判定手段は、前記複数の磁気センサの位置と各検出信号とに基づいて欠陥が前記燃料電池の電極面のどの部分に有るかを判定することを特徴とする燃料電池の電極面の欠陥検査装置。 A plurality of magnetic sensors distributed on a sensor surface placed parallel to the electrode surface of the fuel cell, and detection signals obtained by the plurality of magnetic sensors for the electrode surface of the fuel cell in the operating state And determining means for determining whether or not the electrode surface of the fuel cell is defective based on the position of the plurality of magnetic sensors and each detection signal. A defect inspection device for an electrode surface of a fuel cell, characterized in that it is determined on which part of the electrode surface of the fuel cell.
JP2005149180A 2005-05-23 2005-05-23 Defect inspection system for electrode surface of fuel cell Expired - Fee Related JP4701389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149180A JP4701389B2 (en) 2005-05-23 2005-05-23 Defect inspection system for electrode surface of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149180A JP4701389B2 (en) 2005-05-23 2005-05-23 Defect inspection system for electrode surface of fuel cell

Publications (2)

Publication Number Publication Date
JP2006329642A JP2006329642A (en) 2006-12-07
JP4701389B2 true JP4701389B2 (en) 2011-06-15

Family

ID=37551493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149180A Expired - Fee Related JP4701389B2 (en) 2005-05-23 2005-05-23 Defect inspection system for electrode surface of fuel cell

Country Status (1)

Country Link
JP (1) JP4701389B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010367A (en) * 2006-06-30 2008-01-17 Toyota Motor Corp Diagnostic device and diagnostic method of fuel cell
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
WO2011155527A1 (en) * 2010-06-09 2011-12-15 株式会社フジクラ Flux gate sensor, electronic direction finder using same, and current meter
CN109870500B (en) * 2019-03-13 2022-11-01 中国海洋石油集团有限公司 Method and system for real-time defect discrimination based on alternating current magnetic field detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910846A (en) * 1982-07-09 1984-01-20 Kobe Steel Ltd Eddy current flaw detector for metallic surface
JPS61223549A (en) * 1985-03-29 1986-10-04 Nippon Kokan Kk <Nkk> Pit detector for pipeline
JPS63138259A (en) * 1986-12-01 1988-06-10 Nkk Corp Magnetism probing method
JP2001194343A (en) * 2000-01-11 2001-07-19 Nkk Corp Magnetic leakage flux method of flaw detection
JP2001296277A (en) * 2000-04-13 2001-10-26 Nkk Corp Magnetic flaw detection method
JP2004152501A (en) * 2002-10-28 2004-05-27 Honda Motor Co Ltd Measuring device for current density of fuel cell
JP2005127963A (en) * 2003-10-27 2005-05-19 Shikoku Res Inst Inc Nondestructive inspection method and its apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910846A (en) * 1982-07-09 1984-01-20 Kobe Steel Ltd Eddy current flaw detector for metallic surface
JPS61223549A (en) * 1985-03-29 1986-10-04 Nippon Kokan Kk <Nkk> Pit detector for pipeline
JPS63138259A (en) * 1986-12-01 1988-06-10 Nkk Corp Magnetism probing method
JP2001194343A (en) * 2000-01-11 2001-07-19 Nkk Corp Magnetic leakage flux method of flaw detection
JP2001296277A (en) * 2000-04-13 2001-10-26 Nkk Corp Magnetic flaw detection method
JP2004152501A (en) * 2002-10-28 2004-05-27 Honda Motor Co Ltd Measuring device for current density of fuel cell
JP2005127963A (en) * 2003-10-27 2005-05-19 Shikoku Res Inst Inc Nondestructive inspection method and its apparatus

Also Published As

Publication number Publication date
JP2006329642A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP5483268B2 (en) Surface property inspection method
JP6060278B2 (en) Apparatus and method for detecting internal defects in steel sheet
US9146214B2 (en) Leakage magnetic flux flaw inspection method and device
JP5946086B2 (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
JP2009527745A (en) Method and apparatus for nondestructive evaluation of defects in metal objects
JP2020523588A (en) Load measuring method, load measuring device, and load measuring mechanism
TWI403752B (en) A device for measuring alternating current magnetic permeability and method of measuring the same
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
JP4701389B2 (en) Defect inspection system for electrode surface of fuel cell
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
JP2017015586A (en) Rope inspection device and rope inspection system
JP2010048723A (en) Reinforcing bar corrosion inspection method and reinforcing bar corrosion inspection apparatus
JP5191446B2 (en) Eddy current flaw detection method and apparatus
WO2016170588A1 (en) Magnetic field measurement system and failure diagnosis system using same
JP4376829B2 (en) Metal detector
JP6248201B2 (en) Steel plate defect inspection apparatus and method
JP2008185436A (en) Method and apparatus for measuring electromagnetic characteristic of metal analyte
JP2016057225A (en) Eddy current flaw detection sensor device
JP2016173340A (en) Pipeline inspection device
Postolache et al. Uniform eddy current probe based on GMR sensor array and image processing for NDT
JP2001281311A (en) Disturbance magnetic field canceling device
JP2007064907A (en) Magnetic flux leakage flaw detection apparatus
JP4202344B2 (en) Metal detector
Gontarz et al. Identification of magnetomechanical phenomena in a degradation process of loaded steel elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees