JP4674796B2 - Non-exposed surface coating composition and non-exposed surface coating - Google Patents

Non-exposed surface coating composition and non-exposed surface coating Download PDF

Info

Publication number
JP4674796B2
JP4674796B2 JP2004362130A JP2004362130A JP4674796B2 JP 4674796 B2 JP4674796 B2 JP 4674796B2 JP 2004362130 A JP2004362130 A JP 2004362130A JP 2004362130 A JP2004362130 A JP 2004362130A JP 4674796 B2 JP4674796 B2 JP 4674796B2
Authority
JP
Japan
Prior art keywords
exposed surface
surface coating
nucleic acid
dna
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004362130A
Other languages
Japanese (ja)
Other versions
JP2006169335A (en
Inventor
博志 横山
雅彦 山中
健太郎 渡邉
恒彦 樋口
茂樹 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004362130A priority Critical patent/JP4674796B2/en
Publication of JP2006169335A publication Critical patent/JP2006169335A/en
Application granted granted Critical
Publication of JP4674796B2 publication Critical patent/JP4674796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、製品の内面や裏面などの非露出面用の塗料組成物及び非露出面塗膜に係り、更に詳細には、個別認証に利用できる情報化核酸を用いた非露出面用塗料組成物及び非露出面塗膜に関する。   The present invention relates to a coating composition for a non-exposed surface such as an inner surface or back surface of a product and a coating film for a non-exposed surface, and more specifically, a coating composition for a non-exposed surface using an information nucleic acid that can be used for individual authentication. The present invention relates to an object and a non-exposed surface coating.

従来から、個別認証には、ナンバープレート、紙幣などの透かし印刷、ICチップ及びクレジットカードの写真などが利用されている。   Conventionally, for individual authentication, a license plate, watermark printing such as banknotes, an IC chip and a photo of a credit card are used.

しかし、これらの個別認証手段は、剥離、切断、消去などにより製品から除去できるという欠点があった。このため、製品から取り除くことのできない、即ち消失しない認証情報の開発が期待されていた。   However, these individual authentication means have a drawback that they can be removed from the product by peeling, cutting, erasing or the like. For this reason, it has been expected to develop authentication information that cannot be removed from the product, that is, does not disappear.

一方、DNAは、元来全ての生物が保有し、それぞれの生物において、全ての遺伝情報を含む情報生体分子である。その多くは多数のタンパク質のアミノ酸配列に対応するものである。即ち、デオキシアデノシン(dA)、デオキシグアノシン(dG)、デオキシシトシン(dC)及びデオキシチミン(dT)がリン酸エステル結合を介し一定の方向性をもって結合して成り、その塩基数をn個とすると、その長さのDNAは4種類存在することになる。従って、例えばわずか16種類の塩基数でも約43億種類のそれぞれ区別できるDNAが存在し得る。現在では、数十塩基配列を有するDNAであれば、どのような配列のものでも任意に合成することができる。また、DNAは、ある程度以上の量があれば、自動配列読み取り装置(シーケンサー)で自動的にその配列を決定することができる。 On the other hand, DNA is an information biomolecule originally possessed by all living organisms and including all genetic information in each organism. Many of them correspond to the amino acid sequences of many proteins. That is, deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), and deoxythymine (dT) are bonded with a certain direction through a phosphate ester bond, and the number of bases is n. Thus, there are 4n types of DNA having that length. Thus, for example, there can be about 4.3 billion types of distinguishable DNAs with only 16 types of bases. At present, any DNA having a sequence of several tens of bases can be arbitrarily synthesized. In addition, if the amount of DNA exceeds a certain level, the sequence can be automatically determined by an automatic sequence reader (sequencer).

このような背景から、水不溶性媒体にDNAを含ませた偽造防止ラベルを製品に用いることにより、該DNAの存在・不存在を手掛かりにして、その製品の真偽を明らかにすることが提案されている(特許文献1参照)。
特開2004−159502号公報
From such a background, it has been proposed to use a forgery-preventing label in which DNA is contained in a water-insoluble medium in a product to clarify the authenticity of the product based on the presence or absence of the DNA. (See Patent Document 1).
JP 2004-159502 A

しかし、特許文献1に記載の技術は、基本的にはDNAと水不溶媒体の混合方法に係るものであり、製品の真偽確認方法としては、PCR法によるリボ核酸の増幅の有無を確認することにより、リボ核酸入りの対象製品を同定することが示されている。また、DNAの存在・不存在を検定指標とする真偽確認データは元より、DNAの配列を検定指標とし、同種製品であっても個々の製品毎の認証を可能とする、個別認証に関するデータは開示されていない。   However, the technique described in Patent Document 1 basically relates to a method of mixing DNA and a water non-solvent, and the authenticity of a product is confirmed by the presence or absence of amplification of ribonucleic acid by PCR. This indicates that the target product containing ribonucleic acid is identified. In addition, authenticity verification data that uses the presence / absence of DNA as a test index is data on individual authentication that enables authentication for each product even if it is the same type of product, using the DNA sequence as a test index. Is not disclosed.

一方、車両など物品の盗難・損壊事件において加害者が逃走したときなどには、事件現場に残された物品の塗料片から対象物品を早期に特定したいという要請がある。   On the other hand, when the perpetrator escapes in the case of theft or damage of an article such as a vehicle, there is a request to identify the target article at an early stage from the paint piece of the article left on the incident site.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、情報化核酸を含有することにより、どのような出所・履歴の製品であるかを個別具体的に特定できる非露出面用塗料組成物及び非露出面塗膜を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to individually identify the source / history product by containing information nucleic acid. It is providing the coating composition for non-exposed surfaces and the non-exposed surface coating film which can be specified specifically.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、DNAに代表される核酸を一つの認証情報としてとらえ、非露出面塗膜中の情報化核酸を後から検出することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention treat nucleic acid represented by DNA as one piece of authentication information, and detect information nucleic acid in the non-exposed surface coating later. The present inventors have found that the above problems can be solved and have completed the present invention.

本発明によれば、工業製品などの量産品であっても、含まれる情報化核酸の配列を決定することにより、対象となる製品を個別的に認証できる。   According to the present invention, even if it is a mass-produced product such as an industrial product, the target product can be individually authenticated by determining the sequence of the contained information nucleic acid.

以下、本発明の非露出面用塗料組成物について詳細に説明する。なお、本明細書及び特許請求の範囲において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the coating composition for unexposed surfaces of the present invention will be described in detail. In the present specification and claims, “%” indicates a mass percentage unless otherwise specified.

本発明の非露出面用塗料組成物は、非露出面用塗料原料に、任意且つ既知の塩基配列を有する部位を備える情報化核酸を含有して成る。これより、非露出面用塗料として容易に製品に塗布できるとともに、非露出面塗膜形成後は該製品から除去することが困難となるので、優れた個別認証手段として使用できる。   The non-exposed surface coating composition of the present invention comprises an information nucleic acid provided with a site having an arbitrary and known base sequence in a non-exposed surface coating material. As a result, it can be easily applied as a non-exposed surface coating material to the product, and it is difficult to remove the non-exposed surface coating film from the product, so that it can be used as an excellent individual authentication means.

ここで、上記情報化核酸とは、DNA(デオキシリボ核酸)、RNA(リボ核酸)及びこれらの誘導体をいい、天然型でも人工型でも良いが、使用環境が厳しい下塗り塗料組成物中に含めることを考慮すると、構造的に安定している人工型を使用するのが好ましい。人工型においては天然型には存在しない結合様式の(例えばヌクレオシド同士の結合がリン酸エステル結合だけでなくチオリン酸エステル結合のような非天然型を含むなどの)配列を形成できる。   Here, the above-mentioned information nucleic acid refers to DNA (deoxyribonucleic acid), RNA (ribonucleic acid) and derivatives thereof, which may be natural type or artificial type, but should be included in a primer coating composition which is used in a severe environment. In consideration, it is preferable to use an artificial mold that is structurally stable. In the artificial type, a sequence having a binding mode that does not exist in the natural type (for example, a linkage between nucleosides includes not only a phosphate ester bond but also a non-natural type such as a thiophosphate ester bond) can be formed.

また、上記情報化核酸において、塩基配列部位が任意であるとは、検出可能な塩基配列である限り無作為に選択され得ることを示し、塩基配列部位が既知であるとは、個別認証に用いられる塩基配列が予め把握されていることを示す。   In addition, in the above-mentioned information nucleic acid, that the base sequence site is arbitrary means that it can be randomly selected as long as it is a detectable base sequence, and that the base sequence site is known is used for individual authentication. It shows that the base sequence to be grasped in advance.

上記情報化核酸の大きさは、核酸全体における塩基数が200以下であることが好ましい。200を超えると合成の段階でごくわずかずつ未反応部位が生成し、塩基が欠けたものの含有量が増大し易い。より好ましくは100塩基程度であることが良い。   As for the size of the information nucleic acid, the number of bases in the whole nucleic acid is preferably 200 or less. When it exceeds 200, unreacted sites are generated little by little at the stage of synthesis, and the content of those lacking a base tends to increase. More preferably, it is about 100 bases.

更に、上記塩基配列においてチミン同士が隣接しないことが好ましい。これより、チミンがダイマー化するのを抑制できる。   Furthermore, it is preferable that thymines are not adjacent to each other in the above base sequence. Thereby, it can suppress that thymine dimerizes.

また、上記情報化核酸は、OH基と反応する化合物と併用する場合や厳しい環境下で使用される場合の安定性を向上させる観点から、保護基により誘導化されていることが好ましい。具体的には、5´位、3´位のいずれか一方又は双方にある水酸基を、リン酸エステル基、アシル基、アルコキシカルボニル基、ベンジル基、置換ベンジル基及びアリル基などを用いて誘導化することができる。図1の(A)に天然型DNA、(B)に5´位を誘導化したDNAを示す。   In addition, the information nucleic acid is preferably derivatized with a protecting group from the viewpoint of improving stability when used in combination with a compound that reacts with an OH group or when used in a severe environment. Specifically, a hydroxyl group at one or both of the 5′-position and the 3′-position is derivatized with a phosphate ester group, an acyl group, an alkoxycarbonyl group, a benzyl group, a substituted benzyl group, an allyl group, or the like. can do. FIG. 1A shows natural DNA, and FIG. 1B shows DNA derivatized at the 5 ′ position.

更に、単離や精製の利便性を高める観点から、5´位の水酸基をビオチン又は蛍光分子により誘導化することが好ましい。具体的には、ビチオンを用いるとアビジンというタンパク質を結合したカラムに選択的に吸着され易くなる。一方、フルオレセインなどの蛍光分子を用いると核酸自体が蛍光をもつようになるため、感度よく検出でき精製等が容易になる。このように、単離や精製の利便性を高めると、個別認証が極めて容易になる。   Furthermore, from the viewpoint of enhancing the convenience of isolation and purification, it is preferable to derivatize the hydroxyl group at the 5 ′ position with biotin or a fluorescent molecule. Specifically, when vithion is used, it is easily adsorbed selectively on a column to which a protein called avidin is bound. On the other hand, when a fluorescent molecule such as fluorescein is used, the nucleic acid itself becomes fluorescent, so that it can be detected with high sensitivity and purification is facilitated. Thus, when the convenience of isolation and purification is increased, individual authentication becomes extremely easy.

なお、上記情報化核酸としてRNAを用いるときは、安定性を向上させる観点から2´位の水酸基を上記保護基により誘導化することもできる。   When RNA is used as the information nucleic acid, the 2′-position hydroxyl group can be derivatized with the protecting group from the viewpoint of improving stability.

また、上記情報化核酸は、非露出面用塗料組成物中の含有量が少ない場合でも効率良く検出されるようにする観点から、上記塩基配列部位が該情報化核酸の増幅に用いられる部位であることが好ましい。かかる情報化核酸の増幅方法としては、相乗的に増幅させることのできるポリメラーゼ連鎖反応(PCR)が適宜採用できる。   In addition, from the viewpoint of efficiently detecting the information nucleic acid even when the content in the non-exposed surface coating composition is low, the base sequence portion is a portion used for amplification of the information nucleic acid. Preferably there is. As a method for amplifying such information nucleic acid, polymerase chain reaction (PCR) that can be amplified synergistically can be appropriately employed.

代表的には、情報化核酸が極微量であっても極度に増幅できるPCR法を採用することが望ましい。この方法では、例えば、DNAの末端数十塩基と相補的な塩基(プライマー)の存在下に温度制御を行いつつ耐熱性のDNAポリメラーゼを作用させると、元のDNAを倍増させることができる。これを例えば30回繰り返せば数億倍に増幅させることができる。この増幅により微量のサンプルからでもその配列を決定するのに十分な量を得ることができるようになり、ひいては配列に対応する情報から該情報化核酸が含まれていた製品(非露出面用塗料組成物)の「身元」が判明することになる。   Typically, it is desirable to employ a PCR method that can be amplified extremely even if the information nucleic acid is extremely small. In this method, for example, when a heat-resistant DNA polymerase is allowed to act while temperature control is performed in the presence of a base (primer) complementary to several tens of bases of the DNA, the original DNA can be doubled. If this is repeated 30 times, for example, it can be amplified several hundred million times. This amplification makes it possible to obtain a sufficient amount for determining the sequence even from a very small amount of sample. As a result, the product containing the information nucleic acid from the information corresponding to the sequence (non-exposed surface coating The “identity” of the composition) will be revealed.

また、このときは、上記増幅に用いられる部位として、両端にポリメラーゼ連鎖反応(PCR)に必要なプライマー対応部位を有することが好ましい。情報化核酸はプライマーを備えていなくても使用できるが、プライマーを備えることにより短時間で識別できるようになるからである。   In this case, it is preferable that the sites used for the amplification have primer-corresponding sites necessary for polymerase chain reaction (PCR) at both ends. This is because an information nucleic acid can be used without a primer, but it can be identified in a short time by providing a primer.

かかるプライマー対応部位について、塩基数の下限は5以上であることが好ましい。より好ましくは10以上であることが良い。塩基数が5未満では、区別できる核酸の数が減少し、特に多くの製品(非露出面用塗料組成物)が混在するときは識別に時間がかかってしまう。一方、塩基数の上限は100以下であることが好ましい。塩基数が100を超えるといずれかの位置の塩基を欠いた副生成物の比率が高くなり、精製に手間がかかるか、場合によっては精製困難となってしまう。   For such a primer corresponding site, the lower limit of the number of bases is preferably 5 or more. More preferably, it is 10 or more. If the number of bases is less than 5, the number of nucleic acids that can be distinguished decreases, and particularly when many products (coating compositions for non-exposed surfaces) are mixed, it takes time for identification. On the other hand, the upper limit of the number of bases is preferably 100 or less. When the number of bases exceeds 100, the ratio of by-products lacking a base at any position increases, so that purification takes time or is difficult in some cases.

なお、情報化核酸としてRNAを用いるときは、逆転写酵素を用いて配列の相補的なDNAを得、このDNAを用いてPCR法を行うことができる。   In addition, when RNA is used as the information nucleic acid, DNA complementary to the sequence can be obtained using reverse transcriptase, and PCR can be performed using this DNA.

また、上記情報化核酸は、上記塩基配列部位の他に更に認証情報部位を有することが好ましい。このときは、より詳細な情報設定により個別認証を実行できる。   The information nucleic acid preferably further has an authentication information site in addition to the base sequence site. In this case, individual authentication can be executed by more detailed information setting.

例えば、図2に示すように、両端にプライマー対応部位を備えた情報化DNAであれば、中央にm個の塩基数の配列を置き(B1〜Bm)、この部分の配列情報を認証情報に対応させる。その両端には、それぞれl(エル)個、n個のプライマーに相補的な配列(X1〜Xl,P1〜Pn)を連結する。この部分が存在することにより初めてPCR法の採用が可能となる。情報化DNAはこの1本鎖のもの又はそれと相補的な配列のDNAと複合体を形成した2本鎖のものを情報素子として用いることができる。このプライマー対応部位の配列は、できるだけ相補的配列の結合が安定になり且つPCR法による増幅が円滑に進行するように工夫できる。   For example, as shown in FIG. 2, in the case of information-oriented DNA provided with primer-corresponding sites at both ends, a sequence of m bases is placed in the center (B1 to Bm), and the sequence information of this part is used as authentication information. Make it correspond. At both ends, sequences (X1 to Xl, P1 to Pn) complementary to l (el) and n primers are ligated, respectively. The presence of this part makes it possible to adopt the PCR method for the first time. The information DNA can be used as an information element of this single-stranded DNA or a double-stranded DNA complexed with a complementary sequence of DNA. The sequence of the primer corresponding site can be devised so that the binding of complementary sequences is as stable as possible and amplification by the PCR method proceeds smoothly.

更に、上記情報化核酸は、樹脂固形分100gに対して0.5〜2000μg含まれることが、情報化核酸の検出精度及び非露出面用塗料原料への分散性などを良好とする観点から好適である。より好ましくは30〜200μg、特に好ましくは50〜100μgであることが良い。添加量が0.5μgより少ないと、非露出面塗膜から情報化核酸を識別することが困難となり易い。2000μgを超えると、付着性が低下し易い。また、プライマー対応部位を備えた情報化DNAを多く含有させると、コスト高となる。
なお、上記樹脂固形分とは、非露出面用塗料組成物が固化した非露出面塗膜を示す。
Further, the information nucleic acid is preferably contained in an amount of 0.5 to 2000 μg with respect to 100 g of the resin solid content from the viewpoint of improving the detection accuracy of the information nucleic acid and the dispersibility of the non-exposed surface coating material. It is. More preferably, it is 30-200 micrograms, Most preferably, it is 50-100 micrograms. When the amount added is less than 0.5 μg, it is difficult to distinguish the information nucleic acid from the unexposed surface coating. If it exceeds 2000 μg, the adhesion tends to be lowered. In addition, if a large amount of information DNA having a primer-corresponding site is contained, the cost increases.
In addition, the said resin solid content shows the non-exposed surface coating film which the coating composition for non-exposed surfaces solidified.

上記非露出面用塗料原料としては、一般的な非露出面用塗料を用いることができ、代表的には、親油性液体であるアクリル系塗料,メラシン系塗料,ウレタン系塗料など、親水性液体である親水化アクリル系塗料,親水化ウレタン系塗料,親水化メラシン系塗料など、粉体であるポリエステル系塗料,アクリル系塗料などが挙げられる。また、上記親油性液体は、一液型であっても良いし、二液型(例えばウレタン樹脂塗料)などを用いてもよい。   As the raw material for the non-exposed surface, a general non-exposed surface paint can be used. Typically, a hydrophilic liquid such as an acrylic-based paint, a melamine-based paint or a urethane-based paint which is a lipophilic liquid. Examples thereof include hydrophilized acrylic paints, hydrophilized urethane paints, and hydrophilized melacin paints, such as polyester paints and acrylic paints that are powders. The lipophilic liquid may be a one-component type or a two-component type (for example, urethane resin paint).

なお、本発明の非露出面用塗料組成物には、上記非露出面用塗料原料及び上記情報化核酸の他にも各種添加剤を含有することができる。例えば、有機顔料、無機顔料、分散剤、硬化促進剤などの各種添加剤を適宜含有できる。   The non-exposed surface coating composition of the present invention may contain various additives in addition to the non-exposed surface coating material and the information nucleic acid. For example, various additives such as an organic pigment, an inorganic pigment, a dispersant, and a curing accelerator can be appropriately contained.

また、上記情報化核酸は、微粒子に担持することが好適である。これより、非露出面用塗料原料に含有させた情報化核酸が、該非露出面用塗料原料から流出するのを抑制でき、非露出面用塗料組成物を長寿命化できる。   The information nucleic acid is preferably carried on fine particles. As a result, it is possible to prevent the information nucleic acid contained in the non-exposed surface coating material from flowing out of the non-exposed surface coating material, thereby extending the life of the non-exposed surface coating composition.

更に、上記微粒子の平均粒径は、0.01〜60μmであることが、情報化核酸の検出精度及び非露出面用塗料原料への分散性などを良好とする観点から好適である。より好ましくは0.02〜10μm、特に好ましくは0.02〜5μmであることが良い。平均流径が0.01μmより小さいと検出精度が低下し易く、60μmより大きいと付着性が低下し易い。   Furthermore, the average particle diameter of the fine particles is preferably 0.01 to 60 μm from the viewpoint of improving the detection accuracy of the information nucleic acid and the dispersibility of the non-exposed surface coating material. More preferably, it is 0.02 to 10 μm, and particularly preferably 0.02 to 5 μm. If the average flow diameter is smaller than 0.01 μm, the detection accuracy tends to be lowered, and if it is larger than 60 μm, the adhesion tends to be lowered.

更にまた、上記微粒子の含有量は、上記樹脂固形分に対して0.5〜70%の割合であることが、情報化核酸の検出精度及び非露出面用塗料原料への分散性などを良好とする観点から好適である。より好ましくは0.5〜30%であり、特に好ましくは0.5〜10%であることが良い。含有量が0.5%より少ないと、サンプリングされた下塗り塗膜中の微粒子の量が少な過ぎるために、検出の精度が低下する可能性がある。70%を超えると、付着性が低下し易い。   Furthermore, the content of the fine particles is in a ratio of 0.5 to 70% with respect to the solid content of the resin, so that the detection accuracy of the information nucleic acid and the dispersibility of the coating material for the non-exposed surface are good. From the viewpoint of: More preferably, it is 0.5 to 30%, and particularly preferably 0.5 to 10%. When the content is less than 0.5%, since the amount of fine particles in the sampled undercoat film is too small, the detection accuracy may be lowered. If it exceeds 70%, the adhesion tends to decrease.

上記微粒子としては、例えば、シリカや酸化亜鉛の他、酸化チタンや酸化モリブデン、酸化タングステン、チタン酸バリウムなどが好適に用いられる。   As the fine particles, for example, titanium oxide, molybdenum oxide, tungsten oxide, barium titanate and the like are preferably used in addition to silica and zinc oxide.

また、上記微粒子への担持は、滅菌蒸留水中に分散させて懸濁液とし、この懸濁液に上記情報化核酸をそのまま、あるいは当該情報化核酸を滅菌蒸留水に溶解させた情報化核酸水溶液を加え、乾燥することによって製造することができる。このとき、上記情報化核酸については、一部を水溶液とすることなくそのままの状態で加え、残部を水溶液の状態で加えるようにしても何ら差し支えない。   The fine particles are supported on a dispersion by dispersing in sterile distilled water to form a suspension, and the information nucleic acid solution is prepared by dissolving the information nucleic acid in the suspension as it is or dissolving the information nucleic acid in sterile distilled water. And can be produced by drying. At this time, a part of the information nucleic acid may be added as it is without forming an aqueous solution, and the remaining part may be added as an aqueous solution.

また、このとき、上記懸濁液には、アルコール(例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノールなど)、エステル(例えば、酢酸エチル、酢酸ブチル、酢酸プロピルなど)、ケトン(例えば、アセトン、ジメチルケトン、メチルエチルケトン、ジエチルケトンなど)及び芳香族溶剤(トルエン、ヘキサン、シクロヘキサン、キシレンなど)の溶媒を更に添加することが望ましく、これによって上記微粒子の懸濁液中における分散性が向上すると共に、情報化核酸が添加された後の水分及び溶剤分の揮発が促進されることになる。   At this time, the suspension includes alcohol (eg, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, etc.), ester (eg, ethyl acetate, butyl acetate, propyl acetate, etc.) ), Ketones (eg, acetone, dimethyl ketone, methyl ethyl ketone, diethyl ketone, etc.) and aromatic solvents (toluene, hexane, cyclohexane, xylene, etc.) are preferably added, thereby As well as improving dispersibility, the volatilization of water and solvent after the addition of the information nucleic acid is promoted.

なお、これら溶媒は1種のみに限定されず、2種以上の溶媒を併用することも可能である。また、これら溶媒は、情報化核酸と同時、あるいは情報化核酸を加えた後に添加しても、特に差し支えはない。   In addition, these solvents are not limited to only 1 type, It is also possible to use 2 or more types of solvents together. These solvents may be added at the same time as the information nucleic acid or after the information nucleic acid is added.

上記溶媒の添加量としては、アルコールの場合には、滅菌蒸留水/アルコールの容量比を1〜99の範囲とすることが好ましく、アルコール以外の溶媒の場合、即ちエステル、ケトン、芳香族溶剤の場合には、滅菌蒸留水/溶媒の容量比を1〜75の範囲とすることが好ましい。   As the addition amount of the solvent, in the case of alcohol, the volume ratio of sterilized distilled water / alcohol is preferably in the range of 1 to 99. In the case of a solvent other than alcohol, that is, the ester, ketone, aromatic solvent In some cases, the volume ratio of sterile distilled water / solvent is preferably in the range of 1 to 75.

即ち、溶媒の添加量が少な過ぎると、溶媒添加による上記効果が十分に得られず、逆に多過ぎても、水との相溶性低下によって水が揮発せずに残り易くなり、上記効果が十分に得られないようになる傾向がある。   That is, if the addition amount of the solvent is too small, the above-mentioned effect due to the addition of the solvent cannot be obtained sufficiently, and conversely, even if it is too much, the water tends to remain without volatilization due to a decrease in compatibility with water. There is a tendency to become insufficient.

次に、本発明の非露出面塗膜について詳細に説明する。
かかる非露出面塗膜は、上述した非露出面用塗料組成物を任意の基材に配設し固化して成る。例えば、図3に示すように、基材1の非露出面に相当する裏面(図示上面)に形成した非露出面塗膜2が挙げられ、この非露出面塗膜2に、プライマー対応部位を備えた情報化DNAを含有できる。
Next, the non-exposed surface coating film of the present invention will be described in detail.
Such a non-exposed surface coating film is formed by disposing and solidifying the above-described non-exposed surface coating composition on an arbitrary substrate. For example, as shown in FIG. 3, a non-exposed surface coating film 2 formed on the back surface (upper surface in the drawing) corresponding to the non-exposed surface of the substrate 1 can be mentioned. The provided information DNA can be contained.

また、非露出面塗膜の膜厚としては、特に限定されるものではないが、20〜30μm程度とすることが情報化核酸の検出精度などの観点から好ましい。   The film thickness of the non-exposed surface coating is not particularly limited, but is preferably about 20 to 30 μm from the viewpoint of the detection accuracy of the information nucleic acid.

なお、上記任意の基材としては、代表的には、鉄,アルミニウム,銅などの各種金属材や、ポリプロピレン,ポリカーボネートなどの各種有機材や、石英,セラミックス(炭化カルシウム他)などの各種無機材が挙げられる。また、これらの基材に非露出面用塗料組成物を被覆する方法としては、公知慣用の方法が採用できる。例えば、はけ塗り法、吹付け法、静電塗装法、電着塗装法、更にはスパッタ法などが挙げられる。更に、上記非露出面塗膜は、情報化核酸が検出できる範囲で被覆されていれば良く、基材の全体又は一部に被覆できる。   In addition, as said arbitrary base materials, typically various metal materials, such as iron, aluminum, copper, various organic materials, such as a polypropylene and a polycarbonate, various inorganic materials, such as quartz and ceramics (calcium carbide etc.) Is mentioned. Moreover, as a method of coating these base materials with the non-exposed surface coating composition, a known and commonly used method can be employed. For example, a brush coating method, a spraying method, an electrostatic coating method, an electrodeposition coating method, and a sputtering method can be used. Furthermore, the non-exposed surface coating film only needs to be coated in a range where the information nucleic acid can be detected, and can be coated on the whole or a part of the substrate.

以上説明した非露出面用塗料組成物及び非露出面塗膜においては、情報化核酸を検出することにより、個別認証を行うことができる。   In the non-exposed surface coating composition and the non-exposed surface coating film described above, individual authentication can be performed by detecting information nucleic acid.

このとき、塩基配列を決定するに当たり、非露出面用塗料組成物又は非露出面塗膜から抽出される該情報化核酸のデータと、該情報化核酸のデータを少なくとも含む情報化核酸データベースとを対比することが望ましい。予め把握された情報化核酸のデータベースと比較することにより製品認証にかかる時間を大幅に減らすことが可能となる。   At this time, in determining the base sequence, the information nucleic acid data extracted from the non-exposed surface coating composition or the non-exposed surface coating, and the information nucleic acid database including at least the information nucleic acid data, It is desirable to contrast. The time required for product authentication can be significantly reduced by comparing with a database of information nucleic acids that has been grasped in advance.

かかるデータベースに蓄えられるデータとしては、例えば電気泳動時間やゲル濾過した際の移動距離(これは、情報化核酸自体をコントロールレーンに流せば足りる)などを挙げることができる。   Examples of data stored in such a database include electrophoresis time and movement distance when gel filtration is performed (this is sufficient if the information nucleic acid itself is allowed to flow in the control lane).

また、上記個別認証方法において、PCR法により情報化核酸を増幅させるに当たり、抽出された情報化核酸の溶液、PCR緩衝液、滅菌蒸留水、少なくとも1種のプライマー、2,3−ジデオキシヌクレオシド三リン酸(dNTP)及びポリメラーゼを混合し、(1)92〜95℃で2〜5分間加熱し、次いで、(2a)92〜95℃で30〜60秒間、(2b)20〜50℃で30〜60秒間、(2c)70〜80℃で30〜120秒間、の加熱サイクルを20〜50回繰り返し、しかる後、(3)70〜80℃で1〜10分間加熱処理することが好ましい。なお、情報化核酸の塩基配列の任意性を高めるという観点からはより2種のプライマーを用いることが好ましい。   In the individual authentication method, when the information nucleic acid is amplified by the PCR method, the extracted information nucleic acid solution, PCR buffer solution, sterile distilled water, at least one primer, 2,3-dideoxynucleoside triphosphate Acid (dNTP) and polymerase are mixed, (1) heated at 92-95 ° C. for 2-5 minutes, then (2a) at 92-95 ° C. for 30-60 seconds, (2b) at 20-50 ° C. for 30- It is preferable that the heating cycle of (2c) at 70 to 80 ° C. for 30 to 120 seconds is repeated 20 to 50 times for 60 seconds, and then (3) heat treatment is performed at 70 to 80 ° C. for 1 to 10 minutes. In addition, it is preferable to use two types of primers from the viewpoint of increasing the arbitraryness of the base sequence of the information nucleic acid.

(1)において、94℃で5分が特に好ましい。92℃で2分より短いとDNAの2本差への分離が困難になり、95℃で5分より長いと、酵素が失活するからである。なお、非露出面用塗料組成物又は非露出面塗膜に含まれる情報化核酸が1本鎖である場合には不要である。   In (1), 5 minutes at 94 ° C. is particularly preferable. If it is shorter than 2 minutes at 92 ° C., it will be difficult to separate the DNA into two differences, and if it is longer than 5 minutes at 95 ° C., the enzyme will be inactivated. In addition, it is unnecessary when the information nucleic acid contained in the coating composition for non-exposed surface or the non-exposed surface coating film is a single strand.

また、(2a)において94℃で30秒が特に好ましい。92℃で30秒より短いと増幅率が低下し、95℃で60秒より長いと、酵素が失活する。   Further, in (2a), 30 seconds at 94 ° C. is particularly preferable. When the temperature is shorter than 30 seconds at 92 ° C., the amplification factor decreases, and when it is longer than 60 seconds at 95 ° C., the enzyme is inactivated.

更に、(2b)において40℃で30秒が特に好ましい。20℃で30秒より短いとプライマーとDNAの結合が困難になり、50℃で60秒より長いと、酵素が失活する。   Further, in (2b), 30 seconds at 40 ° C. is particularly preferable. When it is shorter than 30 seconds at 20 ° C., it becomes difficult to bind the primer and DNA, and when it is longer than 60 seconds at 50 ° C., the enzyme is inactivated.

また、(2c)において72℃で30秒が特に好ましい。70℃で30秒より短いと伸長が不十分になり、80℃で120秒より長いと酵素が失活する。   Further, in (2c), 30 seconds at 72 ° C. is particularly preferable. If it is shorter than 30 seconds at 70 ° C., the elongation becomes insufficient, and if it is longer than 120 seconds at 80 ° C., the enzyme is deactivated.

更に、(3)において72℃で7分が特に好ましい。70℃で1分より短いと伸長が不十分になり、80℃で10分より長いと時間の無駄になる。   Further, in (3), 7 minutes at 72 ° C. is particularly preferable. If it is shorter than 1 minute at 70 ° C., the elongation becomes insufficient, and if it is longer than 10 minutes at 80 ° C., time is wasted.

更にまた、加熱サイクル(2a)〜(2c)の繰り返しは、30回が特に好ましく、20回より少ないと増幅率が低下し、50回より多いと時間の無駄になる。   Furthermore, the repetition of the heating cycles (2a) to (2c) is particularly preferably 30 times. When the heating cycle is less than 20, the amplification factor decreases, and when it is more than 50, time is wasted.

図4に、上記個別認証方法の一実施形態のフロー図を示す。
同図に示すように、S1において、非露出面用塗料組成物又は非露出面塗膜から情報化DNAを抽出する。S2において、凍結乾燥により濃縮する。S3において、2種類のプライマーとポリメラーゼを加える。S4において、PCRを繰り返すことによりDNAを増幅する。S5において、残った余分なプライマーを一本鎖DNA開烈酵素により分解する。S6において、二本鎖である情報化DNAをゲル濾過で精製する。S7において、シーケンサーにより配列決定を行う。
FIG. 4 shows a flowchart of an embodiment of the individual authentication method.
As shown in the figure, in S1, information DNA is extracted from the non-exposed surface coating composition or the non-exposed surface coating. In S2, it is concentrated by lyophilization. In S3, two kinds of primers and a polymerase are added. In S4, DNA is amplified by repeating PCR. In S5, the remaining excess primer is degraded by a single-stranded DNA cleavage enzyme. In S6, the double-stranded information DNA is purified by gel filtration. In S7, sequencing is performed by a sequencer.

ここで、S1においては、例えば非露出面塗膜を粉末にして少量の水と混ぜればよいが、例えば情報化DNAを微粒子に担持させる際に化学的結合させた場合には、加水分解などすることにより効率良く抽出することができる。また、S2においては、例えば遠心エバポレーターを用いて濃縮してもよい。更に、S5においては、一本鎖DNA切断酵素として、例えばTaq DNA ポリメラーゼ、Tth DNAポリメラーゼ、Tfl DNAポリメラーゼ、Ventポリメラーゼ、Pfuポリメラーゼ、Bca BESTポリメラーゼ、KOD DNAポリメラーゼなどを使用できる。また、S6とS7との間に、更にS3及び4と同様の操作を繰り返して、目的のDNAを増幅させてもよい。S7においては、質量分析装置によって配列決定を行ってもよく、シーケンサーによる配列決定と組み合わせてもよい。   Here, in S1, for example, the non-exposed surface coating film may be powdered and mixed with a small amount of water. For example, when the information DNA is chemically bonded to the fine particles, it is hydrolyzed. Thus, it can be extracted efficiently. Moreover, in S2, you may concentrate using a centrifugal evaporator, for example. Furthermore, in S5, for example, Taq DNA polymerase, Tth DNA polymerase, Tfl DNA polymerase, Vent polymerase, Pfu polymerase, Bca BEST polymerase, KOD DNA polymerase, etc. can be used as the single-stranded DNA cleaving enzyme. Further, the target DNA may be amplified between S6 and S7 by repeating the same operations as in S3 and S4. In S7, sequencing may be performed by a mass spectrometer, or may be combined with sequencing by a sequencer.

また、情報化核酸の単離や精製の利便性を高める観点から、5´位の水酸基をビオチン又は蛍光分子により誘導化することが好ましい。具体的には、ビチオンを用いるとアビジンというタンパク質を結合したカラムに選択的に吸着され易くなる。一方、フルオレセインなどの蛍光分子を用いると核酸自体が蛍光をもつようになるため、感度よく検出でき精製等が容易になる。このように、単離や精製の利便性を高めると、個別認証が極めて容易になる。   From the viewpoint of enhancing the convenience of isolation and purification of the information nucleic acid, it is preferable to derivatize the 5′-position hydroxyl group with biotin or a fluorescent molecule. Specifically, when vithion is used, it is easily adsorbed selectively on a column to which a protein called avidin is bound. On the other hand, when a fluorescent molecule such as fluorescein is used, the nucleic acid itself becomes fluorescent, so that it can be detected with high sensitivity and purification is facilitated. Thus, when the convenience of isolation and purification is increased, individual authentication becomes extremely easy.

更にまた、例えば5´位を硫黄に置換した場合には、水で抽出したものを更に金(Au)をコーティングした担体のカラムを通すことで容易に分離をすることができる。   Furthermore, for example, when the 5′-position is substituted with sulfur, it can be easily separated by passing the column extracted with water through a carrier column coated with gold (Au).

以下、本発明を実施例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

1.プライマー対応部位を備えた情報化DNAを含有する下塗り塗料組成物の調製
粒径が異なる情報化DNAを固定させた微粒子を、オリジン電気社製のプラネットPP−7に攪拌しながら規定量を添加し、1時間攪拌した。
1. Preparation of primer coating composition containing informational DNA with primer-corresponding sites Add a specified amount of fine particles with immobilized informational DNA of different particle sizes to Planet PP-7 made by Origin Electric Stir for 1 hour.

2.使用した微粒子
(1)平均粒径0.02μmの酸化亜鉛:昭和電工(株)製 ZS−032
(2)平均粒径60μmの酸化アルミニウム:(株)マイクロン製 AW40−74
(3)平均粒径70μmの酸化アルミニウム:(株)マイクロン製 AW70−125
2. Fine particles used (1) Zinc oxide having an average particle size of 0.02 μm: ZS-032 manufactured by Showa Denko KK
(2) Aluminum oxide having an average particle diameter of 60 μm: AW40-74 manufactured by Micron Corporation
(3) Aluminum oxide having an average particle size of 70 μm: AW70-125 manufactured by Micron Corporation

3.積層塗膜の形成
厚み2mm、70mm×150mmのポリプロピレン板に、オリジン電気社製のプラネットPP−7を、乾燥膜厚が20μmとなるように塗装した後、80℃で30分間焼き付けた。
3. Formation of Laminated Coating Film On a polypropylene plate with a thickness of 2 mm and 70 mm × 150 mm, Planet PP-7 manufactured by Origin Electric Co., Ltd. was coated so that the dry film thickness was 20 μm, and then baked at 80 ° C. for 30 minutes.

得られた実施例1〜実施例18、参考例19、参考例20、実施例21及び実施例22の塗膜について、DNAの検出の可否及び付着性を以下のようにして評価した。 With respect to the obtained coating films of Examples 1 to 18, Reference Example 19, Reference Example 20, Example 21 and Example 22, whether DNA was detected or not was evaluated as follows.

<情報化DNAの検出>
(1)上記情報化核酸組成物の試験片をカッターを用いて、細かく裁断した。
(2)試験細片に滅菌蒸留水5mLを加え、マグネチックスターラーにより攪拌して、DNAを水層に抽出した。
(3)遠心機を用いて、試験細片と水層を分離し、水層を遠心エバポレータを用いて濃縮した。
(4)溶出回収したDNA溶液(5μL)、PCR buffer(5μL)、Taq polymerase(0.25μL)、滅菌蒸留水(24.75μL)、5μMのプライマー1(5μL)、5μMのプライマー2(5μL)、及び2mM dNTP(5μL)を混合した。
・プライマー1 …5´−TGCACGCACCGTGTACTC−3´
・プライマー2 …5´−CCGACCAACGTGTCCACT−3´
(5)94℃で5分間加熱後、[94℃で30秒→40℃で30秒→72℃で30秒]を30回繰り返した。
(6)72℃で7分処理後、4℃で保存した。
(7)1本鎖DNA開裂酵素(S1ヌクレアーゼ)を用いて、余分なプライマーを分解し、目的の2本鎖情報化DNAをゲル濾過で精製した。
(8)精製した情報化DNAに一種類のプライマー(プライマー1:5´−TGCACGCACCGTGTACTC−3´)及び蛍光標識した2,3−ジデオキシヌクレオシド三リン酸を混合した。
(9)上記工程(4)〜(6)と同様の操作を行った。
(10)ゲル濾過精製後、自動シーケンサーに供し、配列決定を行った。
表1及び表2に示すように、これらの工程を行い情報化DNAの検出を試みたところ、情報化DNAの識別が容易であったものを○、更にPCR処理が必要であったものを△とした。
<Detection of information DNA>
(1) The test piece of the information nucleic acid composition was cut into pieces using a cutter.
(2) 5 mL of sterilized distilled water was added to the test strip and stirred with a magnetic stirrer to extract DNA into the aqueous layer.
(3) The test strip and the aqueous layer were separated using a centrifuge, and the aqueous layer was concentrated using a centrifugal evaporator.
(4) DNA solution (5 μL) eluted and collected, PCR buffer (5 μL), Taq polymerase (0.25 μL), sterile distilled water (24.75 μL), 5 μM primer 1 (5 μL), 5 μM primer 2 (5 μL) , And 2 mM dNTP (5 μL).
Primer 1 ... 5'-TGCACGCACCGTGTACTC-3 '
Primer 2 ... 5'-CCGACCAACGTGTCCACT-3 '
(5) After heating at 94 ° C. for 5 minutes, [94 ° C. for 30 seconds → 40 ° C. for 30 seconds → 72 ° C. for 30 seconds] was repeated 30 times.
(6) After being treated at 72 ° C for 7 minutes, it was stored at 4 ° C.
(7) Using a single-stranded DNA cleaving enzyme (S1 nuclease), the excess primer was decomposed and the target double-stranded information DNA was purified by gel filtration.
(8) One kind of primer (primer 1: 5′-TGCACGCACCGTGTACTC-3 ′) and fluorescently labeled 2,3-dideoxynucleoside triphosphate were mixed with the purified information DNA.
(9) The same operations as in the above steps (4) to (6) were performed.
(10) After gel filtration purification, it was subjected to sequencing by using an automatic sequencer.
As shown in Tables 1 and 2, when these steps were performed and detection of informational DNA was attempted, the case where the informational DNA was easily identified was ○, and the case where further PCR treatment was necessary was Δ It was.

<付着性の評価>
50℃、相対湿度95%の雰囲気中に500時間放置後に取り出し、密着力を確認した。密着力は、塗膜をカッターナイフ(JIS K 5400の7.2(2)(e)に規定)で塗膜素地に達する直交する縦横11本ずつの平行線を2mmの間隔で引き、正方形の碁盤目を形成した。碁盤目状の塗膜の上にセロハンテープ(JIS Z 1522に規定)を密着させ上方に一気に引き剥がし、100個の碁盤目中の塗膜の残った碁盤目の数を測定した。この結果を表1及び表2に示す。
<Evaluation of adhesion>
After leaving it in an atmosphere of 50 ° C. and a relative humidity of 95% for 500 hours, it was taken out and checked for adhesion. The adhesion force is determined by drawing the parallel lines of 11 vertical and horizontal lines that reach the coating substrate with a cutter knife (specified in 7.2 (2) (e) of JIS K 5400) at intervals of 2 mm. A cross-cut was formed. A cellophane tape (specified in JIS Z 1522) was brought into close contact with the grid-like coating film and peeled upward at a stretch, and the number of grids remaining in the 100 grids was measured. The results are shown in Tables 1 and 2.

Figure 0004674796
Figure 0004674796

Figure 0004674796
Figure 0004674796

表1及び表2から明らかなように、実施例1〜12の非露出面塗膜は、情報化DNAが良好に識別でき、また良好な付着性を示している。言い換えれば、通常の塗装と同様の作業性で目的の付着性が得られ、非露出面塗膜の識別が可能である。
これに対して、実施例13〜実施例18、参考例19、参考例20、実施例21及び実施例22の非露出面塗膜は、情報化DNAの含有量、微粒子の粒径及び使用量のいずれかが本発明の好適範囲を逸脱しているため、情報化DNAの識別性及び付着性のいずれかが低下してしまうことがわかる。
As is apparent from Tables 1 and 2, the non-exposed surface coatings of Examples 1 to 12 can identify the information DNA well and show good adhesion. In other words, the desired adhesion can be obtained with the same workability as normal coating, and the unexposed surface coating can be identified.
In contrast, the non-exposed surface coatings of Examples 13 to 18, Reference Example 19, Reference Example 20, Example 21 and Example 22 have the information DNA content, the particle size and the amount of fine particles used. Since any of these deviates from the preferred range of the present invention, it can be seen that either the discriminability or adhesion of the information DNA is reduced.

天然DNAとこの5´位を誘導化したDNAを示す構造式である。This is a structural formula showing natural DNA and DNA derived from this 5 'position. 認証情報部位に両端にプライマーを有する情報化核酸を示す概略図である。It is the schematic which shows the information nucleic acid which has a primer in both ends in an authentication information site | part. 非露出面塗膜の一例を示す断面概略図である。It is a cross-sectional schematic diagram which shows an example of a non-exposed surface coating film. 個別認証方法の一例を示すフロー図である。It is a flowchart which shows an example of an individual authentication method.

符号の説明Explanation of symbols

1 ポリプロピレン板(基材)
2 プライマーを備えた情報化DNA含有非露出面塗膜層
1 Polypropylene plate (base material)
2 Informatized DNA-containing non-exposed surface coating layer with primer

Claims (5)

非露出面用塗料原料に、任意且つ既知の塩基配列を有する部位を備える情報化核酸を含有して成る非露出面用塗料組成物であって、
上記情報化核酸が、平均粒径が0.01〜60μmである微粒子に担持されていることを特徴とする非露出面用塗料組成物。
A non -exposed surface coating composition comprising an information nucleic acid having a site having an arbitrary and known base sequence in a non-exposed surface coating material,
A non-exposed surface coating composition, wherein the information nucleic acid is carried on fine particles having an average particle diameter of 0.01 to 60 µm .
上記情報化核酸が、樹脂固形分100gに対して0.5〜2000μg含まれることを特徴とする請求項1に記載の非露出面用塗料組成物。   The non-exposed surface coating composition according to claim 1, wherein the information nucleic acid is contained in an amount of 0.5 to 2000 μg per 100 g of resin solid content. 上記微粒子の含有量が、樹脂固形分に対して0.5〜70%の割合であることを特徴とする請求項1又は2に記載の非露出面用塗料組成物。 The non-exposed surface coating composition according to claim 1 or 2 , wherein the content of the fine particles is 0.5 to 70% of the resin solid content. 上記非露出面用塗料原料が、親油性液体、親水性液体及び粉体のうちのいずれか1種の性状であることを特徴とする請求項1〜3のいずれか1つの項に記載の非露出面用塗料組成物。 The non-exposed surface coating material is any one of a lipophilic liquid, a hydrophilic liquid, and a powder. The non-exposed surface according to any one of claims 1 to 3, Paint composition for exposed surface. 請求項1〜4のいずれか1つの項に記載の非露出面用塗料組成物を固化して成ることを特徴とする非露出面塗膜。 A non-exposed surface coating film obtained by solidifying the non-exposed surface coating composition according to any one of claims 1 to 4 .
JP2004362130A 2004-12-15 2004-12-15 Non-exposed surface coating composition and non-exposed surface coating Expired - Fee Related JP4674796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362130A JP4674796B2 (en) 2004-12-15 2004-12-15 Non-exposed surface coating composition and non-exposed surface coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362130A JP4674796B2 (en) 2004-12-15 2004-12-15 Non-exposed surface coating composition and non-exposed surface coating

Publications (2)

Publication Number Publication Date
JP2006169335A JP2006169335A (en) 2006-06-29
JP4674796B2 true JP4674796B2 (en) 2011-04-20

Family

ID=36670436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362130A Expired - Fee Related JP4674796B2 (en) 2004-12-15 2004-12-15 Non-exposed surface coating composition and non-exposed surface coating

Country Status (1)

Country Link
JP (1) JP4674796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198845B (en) * 2018-01-10 2021-01-26 京东方科技集团股份有限公司 Pixel defining layer and preparation method thereof, display substrate and preparation method thereof, and display device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503242A (en) * 1986-04-09 1988-11-24 バイオタル・リミテツド A sign for an item whose authenticity you want to prove
JPH0358800A (en) * 1989-07-07 1991-03-13 Bioprobe Syst Code marking of valuable article and device for it
JPH03146863A (en) * 1989-11-02 1991-06-21 Mercian Corp Method for identifying product
JPH03146567A (en) * 1989-11-01 1991-06-21 Teika Corp Rustproof pigment composition
JPH04505708A (en) * 1989-05-22 1992-10-08 エフ・ホフマンーラ ロシュ アーゲー Labeling and tracking of substances using nucleic acids
JPH0598210A (en) * 1991-10-08 1993-04-20 Dainippon Ink & Chem Inc Precoated steel plate
JPH10175994A (en) * 1996-12-19 1998-06-30 Kagaku Gijutsu Shinko Jigyodan Dna-immobilized composite material
JP2000037658A (en) * 1998-05-20 2000-02-08 Chugoku Marine Paints Ltd Painting method for shell of ship and ship painted thereby
JP2001014651A (en) * 1999-06-28 2001-01-19 Fuji Photo Film Co Ltd Magnetic recording medium
JP2002311031A (en) * 2001-04-18 2002-10-23 Sekisui Chem Co Ltd Molecule recognition phosphor, and measuring method of target substance using the same
JP2003245598A (en) * 2002-02-22 2003-09-02 Toshiba Corp Method for coating metal material, coated article, distribution board and control panel
JP2004043524A (en) * 2002-07-08 2004-02-12 Nippon Paint Co Ltd Water-based intermediate coating composition and method for forming multilayer coating film
JP2004159502A (en) * 2002-08-30 2004-06-10 Biowell Technology Inc Method for mixing ribonucleic acid in water-insoluble medium and utilization thereof
JP2004307957A (en) * 2003-04-09 2004-11-04 Nisshin Steel Co Ltd Inorganic/organic bilayer painted metal plate
JP2004337738A (en) * 2003-05-15 2004-12-02 Mazda Motor Corp Method for forming coating film
JP2006094807A (en) * 2004-09-30 2006-04-13 Nissan Motor Co Ltd Informationized nucleic acid-carrying microparticle and method for producing the same
JP2006122042A (en) * 2004-09-30 2006-05-18 Nissan Motor Co Ltd Method for product certification

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503242A (en) * 1986-04-09 1988-11-24 バイオタル・リミテツド A sign for an item whose authenticity you want to prove
JPH04505708A (en) * 1989-05-22 1992-10-08 エフ・ホフマンーラ ロシュ アーゲー Labeling and tracking of substances using nucleic acids
JPH0358800A (en) * 1989-07-07 1991-03-13 Bioprobe Syst Code marking of valuable article and device for it
JPH03146567A (en) * 1989-11-01 1991-06-21 Teika Corp Rustproof pigment composition
JPH03146863A (en) * 1989-11-02 1991-06-21 Mercian Corp Method for identifying product
JPH0598210A (en) * 1991-10-08 1993-04-20 Dainippon Ink & Chem Inc Precoated steel plate
JPH10175994A (en) * 1996-12-19 1998-06-30 Kagaku Gijutsu Shinko Jigyodan Dna-immobilized composite material
JP2000037658A (en) * 1998-05-20 2000-02-08 Chugoku Marine Paints Ltd Painting method for shell of ship and ship painted thereby
JP2001014651A (en) * 1999-06-28 2001-01-19 Fuji Photo Film Co Ltd Magnetic recording medium
JP2002311031A (en) * 2001-04-18 2002-10-23 Sekisui Chem Co Ltd Molecule recognition phosphor, and measuring method of target substance using the same
JP2003245598A (en) * 2002-02-22 2003-09-02 Toshiba Corp Method for coating metal material, coated article, distribution board and control panel
JP2004043524A (en) * 2002-07-08 2004-02-12 Nippon Paint Co Ltd Water-based intermediate coating composition and method for forming multilayer coating film
JP2004159502A (en) * 2002-08-30 2004-06-10 Biowell Technology Inc Method for mixing ribonucleic acid in water-insoluble medium and utilization thereof
JP2004307957A (en) * 2003-04-09 2004-11-04 Nisshin Steel Co Ltd Inorganic/organic bilayer painted metal plate
JP2004337738A (en) * 2003-05-15 2004-12-02 Mazda Motor Corp Method for forming coating film
JP2006094807A (en) * 2004-09-30 2006-04-13 Nissan Motor Co Ltd Informationized nucleic acid-carrying microparticle and method for producing the same
JP2006122042A (en) * 2004-09-30 2006-05-18 Nissan Motor Co Ltd Method for product certification

Also Published As

Publication number Publication date
JP2006169335A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
CN105164279B (en) Multiplex analysis of target nucleic acids
US20090036664A1 (en) Complex oligonucleotide primer mix
EP1251136A3 (en) Method and reagents for analyzing the nucleotide sequence of nucleic acids
WO2008005675A2 (en) Emulsion pcr and amplicon capture
US20060088861A1 (en) Information nucleic acid-carrying fine particles and production method thereof
US20010014446A1 (en) Assay methods for nucleic acid in a sample
US5935788A (en) Subtractive hybridization techniques for identifying differentially expressed and commonly expressed nucleic acid
JP2006122042A (en) Method for product certification
JP4674796B2 (en) Non-exposed surface coating composition and non-exposed surface coating
JP4674794B2 (en) Clear coating composition and clear coating film
JP4674795B2 (en) Matte paint composition and matte paint film
JP4674793B2 (en) Undercoat paint composition and undercoat coating film
JP2006169341A (en) Ink composition containing information nucleic acid
EP1608784B1 (en) Global linear non-biased nucleic acid amplification
US10501779B2 (en) Oligonucleotide trapping
JP2006169332A (en) Colored topcoat coating composition and colored topcoat coating film
JP2006172025A (en) Laminated coated film structure
JP2006167558A (en) Repair coating film and repair coating method
JP2006169342A (en) Adhesive
JP2006168084A (en) Laminated coating film structure
WO2006064871A1 (en) Solid fat composition containing data-providing nucleic acid
US9206472B2 (en) Method for analyzing RNA
JP2006169336A (en) Transparent resin composition containing informative nucleic acid
JP2006169337A (en) Opaque resin composition
Do et al. cDNA labeling strategies for microarrays using fluorescent dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees