JP4671437B2 - Underwater water tank - Google Patents

Underwater water tank Download PDF

Info

Publication number
JP4671437B2
JP4671437B2 JP2007055963A JP2007055963A JP4671437B2 JP 4671437 B2 JP4671437 B2 JP 4671437B2 JP 2007055963 A JP2007055963 A JP 2007055963A JP 2007055963 A JP2007055963 A JP 2007055963A JP 4671437 B2 JP4671437 B2 JP 4671437B2
Authority
JP
Japan
Prior art keywords
diameter cylindrical
water
bag body
cylindrical bag
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007055963A
Other languages
Japanese (ja)
Other versions
JP2008215008A (en
Inventor
俊弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2007055963A priority Critical patent/JP4671437B2/en
Publication of JP2008215008A publication Critical patent/JP2008215008A/en
Application granted granted Critical
Publication of JP4671437B2 publication Critical patent/JP4671437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Description

本発明は、河川等の地上の水を海中に貯え、貯えられた水を必要に応じて海水と真水の比重差を利用して地上に供給するようにした海中貯水槽の改良に関するものである。   The present invention relates to an improvement in an underwater water storage tank that stores water on the ground such as rivers in the sea and supplies the stored water to the ground using the specific gravity difference between seawater and fresh water as necessary. .

本願発明者は、貯水用ダムや溜め池等を用いて水資源を確保すると云う従前の貯水手段の発想を転換し、海中に真水を貯えると共に海水と真水の比重差を利用して地上へ真水を供給するようにした新規な海中貯水槽を開発し、これを特公平4−42265号及び特公平5−25754号等として公開している。   The inventor of the present application changed the idea of the conventional water storage means to secure water resources by using a water storage dam, reservoir, etc. Has developed a new underwater water storage tank that can supply water, and has disclosed this as Japanese Patent Publication No. 4-42265 and Japanese Patent Publication No. 5-25754.

図12は、本願発明者が先に開発をした海中貯水槽の利用状態の説明図であり、また図13は当該海水貯水槽の縦断面概要図である。
海中貯水槽を形成する貯留タンク本体Aは海Sの適宜の箇所に設置され、アンカ及びアンカロープ等(図示省略)により係留されている。
また、貯留タンク本体Aの取水口1と陸地L上の取水設備Cとの間は取水管Dにより連結され、取水管Dを通して河川Rの真水Wが貯留タンク本体A内へ貯留される。
更に、貯留タンク本体Aの給水口2との陸地L上の給水設備F間は給水管Eにより連結され、給水管Eを通して貯留タンク本体A内の真水Wが海水と真水の比重差を利用して陸上Lの給水設備Fへ供給される。当該給水設備では給水(真水)Wを中水、上水、工業用水等の用途に応じて消毒・浄化し、需要箇所へ圧送する。
FIG. 12 is an explanatory view of the utilization state of the underwater water tank developed by the inventor of the present application, and FIG. 13 is a schematic longitudinal sectional view of the sea water water tank.
A storage tank main body A that forms an underwater water tank is installed at an appropriate location in the sea S, and is moored by an anchor, an anchor rope, and the like (not shown).
Further, the intake port 1 of the storage tank body A and the intake facility C on the land L are connected by an intake pipe D, and the fresh water W of the river R is stored in the storage tank body A through the intake pipe D.
Further, the water supply facility F on the land L with the water supply port 2 of the storage tank main body A is connected by a water supply pipe E, and the fresh water W in the storage tank main body A uses the specific gravity difference between seawater and fresh water through the water supply pipe E. To the water supply facility F on land L. In the water supply facility, the water supply (fresh water) W is sterilized and purified in accordance with uses such as middle water, tap water, and industrial water, and is pumped to the demand point.

図13を参照して、当該海中貯水槽を形成する貯留タンク本体Aは、海面下に位置する大径筒状袋体3と海面上に位置する小径筒状体4とから形成されている。また、大径筒状袋体3の上端にはフロート5が配設固定されており、貯留タンク本体A自体に所要の浮力が賦与されている。   Referring to FIG. 13, a storage tank main body A that forms the underwater water tank is formed of a large-diameter cylindrical bag body 3 positioned below the sea surface and a small-diameter cylindrical body 4 positioned above the sea surface. A float 5 is disposed and fixed at the upper end of the large-diameter cylindrical bag body 3, and a required buoyancy is applied to the storage tank body A itself.

前記小径筒状体4は、耐食性金属板等により円筒体に形成されており、その側壁の下端部には給水口2が穿設されている。また、前記大径筒状袋体3は、合成樹脂等のフレキシブルなシート材等により円筒状の袋体に形成されており、取水管Dを通して袋体4内へ流入した真水Wの貯水量に応じて、袋体内容積がフレキシブルに変化する。
尚、図12及び図13に於いて、Lは陸地、Rは河川、6は真水Wを貯留した際に袋体3の形態を円筒状に保持するための非伸縮性の円筒状のネット体である。
The small-diameter cylindrical body 4 is formed in a cylindrical body by a corrosion-resistant metal plate or the like, and a water supply port 2 is formed at the lower end portion of the side wall. The large-diameter cylindrical bag 3 is formed into a cylindrical bag by a flexible sheet material such as synthetic resin, and the amount of fresh water W flowing into the bag 4 through the intake pipe D is reduced. Accordingly, the volume in the bag changes flexibly.
12 and 13, L is a land, R is a river, 6 is a non-stretchable cylindrical net body for holding the shape of the bag 3 in a cylindrical shape when fresh water W is stored. It is.

取水設備Cで取入れられた真水Wは、取水管D及び取水口1を通して大径筒状袋体3内へ貯留され、袋体3はフレキシブルにその内容積を変えることにより、真水Wの貯留量に対応した高さの円筒状形態になる。
尚、袋体3の側部外方は円筒状のネット体6により覆われているため、袋体3の直径がネット体6の内径を越えて外部へ膨出することはない。
The fresh water W taken in by the water intake facility C is stored in the large-diameter cylindrical bag body 3 through the water intake pipe D and the water intake 1, and the bag body 3 is flexibly changed in its internal volume, thereby storing the fresh water W. It becomes the cylindrical form of the height corresponding to.
Since the outside of the side portion of the bag body 3 is covered with the cylindrical net body 6, the diameter of the bag body 3 does not exceed the inner diameter of the net body 6 and bulge to the outside.

所定量の真水Wが貯留されると、海水Sと真水Wの比重差により小径筒状体4内の真水Wの水面が上昇する。そのため給水設備Fと真水Wの水位上面間のヘッド差h1−h4でもって、真水Wが給水設備Fへ自動的に給水される。
尚、小径筒状体4内の水位h1は、圧力の釣合(h1×S1+h2×S2=1.05×h2×S2)から、h1=0.05×h2×S2/S1となり、大径筒状袋体3の水深h2のS2/20S1倍だけ水位h1が上昇することによって、真水Wの自然給水が行われる。但しここで、S1は小径筒状体4の断面積、S2は大径筒状袋体3の横断面積、1.05は海水Sの比重である。
When a predetermined amount of fresh water W is stored, the surface of the fresh water W in the small-diameter cylindrical body 4 rises due to the specific gravity difference between the seawater S and the fresh water W. Therefore, the fresh water W is automatically supplied to the water supply facility F with a head difference h 1 -h 4 between the upper surface of the water level of the water supply facility F and the fresh water W.
The water level h 1 in the small-diameter cylindrical body 4 is h 1 = 0.05 × h from the balance of pressure (h 1 × S 1 + h 2 × S 2 = 1.05 × h 2 × S 2 ). 2 × S 2 / S 1 becomes, S 2 / 20S 1 times by the water level h 1 of the water depth h 2 of the large-diameter cylindrical bag body 3 by increasing the natural water of fresh water W is performed. Here, S 1 is the cross-sectional area of the small-diameter cylindrical body 4, S 2 is the cross-sectional area of the large-diameter cylindrical bag 3, and 1.05 is the specific gravity of the seawater S.

上記従前の海中貯水槽は、イ.海水中に位置する大径筒状袋体3には内・外から水圧が加わるため、袋体3の材料そのものに特別に高い強度を必要とせず、構築が比較的容易で経済性にも優れていること,ロ.真水Wの位置エネルギーを利用して真水の取水及び真水の給水が出来るため、省エネルギーを図れること,ハ.大気との接触面積が少なく、蒸発による貯水量の減少が少ないこと等の優れた特有の効用を具備するものであり、所謂地上の貯水ダムや溜池或いは地下式貯水ダムを用いた貯水方式に比較して、より経済的な貯水が行えるうえ、環境破壊や人家の移転,それに伴う補償等の困難な問題の発生が防げると云う優れた効用を奏するものである。   The above conventional underwater water tanks are: Since water pressure is applied to the large-diameter cylindrical bag body 3 located in the seawater from inside and outside, the material itself of the bag body 3 does not require a particularly high strength, is relatively easy to construct, and is excellent in economic efficiency. B. Since fresh water can be taken in and supplied using the potential energy of fresh water W, energy saving can be achieved. It has a unique effect such as a small contact area with the atmosphere and a small decrease in the amount of stored water due to evaporation, compared to a storage system using so-called above-ground storage dams, reservoirs or underground storage dams. As a result, the water can be stored more economically, and it has an excellent effect that it can prevent the occurrence of difficult problems such as environmental destruction, relocation of people, and compensation associated therewith.

しかし、この種海中貯水槽にも解決すべき多くの問題が多く残されている。その中でも、イ.海水温度が比較的高いうえ、貯留水と空気との接触面積が極めて小さいこと等により、ダム式貯水や溜池貯水に比較して貯留中の真水Wの腐敗や水質の低下が起こり易いこと,ロ.貯留タンク本体Aの設置箇所への電力供給に相当の設備を必要とし、水質低下を防止するために大量の電力を消費する設備を設けることが不可能なこと,等が緊急に解決すべき問題点として残されている。   However, many problems to be solved still remain in this kind of underwater water tank. Among them, a. The seawater temperature is relatively high and the contact area between the stored water and air is extremely small. . Problems that require considerable equipment to supply power to the location where the storage tank body A is installed, and that it is impossible to install equipment that consumes a large amount of power to prevent water quality degradation. It is left as a point.

特公平4−42265号Japanese Patent Publication No. 4-42265 特公平5−25754号Japanese Patent Publication No. 5-25754

本願発明は、従前の海中貯水槽に於ける上述の如き問題、即ちイ.水と空気との接触面積が少ないため、貯留中の真水Wの腐敗や水質低下が起り易いこと,ロ.電力供給が容易でないため、水質防止用の大型機器を適用することが困難なこと等の問題を解決せんとするものであり、外部から電力エネルギーや化石エネルギーを供給することなしに、潮流や風力、太陽光等の自然エネルギーを利用して真水の腐敗や水質の悪化を容易に防止できるようにした海中貯水槽を提供することを発明の主目的とするものである。   The present invention relates to the above-mentioned problems in conventional subsea water tanks, i. Since the contact area between water and air is small, the fresh water W during storage is likely to rot and water quality deteriorates. The problem is that it is difficult to apply large equipment for preventing water quality because it is not easy to supply power, and power and fossil energy are not supplied from outside. The main object of the present invention is to provide an underwater water tank that can easily prevent decay of fresh water and deterioration of water quality by utilizing natural energy such as sunlight.

請求項1の発明は、常時海中に位置し、取水口を通して流入した真水の貯水量に応じて内容積が変るフレキシブルなシート材製の大径筒状袋体と、大径筒状袋体と連通する小径筒状体と、大径筒状袋体の壁面上方に配設したフロートと、前記大径筒状袋体の壁面外方を囲繞し、筒状袋体の形態を筒状に維持するネット体と、前記ネット体の外方に大径筒状袋体の側壁と対向状に配設され、作動時に押圧体を介して袋体側壁を内方へ押圧変形させ、袋体内容積を縮減させるシリンダと、前記フロート上に配設され、シリンダへ作動用流体を供給する加圧流体供給装置と、加圧流体供給装置の駆動エネルギーを供給する太陽電池設備又は風車型回転駆動装置若しくは水車型回転駆動装置と、シリンダ作動用流体の供給及び排出を制御する制御弁とを備え、作動用流体の供給によりシリンダロッドを前進させ、大径筒状袋体の内容積を減少させることにより小径筒状体内の水位を上昇させると共に、作動用流体の排出によりシリンダロッドを後過させ、大径筒状袋体内容積を復原させることにより、小径筒状体から大径筒状袋体内へ水の流れを形成することを発明の基本構成とするものである。   The invention of claim 1 is a large-diameter cylindrical bag body made of a flexible sheet material that is always located in the sea and whose internal volume changes according to the amount of fresh water that has flowed in through the intake port, A communicating small-diameter cylindrical body, a float disposed above the wall surface of the large-diameter cylindrical bag body, and surrounding the outside of the wall surface of the large-diameter cylindrical bag body, and maintaining the form of the cylindrical bag body in a cylindrical shape A net body that is disposed on the outer side of the net body so as to face the side wall of the large-diameter cylindrical bag body, and during operation, the bag body side wall is pressed and deformed inward through the pressing body to increase the volume in the bag body. A cylinder to be reduced, a pressurized fluid supply device that is disposed on the float and supplies an operating fluid to the cylinder, and a solar cell facility or a windmill type rotary drive device or water for supplying driving energy of the pressurized fluid supply device A vehicle-type rotary drive device, and a control valve for controlling supply and discharge of fluid for cylinder operation The cylinder rod is advanced by supplying the working fluid, the internal volume of the large-diameter cylindrical bag body is reduced, the water level in the small-diameter cylindrical body is raised, and the cylinder rod is moved backward by discharging the working fluid. The basic configuration of the invention is to form a flow of water from the small-diameter cylindrical body into the large-diameter cylindrical bag body by restoring the volume of the large-diameter cylindrical bag body.

請求項2の発明は、請求項1の発明において、請求項1の海水貯留槽において、大径筒状袋体内にフレキシブルな散気管を配設し、加圧流体供給装置から加圧流体である空気を水中へ放出する構成としたことを、発明の基本構成とするものである。   According to a second aspect of the present invention, in the first aspect of the invention, in the seawater storage tank of the first aspect, a flexible air diffuser is disposed in the large-diameter cylindrical bag body, and the pressurized fluid is supplied from the pressurized fluid supply device. The basic configuration of the present invention is that air is discharged into water.

請求項3の発明は、請求項1又は請求項2の海中貯水槽において、フロート上に風車又は水車を設けると共に当該風車又は水車により回転駆動される攪拌羽根を大径筒状袋体内の上方部に設ける構成としたことを発明の基本構成とするものである。 According to a third aspect of the present invention, there is provided the submerged water tank according to the first or second aspect, wherein a windmill or a water wheel is provided on the float and a stirring blade that is rotationally driven by the windmill or the water wheel is provided in an upper portion of the large-diameter cylindrical bag body. The basic configuration of the present invention is the configuration provided in the above.

請求項4の発明は、請求項1、請求項2または請求項3の発明において、大径筒状袋体の側壁に、円周方向に等間隔で複数のシリンダを配設すると共に、当該複数のシリンダの環状配列を大径筒状袋体の高さ方向に複数段設けるようにしたものである。   The invention of claim 4 is the invention of claim 1, claim 2 or claim 3, wherein a plurality of cylinders are arranged at equal intervals in the circumferential direction on the side wall of the large-diameter cylindrical bag body. The circular arrangement of the cylinders is provided in a plurality of stages in the height direction of the large-diameter cylindrical bag body.

請求項5の発明は、請求項2又は請求項3の発明において、大径筒状袋体内にフレキシブルな散気管を、大径筒状袋体の高さ方向に複数段設けるようにしたものである。   The invention of claim 5 is the invention of claim 2 or claim 3, wherein a plurality of flexible diffuser tubes are provided in the height direction of the large-diameter cylindrical bag body in the large-diameter cylindrical bag body. is there.

請求項6の発明は、請求項1、請求項2又は請求項4の発明において、複数のシリンダへの作動用流体の供給及び作動用流体の排出を予め定めた所望のプログラムに従って行い、大径筒状袋体内にその半径方向及び軸方向の水の流れを形成するようにしたものである。   According to a sixth aspect of the present invention, in the first, second, or fourth aspect of the present invention, the supply of the working fluid to the plurality of cylinders and the discharge of the working fluid are performed according to a predetermined desired program. The water flow in the radial direction and the axial direction is formed in the cylindrical bag.

本願請求項1の発明では、大径筒状袋体の側壁をシリンダにより部分的に内方へ押し込み、大径筒状袋体の内容積を減少せしめて内部の貯留水Wを小径筒状体内へ押し上げてその水位を上昇させると共に、シリンダ内の作動用流体を排出して前記押上げした貯留水Wを急激に下降させることにより、大径筒状袋体内の水Wをその半径方向及び縦軸方向に流動させるようにしている。
その結果、大きな駆動エネルギーを必要とすることなしに、太陽電池や風車、潮流を利用する水車等により得られるエネルギーでもって、大径筒状袋体内の水を効率よく流動させることができ、小径筒状体の断面積を小さくする必要から生じる水と空気との接触面積の減少による不都合(即ち、水質の悪化や水の腐敗)を有効に防止することができる。
In the first aspect of the present invention, the side wall of the large-diameter cylindrical bag body is partially pushed inward by the cylinder to reduce the internal volume of the large-diameter cylindrical bag body, so that the internal stored water W is supplied to the small-diameter cylindrical body. The water level in the large-diameter cylindrical bag body is increased in the radial direction and in the vertical direction by discharging the working fluid in the cylinder and abruptly lowering the pushed-up stored water W. It is made to flow in the axial direction.
As a result, it is possible to efficiently flow the water in the large-diameter cylindrical bag body with the energy obtained by solar cells, windmills, water turbines using tidal currents, etc. without requiring large driving energy. It is possible to effectively prevent inconveniences (that is, deterioration of water quality and decay of water) due to a reduction in the contact area between water and air, which arises from the need to reduce the cross-sectional area of the cylindrical body.

また、本発明の実施に必要とするエネルギーは、太陽電池や風力式水車、潮流を利用した水車等によって十分にまかなうことの出来る範囲のものであり、水質悪化の防止のために特別な電力供給設備を設ける必要は全く生じない。   In addition, the energy required for carrying out the present invention is within a range that can be adequately covered by solar cells, wind turbines, water turbines using tidal currents, etc., and special power supply for preventing deterioration of water quality There is no need to install any equipment.

本願請求項2の発明は、上記シリンダによる貯留水の強制的な流動に加えて、散気管からの空気の噴出によるエアレーションを行う構成としているため、貯留水の水質悪化をより効率よく防止することが出来るうえ、エアーレーション用に必要とするエネルギーも太陽電池等により容易に賄うことが出来る。   In the invention of claim 2 of the present application, in addition to the forced flow of the stored water by the cylinder, the aeration is performed by ejecting the air from the air diffuser, so that the water quality deterioration of the stored water can be prevented more efficiently. In addition, the energy required for aeration can be easily covered by solar cells.

本願請求項3の発明は、シリンダによる貯留水の強制的な流動とエアレーションに加えて、攪拌羽根により貯留水Wを強制攪拌すると共に、攪拌羽根の駆動を風車又は水車のエネルギーにより行う構成としている。その結果、貯留水Wの水質悪化がより確実に防止させると共に、自然エネルギーの有効利用率がより高められることになる。   In the invention of claim 3 of the present application, in addition to the forced flow and aeration of the stored water by the cylinder, the stored water W is forcibly stirred by the stirring blades, and the stirring blades are driven by the energy of the windmill or the water turbine. . As a result, the water quality deterioration of the stored water W can be prevented more reliably, and the effective utilization rate of natural energy can be further increased.

以下、図面に基づいて本発明の各実施形態を説明する。
図1は、本発明で使用する海中貯水槽の貯留タンク本体Aの基本構造を示す一部破断正面図であり、図2はその一部拡大断面図である。図1及び図2において1は取水口、2は給水口、3は大径筒状袋体、4は小径筒状体、5はフロート、6は円筒状のネット体、7はバンド体、8はスペーサ、9はネット体支持枠、10は接続用鏡板である。
尚、図1乃至図11に於いて前記図12及び図13と同一の部位には同一の図番号を使用するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partially broken front view showing a basic structure of a storage tank body A of an underwater water tank used in the present invention, and FIG. 2 is a partially enlarged sectional view thereof. 1 and 2, 1 is a water intake port, 2 is a water supply port, 3 is a large-diameter cylindrical bag body, 4 is a small-diameter cylindrical body, 5 is a float, 6 is a cylindrical net body, 7 is a band body, 8 Is a spacer, 9 is a net body support frame, and 10 is a connecting end plate.
1 to 11, the same reference numerals are used for the same portions as those in FIGS. 12 and 13.

前記小径筒状体4はステンレス鋼等の耐食製鋼材により形成されており、本実施例では厚さ2.0mmのステンレス鋼により高さ1000mm×直径400mmの円筒形の小径筒状体4を形成している。
また、前記大径筒状袋体3は、厚さ2mmのナイロンターポリン(ユニチカ株式会社製)のシート体を用いて高さ2000mm×直径2000mmの円筒形の大径筒状体3に形成されており、貯水量が定格容量の場合には図1の如き円筒状体が伸長している。
尚、前記貯留タンク本体1の形態や外形寸法は、その最大貯留量により適宜に選択されるものであり、形状は円筒形とするのが望ましい。
It said smaller cylindrical body 4 is formed by corrosion-resistant steel steel such as stainless steel, 1000 high stainless steel having a thickness of 2.0mm in the present embodiment mm × diameter 400 mm diameter cylindrical body 4 cylindrical in Is forming.
The large-diameter cylindrical bag body 3 is formed into a cylindrical large-diameter cylindrical body 3 having a height of 2000 mm and a diameter of 2000 mm using a sheet of nylon tarpaulin (manufactured by Unitika Ltd.) having a thickness of 2 mm. When the amount of stored water is the rated capacity, the cylindrical body as shown in FIG. 1 extends.
The form and outer dimensions of the storage tank main body 1 are appropriately selected according to the maximum storage amount, and the shape is preferably cylindrical.

前記筒状のネット体6は、大径筒状袋体3の底面及び側部外周面を覆う状態に配設されており、外径3mmφのステンレス鋼を100mmピッチで格子状に組み合せした網体が用いられている。
尚、本実施例では、後述するように袋体3の底面をネット体6により支える構成としているが、後述するように、貯留水を強制循環させるために袋体3の内壁面を内側へ強制変形させない場合には、ネット体6の袋体3の底面を支持する部分は不要となることは勿論である。
The cylindrical net body 6 is disposed so as to cover the bottom surface and side outer peripheral surface of the large-diameter cylindrical bag body 3, and is a net body obtained by combining stainless steel having an outer diameter of 3 mmφ in a lattice shape at a pitch of 100 mm. Is used.
In this embodiment, the bottom surface of the bag body 3 is supported by the net body 6 as will be described later. However, as will be described later, the inner wall surface of the bag body 3 is forced inward to forcibly circulate the stored water. Of course, when not deformed, the portion of the net body 6 that supports the bottom surface of the bag body 3 is not necessary.

[実施形態1]
実施形態1は、前記図1及び図2に示した貯留タンク本体1内の貯留水Wを、後述するシリンダの作動により強制的に攪拌流動させることにより、貯留水Wの腐敗や水質の低下を防止するようにしたものである。
即ち、図4〜図6に示す如く、大径筒状袋体3の側壁3aの一部をシリンダ12のロッド12bの先端に固定した押圧体12aにより一定量だけ内方へ押圧し、袋体3の内容積を強制的に減少せしめて内部の貯留水Wの一部を小径筒状体4内へ押し上げる。その後シリンダ12内の押圧力を喪失させ、袋体3を初期位置まで膨らませてその内容積を初期の容積へ戻すことにより小径筒状体4内の水位を急激に下降させ、この時の水の位置エネルギーを用いて、袋体3内の貯留水Wを袋体3の半径方向及び縦軸方向へ強制流動させる。
[Embodiment 1]
In the first embodiment, the stored water W in the storage tank main body 1 shown in FIGS. 1 and 2 is forcibly agitated and flowed by the operation of a cylinder to be described later, so that the stored water W is spoiled and the water quality is reduced. It is intended to prevent.
That is, as shown in FIGS. 4 to 6, a part of the side wall 3a of the large-diameter cylindrical bag 3 is pressed inward by a predetermined amount by the pressing body 12a fixed to the tip of the rod 12b of the cylinder 12, so that the bag The internal volume of 3 is forcibly reduced, and a part of the internal stored water W is pushed up into the small-diameter cylindrical body 4. After that, the pressing force in the cylinder 12 is lost, the bag body 3 is inflated to the initial position, and the inner volume is returned to the initial volume, so that the water level in the small-diameter cylindrical body 4 is drastically lowered. The stored water W in the bag body 3 is forcibly flowed in the radial direction and the vertical axis direction of the bag body 3 using the potential energy.

図4〜図6を参照して、前記シリンダ12は、袋体3の側壁3aの外方に嵌合したリング状のシリンダ支持バンド11に固定されており、また、このシリンダ支持バンド11はネット体支持枠9に固定されている。
また、シリンダ12のロッド12bの先端には押圧体12aが固定されており、シリンダ12の作動により押圧体12aが袋体側壁3aを内方へ押圧し、その内容積を減少させる。
尚、図6において、6はネット体(100mm×100m×3φのステンレス線)、9はネット体支持枠(10φステンレス鋼)、11はシリンダ支持バンド(2mmt×12mmのステンレス鋼)、13は作動用流体給・排管である。
4 to 6, the cylinder 12 is fixed to a ring-shaped cylinder support band 11 fitted to the outside of the side wall 3 a of the bag 3, and the cylinder support band 11 is a net. It is fixed to the body support frame 9.
Further, a pressing body 12a is fixed to the tip of the rod 12b of the cylinder 12, and the pressing body 12a presses the bag side wall 3a inward by the operation of the cylinder 12 to reduce its internal volume.
In FIG. 6, 6 is a net body (100 mm × 100 m × 3φ stainless steel wire), 9 is a net body support frame (10φ stainless steel), 11 is a cylinder support band (2 mmt × 12 mm stainless steel), 13 Is a working fluid supply / drain pipe.

前記円環状のシリンダ支持バンド11は、袋体3の高さ方向の略中央位置に嵌合固定されており、本実施例では4基のシリンダ12が等間隔でシリンダ支持バンド11に固定されている。   The annular cylinder support band 11 is fitted and fixed at a substantially central position in the height direction of the bag 3. In this embodiment, four cylinders 12 are fixed to the cylinder support band 11 at equal intervals. Yes.

尚、袋体3の内容積等に応じてシリンダ支持バンド11の配列段数を複数にしたり、或いは支持バンド11に固定するシリンダ12の数を増減することは勿論である。
また、前記複数のシリンダ12は、同時若しくは所定のプログラムに従って順に作動させるようにしてもよく、更に、シリンダロッド12bの作動速度も適宜に調整されることは勿論であり、袋体3内の貯留水Wが半径方向及び縦軸方向に円滑に強制流動されるように設定する。
Needless to say, the number of stages of the cylinder support bands 11 arranged is increased or the number of cylinders 12 fixed to the support bands 11 is increased or decreased according to the internal volume of the bag body 3 or the like.
The plurality of cylinders 12 may be operated simultaneously or sequentially in accordance with a predetermined program, and the operating speed of the cylinder rod 12b is of course adjusted as appropriate. It is set so that the water W is forced to flow smoothly in the radial direction and the vertical axis direction.

図4〜図6に示した本実施例においては、4個のシリンダ12を同時作動させる構成としており、これにより袋体3の内容積に約0.1〜0.15m3(袋体3の内容積約6.5m3)の変化を、10〜11回/hの割合で加えている。 In the present embodiment shown in FIGS. 4 to 6, the four cylinders 12 are operated at the same time, so that the inner volume of the bag 3 is about 0.1 to 0.15 m 3 (of the bag 3 The change of the internal volume of about 6.5 m 3 ) is applied at a rate of 10 to 11 times / h.

前記各シリンダ12への作動用流体は、図5に示す如く貯留タンク本体1のフロート5の上面に配設した加圧流体供給装置14から供給されており、本実施例では加圧流体供給装置14としてコンプレッサを使用している。また、コンプレッサ14はモータ15により回転駆動されており、このモータ15へはフロート5上に配設した太陽電池装置16から給電されている。
尚、コンプレッサ14、モータ15、太陽電池16及び後述する各制御弁V0〜V2等の作動制御は、制御装置17を介して行われる。
The working fluid to each cylinder 12 is supplied from a pressurized fluid supply device 14 disposed on the upper surface of the float 5 of the storage tank body 1 as shown in FIG. A compressor is used as 14. The compressor 14 is driven to rotate by a motor 15, and power is supplied to the motor 15 from a solar cell device 16 disposed on the float 5.
Incidentally, the compressor 14, the motor 15, operation control such as the control valves V 0 ~V 2 to the solar cell 16 and described later, is performed via the control device 17.

図7は、前記シリンダ12の作動系統を示すものであり、制御弁V1を開、制御弁V2を閉とすることにより各シリンダ12が同時作動され、また、制御弁V1を閉、制御弁V2を開に切換えることにより、作動用流体が大気へ排出される。これにより、前述の如く袋体3の内容積が初期状態に戻ると共に小径筒状体4内の水位が急下降することになり、これによって袋体3内の貯留水Wに加わる衝撃的な運動エネルギーによって、貯留水Wが袋体3の半径方向及び軸方向に不規則な流動を行うことになる。 FIG. 7 shows the operation system of the cylinder 12, a control valve V 1 open, the cylinders 12 are simultaneously actuated by a control valve V 2 to the closed, also the control valve V 1 is closed, by switching the control valve V 2 is opened, working fluid is discharged to the atmosphere. As a result, the inner volume of the bag body 3 returns to the initial state as described above, and the water level in the small-diameter cylindrical body 4 suddenly drops, whereby a shocking motion applied to the stored water W in the bag body 3. Due to the energy, the stored water W flows irregularly in the radial direction and the axial direction of the bag body 3.

[試験結果]
シリンダ12の作動による袋体3の内容積変化(0.1〜0.15m3)によって、小径筒状体4の水位を3〜5分間で約800〜1000mm上昇させ、また、小径筒状体4内の上昇した水位を、50〜60秒間で初期水位に戻すように、給気用制御弁V2の開度を夫々調整した。
そして、上記条件下における水位変動を10回/1hrの割合で30日間連続して行った。
その後、貯留水のCOD値分析を行って、本発明を実施しない場合との比較を行った。
[Test results]
By changing the internal volume (0.1 to 0.15 m 3 ) of the bag 3 by the operation of the cylinder 12, the water level of the small diameter cylindrical body 4 is raised by about 800 to 1000 mm in 3 to 5 minutes, and the small diameter cylindrical body The opening degree of the supply control valve V 2 was adjusted so that the water level that rose in 4 returned to the initial water level in 50 to 60 seconds.
And the water level fluctuation | variation on the said conditions was continuously performed for 30 days at the rate of 10 times / 1hr.
Then, the COD value analysis of the stored water was performed and compared with the case where this invention is not implemented.

表1は、試験結果を示すものであり、本発明の第1実施形態によれば、BOD値の悪化や臭気の発生、透明度の低下等が生じないことが判る。
[試験結果]

Figure 0004671437
Table 1 shows the test results. According to the first embodiment of the present invention, it can be seen that the BOD value is not deteriorated, the odor is generated, the transparency is not lowered, and the like.
[Test results]
Figure 0004671437

[実施形態2]
図8及び図9は、本発明の実施形態2を示すものであり、この実施形態3では、袋体3の縦方向の中央部より下方位置に散気管18を設け、コンプレッサ14からの空気を散気管18のノズルから貯留水W内へ供給する構成としたものである。
[Embodiment 2]
FIGS. 8 and 9 show Embodiment 2 of the present invention. In Embodiment 3, an air diffuser 18 is provided at a position below the central portion of the bag 3 in the vertical direction, and air from the compressor 14 is supplied. In this configuration, the water is supplied from the nozzle of the air diffuser 18 into the stored water W.

本実施形態では柔軟性を有する塩化ビニール製のパイプを散気管18として使用しており、袋体3の内部に十字状に配置して、その各端部を袋体側壁3aの内壁面へ固定している。   In this embodiment, a flexible pipe made of vinyl chloride is used as the air diffuser 18 and is arranged in a cross shape inside the bag body 3, and each end thereof is fixed to the inner wall surface of the bag body side wall 3 a. is doing.

尚、図8及び図9において、19は空気供給管であり、コンプレッサ14から制御弁V1を通して所要量の空気が連続的に供給されている。
また、フロート5の上部には、実施形態1の場合と同様に、コンプレッサ14、駆動用モータ15、太陽電池16及び制御装置17等が配設されており、コンプレッサ14の運転に必要な電力が太陽電池16から供給される。
更に、図8及び図9に於いては、一つの散気管18を袋体3内へ配設しているが、これを複数段に亘って袋体3内に設けるようにしても良いことは勿論である。
In FIG. 8 and FIG. 9, 19 is the air supply pipe, the required amount of air is continuously supplied through the control valve V 1 from the compressor 14.
In addition, as in the case of the first embodiment, the compressor 14, the drive motor 15, the solar cell 16, the control device 17, and the like are disposed on the upper part of the float 5, and the electric power necessary for the operation of the compressor 14 is provided. Supplied from the solar cell 16.
Furthermore, in FIG.8 and FIG.9, although the one air diffusing tube 18 is arrange | positioned in the bag body 3, this may be provided in the bag body 3 over several steps. Of course.

前記実施形態1及び実施形態2では、太陽電池16の電力をコンプレッサ14の駆動エネルギーとしているが、太陽電池に替えて、潮流により回転駆動されている水車をフロート5上に配設し、その回転力を用いてコンプレッサ14を回転駆動させるようにしてもよい。
また、前記太陽電池に替えて、風力発電機をフロート5上に設置して、その発生電力によりコンプレッサ14を回転駆動させることも可能である。
更に、フロート5上に風車を設け、風車の回転力を用いてコンプレッサ14を回転駆動させることも可能である。
In the first embodiment and the second embodiment, the electric power of the solar cell 16 is used as the driving energy of the compressor 14, but instead of the solar cell, a water turbine that is rotationally driven by a tidal current is disposed on the float 5 and rotated. The compressor 14 may be rotationally driven using force.
Further, instead of the solar cell, it is also possible to install a wind power generator on the float 5 and rotate the compressor 14 by the generated power.
Furthermore, it is also possible to provide a windmill on the float 5 and rotationally drive the compressor 14 using the rotational force of the windmill.

[実施形態3]
図10及び図11は、本発明の実施形態3を示すものであり、貯留タンク本体1のフロート5上に風車20を設置すると共に、当該風車20の回転力を用いて袋体3内の攪拌羽根21を回転駆動させ、小径筒状体4近傍の空気を比較的多く含有する貯留水Wを強制循環させるものである。
尚、攪拌羽根21は、可能な限り袋体3の上方部で且つ小径筒状体4の軸心に近い位置に設けるのが望ましい。
[Embodiment 3]
10 and 11 show a third embodiment of the present invention, in which a windmill 20 is installed on the float 5 of the storage tank body 1 and stirring in the bag body 3 is performed using the rotational force of the windmill 20. The blade 21 is rotationally driven to forcibly circulate the stored water W containing a relatively large amount of air near the small-diameter cylindrical body 4.
It is desirable that the stirring blade 21 be provided as close as possible to the upper part of the bag 3 and as close to the axis of the small-diameter cylindrical body 4 as possible.

本発明は、単に真水の貯水のみならず、海上レジャー産業や養殖漁業、真水の供給基地等の産業分野へも広く適用できるものである。   The present invention can be widely applied not only to fresh water storage but also to industrial fields such as the marine leisure industry, aquaculture and fishery, and a fresh water supply base.

本発明に係る海中貯水槽の要部を構成する貯留タンク本体Aの一部縦断正面図である。It is a partial longitudinal cross-sectional front view of the storage tank main body A which comprises the principal part of the underwater water tank which concerns on this invention. 図1のイ部の部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of a portion of FIG. 1. 円筒状ネット体の部分拡大正面図である。It is a partial enlarged front view of a cylindrical net body. 本発明で使用する海中貯水槽の貯留タンク本体1の正面概要図である。It is a front schematic diagram of the storage tank main body 1 of the underwater water tank used by this invention. 図4の貯留タンク本体1の平面図である。It is a top view of the storage tank main body 1 of FIG. 図5のイ−イ視断面図である。FIG. 6 is a cross-sectional view taken along the line II in FIG. 5. シリンダの駆動系統の説明図である。It is explanatory drawing of the drive system of a cylinder. 本発明の実施形態2に係る海中貯水槽の貯留タンク本体の正面概要図である。It is a front schematic diagram of the storage tank main body of the underwater water tank which concerns on Embodiment 2 of this invention. 図8の平面図である。It is a top view of FIG. 本発明の実施形態3に係る海中貯水槽の貯留タンク本体1の正面概要図である。It is a front schematic diagram of the storage tank main body 1 of the underwater water tank which concerns on Embodiment 3 of this invention. 図10の平面図である。It is a top view of FIG. 従前の海中貯水槽の設置状況の説明図である。It is explanatory drawing of the installation condition of a conventional underwater water tank. 従前の海中貯水槽の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of the conventional underwater water tank.

符号の説明Explanation of symbols

A 貯留タンク本体
S 海(海水)
L 陸地
C 取水設備
D 取水管
E 給水管
V 制御弁
F 給水設備
W 真水
R 河川
G 作動用流体
1 取水口
2 給水口
3 大径筒状袋体
3a 袋体側壁
4 小径筒状体
5 フロート
6 ネット体
7 バンド体
8 スペーサ
9 ネット体支持枠
10 接続用鏡板
11 シリンダ支持バンド
12 シリンダ
12a 押圧体
12b シリンダロッド
13 作動用流体給・排管
A Storage tank body S Sea (seawater)
L Land C Water intake equipment D Water intake pipe E Water supply pipe V Control valve F Water supply equipment W Fresh water R River G Operating fluid 1 Water intake 2 Water supply inlet 3 Large diameter cylindrical bag 3a Bag side wall 4 Small diameter cylindrical 5 Float 6 Net body 7 Band body 8 Spacer 9 Net body support frame 10 End plate 11 for connection Cylinder support band 12 Cylinder 12a Press body 12b Cylinder rod 13 Fluid supply / exhaust pipe for operation

Claims (6)

常時海中に位置し、取水口を通して流入した真水の貯水量に応じて内容積が変るフレキシブルなシート材製の大径筒状袋体と、大径筒状袋体と連通する小径筒状体と、大径筒状袋体の壁面上方に配設したフロートと、前記大径筒状袋体の壁面外方を囲繞し、筒状袋体の形態を筒状に維持するネット体と、前記ネット体の外方に大径筒状袋体の側壁と対向状に配設され、作動時に押圧体を介して袋体側壁を内方へ押圧変形させ、袋体内容積を縮減させるシリンダと、前記フロート上に配設され、シリンダへ作動用流体を供給する加圧流体供給装置と、加圧流体供給装置の駆動エネルギーを供給する太陽電池設備又は風車型回転駆動装置若しくは水車型回転駆動装置と、シリンダ作動用流体の供給及び排出を制御する制御弁とを備え、作動用流体の供給によりシリンダロッドを前進させ、大径筒状袋体の内容積を減少させることにより小径筒状体内の水位を上昇させると共に、作動用流体の排出によりシリンダロッドを後過させ、大径筒状袋体内容積を復原させることにより、小径筒状体から大径筒状袋体内へ水の流れを形成する構成としたことを特徴とする海中貯水槽。   A large-diameter cylindrical bag body made of a flexible sheet material that is always located in the sea and whose internal volume changes according to the amount of fresh water that has flowed in through the intake port, and a small-diameter cylindrical body that communicates with the large-diameter cylindrical bag body A float disposed above the wall surface of the large-diameter cylindrical bag body, a net body that surrounds the outside of the wall surface of the large-diameter cylindrical bag body, and maintains the form of the cylindrical bag body, and the net A cylinder that is disposed on the outer side of the body so as to face the side wall of the large-diameter cylindrical bag body, presses and deforms the side wall of the bag body inward through the pressing body during operation, and reduces the volume of the bag body; A pressurized fluid supply device for supplying an operating fluid to the cylinder, a solar cell facility for supplying driving energy of the pressurized fluid supply device, a windmill type rotary drive device or a water wheel type rotary drive device, and a cylinder A control valve for controlling supply and discharge of the working fluid, and the working fluid The cylinder rod is advanced by supply, and the water volume in the small-diameter cylindrical body is raised by reducing the internal volume of the large-diameter cylindrical bag body. An underwater water storage tank characterized in that a flow of water is formed from a small-diameter cylindrical body into a large-diameter cylindrical bag body by restoring the volume in the bag. 請求項1の海水貯留槽において、大径筒状袋体内にフレキシブルな散気管を配設し、加圧流体供給装置から加圧流体である空気を水中へ放出する構成としたことを特徴とする海中貯水槽。   2. The seawater storage tank according to claim 1, wherein a flexible aeration tube is disposed in the large-diameter cylindrical bag body, and the pressurized fluid is discharged from the pressurized fluid supply device into the water. Underwater water tank. 請求項1又は請求項2の海中貯水槽において、フロート上に風車又は水車を設けると共に当該風車又は水車により回転駆動される攪拌羽根を大径筒状袋体内の上方部に設ける構成とした海中貯水槽。 The underwater water storage tank according to claim 1 or 2, wherein a windmill or a water wheel is provided on the float and a stirring blade that is rotationally driven by the windmill or the water wheel is provided in an upper portion of the large-diameter cylindrical bag body. Tank. 大径筒状袋体の側壁に、円周方向に等間隔で複数のシリンダを配設すると共に、当該複数のシリンダの環状配列を大径筒状袋体の高さ方向に複数段設けるようにした請求項1、請求項2又は請求項3に記載の海中貯水槽。   A plurality of cylinders are arranged at equal intervals in the circumferential direction on the side wall of the large-diameter cylindrical bag body, and an annular arrangement of the plurality of cylinders is provided in a plurality of stages in the height direction of the large-diameter cylindrical bag body. The underwater water tank according to claim 1, claim 2, or claim 3. 大径筒状袋体内にフレキシブルな散気管を、大径筒状袋体の高さ方向に複数段設ける構成とした請求項2又は請求項3に記載の海中貯水槽。   The underwater water tank according to claim 2 or 3, wherein a plurality of flexible diffuser tubes are provided in the height direction of the large-diameter cylindrical bag body in the large-diameter cylindrical bag body. 複数のシリンダへの作動用流体の供給及び作動用流体の排出を予め定めた所望のプログラムに従って行い、大径筒状袋体内にその半径方向及び軸方向の水の流れを形成する構成とした請求項1、請求項2又は請求項3に記載の海中貯水槽。   Supplying the working fluid to a plurality of cylinders and discharging the working fluid according to a predetermined desired program, and forming a radial and axial flow of water in the large-diameter cylindrical bag body The underwater water tank according to claim 1, claim 2 or claim 3.
JP2007055963A 2007-03-06 2007-03-06 Underwater water tank Expired - Fee Related JP4671437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055963A JP4671437B2 (en) 2007-03-06 2007-03-06 Underwater water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055963A JP4671437B2 (en) 2007-03-06 2007-03-06 Underwater water tank

Publications (2)

Publication Number Publication Date
JP2008215008A JP2008215008A (en) 2008-09-18
JP4671437B2 true JP4671437B2 (en) 2011-04-20

Family

ID=39835391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055963A Expired - Fee Related JP4671437B2 (en) 2007-03-06 2007-03-06 Underwater water tank

Country Status (1)

Country Link
JP (1) JP4671437B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109835807A (en) * 2017-11-29 2019-06-04 江苏科技大学 The unmanned draw off gear and implementation method of floating body are carried in automatic positioning
CN117431911B (en) * 2023-12-15 2024-02-27 四川弘信天启科技有限公司 Fish collecting bucket capable of maintaining balance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442265B2 (en) * 1984-07-13 1992-07-10 Toshihiro Tsumura
JPH09111822A (en) * 1995-10-17 1997-04-28 Mitsubishi Heavy Ind Ltd Water storage device
JP2002016237A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Semiconductor ic device and method of manufacturing the same
JP2003138612A (en) * 2001-11-02 2003-05-14 Hiroshi Okawa Waterborne water storage tank and water collecting apparatus
JP2004057967A (en) * 2002-07-30 2004-02-26 Nishihara Environment Technology Inc Water cleaner
JP2006161533A (en) * 2004-11-09 2006-06-22 Kamishimagumi:Kk Water storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442265B2 (en) * 1984-07-13 1992-07-10 Toshihiro Tsumura
JPH09111822A (en) * 1995-10-17 1997-04-28 Mitsubishi Heavy Ind Ltd Water storage device
JP2002016237A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Semiconductor ic device and method of manufacturing the same
JP2003138612A (en) * 2001-11-02 2003-05-14 Hiroshi Okawa Waterborne water storage tank and water collecting apparatus
JP2004057967A (en) * 2002-07-30 2004-02-26 Nishihara Environment Technology Inc Water cleaner
JP2006161533A (en) * 2004-11-09 2006-06-22 Kamishimagumi:Kk Water storage system

Also Published As

Publication number Publication date
JP2008215008A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
KR101794207B1 (en) Water purifying device using solar generating
US7713032B2 (en) High pressure tide actuated fluid pump
WO2011069216A1 (en) Wave energy plant
US20080025852A1 (en) Economical tide/wave/swell/wind/solar powered high pressure fluid pump
JP4671437B2 (en) Underwater water tank
JP2006264343A (en) Generating enrichment floating body
KR102377520B1 (en) Water quality improvement system and control method of water quality improvement system
JP2012154187A (en) Pumping system using wind force and electric motor
GB2466477A (en) Floating support for offshore wind turbine
JP2005214187A (en) Hydraulic power generation facilities
US20090041575A1 (en) Driving Apparatus for a Wave Power Device
JP2016114057A (en) Shaft structure of floating body support shaft and floating power generation device including shaft structure of floating body support shaft
JP2017008820A (en) Low head drop water turbine hydraulic generating equipment utilizing tidal energy and power generating method
KR102529650B1 (en) Energy recovery type sewage treatment system using low drop effluent and buoyancy power generation
KR20150003965A (en) The apparatus for making the upwelling stream in the water
JP2022161137A (en) Tidal power generation system
JP2005273464A (en) Generating equipment and deep water pumping device using sea-bottom tidal current hydraulic turbine
JP4709636B2 (en) Hydrogen and oxygen generation system using wastewater energy
JP2017141799A (en) Power generating system
KR101624841B1 (en) A floating type device for circulating water
JP2010159695A (en) Wave energy utilizing device and wave energy utilizing plant using the wave energy utilizing device
KR101015205B1 (en) power generation system using wind force, tide, oceanic current, and wave-force
KR102287189B1 (en) Energy generation and storage system
CN220032170U (en) Floating type unit pontoon
CN115217709B (en) Marine wave energy water storage cultivation and various power generation coupling body marine pasture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees