JP4673338B2 - Shift control device for hydraulic transmission - Google Patents

Shift control device for hydraulic transmission Download PDF

Info

Publication number
JP4673338B2
JP4673338B2 JP2007120346A JP2007120346A JP4673338B2 JP 4673338 B2 JP4673338 B2 JP 4673338B2 JP 2007120346 A JP2007120346 A JP 2007120346A JP 2007120346 A JP2007120346 A JP 2007120346A JP 4673338 B2 JP4673338 B2 JP 4673338B2
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
time
clutch
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007120346A
Other languages
Japanese (ja)
Other versions
JP2007192411A (en
Inventor
瑞哉 松藤
勝則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007120346A priority Critical patent/JP4673338B2/en
Publication of JP2007192411A publication Critical patent/JP2007192411A/en
Application granted granted Critical
Publication of JP4673338B2 publication Critical patent/JP4673338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う、第1油圧式変速装置と第2油圧式変速装置を、直列に接続して設けてある作業車両において、油圧式変速装置の変速段切替え時に、油圧クラッチの作動を制御する制御装置に関するものである。   According to the present invention, in a work vehicle in which a first hydraulic transmission and a second hydraulic transmission, each of which performs transmission by selective engagement of a plurality of hydraulic clutches, are provided in series, The present invention relates to a control device that controls the operation of a hydraulic clutch at the time of gear shift switching of the transmission.

それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置と第2油圧式変速装置を、直列に接続して設けてある作業車両では、第1及び第2油圧式変速装置によって得られる変速段数が、第1油圧式変速装置の変速段数と第2油圧式変速装置の変速段数とを乗じた段数となり、そのような多段の変速を、操作が容易な切換弁によって行えることとなる。   In a work vehicle in which a first hydraulic transmission and a second hydraulic transmission, each of which performs transmission by selective engagement of a plurality of hydraulic clutches, are connected in series, the first and second hydraulic transmissions are provided. The number of gears obtained by the transmission is the number of gears obtained by multiplying the number of gears of the first hydraulic transmission and the number of gears of the second hydraulic transmission, and such a multi-stage gear shift can be performed by a switching valve that is easy to operate. It will be possible.

ところで両油圧式変速装置の変速操作に際し、シフト前の変速段とシフト後の変速段とに応じ1個宛の油圧クラッチを入断させる場合と2個宛の油圧クラッチを入断させる場合とがある。すなわちシフト前後の変速段に応じ、第1又は第2油圧式変速装置の係合中の油圧クラッチはそのまま係合させておいて他の油圧式変速装置の係合中の油圧クラッチを切り新たな油圧クラッチを係合させる場合と、第1油圧式変速装置においても第2油圧式変速装置においても係合中の油圧クラッチを切り新たな油圧クラッチを係合させる、つまり2個宛の油圧クラッチを入断させる場合とが、存在することになる。そして単一の油圧ポンプから係合させる油圧クラッチに対し作動油を充満させるまでの時間は、1個の油圧クラッチのみを係合させる場合よりも2個の油圧クラッチを係合させる場合の方が長くかかる。したがって作動油の充満後の油圧の上昇が、1個の油圧クラッチのみを係合させる場合よりも2個の油圧クラッチを係合させる場合の方が遅くなる。   By the way, when shifting operations of both hydraulic transmissions, there are a case where one hydraulic clutch is engaged and a case where two hydraulic clutches are engaged depending on the gear stage before the shift and the gear stage after the shift. is there. That is, according to the shift stage before and after the shift, the engaged hydraulic clutch of the first or second hydraulic transmission is kept engaged, and the engaged hydraulic clutch of the other hydraulic transmission is disconnected. In the case of engaging the hydraulic clutch and in both the first hydraulic transmission and the second hydraulic transmission, the engaged hydraulic clutch is disconnected and a new hydraulic clutch is engaged, that is, the two hydraulic clutches are connected. There is a case where it is interrupted. The time until the hydraulic oil is filled with the hydraulic clutch to be engaged from a single hydraulic pump is longer when two hydraulic clutches are engaged than when only one hydraulic clutch is engaged. It takes a long time. Accordingly, the increase in the hydraulic pressure after the hydraulic oil is filled is slower when the two hydraulic clutches are engaged than when only one hydraulic clutch is engaged.

油圧クラッチに対する作動油充満に要する、このような時間差を補償する制御方法は、まだ提供されていない。油圧クラッチに供給される作動油の油圧を、油圧クラッチの係合指令の付与時点から漸増させる技術はよく知られているも、同技術は作動油充満に要する時間差の問題を解決しない。したがってこれまでは上記時間差に基づく変速フィーリングの不良が、看過されてきている。
特開平8−20257号公報
A control method that compensates for such a time difference required for filling hydraulic oil to the hydraulic clutch has not yet been provided. Although a technique for gradually increasing the hydraulic pressure of the hydraulic oil supplied to the hydraulic clutch from the time when the engagement command for the hydraulic clutch is applied is well known, this technique does not solve the problem of the time difference required to fill the hydraulic oil. Therefore, until now, poor transmission feeling based on the time difference has been overlooked.
JP-A-8-20257

したがってこの発明の主な目的は、変速操作に際し1個の油圧クラッチのみを係合させる場合と2個の油圧クラッチを係合させる場合との、油圧クラッチへの作動油充満に要する時間差の問題に対処して、この時間差があるにも拘わらず変速フィーリングを良くする新規な変速制御方法と制御装置を、提供することにある。   Therefore, the main object of the present invention is to solve the problem of the time difference required for filling the hydraulic clutch with hydraulic oil when engaging only one hydraulic clutch and when engaging two hydraulic clutches during the shifting operation. Accordingly, it is an object of the present invention to provide a novel shift control method and control apparatus that improve the shift feeling despite this time difference.

本発明の課題を解決するため手段は、次の通りである。
請求項1においては、それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置(17)と第2油圧式変速装置(20)を、直列に接続して設けてある作業車両において、前記油圧クラッチ(57,58,59,66,67,68)に対しそれぞれ接続され、該油圧クラッチに対する作動油の給排を制御する複数個の電磁切換弁(VL,VM,VH,V1,V2,V3;VAL,VAM,VAH,VA1,VA2,VA3)と、該電磁切換弁のそれぞれに対し係合指令と切断指令を、選択的に付与する作動制御手段(80,85,86)と、油圧クラッチに供給される作動油の油圧を、電磁切換弁に対し係合指令が付与された時点から経時的に漸増させる圧力制御手段(VL,VM,VH,V1,V2,V3,87;110)と、を備え、上記作動制御手段に、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点から切断される油圧クラッチに接続された電磁切換弁に対する切断指令の付与時点までの間隔を設定する時間々隔設定手段(88,90)を設け、前記時間々隔設定手段(88,90)に、1個宛の油圧クラッチを入断させる場合の前記時間々隔を相対的に短く設定し2個宛の油圧クラッチを入断させる場合の前記時間々隔を相対的に長く設定する時間設定回路(90)を設けたこと。
Means for solving the problems of the present invention are as follows.
In claim 1, a first hydraulic transmission (17) and a second hydraulic transmission (20), each of which performs transmission by selective engagement of a plurality of hydraulic clutches, are connected in series. In a certain work vehicle, a plurality of electromagnetic switching valves (VL, VM,...) That are connected to the hydraulic clutches (57, 58, 59, 66, 67, 68), respectively, and control the supply and discharge of hydraulic oil to and from the hydraulic clutches. VH, V1, V2, V3; VAL, VAM, VAH, VA1, VA2, VA3) and operation control means (80, 85) for selectively giving an engagement command and a disconnection command to each of the electromagnetic switching valves. , 86) and pressure control means (VL, VM, VH, V1, V2, etc.) for gradually increasing the hydraulic pressure of the hydraulic oil supplied to the hydraulic clutch over time from the time when the engagement command is given to the electromagnetic switching valve. V3,8 110), and a disconnection command for the electromagnetic switching valve connected to the hydraulic clutch that is disconnected from the point of time when the engagement command for the electromagnetic switching valve connected to the hydraulic clutch to be engaged is applied to the operation control means. set the time interval between the time of grant s interval setting means (88, 90) set only the in the time s interval setting means (88, 90), the time when to Nyudan the hydraulic clutch of one addressed s A time setting circuit (90) is provided for setting the time interval relatively long and setting the time interval relatively long when the two hydraulic clutches are engaged and disengaged .

請求項2においては、前記時間設定回路(90)は、シフトアップ時の前記時間々隔を相対的に長く設定するとともに、シフトダウン時の前記時間々隔を相対的に短く設定すること。 According to a second aspect of the present invention, the time setting circuit (90) sets the time interval when shifting up relatively long and sets the time interval when shifting down relatively short .

請求項3においては、前記時間々隔設定手段(88,90)に設定する時間々隔を、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点(t0 )から該油圧クラッチに油が充満し油圧クラッチに対する作用油圧がピストン保持圧力(pa)まで上昇する時点(ta)までの時間々隔よりも大きくしてあること。 According to a third aspect of the present invention, the time interval set in the time interval setting means (88, 90) is determined from the application time point (t0) of the engagement command to the electromagnetic switching valve connected to the hydraulic clutch to be engaged. The clutch is filled with oil, and the working oil pressure for the hydraulic clutch is greater than the time interval until the point (ta) at which the oil pressure increases to the piston holding pressure (pa).

請求項4においては、それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置(17)と第2油圧式変速装置(20)を、直列に接続して設けてある作業車両において、前記油圧クラッチ(57,58,59,66,67,68)に対しそれぞれ接続され、該油圧クラッチに対する作動油の給排を制御する複数個の電磁切換弁(VL,VM,VH,V1,V2,V3;VAL,VAM,VAH,VA1,VA2,VA3)と、該電磁切換弁のそれぞれに対し係合指令と切断指令を、選択的に付与する作動制御手段(80,85,86)と、油圧クラッチに供給される作動油の油圧を、電磁切換弁に対し係合指令が付与された時点から経時的に漸増させる圧力制御手段(VL,VM,VH,V1,V2,V3,87;110)と、を備え、上記作動制御手段に、切断される油圧クラッチに対する切断指令の付与後の作用油圧の低下特性を設定する圧力設定手段(Va,89;111)を設け、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、1個宛の油圧クラッチを入断させる場合よりも2個宛の油圧クラッチを入断させる場合の方をより緩やかに行わせること。 In claim 4, a first hydraulic transmission (17) and a second hydraulic transmission (20) , each of which performs transmission by selective engagement of a plurality of hydraulic clutches , are connected in series. In a certain work vehicle, a plurality of electromagnetic switching valves (VL, VM,...) That are connected to the hydraulic clutches (57, 58, 59, 66, 67, 68), respectively, and control the supply and discharge of hydraulic oil to and from the hydraulic clutches. VH, V1, V2, V3; VAL, VAM, VAH, VA1, VA2, VA3) and operation control means (80, 85) for selectively giving an engagement command and a disconnection command to each of the electromagnetic switching valves. , 86) and pressure control means (VL, VM, VH, V1, V2, etc.) for gradually increasing the hydraulic pressure of the hydraulic oil supplied to the hydraulic clutch over time from the time when the engagement command is given to the electromagnetic switching valve. V3,8 110), and provided with pressure setting means (Va, 89; 111) for setting a lowering characteristic of the working oil pressure after the disengagement command is given to the hydraulic clutch to be disengaged in the operation control means, The means (Va, 89; 111) reduces the lowering of the working hydraulic pressure with respect to the hydraulic clutch to be disconnected when the two hydraulic clutches are engaged / disengaged than when the one hydraulic clutch is engaged / disengaged. Be gentle .

請求項5においては、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、可変に緩やかに行わせること。 In claim 5, wherein the pressure setting means (Va, 89; 111) is a reduction of the working oil pressure for the hydraulic clutch to be cut, thereby variably slowly performed.

請求項6においては、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、シフトアップ時よりもシフトダウン時の方をより緩やかに行わせること。 In claim 6, the pressure setting means (Va, 89; 111) is a reduction of the working oil pressure for the hydraulic clutch to be cut more slowly made so that the person at the time of shift-down than during upshift.

請求項7においては、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、エンジンの定格回転状態よりも低速回転状態において相対的に緩やかに行わせること。 In claim 7, the pressure setting means (Va, 89; 111) is a reduction of the working oil pressure for the hydraulic clutch to be disconnected, the relatively gently done so in a low speed rotating state than the rated rotation state of the engine .

請求項8においては、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、エンジンの回転数に応じ該回転数が低いほどより緩やかに行わせること。 In claim 8, wherein the pressure setting means (Va, 89; 111) is a reduction of the working oil pressure for the hydraulic clutch to be cut, than slowly performed so that as the rotational speed is low according to the rotational speed of the engine.

請求項9においては、前記圧力設定手段(Va,89;111)に、エンジンの回転数を検出する回転計(83)の検出値とエンジンの定格回転数とを比較して、切断される油圧クラッチに対する作用油圧の低下特性を設定する圧力設定回路(89)を設けたこと。 In claim 9 , the pressure setting means (Va, 89; 111) compares the detected value of the tachometer (83) for detecting the engine speed with the rated engine speed, and is cut off. A pressure setting circuit (89) for setting a lowering characteristic of the working hydraulic pressure with respect to the clutch is provided.

請求項10においては、前記電磁切換弁は、前記圧力制御手段を兼ねた電磁比例切換弁(VL,VM,VH,V1,V2,V3)であること。 In the claims 10, wherein the electromagnetic switching valve, the electromagnetic proportional selector valve which also serves as a pressure control means (VL, VM, VH, V1 , V2, V3) and that.

この発明の油圧式変速装置の変速制御装置は、それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置(17)と第2油圧式変速装置(20)を、直列に接続して設けてある作業車両において、前記油圧クラッチ(57,58,59,66,67,68)に対しそれぞれ接続され、該油圧クラッチに対する作動油の給排を制御する複数個の電磁切換弁(VL,VM,VH,V1,V2,V3;VAL,VAM,VAH,VA1,VA2,VA3)、該電磁切換弁のそれぞれに対し係合指令と切断指令を、選択的に付与する作動制御手段(80,85,86)、及び油圧クラッチに供給される作動油の油圧を、電磁切換弁に対し係合指令が付与された時点から経時的に漸増させる圧力制御手段(VL,VM,VH,V1,V2,V3,87;110)、を備えており、上記作動制御手段に、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点から切断される油圧クラッチに接続された電磁切換弁に対する切断指令の付与時点までの間隔を設定する時間々隔設定手段(88,90)、又は切断される油圧クラッチに対する切断指令の付与後の作用油圧の低下特性を設定する圧力設定手段(Va,89;111)の、少なくとも一方の手段を設けたのである。   The transmission control device for a hydraulic transmission according to the present invention includes a first hydraulic transmission (17) and a second hydraulic transmission (20) that perform transmission by selective engagement of a plurality of hydraulic clutches. In a work vehicle connected in series, a plurality of electromagnetics connected to the hydraulic clutches (57, 58, 59, 66, 67, 68) and controlling supply / discharge of hydraulic oil to / from the hydraulic clutches. Switching valve (VL, VM, VH, V1, V2, V3; VAL, VAM, VAH, VA1, VA2, VA3), an operation for selectively giving an engagement command and a disconnection command to each of the electromagnetic switching valves Control means (80, 85, 86) and pressure control means (VL, VM, etc.) for gradually increasing the hydraulic pressure of the hydraulic oil supplied to the hydraulic clutch over time from the time when the engagement command is given to the electromagnetic switching valve. VH V1, V2, V3, 87; 110), and is connected to the hydraulic clutch that is disconnected from the application control means when the engagement command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be engaged. Time interval setting means (88, 90) for setting the interval until the application time of the disconnection command for the electromagnetic switching valve, or pressure setting for setting the lowering characteristic of the working oil pressure after the disconnection command is applied to the hydraulic clutch to be disconnected At least one of the means (Va, 89; 111) is provided.

電磁切換弁のそれぞれに対し係合指令と切断指令を選択的に付与する作動制御手段(80,85,86)に、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点から切断される油圧クラッチに接続された電磁切換弁に対する切断指令の付与時点までの間隔を設定する時間々隔設定手段(88,90)を、設ける構成によれば、この時間々隔設定手段により例えば、1個宛の油圧クラッチを入断させる場合の上記時間々隔を相対的に短く設定させ2個宛の油圧クラッチを入断させる場合の上記時間々隔を相対的に長く設定させて、前述した通りに本発明の変速制御方法を実施できる。
また同作動制御手段(80,85,86)に、切断される油圧クラッチに対する切断指令の付与後の作用油圧の低下特性を設定する圧力設定手段(Va,89;111)を、設ける構成によれば、この圧力設定手段により例えば切断される油圧クラッチに対する作用油圧の低下を、1個宛の油圧クラッチを入断させる場合よりも2個宛の油圧クラッチを入断させる場合の方をより緩やかに行わせるように設定させて、これまた前述した通りに本発明の変速制御方法を実施できる。
時間々隔設定手段(88,90)と圧力設定手段(Va,89;111)との両者を設けると、後述する実施例に示すようにより多彩な制御を行える。
When the engagement command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be engaged with the operation control means (80, 85, 86) that selectively applies the engagement command and the disconnection command to each of the electromagnetic switching valves. According to the configuration in which the time interval setting means (88, 90) for setting the interval until the application time of the disconnection command to the electromagnetic switching valve connected to the hydraulic clutch to be disconnected is provided by this time interval setting means For example, the time interval when the hydraulic clutch addressed to one is engaged is set relatively short, and the time interval when the hydraulic clutch addressed to two is engaged is set relatively long, As described above, the shift control method of the present invention can be implemented.
Further, the operation control means (80, 85, 86) is provided with pressure setting means (Va, 89; 111) for setting a lowering characteristic of the working hydraulic pressure after giving a disconnection command to the hydraulic clutch to be disconnected. For example, this pressure setting means, for example, lowers the working oil pressure for the hydraulic clutch to be disconnected more slowly when the two hydraulic clutches are engaged / disconnected than when the one hydraulic clutch is engaged / disengaged. The shift control method of the present invention can be implemented as described above.
If both the time interval setting means (88, 90) and the pressure setting means (Va, 89; 111) are provided, various controls can be performed as shown in the embodiments described later.

時間々隔設定手段(88,90)を設ける場合には該手段に、シフトアップ時の前記時間々隔を相対的に長く設定しシフトダウン時の前記時間々隔を相対的に短く設定する時間設定回路(90)を設けるのが好ましい。また圧力設定手段(Va,89;111)を設ける場合には該手段を、切断される油圧クラッチに対する作用油圧の低下を、シフトアップ時よりもシフトダウン時の方をより緩やかに行わせるものとするのが好ましい。かかる構成によると入断させる油圧クラッチが共通してスリップ係合する前記領域を、シフトアップ時よりもシフトダウン時の方を小さくできて、前述した通りエネルギー効率を向上させ得る。   When providing the time interval setting means (88, 90), the time for setting the time interval at the time of upshifting relatively long and setting the time interval at the time of downshifting relatively short when the time interval setting means (88, 90) is provided. A setting circuit (90) is preferably provided. Further, when the pressure setting means (Va, 89; 111) is provided, the means is configured to cause the working hydraulic pressure to be lowered with respect to the hydraulic clutch to be disconnected more slowly during the downshift than during the upshift. It is preferable to do this. According to such a configuration, the region where the hydraulic clutches to be engaged and disengaged in common are slip-engaged can be made smaller at the time of downshifting than at the time of upshifting, and energy efficiency can be improved as described above.

圧力設定手段(Va,89;111)は切断される油圧クラッチに対する作用油圧の低下を、エンジンの定格回転状態よりも低速回転状態において相対的に緩やかに行わせるものであるのが好ましい。すなわちエンジン低速回転状態では油圧ポンプの回転数が減少して該ポンプの吐出流量が減少するから、油圧クラッチへの油充満時間が長くかかり、この長くなる時間を、油圧クラッチに対する相対的に緩やか油流入により補償させるのである。   It is preferable that the pressure setting means (Va, 89; 111) causes the hydraulic pressure of the hydraulic clutch to be cut to decrease relatively slowly in the low-speed rotation state than in the rated rotation state of the engine. That is, when the engine is running at a low speed, the number of revolutions of the hydraulic pump decreases and the discharge flow rate of the pump decreases. Therefore, it takes a long time to fill the hydraulic clutch with oil. It is compensated by the inflow.

より一般には圧力設定手段(Va,89;111)は切断される油圧クラッチに対する作用油圧の低下を、エンジンの回転数に応じ該回転数が低いほどより緩やかに行わせるものであるのが、好ましい。このような圧力設定手段(Va,89;111)は、エンジンの回転数を検出する回転計(83)の検出値とエンジンの定格回転数とを比較して、切断される油圧クラッチに対する作用油圧の低下特性を設定する圧力設定回路(89)を備えたものに、構成できる。   More generally, it is preferable that the pressure setting means (Va, 89; 111) lowers the working hydraulic pressure with respect to the hydraulic clutch to be disconnected more gradually as the rotational speed is lower according to the rotational speed of the engine. . Such pressure setting means (Va, 89; 111) compares the detected value of the tachometer (83) for detecting the engine speed with the rated engine speed, and acts on the hydraulic clutch to be disconnected. A pressure setting circuit (89) for setting the lowering characteristic can be configured.

前記電磁切換弁は、前記圧力制御手段を兼ねた電磁比例切換弁(VL,VM,VH,V1,V2,V3)に構成するのが好ましい。このときは、個々の油圧クラッチに配して油圧漸増用の圧力制御手段を設ける必要がなくされる。   The electromagnetic switching valve is preferably configured as an electromagnetic proportional switching valve (VL, VM, VH, V1, V2, V3) that also serves as the pressure control means. At this time, it is not necessary to provide pressure control means for gradually increasing the hydraulic pressure by arranging the individual hydraulic clutches.

この発明の他の特徴と長所は、添付図面を参照して行う以下の説明から明瞭に理解できる。   Other features and advantages of the present invention can be clearly understood from the following description with reference to the accompanying drawings.

図1は、この発明の一実施例を装備したトラクタの伝動機構を示している。トラクタの機体最前部に搭載されたエンジン10に緩衝接手11を介して接続された原動軸12を、機体前部に設けてあり、この原動軸12から走行系の伝動機構とPTO系の伝動機構とを分岐させてある。   FIG. 1 shows a transmission mechanism of a tractor equipped with an embodiment of the present invention. A driving shaft 12 connected to an engine 10 mounted on the foremost portion of the tractor body via a buffer joint 11 is provided at the front portion of the body. From the driving shaft 12, a traveling transmission mechanism and a PTO transmission mechanism are provided. And have been branched.

走行系の伝動機構は、原動軸12とその下方の出力軸13との間に設けた油圧式前後進切替え装置14、出力軸13の延長線上に配し該出力軸13に連結した第1駆動軸15と原動軸12の延長線上に配した中空の第1変速軸16との間に設けた第1油圧式変速装置17、第1変速軸16の延長線上に配し該第1変速軸16に連結した中空の第2駆動軸18と第1駆動軸15の延長線上に配した第2変速軸19との間に設けた第2油圧式変速装置20、第2変速軸19とその延長線上に配したプロペラ軸22との間に設けた機械式変速装置23であって第2駆動軸18の延長線上に配した中空の中間軸21を含む機械式変速装置23を、備えている。プロペラ軸22の後端には小傘歯車24を形成してあり、この小傘歯車24を、左右後輪用の差動装置25の大入力傘歯車26と噛合わせてある。差動装置25の左右の出力軸27は、左右のブレーキ28及び遊星歯車式減速装置29を介して左右の後輪30に接続されており、一側の出力軸27上にはデフロッククラッチ31を設けてある。   The traveling transmission mechanism includes a hydraulic forward / reverse switching device 14 provided between the drive shaft 12 and the output shaft 13 below the first drive connected to the output shaft 13 disposed on an extension line of the output shaft 13. A first hydraulic transmission 17 provided between the shaft 15 and a hollow first transmission shaft 16 disposed on an extension line of the driving shaft 12, and an extension line of the first transmission shaft 16 disposed on the first transmission shaft 16. A second hydraulic transmission device 20 provided between a hollow second drive shaft 18 connected to the second drive shaft 18 and a second transmission shaft 19 disposed on an extension line of the first drive shaft 15, and an extension line thereof. And a mechanical transmission 23 including a hollow intermediate shaft 21 disposed on an extension line of the second drive shaft 18. The mechanical transmission 23 is provided between the propeller shaft 22 and the propeller shaft 22. A small bevel gear 24 is formed at the rear end of the propeller shaft 22, and this small bevel gear 24 is meshed with a large input bevel gear 26 of a differential device 25 for left and right rear wheels. The left and right output shafts 27 of the differential device 25 are connected to the left and right rear wheels 30 via the left and right brakes 28 and the planetary gear type speed reducer 29. A differential lock clutch 31 is provided on the output shaft 27 on one side. It is provided.

車両の走行は上述の伝動機構による左右の後輪30の2輪駆動による他、左右の前輪(図示せず)も選択的に駆動して4輪駆動によっても行えることとしてある。すなわちプロペラ軸22上の前輪駆動力取出し用の歯車32から、中間軸33上に遊転自在に設けられた一体回転する2個の歯車34,35を介し回転駆動される2個の歯車36,37を、前輪駆動力取出し軸38上に遊嵌設置してある。前輪駆動力取出し軸38は図外の前輪方向に接続されており、前輪駆動力取出し軸38上には歯車36,37を選択的に該取出し軸38に対し結合するための油圧クラッチ機構39を設けてある。前輪駆動力取出し軸38に対し歯車37が結合されると前輪が後輪30と同期した速度で、また歯車36が結合されると前輪が後輪30よりも高い速度で、それぞれ駆動される。   In addition to the two-wheel drive of the left and right rear wheels 30 by the transmission mechanism described above, the vehicle can be driven by a four-wheel drive by selectively driving the left and right front wheels (not shown). That is, two gears 36 that are rotationally driven from two gears 34 and 35 that rotate integrally on the intermediate shaft 33 from a gear 32 for taking out the front wheel driving force on the propeller shaft 22. 37 is installed loosely on the front wheel driving force take-out shaft 38. The front wheel driving force take-out shaft 38 is connected in the front wheel direction (not shown), and a hydraulic clutch mechanism 39 for selectively coupling the gears 36 and 37 to the take-out shaft 38 is provided on the front wheel driving force take-out shaft 38. It is provided. When the gear 37 is coupled to the front wheel driving force take-out shaft 38, the front wheel is driven at a speed synchronized with the rear wheel 30, and when the gear 36 is coupled, the front wheel is driven at a higher speed than the rear wheel 30.

PTO系の伝動機構は、原動軸12の後端に連結して中空の第1変速軸16、第2駆動軸18及び中間軸21を貫通させてある伝動軸40、この伝動軸40の後端に連結した伝動軸41、該伝動軸41の延長線上に配し伝動軸41に対し油圧式のPTOクラッチ42を介し接続された伝動軸43、該伝動軸43に平行させトラクタ機体外に延出させてあるPTO軸44、及び伝動軸43とPTO軸44との間に設けた機械式のPTO変速装置45を、備えている。伝動軸41から歯車46,47,48列を介し駆動される動力取出し軸49を設けてあり、この動力取出し軸49によっては油圧ポンプ50を駆動させることとしてある。   The PTO transmission mechanism includes a transmission shaft 40 connected to the rear end of the drive shaft 12 and penetrating through the hollow first transmission shaft 16, the second drive shaft 18 and the intermediate shaft 21, and the rear end of the transmission shaft 40. A transmission shaft 41 connected to the transmission shaft 41, a transmission shaft 43 arranged on an extension line of the transmission shaft 41 and connected to the transmission shaft 41 via a hydraulic PTO clutch 42, and parallel to the transmission shaft 43 and extending out of the tractor body A PTO shaft 44 and a mechanical PTO transmission 45 provided between the transmission shaft 43 and the PTO shaft 44 are provided. A power take-out shaft 49 is provided that is driven from the transmission shaft 41 through gear trains 46, 47, and 48. Depending on the power take-out shaft 49, the hydraulic pump 50 is driven.

走行系の伝動機構における第1油圧式変速装置17は、第1駆動軸15上に遊嵌設置した3個の歯車51,52,53と第1変速軸16上に固定設置した3個の歯車54,55,56との対応するもの同士を噛合わせ、第1駆動軸15上に設けた3個の油圧クラッチ57,58,59によって歯車51,52,53を択一的に第1駆動軸15へと結合して、3段の変速を得るものに構成されている。また走行系の伝動機構における第2油圧式変速装置20は、第2駆動軸18上に固定設置した3個の歯車60,61,62と第2変速軸19上に遊嵌設置した3個の歯車63,64,65との対応するもの同士を噛合わせ、第2変速軸19上に設けた3個の油圧クラッチ66,67,68によって歯車63,64,65を択一的に第2変速軸19へと結合して、3段の変速を得るものに構成されている。したがって第1油圧式変速装置17の1個宛の油圧クラッチ57,58ないし59と第2油圧式変速装置20の1個宛の油圧クラッチ66,67ないし68を作動させることにより、合計で9段の変速を得ることができる。   The first hydraulic transmission 17 in the traveling transmission mechanism includes three gears 51, 52, 53 that are loosely installed on the first drive shaft 15 and three gears that are fixedly installed on the first transmission shaft 16. The corresponding ones of 54, 55, and 56 are meshed with each other, and the gears 51, 52, and 53 are alternatively connected to the first drive shaft by three hydraulic clutches 57, 58, and 59 provided on the first drive shaft 15. 15 to obtain a three-stage shift. The second hydraulic transmission device 20 in the traveling transmission mechanism includes three gears 60, 61, 62 fixed on the second drive shaft 18 and three loosely installed on the second transmission shaft 19. The corresponding gears 63, 64, 65 are meshed with each other, and the gears 63, 64, 65 are alternatively shifted by the three hydraulic clutches 66, 67, 68 provided on the second transmission shaft 19. It is configured to be coupled to the shaft 19 to obtain a three-stage shift. Therefore, by operating the hydraulic clutches 57, 58 to 59 addressed to one of the first hydraulic transmission 17 and the hydraulic clutches 66, 67 to 68 addressed to one of the second hydraulic transmission 20, a total of 9 stages are achieved. Can be obtained.

第1及び第2油圧式変速装置17,20における互いに噛合わせた歯車のギヤ比は、油圧クラッチ57,58,59の択一的な作動と油圧クラッチ66,67,68の択一的な作動とによって表1に示す1−9速の変速比が得られるように設定されている。

Figure 0004673338
The gear ratio of the meshed gears in the first and second hydraulic transmissions 17 and 20 is based on the alternative operation of the hydraulic clutches 57, 58, 59 and the alternative operation of the hydraulic clutches 66, 67, 68. Thus, the gear ratio of 1-9 speed shown in Table 1 is set.
Figure 0004673338

図2は、第1油圧式変速装置17の油圧クラッチ57,58,59及び第2油圧式変速装置20の油圧クラッチ66,67,68を作動させるための油圧回路を示している。図1に示した前記油圧ポンプ50によって調圧弁69で設定される油圧の作動油を供給する給油回路70に接続して、第1及び第2油圧式変速装置17,20の6個の油圧クラッチ57,58,59及び66,67,68にそれぞれ接続された6個の電磁比例切換弁VL,VM,VH及びV1,V2,V3を設けてある。各電磁比例切換弁VL,VM,VH,V1,V2,V3は図示のように中立位置と作用位置とを備える2ポジションのバルブに構成され、ソレノイドL,M,H,1,2,3の励磁によって中立位置から作用位置へと変位される。各電磁比例切換弁VL,VM,VH,V1,V2,V3と各油圧クラッチ57,58,59,66,67,68間の接続回路にはそれぞれ、圧力センサ71を接続してある。調圧弁69の排油側には潤滑油圧設定用の二次調圧弁72が接続され、両調圧弁69,72間から潤滑油回路73を導き出して、油圧クラッチ57,58,59,66,67,68に対し潤滑油を供給することとしてある。   FIG. 2 shows a hydraulic circuit for operating the hydraulic clutches 57, 58, 59 of the first hydraulic transmission 17 and the hydraulic clutches 66, 67, 68 of the second hydraulic transmission 20. The six hydraulic clutches of the first and second hydraulic transmissions 17 and 20 are connected to an oil supply circuit 70 for supplying hydraulic hydraulic oil set by a pressure regulating valve 69 by the hydraulic pump 50 shown in FIG. Six electromagnetic proportional switching valves VL, VM, VH and V1, V2, V3 connected to 57, 58, 59 and 66, 67, 68, respectively, are provided. Each electromagnetic proportional switching valve VL, VM, VH, V1, V2, V3 is configured as a two-position valve having a neutral position and an operating position as shown in the figure, and solenoids L, M, H, 1, 2, 3 It is displaced from the neutral position to the working position by excitation. A pressure sensor 71 is connected to a connection circuit between each electromagnetic proportional switching valve VL, VM, VH, V1, V2, V3 and each hydraulic clutch 57, 58, 59, 66, 67, 68. A secondary pressure regulating valve 72 for setting lubricating oil pressure is connected to the oil discharge side of the pressure regulating valve 69, and a lubricating oil circuit 73 is led out between the pressure regulating valves 69, 72, and the hydraulic clutches 57, 58, 59, 66, 67. , 68 is supplied with lubricating oil.

なお油タンク74から油圧ポンプ50に至る油吸入回路75にはラインフィルタ76とバイパス弁としてのリリーフ弁77とを、互いに並列に接続して挿入してある。リリーフ弁77はラインフィルタ76に目詰まりが起きたときリリーフ動作して、油圧ポンプ50に対する油の流れを持続させる。前記油圧式前後進切替え装置14は図1に示すように前進用油圧クラッチ14Fと後進用油圧クラッチ14Rを有し、これらの油圧クラッチ14F,14Rには前記原動軸12により駆動される油圧ポンプ78によって給油が行われるが、該油圧ポンプ78に連なる油吸入回路79は、図2に示すように油吸入回路75に接続して設けられている。   Note that a line filter 76 and a relief valve 77 as a bypass valve are inserted in parallel with each other in an oil suction circuit 75 extending from the oil tank 74 to the hydraulic pump 50. The relief valve 77 performs a relief operation when the line filter 76 is clogged, and keeps the oil flow to the hydraulic pump 50. As shown in FIG. 1, the hydraulic forward / reverse switching device 14 has a forward hydraulic clutch 14F and a reverse hydraulic clutch 14R. These hydraulic clutches 14F and 14R are driven by a hydraulic pump 78 driven by the driving shaft 12. The oil suction circuit 79 connected to the hydraulic pump 78 is connected to the oil suction circuit 75 as shown in FIG.

図3は電磁比例切換弁VL,VM,VH,V1,V2,V3の作動を制御するための電気制御回路を、ブロック図で示している。論理回路80が設けられ、この論理回路80の入力側には、図示のように1速位置−9速位置1−9に回動操作される変速レバー81のレバー角度と回動方向とを検出するポテンショメータ82、エンジン10(図1)の回転数を検出する回転計83、路上走行時・作業時切替えスイッチ84、及び6個設けられた前記圧力センサ71(図2)を接続してある。電磁比例切換弁VL,VM,VH,V1,V2,V3のソレノイドL,M,H,1,2,3を励磁方向で駆動するソレノイド駆動回路85と解磁方向で駆動するソレノイド駆動回路86とが、設けられている。論理回路80の出力側は先ずソレノイド駆動回路85に対し、直接に接続されると共に電磁比例切換弁VL,VM,VH,V1,V2,V3の油圧上昇パターンを設定する圧力設定回路87を介して接続されている。論理回路80の出力側はまた、ソレノイド駆動回路86に対し遅延回路88を介して接続されると共に電磁比例切換弁VL,VM,VH,V1,V2,V3の油圧下降パターンを設定する圧力設定回路89を介して接続され、さらに遅延回路88に対し時間設定回路90を介して接続されている。   FIG. 3 is a block diagram showing an electric control circuit for controlling the operation of the electromagnetic proportional switching valves VL, VM, VH, V1, V2 and V3. A logic circuit 80 is provided. On the input side of the logic circuit 80, the lever angle and the rotation direction of the shift lever 81 that is rotated to the 1st speed position-9th speed position 1-9 as shown in the figure are detected. A potentiometer 82, a tachometer 83 for detecting the number of revolutions of the engine 10 (FIG. 1), a road traveling / working changeover switch 84, and six pressure sensors 71 (FIG. 2) are connected. A solenoid drive circuit 85 for driving the solenoids L, M, H, 1, 2, 3 of the electromagnetic proportional switching valves VL, VM, VH, V1, V2, V3 in the excitation direction and a solenoid drive circuit 86 for driving in the demagnetization direction; Is provided. First, the output side of the logic circuit 80 is directly connected to the solenoid drive circuit 85 via a pressure setting circuit 87 for setting the hydraulic pressure increase patterns of the electromagnetic proportional switching valves VL, VM, VH, V1, V2, and V3. It is connected. The output side of the logic circuit 80 is also connected to the solenoid drive circuit 86 via a delay circuit 88 and a pressure setting circuit for setting the hydraulic pressure drop pattern of the electromagnetic proportional switching valves VL, VM, VH, V1, V2, V3. The delay circuit 88 is connected to the delay circuit 88 via the time setting circuit 90.

各電磁比例切換弁VL,VM,VH,V1,V2,V3は図4に例示するように、そのソレノイドL,M,H,1,2,3にオン信号が与えられた時点t0 からクラッチ作用油圧pを正規油圧p1にまで漸増させるように、制御を受ける。図4において時間taは、油圧クラッチの油室に油が充満し油圧pがピストン保持圧力paにまで上昇する時点である。この時点taで油圧pは、予め設定された比較的緩やかな上昇波形a上の対応値にまで急上昇し、その後、時点tbまで上昇波形aに沿って上昇する。時点tbでの油圧は油圧クラッチが完全に係合する値のものであり、事後は不測の事態に備え油圧pを正規油圧p1まで、比較的急な上昇波形bに沿って上昇させる。図4においてカーブC1は路上走行時のもの、カーブC2は作業時のものであり、走行負荷の大きい作業時には破線で示した時点t0 での初期油圧及び時点tbでの油圧が、走行負荷の小さい路上走行時のものよりも高く設定されている。図3に示す論理回路80はポテンショメータ82にて検出される変速レバー81のシフト後の位置を示す信号、及び路上走行時・作業時切替えスイッチ84にて検出される走行モードか作業モードかを示す信号を、ソレノイド駆動回路85に付与し、また後者の信号を圧力設定回路87に付与し同回路87にて油圧上昇カーブを設定させてソレノイド駆動回路85に付与し、ソレノイド駆動回路85が対応するソレノイドL,M,H,1,2或いは3を駆動する。   As shown in FIG. 4, the electromagnetic proportional switching valves VL, VM, VH, V1, V2, and V3 are actuated from the time point t0 when the ON signal is applied to the solenoids L, M, H, 1, 2, and 3, respectively. Control is performed so as to gradually increase the hydraulic pressure p to the normal hydraulic pressure p1. In FIG. 4, time ta is the time when the oil chamber of the hydraulic clutch is filled with oil and the hydraulic pressure p rises to the piston holding pressure pa. At this time point ta, the hydraulic pressure p rapidly rises to a corresponding value on a relatively gentle rise waveform a set in advance, and then rises along the rise waveform a until time point tb. The oil pressure at the time point tb is a value at which the hydraulic clutch is completely engaged, and thereafter, the oil pressure p is raised to the normal oil pressure p1 along a relatively steep rise waveform b in preparation for an unexpected situation. In FIG. 4, curve C1 is for road driving, curve C2 is for work, and during work with a large travel load, the initial oil pressure at time t0 and the oil pressure at time tb shown by the broken lines are low in travel load. It is set higher than that when driving on the road. The logic circuit 80 shown in FIG. 3 indicates a signal indicating the position after the shift of the speed change lever 81 detected by the potentiometer 82 and whether the traveling mode or working mode is detected by the road / work switching switch 84. A signal is applied to the solenoid drive circuit 85, and the latter signal is applied to the pressure setting circuit 87, and a hydraulic pressure increase curve is set by the circuit 87 to be applied to the solenoid drive circuit 85. The solenoid drive circuit 85 corresponds. The solenoid L, M, H, 1, 2 or 3 is driven.

また各電磁比例切換弁VL,VM,VH,V1,V2,V3は図5に例示するように、そのソレノイドL,M,H,1,2,3にオフ信号が与えられた時点t0 から対応する油圧クラッチの作用油圧を、正規油圧p1から零にまで低下させるように制御を受ける。この油圧の低下は、カーブC1で示すように油圧pをピストン保持圧力pa以下にまで急速に低下させる場合の他、カーブC2,C3で例示するように油圧pを或る値まで急速に低下させ事後は比較的緩やかに低下させる場合も含む。油圧を緩やかに低下させるには、各電磁比例切換弁VL,VM,VH,V1,V2,V3中の可変絞りが用いられる。該可変絞りは、図2では電磁比例切換弁の外部に取出して符号Vaで示してある。図3に示す論理回路80は、ポテンショメータ82にて検出される変速レバー81シフト時のシフト前の位置を示す信号をソレノイド駆動回路86に付与し、また後述する論理に従ってカーブ決定信号を圧力設定回路89に付与し同回路89にて油圧低下カーブを設定させてソレノイド駆動回路86に付与し、ソレノイド駆動回路86が対応するソレノイドL,M,H,1,2或いは3を駆動する。   Each electromagnetic proportional switching valve VL, VM, VH, V1, V2, V3 corresponds from time t0 when an OFF signal is given to the solenoid L, M, H, 1, 2, 3 as illustrated in FIG. Control is performed so that the working oil pressure of the hydraulic clutch to be lowered from the normal oil pressure p1 to zero. This decrease in the hydraulic pressure is caused by rapidly decreasing the hydraulic pressure p to a certain value as illustrated by the curves C2 and C3, as well as when the hydraulic pressure p is rapidly decreased to the piston holding pressure pa or lower as shown by the curve C1. After the fact, it includes the case of a relatively slow decline. In order to gradually reduce the hydraulic pressure, variable throttles in the electromagnetic proportional switching valves VL, VM, VH, V1, V2, and V3 are used. In FIG. 2, the variable throttle is taken out of the electromagnetic proportional switching valve and indicated by reference numeral Va. The logic circuit 80 shown in FIG. 3 gives a signal indicating the position before the shift at the time of shifting the shift lever 81 detected by the potentiometer 82 to the solenoid drive circuit 86, and also sends a curve determination signal to the pressure setting circuit according to the logic described later. Is applied to 89 and a hydraulic pressure drop curve is set by the circuit 89 and applied to the solenoid drive circuit 86, and the solenoid drive circuit 86 drives the corresponding solenoid L, M, H, 1, 2 or 3.

図3に示した変速レバー81によって第1及び第2油圧式変速装置17,20の変速操作を行う場合、前掲の表1から見てとれるように、第1又は第2油圧式変速装置17又は20のみの1個の油圧クラッチを新たに作動させ作動中の1個の油圧クラッチを切る場合と、第1及び第2油圧式変速装置17,20の1個宛の油圧クラッチを新たに作動させ作動中の1個宛の油圧クラッチを切る場合とがある。前者の場合には、例えば3速から5速へのシフトアップを行うには第1油圧式変速装置17では油圧クラッチ58をそのまま作動を続けさせて第2油圧式変速装置20の油圧クラッチ67を新たに作動させ作動中の油圧クラッチ66を切るといった操作がされ、また6速から4速へのシフトダウンを行うには第2油圧式変速装置20では油圧クラッチ67をそのまま作動を続けさせて第1油圧式変速装置17の油圧クラッチ57を新たに作動させ作動中の油圧クラッチ59を切るといった操作がされることになる。また後者の場合には、例えば2速から6速へのシフトアップを行うには第1油圧式変速装置17の油圧クラッチ59と第2油圧式変速装置20の油圧クラッチ67とを新たに作動させ第1油圧式変速装置17の油圧クラッチ58と第2油圧式変速装置20の油圧クラッチ66とを切るといった操作がされ、また9速から5速へのシフトダウンを行うには第1油圧式変速装置17の油圧クラッチ58と第2油圧式変速装置20の油圧クラッチ67とを新たに作動させ第1油圧式変速装置17の油圧クラッチ59と第2油圧式変速装置20の油圧クラッチ68とを切るといった操作がされることになる。このように1個のみの油圧クラッチを新たに作動させる場合と2個の油圧クラッチを新たに作動させる場合とでは、油圧クラッチの油室に油が充満するのに要する時間が後者の場合の方がほぼ倍加する。そこでこの発明はこの時間差を補償する油圧制御を、エンジン定格回転状態でのシフトアップ時とシフトダウン時、エンジン低速回転状態でのシフトアップ時とシフトダウン時の4つの場合に分けて行おうとするものである。   When shifting operation of the first and second hydraulic transmissions 17 and 20 by the transmission lever 81 shown in FIG. 3, as can be seen from Table 1 above, the first or second hydraulic transmission 17 or When one hydraulic clutch of only 20 is newly operated and one hydraulic clutch being operated is disengaged, one hydraulic clutch addressed to one of the first and second hydraulic transmissions 17 and 20 is newly operated. There is a case where the hydraulic clutch addressed to one in operation is disconnected. In the former case, for example, in order to shift up from the third speed to the fifth speed, in the first hydraulic transmission 17, the hydraulic clutch 58 of the second hydraulic transmission 20 is operated by continuing the operation of the hydraulic clutch 58. In order to shift down from the 6th speed to the 4th speed, the second hydraulic transmission 20 continues to operate the hydraulic clutch 67 as it is, and the operation is performed such that the hydraulic clutch 66 that is newly operated is operated. The operation is such that the hydraulic clutch 57 of the one-hydraulic transmission 17 is newly operated and the hydraulic clutch 59 in operation is disengaged. In the latter case, for example, in order to shift up from the second speed to the sixth speed, the hydraulic clutch 59 of the first hydraulic transmission 17 and the hydraulic clutch 67 of the second hydraulic transmission 20 are newly operated. An operation is performed such as disengaging the hydraulic clutch 58 of the first hydraulic transmission 17 and the hydraulic clutch 66 of the second hydraulic transmission 20, and the first hydraulic transmission is used to shift down from the 9th gear to the 5th gear. The hydraulic clutch 58 of the device 17 and the hydraulic clutch 67 of the second hydraulic transmission 20 are newly operated to disconnect the hydraulic clutch 59 of the first hydraulic transmission 17 and the hydraulic clutch 68 of the second hydraulic transmission 20. Will be operated. As described above, when only one hydraulic clutch is newly operated and when two hydraulic clutches are newly operated, the time required for the oil chamber of the hydraulic clutch to be filled with oil is the latter. Almost doubles. Therefore, the present invention tries to divide the hydraulic control that compensates for this time difference into four cases: up-shifting and down-shifting at the rated engine speed, up-shifting and down-shifting at a low engine speed. Is.

図6は、エンジン定格回転状態でのシフトアップ時の油圧制御態様を示している。図3に示した回転計83は、エンジンが定格回転状態にあることを論理回路80に入力している。またポテンショメータ82はシフトアップ前後の変速レバー81位置を論理回路80に入力し、論理回路80が1個のみの油圧クラッチを新たに作動させる場合か2個の油圧クラッチを新たに作動させる場合かを判定する。図6の上側のグラフが1個のみの油圧クラッチを新たに作動させる場合の制御態様を示し、したがって1個のみの油圧クラッチが切られ他の1個の作動中の油圧クラッチは正規油圧p1をそのまま作用され続けている。切られる油圧クラッチの作用油圧pはピストン保持圧力pa以下にまで急速に低下させることとしてあり、この油圧低下カーブは図3に示した圧力設定回路89にて設定される。
図6の下側のグラフが2個の油圧クラッチを新たに作動させる場合の制御態様を示し、したがって2個の油圧クラッチの作用油圧pが低下せしめられる。この油圧低下も、図3の圧力設定回路89にて設定される急速低下カーブに沿って行われる。油圧上昇カーブも、1個のみの油圧クラッチを新たに作動させる場合(図6の上側のグラフ)と2個の油圧クラッチを新たに作動させる場合(図6の下側のグラフ)とで全く同一であり、図3に示す圧力設定回路87にて設定される。
FIG. 6 shows a hydraulic control mode at the time of upshifting in the engine rated speed state. The tachometer 83 shown in FIG. 3 inputs to the logic circuit 80 that the engine is in the rated rotation state. Further, the potentiometer 82 inputs the position of the shift lever 81 before and after the up-shifting to the logic circuit 80, and whether the logic circuit 80 newly operates only one hydraulic clutch or two hydraulic clutches. judge. The upper graph in FIG. 6 shows a control mode when only one hydraulic clutch is newly operated. Therefore, only one hydraulic clutch is disengaged and the other one operating hydraulic clutch has the normal hydraulic pressure p1. It continues to act as it is. The working oil pressure p of the hydraulic clutch to be cut is rapidly lowered to the piston holding pressure pa or less, and this oil pressure lowering curve is set by the pressure setting circuit 89 shown in FIG.
The lower graph in FIG. 6 shows a control mode in the case where two hydraulic clutches are newly operated. Therefore, the working hydraulic pressure p of the two hydraulic clutches is lowered. This decrease in hydraulic pressure is also performed along a rapid decrease curve set by the pressure setting circuit 89 in FIG. The hydraulic pressure increase curve is exactly the same when only one hydraulic clutch is newly operated (upper graph in FIG. 6) and when two hydraulic clutches are newly operated (lower graph in FIG. 6). And is set by the pressure setting circuit 87 shown in FIG.

1個の油圧クラッチのみを作動させ1個の油圧クラッチを切るとき(図6の上側のグラフ)にも2個の油圧クラッチを作動させ2個の油圧クラッチを切るとき(図6の下側のグラフ)にも、新たに作動させる油圧クラッチへの係合指令付与時点(ソレノイドL,M,H,1,2或いは3へのオン信号付与時点)t0 よりもそれまで作動していた油圧クラッチの切断指令付与時点(ソレノイドL,M,H,1,2或いは3へのオフ信号付与時点)tsの方を、或る時間だけ遅くすることとしてある。この時間は、図3に示した論理回路80の出力信号に応じ時間設定回路90によって設定され、遅延回路88によってソレノイド駆動回路86に付与されるソレノイド駆動時点を所定量だけ遅延させることで、得られる。そして図6のグラフに示すように、1個の油圧クラッチのみを作動させ1個の油圧クラッチを切るときの遅延時間Δt1よりも2個の油圧クラッチを作動させ2個の油圧クラッチを切るときの遅延時間Δt2の方を、新たに作動させる1個の油圧クラッチに油が充満する時間と2個の油圧クラッチに油が充満する時間との時間差に対応して、ほぼその時間差だけ長くしている。   When operating only one hydraulic clutch and disconnecting one hydraulic clutch (upper graph in FIG. 6), when operating two hydraulic clutches and disconnecting two hydraulic clutches (lower side in FIG. 6) The graph) also shows the hydraulic clutch that has been operating until the time when the engagement command is applied to the hydraulic clutch to be newly operated (the ON signal is applied to the solenoid L, M, H, 1, 2, or 3) t0. The cutting command application time point (off signal application time point to solenoid L, M, H, 1, 2, or 3) ts is delayed by a certain time. This time is set by the time setting circuit 90 according to the output signal of the logic circuit 80 shown in FIG. 3, and is obtained by delaying the solenoid driving time point applied to the solenoid driving circuit 86 by the delay circuit 88 by a predetermined amount. It is done. Then, as shown in the graph of FIG. 6, when two hydraulic clutches are operated and two hydraulic clutches are disconnected from the delay time Δt1 when only one hydraulic clutch is operated and one hydraulic clutch is disconnected. The delay time Δt2 is increased by approximately the time difference corresponding to the time difference between the time when one hydraulic clutch to be newly filled is filled with oil and the time when two hydraulic clutches are filled with oil. .

したがって図6に斜線をつけた、新たに作動させる1個の油圧クラッチとそれまで作動させていた1個の油圧クラッチとが共通してスリップ係合する領域(上側のグラフ)と新たに作動させる2個の油圧クラッチとそれまで作動させていた2個の油圧クラッチとが共通してスリップ係合する領域(下側のグラフ)とが、面積をほぼ等しくされる。共通スリップ係合領域ないしその面積は変速段の切替え移行が最もスムーズに行われるように選択され、1個宛の油圧クラッチを入り切りする場合にも2個宛の油圧クラッチを入り切りする場合にも、油圧ポンプ50の容量に左右されることなく変速フィーリングが良好となる。   Accordingly, a newly actuated region (upper graph) in which one hydraulic clutch to be newly operated and one hydraulic clutch that has been operated so far are slip-engaged in common with hatching in FIG. The area (lower graph) in which the two hydraulic clutches and the two hydraulic clutches that have been operated in common are slip-engaged is made substantially equal in area. The common slip engagement region or the area thereof is selected so that the shift of the shift stage is performed most smoothly, both when the hydraulic clutch addressed to one is turned on and off and when the hydraulic clutch addressed to two is turned on and off. The shift feeling is good without being influenced by the capacity of the hydraulic pump 50.

図7は、エンジン定格回転状態でのシフトダウン時の油圧制御態様を示している。上側のグラフが1個の油圧クラッチのみを作動させ1個の油圧クラッチを切るときの油圧制御態様を示し、下側のグラフが2個の油圧クラッチを作動させ2個の油圧クラッチを切るときの油圧制御態様を示している。この場合の油圧制御も基本的には図6の場合と同様であり、図3の圧力設定回路89にて設定される急速低下カーブに沿った作用油圧の低下時点ts を新たな油圧クラッチへの作動油供給開始時点t0 よりも、1個宛の油圧クラッチを入り切りする場合には時間々隔Δt1′だけ遅延させ2個宛の油圧クラッチを入り切りする場合にはそれより長い時間々隔Δt2′だけ遅延させて、図7に斜線をつけた、新たに作動させる1個の油圧クラッチとそれまで作動させていた1個の油圧クラッチとが共通してスリップ係合する領域(上側のグラフ)と新たに作動させる2個の油圧クラッチとそれまで作動させていた2個の油圧クラッチとが共通してスリップ係合する領域(下側のグラフ)との面積を、ほぼ等しくしている。   FIG. 7 shows a hydraulic control mode at the time of downshifting in the engine rated speed state. The upper graph shows the hydraulic control mode when only one hydraulic clutch is operated and one hydraulic clutch is disconnected, and the lower graph is when two hydraulic clutches are operated and two hydraulic clutches are disconnected. The hydraulic control mode is shown. The hydraulic control in this case is basically the same as in the case of FIG. 6, and the time point ts at which the working hydraulic pressure decreases along the rapid decrease curve set by the pressure setting circuit 89 in FIG. When the hydraulic clutch addressed to one is turned on / off from the hydraulic oil supply start time t0, it is delayed by a time interval Δt1 ′, and when the hydraulic clutch addressed to two is turned on / off, the time interval Δt2 ′ is longer. An area (upper graph) in which one newly engaged hydraulic clutch and one previously operated hydraulic clutch are slip-engaged with a delay, and are hatched in FIG. The areas of the two hydraulic clutches operated in the same manner and the region (lower graph) in which the two hydraulic clutches operated so far are slip-engaged in common are made substantially equal.

しかし図7に示す時間々隔Δt1′,Δt2′はそれぞれ、図6に示した時間々隔Δt1,Δt2よりも小さくされている。すなわち図3の論理回路80によって入力されるシフトダウン信号によって時間設定回路90が設定する遅延時間Δt1′,Δt2′を、シフトアップ時に同設定回路90が設定する遅延時間Δt1,Δt2よりも短くしているのである。これは車両走行時の慣性を考慮してのものであり、走行中の車両を増速させるのに必要なエネルギーよりも減速させるのに必要なエネルギーの方が小さいことから、新たに係合させる油圧クラッチと切断する油圧クラッチが共通してスリップ係合する領域を減速時には積極的に小さくすることによって、エネルギー効率の向上を図ったものである。   However, the time intervals Δt1 ′ and Δt2 ′ shown in FIG. 7 are smaller than the time intervals Δt1 and Δt2 shown in FIG. That is, the delay times Δt1 ′ and Δt2 ′ set by the time setting circuit 90 by the downshift signal input by the logic circuit 80 in FIG. 3 are made shorter than the delay times Δt1 and Δt2 set by the setting circuit 90 at the time of upshifting. -ing This is in consideration of inertia when the vehicle travels, and since the energy required to decelerate is smaller than the energy required to accelerate the traveling vehicle, it is newly engaged. The energy efficiency is improved by actively reducing the area where the hydraulic clutch and the hydraulic clutch to be disconnected are slip-engaged at the time of deceleration.

図6及び図7に示した制御では時間々隔Δt1,Δt2,Δt1′,Δt2′を、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点t0 から該油圧クラッチに油が充満し油圧クラッチに対する作用油圧がピストン保持圧力paまで上昇する時点taまでの時間々隔よりも大きくして、制御の容易化を図っている。   In the control shown in FIGS. 6 and 7, the time intervals Δt1, Δt2, Δt1 ′, Δt2 ′ are changed from the time t0 when the engagement command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be engaged to the hydraulic clutch. Is greater than the time interval until time ta when the working oil pressure with respect to the hydraulic clutch rises to the piston holding pressure pa, thereby facilitating control.

図8は、エンジン低速回転状態(アイドリング回転又はそれに近い回転数で回転する状態)でのシフトアップ時の油圧制御態様を示している。したがって図3に示した回転計83は、エンジンが低速回転状態にあることを論理回路80に入力している。図8の上側のグラフが1個の油圧クラッチのみを作動させ1個の油圧クラッチを切るときの油圧制御態様を示し、下側のグラフが2個の油圧クラッチを作動させ2個の油圧クラッチを切るときの油圧制御態様を示している。この場合の油圧制御も図6の場合と同様に、切断される油圧クラッチの作用油圧の低下時点(切断指令付与時点)tsを新たな油圧クラッチへの作動油供給開始時点ないし係合指令付与時点t0 よりも、1個宛の油圧クラッチを入り切りする場合には時間々隔Δt1だけ遅延させ2個宛の油圧クラッチを入り切りする場合にはそれより長い時間々隔Δt2だけ遅延させている。しかし図8の油圧制御では各電磁比例切換弁VL,VM,VH,V1,V2,V3中の前記可変絞りVaが利用されており、切断される油圧クラッチの作用油圧を、或る値まで急速に低下させ事後は緩やかに低下させている。   FIG. 8 shows a hydraulic control mode at the time of upshifting in the engine low-speed rotation state (a state in which the engine rotates at an idling rotation or a rotational speed close thereto). Therefore, the tachometer 83 shown in FIG. 3 inputs to the logic circuit 80 that the engine is in a low speed rotation state. The upper graph in FIG. 8 shows the hydraulic control mode when only one hydraulic clutch is operated and one hydraulic clutch is disengaged, and the lower graph is operated when two hydraulic clutches are operated and two hydraulic clutches are operated. The hydraulic control mode when turning off is shown. As in the case of FIG. 6, the hydraulic control in this case is also the time point when the hydraulic pressure of the hydraulic clutch to be disconnected is lowered (disconnection command application time point) ts, when the hydraulic oil supply start time to the new hydraulic clutch starts or the engagement command application time point. When the hydraulic clutch addressed to one is turned on and off, the time delay is delayed by Δt1, and when the hydraulic clutch addressed to two is turned on and off, the time delay is delayed by Δt2. However, in the hydraulic control in FIG. 8, the variable throttle Va in each of the electromagnetic proportional switching valves VL, VM, VH, V1, V2, and V3 is used, and the hydraulic pressure of the hydraulic clutch to be disconnected is rapidly increased to a certain value. After the fact, it is gradually lowered.

すなわち図8のグラフを図6のグラフと対比すれば明らかなように、図8の場合にはエンジンの低速回転に対応する油圧ポンプ50の低速回転によって油圧クラッチに油が充満するのに要する時間が長くかかり、この長くなる時間を補償するために、図3の圧力設定回路89にて設定される油圧低下カーブを、緩やかな油圧低下が得られるようにし、新たに係合させる油圧クラッチと切断する油圧クラッチが共通してスリップ係合する領域の面積を、図6の場合とほぼ等しく確保しているのである。そして2個宛の油圧クラッチを入り切りする場合(図8の下側)の方を、1個宛の油圧クラッチを入り切りする場合(図8の上側)よりも油圧の低下をより緩やかにして、1個宛の油圧クラッチを入り切りする場合と2個宛の油圧クラッチを入り切りする場合とで、新たに係合させる油圧クラッチと切断する油圧クラッチが共通してスリップ係合する領域の面積をほぼ等しくしている。   That is, as apparent from the comparison of the graph of FIG. 8 with the graph of FIG. 6, in the case of FIG. 8, the time required for the hydraulic clutch to fill with oil due to the low speed rotation of the hydraulic pump 50 corresponding to the low speed rotation of the engine. In order to compensate for this long time, the hydraulic pressure reduction curve set by the pressure setting circuit 89 in FIG. The area of the slip engagement common to the hydraulic clutches to be secured is almost equal to the case of FIG. Then, when the two hydraulic clutches are turned on and off (the lower side in FIG. 8), the decrease in the hydraulic pressure is made slower than when the one hydraulic clutch is turned on and off (the upper side in FIG. 8). The area of the slip-engaged area of the hydraulic clutch to be newly engaged and the hydraulic clutch to be disconnected is made approximately equal between the case where the hydraulic clutch destined for the individual is turned on and off and the case where the hydraulic clutch destined for the second is engaged. ing.

図9は、エンジン低速回転状態でのシフトダウン時の油圧制御態様を示している。上側のグラフが1個の油圧クラッチのみを作動させ1個の油圧クラッチを切るときの油圧制御態様を示し、下側のグラフが2個の油圧クラッチを作動させ2個の油圧クラッチを切るときの油圧制御態様を示している。この場合の油圧制御も基本的には図8の場合と同様であり、切断する油圧クラッチの油圧低下カーブを緩やかな油圧低下が得られるものとし、新たに作動させる油圧クラッチに対する油充満時間が長くなることに対処している。そして図7の場合と同様に図3の論理回路80によって入力されるシフトダウン信号によって時間設定回路90が設定する遅延時間Δt1′,Δt2′を、シフトアップ時に同設定回路90が設定する遅延時間Δt1,Δt2よりも短くし、エネルギー効率の向上を図っている。   FIG. 9 shows a hydraulic control mode at the time of downshifting in the engine low speed rotation state. The upper graph shows the hydraulic control mode when only one hydraulic clutch is operated and one hydraulic clutch is disconnected, and the lower graph is when two hydraulic clutches are operated and two hydraulic clutches are disconnected. The hydraulic control mode is shown. The hydraulic control in this case is basically the same as in the case of FIG. 8, and it is assumed that the hydraulic pressure decrease curve of the hydraulic clutch to be disconnected can be moderately reduced, and the oil filling time for the newly operated hydraulic clutch is long. Dealing with becoming. Similarly to the case of FIG. 7, the delay times .DELTA.t1 'and .DELTA.t2' set by the time setting circuit 90 by the downshift signal input by the logic circuit 80 of FIG. The energy efficiency is improved by making it shorter than Δt1 and Δt2.

図2に示すように各電磁比例切換弁VL,VM,VH,V1,V2,V3と各油圧クラッチ57,58,59,66,67,68間の接続回路の油圧を検出し、図3に示すように論理回路80の入力側に接続されている6個の前記圧力センサ71は、切断される油圧クラッチの圧力が切断指令を受けた後で油圧系のトラブルにより所定時間以上、油圧クラッチにおける摩擦板のライニングの許容吸収エネルギー値に対応する圧力値よりも高い状態が続くと、論理回路80とソレノイド駆動回路85,86とによって全ての電磁比例切換弁のソレノイドL,M,H,1,2,3に対する係合指令を断って異常な二重噛合いを防ぎ、歯車や油圧クラッチの破損を防止する。   As shown in FIG. 2, the hydraulic pressure in the connection circuit between each electromagnetic proportional switching valve VL, VM, VH, V1, V2, V3 and each hydraulic clutch 57, 58, 59, 66, 67, 68 is detected. As shown, the six pressure sensors 71 connected to the input side of the logic circuit 80 are connected to the hydraulic clutch for a predetermined time or longer due to a hydraulic system trouble after the pressure of the hydraulic clutch to be disconnected receives a disconnection command. If the pressure value continues to be higher than the pressure value corresponding to the allowable absorption energy value of the friction plate lining, the solenoids L, M, H, 1, of all the electromagnetic proportional switching valves are operated by the logic circuit 80 and the solenoid drive circuits 85, 86. The engagement command for 2 and 3 is refused to prevent abnormal double meshing, and the gears and hydraulic clutch are prevented from being damaged.

図1に示した伝動機構について若干、説明を補足すると、前後進切替え装置14は原動軸12と出力軸13間に前進歯車列91及びアイドルギヤ92aを含む後進歯車列92を設け、これらの歯車列91,92において原動軸12に遊嵌された歯車を、前進用油圧クラッチ14F及び後進用油圧クラッチ14Rの択一的な作動によって原動軸12に対し結合して、出力軸13に前進方向及び後進方向の回転を選択的に付与するものに、構成されている。   1, the forward / reverse switching device 14 is provided with a reverse gear train 92 including a forward gear train 91 and an idle gear 92a between the drive shaft 12 and the output shaft 13, and these gears. The gears loosely fitted to the drive shaft 12 in the rows 91 and 92 are coupled to the drive shaft 12 by the selective operation of the forward hydraulic clutch 14F and the reverse hydraulic clutch 14R, and are connected to the output shaft 13 in the forward direction and It is configured to selectively give a reverse rotation.

機械式変速装置23は、中間軸21を第2変速軸19に対し減速歯車列を介し接続して該中間軸21上に2個の変速歯車93,94を固定設置すると共に、このうちの小径側の歯車94に減速歯車機構95を介し接続された変速歯車96を、中間軸21外に設け、変速歯車93,94,96に噛合わせた歯車97,98,99を、プロペラ軸22上に遊嵌設置してあるものに構成されている。プロペラ軸上には2個の複式クラッチ100,101が設けられ、複式クラッチ100によって歯車98,99を選択的にプロペラ軸22に対し結合可能とされ、また複式クラッチ101によって、歯車97をプロペラ軸22に対し結合可能とすると共に第2変速軸19とプロペラ軸22間を直結可能とされている。したがって機械式変速装置23は、4つの変速段を有する。   The mechanical transmission 23 connects the intermediate shaft 21 to the second transmission shaft 19 via a reduction gear train, and fixedly installs two transmission gears 93 and 94 on the intermediate shaft 21. A transmission gear 96 connected to the side gear 94 via a reduction gear mechanism 95 is provided outside the intermediate shaft 21, and gears 97, 98, 99 meshed with the transmission gears 93, 94, 96 are placed on the propeller shaft 22. It is configured to be loosely installed. Two compound clutches 100, 101 are provided on the propeller shaft, and the gears 98, 99 can be selectively coupled to the propeller shaft 22 by the compound clutch 100, and the gear 97 is connected to the propeller shaft by the compound clutch 101. The second transmission shaft 19 and the propeller shaft 22 can be directly connected to each other. Therefore, the mechanical transmission 23 has four shift speeds.

以上の実施例ではエンジン定格回転状態でのシフトアップ時の油圧制御及びシフトダウン時の油圧制御にそれぞれ、1個宛の油圧クラッチを入り切りする場合の時間々隔Δt1,Δt1′よりも2個宛の油圧クラッチを入り切りする場合の時間々隔Δt2,Δt2′の方を長くするといった制御を用いた。他の実施例では1個宛の油圧クラッチを入り切りする場合の時間々隔と2個宛の油圧クラッチを入り切りする場合の時間々隔とを、例えば時間々隔Δt1,Δt1′で等しくし、入り切りする油圧クラッチが2個宛の場合に、切断する油圧クラッチに対する作用油圧を緩やかに低下させることによっても、同一の効果を奏する制御が可能である。図10及び図11はそれぞれ、そのような油圧制御を行っている他の実施例を示している。   In the above embodiment, the hydraulic control at the time of up-shifting and the hydraulic control at the time of down-shifting in the engine rated speed state are respectively addressed by two rather than the time intervals Δt1 and Δt1 ′ when the hydraulic clutch addressed to one is switched on and off. The control of increasing the time intervals Δt2 and Δt2 ′ when the hydraulic clutch was turned on and off was used. In another embodiment, the time interval when the hydraulic clutch addressed to one is turned on and off is equal to the time interval when the hydraulic clutch addressed to two is turned on and off, for example, at time intervals Δt1 and Δt1 ′. When the number of hydraulic clutches to be addressed is two, the same effect can be controlled by gradually reducing the hydraulic pressure for the hydraulic clutch to be disconnected. 10 and 11 each show another embodiment in which such hydraulic control is performed.

図10はエンジン定格回転状態でのシフトアップ時の油圧制御を、新たな油圧クラッチに対する係合指令の付与時点t0 と作動中の油圧クラッチに対する切断指令の付与時点tsとの時間々隔を1個宛の油圧クラッチを入り切りする場合にも2個宛の油圧クラッチを入り切りする場合にも等しくΔt1に設定して行う他の実施例を、示している。本制御では1個宛の油圧クラッチを入り切りする場合(図10の上側のグラフ)には切断する油圧クラッチに対する作用油圧の低下を、図6の制御による場合と同様に急速に行わせている。これに対し2個宛の油圧クラッチを入り切りする場合(図10の下側のグラフ)には切断する油圧クラッチに対する作用油圧の低下を、緩やかな低下特性を有する部分を有する低下カーブに沿って行わせている。そして1個宛の油圧クラッチを入り切りする場合と2個宛の油圧クラッチを入り切りする場合とで、新たに係合させる油圧クラッチと切断する油圧クラッチとが共通してスリップ係合する領域を、ほぼ等しくしている。   FIG. 10 shows the hydraulic control at the time of upshifting in the engine rated speed state, with one time interval between the application command application time t0 for the new hydraulic clutch and the disconnection command application time ts for the active hydraulic clutch. Another embodiment is shown in which Δt1 is set equal even when the destination hydraulic clutch is turned on and off and when the two destination hydraulic clutches are turned on and off. In this control, when the hydraulic clutch addressed to one is turned on and off (upper graph in FIG. 10), the working hydraulic pressure for the hydraulic clutch to be cut is rapidly reduced as in the case of the control in FIG. On the other hand, when the two hydraulic clutches are turned on and off (the lower graph in FIG. 10), the hydraulic pressure for the hydraulic clutch to be cut is lowered along a lowering curve having a portion having a gradual lowering characteristic. I am letting you. A region where the newly engaged hydraulic clutch and the disconnected hydraulic clutch are slip-engaged in common when the one hydraulic clutch is turned on and off and when the second hydraulic clutch is turned on and off is substantially Are equal.

図11はエンジン定格回転状態でのシフトダウン時の油圧制御を、新たな油圧クラッチに対する係合指令の付与時点t0 と作動中の油圧クラッチに対する切断指令の付与時点tsとの時間々隔を1個宛の油圧クラッチを入り切りする場合にも2個宛の油圧クラッチを入り切りする場合にも等しくΔt1′に設定して行う他の実施例を、示している。図10の制御と同様に、1個宛の油圧クラッチを入り切りする場合(図11の上側のグラフ)には切断する油圧クラッチに対する作用油圧の低下を急速に行わせ、2個宛の油圧クラッチを入り切りする場合(図11の下側のグラフ)には切断する油圧クラッチに対する作用油圧の低下を緩やかに行わせて、1個宛の油圧クラッチを入り切りする場合と2個宛の油圧クラッチを入り切りする場合とで、新たに係合させる油圧クラッチと切断する油圧クラッチとが共通してスリップ係合する領域を、ほぼ等しくしている。   FIG. 11 shows the hydraulic control at the time of downshifting in the engine rated speed state with one time interval between the time t0 at which the engagement command is applied to the new hydraulic clutch and the time ts at which the disconnection command is applied to the operating hydraulic clutch. Another embodiment is shown in which Δt1 ′ is equally set when the destination hydraulic clutch is turned on and off and when the second hydraulic clutch is turned on and off. Similarly to the control of FIG. 10, when the hydraulic clutch addressed to one is turned on and off (the upper graph in FIG. 11), the working hydraulic pressure is rapidly reduced for the hydraulic clutch to be disconnected, In the case of turning on and off (lower graph in FIG. 11), the working hydraulic pressure is gradually lowered for the hydraulic clutch to be cut, and the case of turning on and off the one hydraulic clutch and turning on and off the two hydraulic clutches. In some cases, the region in which the newly engaged hydraulic clutch and the disconnected hydraulic clutch are slip-engaged in common is substantially the same.

さらにまた作動中の油圧クラッチに対する切断指令の付与時点を、新たな油圧クラッチに対する係合指令の付与時点t0 と等しくする制御も、可能である。図12はそのように図った実施例を、エンジン定格回転状態でのシフトアップ時について示している。本実施例では切断される油圧クラッチに対する作用油圧の低下を、1個宛の油圧クラッチを入り切りする場合(図12の上側のグラフ)も2個宛の油圧クラッチを入り切りする場合(図12の下側のグラフ)も緩やかに行わせ、前者の場合よりも後者の場合の方を、より緩やかに油圧が低下されることとして、1個宛の油圧クラッチを入り切りする場合と2個宛の油圧クラッチを入り切りする場合とで、新たに係合させる油圧クラッチと切断する油圧クラッチとが共通してスリップ係合する領域を、ほぼ等しくしている。   Furthermore, it is possible to perform control so that the application time point of the disconnection command for the hydraulic clutch in operation is equal to the application time point t0 of the engagement command for the new hydraulic clutch. FIG. 12 shows an embodiment designed in such a manner at the time of upshifting in the engine rated speed state. In this embodiment, the decrease in the working hydraulic pressure for the hydraulic clutch to be disconnected is determined when the hydraulic clutch destined for one is turned on and off (upper graph in FIG. 12) and when the hydraulic clutch destined for two is turned on and off (lower in FIG. 12). (The graph on the side) is also performed slowly, and the hydraulic pressure is lowered more slowly in the latter case than in the former case, and the hydraulic clutch addressed to one and the hydraulic clutch addressed to two The region where the newly engaged hydraulic clutch and the disconnected hydraulic clutch are slip-engaged in common is made substantially equal in the case of turning on and off.

図6に示した時間々隔Δt1をより小さくして元の時間々隔Δt1と小さくした時間々隔との差を、緩やかな油圧低下によって補って所定のスリップ係合領域を確保する制御も勿論、可能である。図13は、そのような油圧制御を示したものである。   Control of securing a predetermined slip engagement region by compensating for the difference between the original time interval Δt1 and the reduced time interval by gradually reducing the hydraulic pressure by decreasing the time interval Δt1 shown in FIG. Is possible. FIG. 13 shows such hydraulic control.

図14は図2に図示の油圧回路を、より基本的な回路に変更した実施例を示している。すなわち前記電磁比例切換弁VL,VM,VH,V1,V2,V3は電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3に置換され、給油回路70はこれらの電磁切換弁に対しそれぞれ、電磁比例弁110を挿入した回路によって接続されている。電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3のタンクポートには、電磁制御弁111を接続してある。   FIG. 14 shows an embodiment in which the hydraulic circuit shown in FIG. 2 is changed to a more basic circuit. That is, the electromagnetic proportional switching valves VL, VM, VH, V1, V2, and V3 are replaced with electromagnetic switching valves VAL, VAM, VAH, VA1, VA2, and VA3, and the oil supply circuit 70 is electromagnetically connected to these electromagnetic switching valves. They are connected by a circuit in which a proportional valve 110 is inserted. An electromagnetic control valve 111 is connected to the tank ports of the electromagnetic switching valves VAL, VAM, VAH, VA1, VA2, and VA3.

各電磁比例弁110は中立位置Nと作用位置Iとを備え、中立位置Nでは給油回路70と各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3間の接続を断つと共に、各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3を油タンクに接続し、またソレノイドの励磁によって移される作用位置Iでは給油回路70を各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3に対し接続し、そのとき同時に作用位置へと移される各電磁切換弁を介して各油圧クラッチ57,58,59,66,67,68に対する作用油圧を、前述したように漸増させる。各電磁制御弁111は、各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3から油を絞ることなく油タンクに排出させる位置Aと、ソレノイドの励磁によって移され内部の可変絞り111aによって排油を絞る位置Bとを、有する。可変絞り111aは見やすくするため、図14では電磁制御弁111の外部に移して描いてある。   Each electromagnetic proportional valve 110 has a neutral position N and an action position I. In the neutral position N, the connection between the oil supply circuit 70 and each electromagnetic switching valve VAL, VAM, VAH, VA1, VA2, VA3 is cut off and each electromagnetic switching is performed. The valve VAL, VAM, VAH, VA1, VA2, VA3 is connected to the oil tank, and the oil supply circuit 70 is connected to each electromagnetic switching valve VAL, VAM, VAH, VA1, VA2, VA3 at the operation position I moved by the excitation of the solenoid. On the other hand, the working hydraulic pressure for each of the hydraulic clutches 57, 58, 59, 66, 67, 68 is gradually increased through the electromagnetic switching valves that are connected to the working position at the same time as described above. Each electromagnetic control valve 111 is moved by each solenoid switching valve VAL, VAM, VAH, VA1, VA2, VA3 to the oil tank without squeezing the oil, and discharged by an internal variable throttle 111a. And a position B for squeezing oil. In order to make the variable aperture 111a easy to see, in FIG. 14, it is drawn outside the electromagnetic control valve 111.

したがって図14の油圧回路も、図6−13に従った各油圧制御に用いることができる。すなわち各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3と対応する各電磁比例弁110は同時に作用位置に移されてクラッチ作用油圧を漸増させ、また各電磁制御弁111は対応する各電磁切換弁VAL,VAM,VAH,VA1,VA2,VA3が作用位置から中立位置に移されることで対応する各油圧クラッチ57,58,59,66,67,68から排油を行って同油圧クラッチを切断させ、その場合に油圧の低下を緩やかにするためにはソレノイドの励磁によって位置Bに移し、ソレノイドに導通する電流値によって絞り度を変更する可変絞り111aによって油圧を、可変に緩やかに低下させ得る。   Therefore, the hydraulic circuit of FIG. 14 can also be used for each hydraulic control according to FIGS. 6-13. That is, the electromagnetic proportional valves 110 corresponding to the electromagnetic switching valves VAL, VAM, VAH, VA1, VA2, and VA3 are simultaneously moved to the operating position to gradually increase the clutch operating hydraulic pressure, and the electromagnetic control valves 111 are respectively corresponding to the electromagnetic valves. When the switching valves VAL, VAM, VAH, VA1, VA2, and VA3 are moved from the operating position to the neutral position, oil is discharged from the corresponding hydraulic clutches 57, 58, 59, 66, 67, and 68, and the hydraulic clutch is moved. In this case, in order to moderate the decrease in hydraulic pressure, the hydraulic pressure is variably and gradually decreased by the variable throttle 111a that moves to the position B by excitation of the solenoid and changes the throttle degree by the current value that is conducted to the solenoid. obtain.

以上の実施例ではエンジン10の回転状態を、定格回転状態と低速回転状態とに区分して変速制御を行ったが、そのように2区分することなく、エンジン10の回転数に応じ連続的に、同回転数が低いほど切断される油圧クラッチに対する作用油圧の低下をより緩やかに行わせる制御も勿論、可能である。すなわち圧力設定手段としての可変絞りVaと圧力設定回路89又は電磁比例弁110を、切断される油圧クラッチに対する作用油圧の低下をエンジンの回転数に応じ該回転数が低いほどより緩やかに行わせるものに、構成するのである。具体的には例えば圧力設定回路89を、エンジンの回転数を検出する回転計83の検出値とエンジンの定格回転数とを比較して、切断される油圧クラッチに対する作用油圧の低下特性を設定するものに構成する。これによってエンジン回転数に応じ油圧クラッチへの油充満にかかる時間を、同回転数に応じて連続的に補償できることになる。   In the above embodiment, the speed change control is performed by dividing the rotation state of the engine 10 into the rated rotation state and the low-speed rotation state. However, the speed change control is continuously performed according to the rotation speed of the engine 10 without dividing into two. Of course, it is possible to control the hydraulic pressure to be gradually lowered with respect to the hydraulic clutch that is disconnected as the rotational speed is lower. That is, the variable throttle Va as the pressure setting means and the pressure setting circuit 89 or the electromagnetic proportional valve 110 cause the working hydraulic pressure to be lowered with respect to the hydraulic clutch to be disconnected more gradually according to the engine speed as the engine speed decreases. It is composed. Specifically, for example, the pressure setting circuit 89 compares the detected value of the tachometer 83 that detects the engine speed with the rated engine speed, and sets the operating oil pressure drop characteristic for the hydraulic clutch to be disconnected. To make things. As a result, the time required to fill the hydraulic clutch with oil according to the engine speed can be continuously compensated according to the speed.

この発明の油圧式変速装置の変速制御方法は、それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置と第2油圧式変速装置を、直列に接続して設けてある作業車両において、係合させる1個又は2個の油圧クラッチに供給される作動油の油圧を経時的に漸増させる一方、切断させる1個又は2個の油圧クラッチから排出される作動油の油圧の経時的な低下特性を、切断させる油圧クラッチが1個の場合と2個の場合とで変更して、1個宛の油圧クラッチを入断させる場合と2個宛の油圧クラッチを入断させる場合とで入断させる油圧クラッチが共通してスリップ係合する領域を、互いにほぼ等しくなるように設定したことを、特徴とする。切断させる油圧クラッチから排出される作動油の油圧の経時的な低下特性とは、切断させる油圧クラッチの切断指令の付与による同油圧クラッチの作用油圧の低下開始時点、及び切断指令付与後の作用油圧の低下特性の、両者を含む。   The shift control method for a hydraulic transmission according to the present invention includes a first hydraulic transmission and a second hydraulic transmission that are connected in series, each of which performs transmission by selective engagement of a plurality of hydraulic clutches. In a certain working vehicle, the hydraulic oil pressure supplied to one or two hydraulic clutches to be engaged is gradually increased over time, while the hydraulic oil discharged from one or two hydraulic clutches to be disconnected is increased. Change the hydraulic pressure degradation characteristics over time when the number of hydraulic clutches to be disconnected is one and two, and when one hydraulic clutch is engaged and when two hydraulic clutches are engaged and disengaged The region in which the hydraulic clutch to be engaged and disengaged in both cases is slip-engaged in common is set to be substantially equal to each other. The time-dependent decrease characteristic of the hydraulic pressure of the hydraulic oil discharged from the hydraulic clutch to be disconnected refers to the time when the hydraulic pressure of the hydraulic clutch starts to decrease due to the application of the disconnection command of the hydraulic clutch to be disconnected, and the hydraulic pressure after the disconnection command is applied Including both of the lowering characteristics.

切断される油圧クラッチから排出される作動油の油圧の、該経時的な低下特性を、切断される油圧クラッチが1個の場合と2個の場合とで変更することは例えば、係合させる油圧クラッチの係合指令の付与時点から切断される油圧クラッチの切断指令の付与時点までの間隔を、1個宛の油圧クラッチを入断させる場合には相対的に短く2個宛の油圧クラッチを入断させる場合には相対的に長く設定することにより得られる。この場合には1個の油圧クラッチのみを係合させる場合と2個の油圧クラッチを係合させる場合との、油圧クラッチへの作動油充満に要する時間差の問題に、油充満時間がより長くかかる油圧クラッチ2個の場合には、係合させる油圧クラッチの係合指令の付与時点から切断される油圧クラッチの切断指令の付与時点までの間隔をより長くすることで対処している。   Changing the time-dependent decrease characteristic of the hydraulic pressure of the hydraulic oil discharged from the disconnected hydraulic clutch between when the number of disconnected hydraulic clutches is one and when the number of disconnected hydraulic clutches is, for example, the hydraulic pressure to be engaged The interval from the time when the clutch engagement command is applied to the time when the hydraulic clutch disconnection command is applied is relatively short when the one hydraulic clutch is engaged or disengaged. When it is cut off, it is obtained by setting it relatively long. In this case, the oil filling time is longer due to the problem of the time difference required to fill the hydraulic clutch with hydraulic oil when only one hydraulic clutch is engaged and when two hydraulic clutches are engaged. In the case of two hydraulic clutches, this is dealt with by increasing the interval from the application time point of the engagement command of the hydraulic clutch to be engaged to the application time point of the disconnection command of the hydraulic clutch to be disconnected.

切断される油圧クラッチから排出される作動油の油圧の、該経時的な低下特性を、切断される油圧クラッチが1個の場合と2個の場合とで変更することはまた、切断させる油圧クラッチに対する作用油圧の低下を、1個宛の油圧クラッチを入断させる場合よりも2個宛の油圧クラッチを入断させる場合の方を相対的に緩やかに行うことによっても得られる。この場合には上記時間差の問題に、油充満時間がより長くかかる油圧クラッチ2個の場合には切断させる油圧クラッチに対する作用油圧の低下を、相対的に緩やかに行うことによって対処している。この方法は、時間々隔を変更する上記方法と組合わせても実施できる。   It is also possible to change the hydraulic pressure of the hydraulic oil discharged from the hydraulic clutch to be changed between the case of one hydraulic clutch to be disconnected and the case of two hydraulic clutches to be disconnected. The lowering of the working hydraulic pressure with respect to can also be obtained by relatively slowly performing the engagement / disengagement of the two hydraulic clutches rather than the engagement / disengagement of the one hydraulic clutch. In this case, the problem of the time difference is addressed by relatively slowly decreasing the hydraulic pressure with respect to the hydraulic clutch to be disconnected in the case of two hydraulic clutches that require a longer oil filling time. This method can also be implemented in combination with the above-described method of changing the time interval.

何れにしてもこの発明は、係合させる1個又は2個の油圧クラッチに供給される作動油の油圧を経時的に漸増させることと、切断させる1個又は2個の油圧クラッチから排出される作動油の油圧の経時的な低下特性を、切断させる油圧クラッチが1個の場合と2個の場合とで変更することとを、組合わせて、1個宛の油圧クラッチを入断させる場合と2個宛の油圧クラッチを入断させる場合とで入断させる油圧クラッチが共通してスリップ係合する領域を、互いにほぼ等しくなるように設定したから、該共通スリップ領域を、変速段の切替え移行が最もスムーズに行われるように選択しさえすれば、1個宛の油圧クラッチを入断する場合にも2個宛の油圧クラッチを入断する場合にも、使用する油圧ポンプの容量に左右されることなく変速フィーリングが良好となる。   In any case, the present invention gradually increases the hydraulic pressure of the hydraulic oil supplied to one or two hydraulic clutches to be engaged with time and discharges from one or two hydraulic clutches to be disconnected. When the hydraulic pressure of hydraulic oil is changed over time when one hydraulic clutch is disconnected and when two hydraulic clutches are combined, a combination of connecting and disconnecting the hydraulic clutch addressed to one Since the common slip-engagement areas of the hydraulic clutches that are engaged and disengaged when the two hydraulic clutches are engaged and disengaged are set to be substantially equal to each other, the common slip area is shifted to shift stage switching. As long as it is selected to be performed most smoothly, it depends on the capacity of the hydraulic pump to be used, whether the hydraulic clutch destined for one is engaged or not. Without shifting -Ring will be good.

入断させる油圧クラッチが共通してスリップ係合する前記領域は、シフトアップ時よりもシフトダウン時の方を小さく設定するのが好ましい。すなわち車両走行時の慣性を考慮すると走行中の車両を増速させるのに必要なエネルギーよりも減速させるのに必要なエネルギーの方が小さいから、入断させる油圧クラッチが共通してスリップ係合する領域を減速時には積極的に小さくして、エネルギー効率の向上を図るのである。   It is preferable that the region where the hydraulic clutches to be engaged / disengaged are slip-engaged in common is set smaller at the time of downshifting than at the time of upshifting. In other words, considering the inertia when the vehicle is traveling, the energy required to decelerate is smaller than the energy necessary to increase the speed of the traveling vehicle. The area is actively reduced when decelerating to improve energy efficiency.

この発明の実施例を装備したトラクタの伝動機構を示す機構図である。It is a mechanism figure which shows the transmission mechanism of the tractor equipped with the Example of this invention. 第1及び第2油圧式変速装置の油圧クラッチを作動させるための油圧回路を示す回路図である。It is a circuit diagram which shows the hydraulic circuit for operating the hydraulic clutch of a 1st and 2nd hydraulic transmission. 図2に示した電磁比例切換弁の作動を制御するための電気制御回路を示すブロック図である。It is a block diagram which shows the electric control circuit for controlling the action | operation of the electromagnetic proportional switching valve shown in FIG. 各電磁比例切換弁の油圧漸増特性を示すグラフである。It is a graph which shows the oil pressure gradual increase characteristic of each electromagnetic proportional switching valve. 各電磁比例切換弁の油圧低下特性を示すグラフである。It is a graph which shows the hydraulic pressure fall characteristic of each electromagnetic proportional switching valve. エンジン定格回転状態でのシフトアップ時の油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control mode at the time of shift up in an engine rated rotation state. エンジン定格回転状態でのシフトダウン時の油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control mode at the time of downshift in an engine rated rotation state. エンジン低速回転状態でのシフトアップ時の油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control mode at the time of upshifting in an engine low-speed rotation state. エンジン低速回転状態でのシフトダウン時の油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control mode at the time of downshift in an engine low-speed rotation state. エンジン定格回転状態でのシフトアップ時の、他の実施例に従った油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control aspect according to the other Example at the time of up-shifting in an engine rated rotation state. エンジン定格回転状態でのシフトダウン時の、他の実施例に従った油圧制御態様を示すグラフである。It is a graph which shows the hydraulic control aspect according to the other Example at the time of downshift in an engine rated rotation state. エンジン定格回転状態でのシフトアップ時の、さらに他の実施例に従った油圧制御態様を示すグラフである。It is a graph which shows the hydraulic-pressure control aspect according to the further another Example at the time of the shift up in an engine rated rotation state. エンジン定格回転状態でのシフトアップ時の、さらに別の実施例に従った油圧制御態様を示すグラフである。It is a graph which shows the hydraulic-control aspect according to another Example at the time of up-shifting in an engine rated rotation state. 第1及び第2油圧式変速装置の油圧クラッチを作動させるための、他の実施例に従った油圧回路を示す回路図である。FIG. 6 is a circuit diagram showing a hydraulic circuit according to another embodiment for operating a hydraulic clutch of the first and second hydraulic transmissions.

VL,VM,VH 電磁比例切換弁
V1,V2,V3 電磁比例切換弁
L,M,H ソレノイド
1,2,3 ソレノイド
Va 可変絞り
VAL,VAM,VAH 電磁切換弁
VA1,VA2,VA3 電磁切換弁
10 エンジン
17 第1油圧式変速装置
20 第2油圧式変速装置
50 油圧ポンプ
57,58,59 油圧クラッチ
66,67,68 油圧クラッチ
80 論理回路
81 変速レバー
82 ポテンショメータ
83 回転計
85 ソレノイド駆動回路
86 ソレノイド駆動回路
87 圧力設定回路
88 遅延回路
89 圧力設定回路
90 時間設定回路
110 電磁比例弁
111 電磁制御弁
111a 可変絞り
VL, VM, VH Solenoid proportional switching valve V1, V2, V3 Solenoid proportional switching valve L, M, H Solenoid 1, 2, 3 Solenoid Va Variable throttle VAL, VAM, VAH Solenoid switching valve VA1, VA2, VA3 Solenoid switching valve 10 Engine 17 First hydraulic transmission 20 Second hydraulic transmission 50 Hydraulic pump 57, 58, 59 Hydraulic clutch 66, 67, 68 Hydraulic clutch 80 Logic circuit 81 Shift lever 82 Potentiometer 83 Tachometer 85 Solenoid drive circuit 86 Solenoid drive Circuit 87 Pressure setting circuit 88 Delay circuit 89 Pressure setting circuit 90 Time setting circuit 110 Proportional solenoid valve 111 Electromagnetic control valve 111a Variable throttle

Claims (10)

それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置(17)と第2油圧式変速装置(20)を、直列に接続して設けてある作業車両において、前記油圧クラッチ(57,58,59,66,67,68)に対しそれぞれ接続され、該油圧クラッチに対する作動油の給排を制御する複数個の電磁切換弁(VL,VM,VH,V1,V2,V3;VAL,VAM,VAH,VA1,VA2,VA3)と、該電磁切換弁のそれぞれに対し係合指令と切断指令を、選択的に付与する作動制御手段(80,85,86)と、油圧クラッチに供給される作動油の油圧を、電磁切換弁に対し係合指令が付与された時点から経時的に漸増させる圧力制御手段(VL,VM,VH,V1,V2,V3,87;110)と、を備え、上記作動制御手段に、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点から切断される油圧クラッチに接続された電磁切換弁に対する切断指令の付与時点までの間隔を設定する時間々隔設定手段(88,90)を設け、前記時間々隔設定手段(88,90)に、1個宛の油圧クラッチを入断させる場合の前記時間々隔を相対的に短く設定し2個宛の油圧クラッチを入断させる場合の前記時間々隔を相対的に長く設定する時間設定回路(90)を設けた油圧式変速装置の変速制御装置。 In a work vehicle in which a first hydraulic transmission (17) and a second hydraulic transmission (20) each performing transmission transmission by selective engagement of a plurality of hydraulic clutches are connected in series, A plurality of electromagnetic switching valves (VL, VM, VH, V1, V2, connected to the hydraulic clutches (57, 58, 59, 66, 67, 68), respectively, for controlling the supply and discharge of the hydraulic oil to and from the hydraulic clutches. V3; VAL, VAM, VAH, VA1, VA2, VA3), operation control means (80, 85, 86) for selectively applying an engagement command and a disconnection command to each of the electromagnetic switching valves, and hydraulic pressure Pressure control means (VL, VM, VH, V1, V2, V3, 87; 110) for gradually increasing the hydraulic pressure of hydraulic oil supplied to the clutch over time from the time when the engagement command is given to the electromagnetic switching valve. And be prepared In the operation control means, an interval from the time when the engagement command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be engaged to the time when the cutting command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be disconnected is set. time s interval setting means (88, 90) set only the that, the time s interval setting means (88, 90), said time s relatively short setting the interval of the case of Nyudan the hydraulic clutch of one addressed A shift control apparatus for a hydraulic transmission , provided with a time setting circuit (90) for setting the time interval relatively long when the two hydraulic clutches are engaged and disengaged . 前記時間設定回路(90)は、シフトアップ時の前記時間々隔を相対的に長く設定するとともに、シフトダウン時の前記時間々隔を相対的に短く設定する請求項1の油圧式変速装置の変速制御装置。 2. The hydraulic transmission according to claim 1, wherein the time setting circuit (90) sets the time interval when shifting up relatively long and sets the time interval when shifting down relatively short . Shift control device. 前記時間々隔設定手段(88,90)に設定する時間々隔を、係合させる油圧クラッチに接続された電磁切換弁に対する係合指令の付与時点(t0 )から該油圧クラッチに油が充満し油圧クラッチに対する作用油圧がピストン保持圧力(pa)まで上昇する時点(ta)までの時間々隔よりも大きくしてある請求項1の油圧式変速装置の変速制御装置。 The hydraulic clutch is filled with oil from the time (t0) when the engagement command is applied to the electromagnetic switching valve connected to the hydraulic clutch to be engaged for the time interval set in the time interval setting means (88, 90). 2. The transmission control device for a hydraulic transmission according to claim 1, wherein the hydraulic pressure applied to the hydraulic clutch is greater than a time interval until a time point (ta) at which the hydraulic pressure to the piston holding pressure (pa) increases . それぞれ複数油圧クラッチの択一的な係合によって変速伝動を行う第1油圧式変速装置(17)と第2油圧式変速装置(20)を、直列に接続して設けてある作業車両において、前記油圧クラッチ(57,58,59,66,67,68)に対しそれぞれ接続され、該油圧クラッチに対する作動油の給排を制御する複数個の電磁切換弁(VL,VM,VH,V1,V2,V3;VAL,VAM,VAH,VA1,VA2,VA3)と、該電磁切換弁のそれぞれに対し係合指令と切断指令を、選択的に付与する作動制御手段(80,85,86)と、油圧クラッチに供給される作動油の油圧を、電磁切換弁に対し係合指令が付与された時点から経時的に漸増させる圧力制御手段(VL,VM,VH,V1,V2,V3,87;110)と、を備え、上記作動制御手段に、切断される油圧クラッチに対する切断指令の付与後の作用油圧の低下特性を設定する圧力設定手段(Va,89;111)を設け、前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、1個宛の油圧クラッチを入断させる場合よりも2個宛の油圧クラッチを入断させる場合の方をより緩やかに行わせる油圧式変速装置の変速制御装置。 In a work vehicle in which a first hydraulic transmission (17) and a second hydraulic transmission (20) each performing transmission transmission by selective engagement of a plurality of hydraulic clutches are connected in series, A plurality of electromagnetic switching valves (VL, VM, VH, V1, V2, connected to the hydraulic clutches (57, 58, 59, 66, 67, 68), respectively, for controlling the supply and discharge of the hydraulic oil to and from the hydraulic clutches. V3; VAL, VAM, VAH, VA1, VA2, VA3), operation control means (80, 85, 86) for selectively applying an engagement command and a disconnection command to each of the electromagnetic switching valves, and hydraulic pressure Pressure control means (VL, VM, VH, V1, V2, V3, 87; 110) for gradually increasing the hydraulic pressure of hydraulic oil supplied to the clutch over time from the time when the engagement command is given to the electromagnetic switching valve. And be prepared The operation control means is provided with pressure setting means (Va, 89; 111) for setting a lowering characteristic of the working oil pressure after the disconnection command is given to the hydraulic clutch to be disconnected, and the pressure setting means (Va, 89; 111). ) Is a hydraulic shift that causes a lowering of the hydraulic pressure applied to the disconnected hydraulic clutch to be performed more slowly when the two hydraulic clutches are engaged / disengaged than when the one hydraulic clutch is engaged / disengaged. Gear shift control device. 前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、可変に緩やかに行わせる請求項4の油圧式変速装置の変速制御装置。 It said pressure setting means (Va, 89; 111) is, the shift control device of the hydraulic transmission according to claim 4 in which the reduction of the working oil pressure for the hydraulic clutch to be cut, thereby variably slowly performed. 前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、シフトアップ時よりもシフトダウン時の方をより緩やかに行わせる請求項4の油圧式変速装置の変速制御装置。 5. The hydraulic transmission according to claim 4 , wherein the pressure setting means (Va, 89; 111) causes the hydraulic pressure of the hydraulic clutch to be disconnected to decrease more gradually during downshifting than during upshifting. Shift control device. 前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、エンジンの定格回転状態よりも低速回転状態において相対的に緩やかに行わせる請求項4の油圧式変速装置の変速制御装置。 5. The hydraulic transmission according to claim 4 , wherein the pressure setting means (Va, 89; 111) causes the hydraulic pressure of the hydraulic clutch to be cut to decrease relatively slowly in a low speed rotation state than in a rated rotation state of the engine. Gear shift control device. 前記圧力設定手段(Va,89;111)は、切断される油圧クラッチに対する作用油圧の低下を、エンジンの回転数に応じ該回転数が低いほどより緩やかに行わせる請求項4の油圧式変速装置の変速制御装置。 5. The hydraulic transmission according to claim 4 , wherein the pressure setting means (Va, 89; 111) causes the working hydraulic pressure of the hydraulic clutch to be disconnected to decrease more gradually as the rotational speed decreases in accordance with the rotational speed of the engine. Shift control device. 前記圧力設定手段(Va,89;111)に、エンジンの回転数を検出する回転計(83)の検出値とエンジンの定格回転数とを比較して、切断される油圧クラッチに対する作用油圧の低下特性を設定する圧力設定回路(89)を設けた請求項8の油圧式変速装置の変速制御装置。 The pressure setting means (Va, 89; 111) is compared with the detected value of the tachometer (83) for detecting the engine speed and the rated engine speed, and the working oil pressure for the hydraulic clutch to be cut is reduced. The transmission control device for a hydraulic transmission according to claim 8 , further comprising a pressure setting circuit (89) for setting the characteristics . 前記電磁切換弁は、前記圧力制御手段を兼ねた電磁比例切換弁(VL,VM,VH,V1,V2,V3)である請求項1から請求項9までのいずれか一項に記載の油圧式変速装置の変速制御装置。 The hydraulic type according to any one of claims 1 to 9, wherein the electromagnetic switching valve is an electromagnetic proportional switching valve (VL, VM, VH, V1, V2, V3) that also serves as the pressure control means. A transmission control device for a transmission.
JP2007120346A 2007-04-27 2007-04-27 Shift control device for hydraulic transmission Expired - Fee Related JP4673338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120346A JP4673338B2 (en) 2007-04-27 2007-04-27 Shift control device for hydraulic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120346A JP4673338B2 (en) 2007-04-27 2007-04-27 Shift control device for hydraulic transmission

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34234498A Division JP4097340B2 (en) 1998-11-16 1998-11-16 Shift control method for hydraulic transmission

Publications (2)

Publication Number Publication Date
JP2007192411A JP2007192411A (en) 2007-08-02
JP4673338B2 true JP4673338B2 (en) 2011-04-20

Family

ID=38448262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120346A Expired - Fee Related JP4673338B2 (en) 2007-04-27 2007-04-27 Shift control device for hydraulic transmission

Country Status (1)

Country Link
JP (1) JP4673338B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820257A (en) * 1994-07-08 1996-01-23 Kubota Corp Travel speed change structure of working vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820257A (en) * 1994-07-08 1996-01-23 Kubota Corp Travel speed change structure of working vehicle

Also Published As

Publication number Publication date
JP2007192411A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1450074B1 (en) Method of controlling a dual clutch transmission
JP3939871B2 (en) Travel shift control device for vehicle
JP5097880B2 (en) Dual clutch transmission
JP2010517872A (en) Method for operating a vehicle drive train
JP2009196393A (en) Working vehicle
EP1132660B1 (en) Method of controlling hydraulic pressure in speed change mechanism having hydraulic clutch
EP0753688A1 (en) Method of power transmission in mechanical/hydraulic type transmission
JP2008180260A (en) Automatic transmission control device
JP2002147601A (en) Control device for automatic transmission for vehicle
JP4673338B2 (en) Shift control device for hydraulic transmission
JP4097340B2 (en) Shift control method for hydraulic transmission
JP6922878B2 (en) Work vehicle and shift control method for work vehicle
JP2000249215A (en) Travel speed shift device for work vehicle
JPS62194067A (en) Transmission
JP4097166B2 (en) Transmission device for work vehicle
JP5016532B2 (en) Tractor
JP3573641B2 (en) Shifting operation structure of work vehicle
JP3618242B2 (en) Shifting operation structure of work vehicle
JP4192607B2 (en) Control device for automatic transmission
JP4095690B2 (en) Hydraulic control device for hydraulic clutch transmission
JP3218270B2 (en) Hydraulic control device for automatic transmission
JP3611466B2 (en) Combine gearing
JPS627424B2 (en)
JP2001173771A (en) Hydraulic clutch control device for full power shift transmission
JP4097536B2 (en) Working gear shifting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees