JP4669171B2 - Method and apparatus for controlling fuel metering to an internal combustion engine - Google Patents

Method and apparatus for controlling fuel metering to an internal combustion engine Download PDF

Info

Publication number
JP4669171B2
JP4669171B2 JP2001251141A JP2001251141A JP4669171B2 JP 4669171 B2 JP4669171 B2 JP 4669171B2 JP 2001251141 A JP2001251141 A JP 2001251141A JP 2001251141 A JP2001251141 A JP 2001251141A JP 4669171 B2 JP4669171 B2 JP 4669171B2
Authority
JP
Japan
Prior art keywords
injection
amount
fuel
signal
main injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251141A
Other languages
Japanese (ja)
Other versions
JP2002070614A (en
Inventor
プフェフレ アンドレアス
ヤウダス ライナー
ハンメル クリストフ
シュルツ ウド
シュラー ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2002070614A publication Critical patent/JP2002070614A/en
Application granted granted Critical
Publication of JP4669171B2 publication Critical patent/JP4669171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関への燃料調量を制御する方法および装置に関する。
【0002】
【従来の技術】
ドイツ連邦共和国特許出願公開第19860398号明細書から、内燃機関への燃料調量を制御する方法および装置が公知である。そこでは燃料調量は少なくとも1つの第1の部分噴射と主噴射とに分割されている。その際に主噴射のための駆動開始が計算されるが、これは次の次の主噴射の際にようやく駆動に使用される。このため主噴射の駆動開始を定める場合、データ検出から実際の噴射までに時間遅延が発生する。噴射持続時間ひいては噴射すべき燃料量を定める信号はそのつど次の噴射の際に駆動に使用される。
【0003】
【発明が解決しようとする課題】
本発明の課題は、内燃機関への燃料調量を制御する方法および装置を提供することである。
【0004】
【課題を解決するための手段】
この課題は、ドライバの要求を表す少なくとも1つのモーメント量に基づいて主噴射の開始を表す主噴射開始信号を設定可能であり、少なくとも主噴射開始信号に基づいて燃焼効率を表す量を設定可能であり、燃焼効率を表す量に基づいて噴射すべき全燃料量を表す全燃料量信号を設定可能である方法により解決される。課題はまた、ドライバの要求を表す少なくとも1つのモーメント量に基づいて主噴射の開始を表す主噴射開始信号を設定し、少なくとも主噴射開始信号に基づいて燃焼効率を表す量を設定し、燃焼効率を表す量に基づいて噴射すべき全燃料量を表す全燃料量信号を設定する手段が設けられている装置を構成して解決される。
【0005】
【発明の実施の形態】
本発明によれば著しく精確な燃料調量が可能となり、特にデータの検出から燃料調量に対する駆動信号を決定するまでの時間遅延を最小化することができる。
【0006】
特に有利には第1のインタラプトが発生した際に少なくとも1つの全燃料量信号に基づいて第1の部分噴射の開始を表す第1の部分噴射開始信号と第1の部分噴射の際に噴射される燃料量を表す第1の部分量信号とを設定可能である。これにより前噴射のためのデータを前噴射の直前、パイロットインタラプトの発生時にその時点での駆動特性量に基づいて求めることができる。
【0007】
さらに有利には、第2のインタラプト信号が発生した際に少なくとも1つの全燃料量信号に基づいて第3の部分噴射の際に噴射される燃料量を表す第2の部分量信号を設定可能である。これにより主噴射のためのデータを噴射の直前、メインインタラプトの発生時にその時点での駆動特性量に基づいて求めることができる。
【0008】
特に有利には、主噴射開始信号、燃焼効率を表す量、および全燃料量信号を第1のインタラプトの発生時にも第2のインタラプトの発生時にもその時点で存在するデータに基づいて新たに計算することができる。
【0009】
本発明の手段によれば位相のずれが除去される。噴射についての全てのデータをそれぞれその時点で計算することができる。
【0010】
【実施例】
本発明を以下に図示の実施例に則して詳細に説明する。
【0011】
図1には内燃機関への燃料調量を制御するシステムの主要な素子が示されている。制御装置が参照番号100で示されている。この制御装置はアクチュエータ110に駆動信号Aを印加する。さらにクランクシャフトおよび/またはカムシャフトに配置されるパルスホイール(Impulsrad)125が設けられており、制御装置100に接続されたセンサ120によって走査される。さらに別のセンサ130、140が設けられており、これらのセンサは内燃機関の駆動状態および周囲条件を表す信号を形成する。
【0012】
センサ120はパルスを送出し、このパルスはクランクシャフトおよび/またはカムシャフトの所定の角度位置で発生する。有利にはパルスホイール125上のマーキングはそれぞれ内燃機関のシリンダの上死点でパルスが発生されるように配置されている。さらにインクリメントホイールが設けられており、約6゜の比較的小さな間隔でパルスを送出する。別のセンサ140はドライバの要求を表す信号Mを送出する。ここで有利にはこれは内燃機関へのモーメント要求を表す信号である。これらの量は別の制御ユニットによって調整することもできる。
【0013】
別のセンサ130は有利には燃料圧を表す信号Pを送出する。いわゆるコモンレールシステムではこれは有利にはレール圧である。別の駆動特性量および別の周囲条件を図示しないセンサを用いて検出してもよい。
【0014】
種々の駆動特性量および/または周囲条件に基づいて、制御装置100はアクチュエータ110に印加すべき駆動信号Aを計算する。ドライバの要求ないしモーメント要求Mと内燃機関の回転数Nとに基づいて、制御装置100は噴射すべき燃料量を定める量を求める。さらに種々の量、例えば当該の噴射すべき燃料量に基づいて、噴射開始を定める量が求められる。モーメント要求および回転数のほか、車両の駆動状態および/または内燃機関の駆動状態を表す別の量を考慮することもできる。噴射開始および噴射すべき燃料量を表す量に基づいて、制御装置100はアクチュエータ110に印加すべき駆動信号Aを計算する。
【0015】
アクチュエータ110は有利には電磁弁またはいわゆるピエゾアクチュエータである。駆動信号Aに依存してアクチュエータ110は噴射を行う位置を取ったり、また噴射を行わない位置を取ったりする。有利には駆動開始を定める信号および駆動終了を定める信号が出力される。
【0016】
シリンダの燃焼サイクルでの燃料調量はしばしば複数回の部分噴射に分割されている。有利には1回の燃焼サイクル当たりで小さな前噴射と大きな主噴射とが行われる。主噴射は主として内燃機関から出力されるモーメントをもたらすことを特徴とする。前噴射と主噴射のほかにさらに別の部分噴射を設けてもよい。例えばさらにもう1回後噴射を行うことができる。また前噴射、主噴射、または後噴射をそれぞれ複数回の前噴射、主噴射および/または後噴射に分割することもできる。
【0017】
以下に本発明の手法を前噴射および主噴射の実施例に即して説明する。ただし本発明の手法を他の部分噴射に適用することもできる。本発明の手法は少なくとも1つの第1の部分噴射および第2の部分噴射が行われる場合に適用可能である。以下では第1の部分噴射を前噴射と称し、第2の部分噴射を主噴射と称する。
【0018】
噴射のための駆動信号の計算は2段階で行われる。クランク角が点火上死点の前方約120°のときに発生するいわゆるパイロットインタラプトで前噴射のデータが計算され、クランク角が点火上死点の前方約60°のときに発生するメインインタラプトで主噴射および後噴射が計算される。パイロットインタラプトでは要求されたモーメント要求Mと回転数Nとに基づいて主噴射の噴射開始を定める角度が計算される。主噴射の噴射開始を定める角度は燃焼側で燃焼効率に大きな影響を与える量である。したがって主噴射の角度および回転数に基づいて燃焼効率を表す量が求められる。この場合燃焼効率を表す当該の量に基づいて、噴射すべき全燃料量が計算される。燃料量の一部は電気的および流体的な限界条件を考慮して前噴射とこれに続く主噴射ないし後噴射とに分割される。これに対して前噴射の開始と量とが計算される。相応の計算は図2のフローチャートに示されている。
【0019】
第1のステップ200ではインタラプト信号IR1が存在するか否かが検査される。存在しない場合には新たにステップ200が行われる。インタラプト信号IR1は前噴射のデータの計算を行うクランク角度の所定の角度位置を示している。この角度位置は前噴射の前の適切な時点でデータが計算されるように選定される。通常はインタラプト信号IR1のトリガは上死点の前方約120°の位置で行われる。
【0020】
インタラプト信号IR1が生じた場合、後続のステップ210で主噴射開始信号ABHEが計算される。この信号は主噴射の駆動開始角度を表している。主噴射開始信号の計算は、センサ140によって調整されたモーメント要求Mに基づいて行われる。これは有利にはドライバ要求を表す量である。モーメント要求M、回転数N、および場合により他の駆動特性量に基づいて主噴射開始信号ABHEの計算が行われる。有利にはこのために特性マップが使用される。続くステップ220では噴射開始に依存する噴射の効率を表す量FMTCが求められる。このために有利には同様に内燃機関の回転数を表す付加的な別の量が考慮される。
【0021】
効率と図示していない別の駆動特性量とに基づいて、この装置はステップ230で噴射すべき全燃料量を表す全燃料量信号を計算する。
【0022】
次のステップ240で第1の部分噴射の開始を表す第1の部分噴射開始信号と、第1の部分噴射で噴射される燃料量を表す部分量信号とが設定される。ここで液圧効果が考慮され、例えばレール圧Pおよび/または回転数Nが考慮される。
【0023】
メインインタラプトで主噴射角度がもう一度新たに計算される。その理由は、要求されるモーメントMおよび/または回転数がパイロットインタラプトとメインインタラプトとの間で変化してしまったかもしれないからである。ここから効率も新たに計算され、全燃料量から前噴射量を差し引いた分に相応する残りの燃料量が主噴射と後噴射とに分割される。そのために主噴射および後噴射に対する時点および量が計算される。
【0024】
相応の手段が図3にフローチャートで示されている。問い合わせステップ300でメインインタラプトと称される第2のインタラプトが存在するか否かが検査される。存在しない場合には新たにステップ300が行われる。問い合わせステップ300で相応のインタラプトが発生していることが検出された場合、ステップ310でステップ210と相応に、主噴射の駆動開始角度を表す信号ABHEが計算される。相応に続くステップ320でステップ220と同様に噴射開始に依存する効率FMTCが求められる。続くステップ330では噴射すべき燃料量QKが計算される。続くステップ340では噴射すべき燃料量が種々の部分噴射に分割される。その際にステップ340で、後噴射の際に調量される燃料量を表す部分量信号ADNEが求められる。続くステップ350では、主噴射の際に噴射される燃料量を表す主噴射量信号が設定される。続いてステップ360で第3の部分噴射開始すなわち後噴射を表す部分噴射開始信号ABNEが設定される。ブロック340、350、360での計算は有利には回転数および別の量、例えばレール圧に依存して行われる。特に駆動持続時間信号はレール圧に依存して計算される。ブロック340〜360に示された計算は図示のシーケンスで行ってもよいし、また任意の別のシーケンスで行ってもよい。
【0025】
本発明の手段により噴射データの計算の精度を著しく向上させることができる。特に主噴射および後噴射のデータ、すなわち噴射開始および噴射の持続時間のデータを正確に計算することができる。なぜならパイロットインタラプトとメインインタラプトとの間の回転数変化およびモーメント要求の変化が考慮されるからである。
【0026】
部分噴射のデータ、特に主噴射および後噴射のデータは所望のモーメントと発生している回転数についてのその時点でのデータに基づいている。
【図面の簡単な説明】
【図1】燃料調量制御装置のブロック図である。
【図2】本発明の方法の第1の実施例を示すフローチャートである。
【図3】本発明の方法の第2の実施例を示すフローチャートである。
【符号の説明】
100 制御装置
110 アクチュエータ
120、130、140 センサ
125 パルスホイール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for controlling fuel metering to an internal combustion engine.
[0002]
[Prior art]
From German Offenlegungsschrift 19 860 398, a method and device for controlling fuel metering to an internal combustion engine are known. There, the fuel metering is divided into at least one first partial injection and main injection. At that time, the start of driving for the main injection is calculated, but this is finally used for driving in the next main injection. For this reason, when the start of driving of the main injection is determined, a time delay occurs between data detection and actual injection. The signal that determines the injection duration and hence the amount of fuel to be injected is used for driving each time of the next injection.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method and apparatus for controlling fuel metering to an internal combustion engine.
[0004]
[Means for Solving the Problems]
This task is capable of setting a main injection start signal that represents the start of main injection based on at least one moment amount that represents a driver's request, and can set an amount that represents combustion efficiency based on at least the main injection start signal. This is solved by a method in which a total fuel quantity signal representing the total fuel quantity to be injected can be set based on the quantity representing the combustion efficiency. The task also sets a main injection start signal representing the start of main injection based on at least one moment amount representing a driver's request, and sets an amount representing combustion efficiency based on at least the main injection start signal. This is solved by constituting an apparatus provided with means for setting a total fuel amount signal representing the total fuel amount to be injected based on the amount representing.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, extremely accurate fuel metering is possible, and in particular, the time delay from the detection of data to the determination of the drive signal for the fuel metering can be minimized.
[0006]
Particularly preferably, when the first interrupt occurs, the first partial injection start signal indicating the start of the first partial injection based on at least one total fuel amount signal and the first partial injection are injected. And a first partial amount signal representing the amount of fuel to be set can be set. As a result, data for the pre-injection can be obtained based on the drive characteristic value at the time immediately before the pre-injection and when the pilot interrupt occurs.
[0007]
More advantageously, a second partial quantity signal representing the fuel quantity injected during the third partial injection can be set based on at least one total fuel quantity signal when the second interrupt signal is generated. is there. As a result, data for main injection can be obtained based on the drive characteristic amount at the time immediately before the injection and when the main interrupt occurs.
[0008]
Particularly advantageously, the main injection start signal, the quantity representing the combustion efficiency, and the total fuel quantity signal are newly calculated on the basis of the data present at the time of occurrence of the first and second interrupts. can do.
[0009]
According to the means of the present invention, the phase shift is eliminated. All data about the injection can be calculated at each point in time.
[0010]
【Example】
The present invention will be described in detail below with reference to the illustrated embodiments.
[0011]
FIG. 1 shows the main elements of a system for controlling fuel metering to an internal combustion engine. The control device is indicated by reference numeral 100. This control device applies a drive signal A to the actuator 110. Further, a pulse wheel (Impulsrad) 125 disposed on the crankshaft and / or the camshaft is provided and scanned by a sensor 120 connected to the control device 100. Further sensors 130, 140 are provided, which form signals representative of the driving state and ambient conditions of the internal combustion engine.
[0012]
The sensor 120 delivers a pulse that occurs at a predetermined angular position on the crankshaft and / or camshaft. Advantageously, the markings on the pulse wheel 125 are each arranged such that a pulse is generated at the top dead center of the cylinder of the internal combustion engine. In addition, an increment wheel is provided to deliver pulses at relatively small intervals of about 6 °. Another sensor 140 sends a signal M representing the driver's request. This is preferably a signal representing the moment demand on the internal combustion engine. These quantities can also be adjusted by a separate control unit.
[0013]
Another sensor 130 preferably delivers a signal P representing fuel pressure. In so-called common rail systems, this is preferably rail pressure. Another drive characteristic amount and another ambient condition may be detected using a sensor (not shown).
[0014]
Based on the various drive characteristic quantities and / or ambient conditions, the control device 100 calculates a drive signal A to be applied to the actuator 110. Based on the driver request or moment request M and the internal combustion engine speed N, the control device 100 determines an amount that determines the amount of fuel to be injected. Furthermore, based on various amounts, for example, the amount of fuel to be injected, an amount that determines the start of injection is determined. In addition to the moment demand and the rotational speed, other quantities representing the driving state of the vehicle and / or the driving state of the internal combustion engine can also be taken into account. Based on the quantity representing the start of injection and the amount of fuel to be injected, the control device 100 calculates a drive signal A to be applied to the actuator 110.
[0015]
The actuator 110 is preferably a solenoid valve or a so-called piezo actuator. Depending on the drive signal A, the actuator 110 takes a position where injection is performed or takes a position where injection is not performed. Advantageously, a signal for determining the start of driving and a signal for determining the end of driving are output.
[0016]
Fuel metering in a cylinder combustion cycle is often divided into multiple partial injections. A small pre-injection and a large main injection are preferably performed per combustion cycle. Main injection is mainly characterized by bringing about a moment output from the internal combustion engine. Another partial injection may be provided in addition to the pre-injection and the main injection. For example, the post-injection can be performed one more time. Also, the pre-injection, main injection, or post-injection can be divided into a plurality of pre-injections, main injections, and / or post-injections, respectively.
[0017]
Hereinafter, the method of the present invention will be described with reference to examples of the pre-injection and the main injection. However, the method of the present invention can be applied to other partial injections. The method of the present invention is applicable when at least one first partial injection and second partial injection are performed. Hereinafter, the first partial injection is referred to as pre-injection, and the second partial injection is referred to as main injection.
[0018]
The calculation of the drive signal for injection is performed in two stages. The pre-injection data is calculated by a so-called pilot interrupt that occurs when the crank angle is approximately 120 ° ahead of the ignition top dead center, and the main interrupt that occurs when the crank angle is approximately 60 ° ahead of the ignition top dead center. Injection and post-injection are calculated. In the pilot interrupt, an angle for determining the start of main injection is calculated based on the requested moment request M and the rotational speed N. The angle that determines the injection start of the main injection is an amount that greatly affects the combustion efficiency on the combustion side. Therefore, an amount representing the combustion efficiency is obtained based on the angle and the rotational speed of the main injection. In this case, the total amount of fuel to be injected is calculated on the basis of this amount representing the combustion efficiency. A part of the fuel amount is divided into pre-injection and subsequent main injection or post-injection in consideration of electric and fluid limit conditions. In contrast, the start and amount of pre-injection are calculated. The corresponding calculations are shown in the flowchart of FIG.
[0019]
In a first step 200 it is checked whether an interrupt signal IR1 is present. If it does not exist, step 200 is newly performed. The interrupt signal IR1 indicates a predetermined angular position of the crank angle for calculating the pre-injection data. This angular position is chosen so that the data is calculated at an appropriate time before the pre-injection. Normally, the interrupt signal IR1 is triggered at a position of about 120 ° in front of the top dead center.
[0020]
If the interrupt signal IR1 occurs, the main injection start signal ABHE is calculated in the following step 210. This signal represents the drive start angle of the main injection. The calculation of the main injection start signal is performed based on the moment request M adjusted by the sensor 140. This is preferably a quantity representing the driver demand. The main injection start signal ABHE is calculated based on the moment request M, the rotation speed N, and possibly other drive characteristic amounts. A characteristic map is preferably used for this purpose. In the following step 220, an amount FMTC representing the efficiency of injection depending on the start of injection is obtained. For this purpose, an additional additional quantity which likewise represents the speed of the internal combustion engine is likewise taken into account.
[0021]
Based on the efficiency and another drive characteristic quantity not shown, the apparatus calculates a total fuel quantity signal representing the total fuel quantity to be injected at step 230.
[0022]
In the next step 240, a first partial injection start signal indicating the start of the first partial injection and a partial amount signal indicating the amount of fuel injected in the first partial injection are set. Here, the hydraulic effect is taken into account, for example the rail pressure P and / or the rotational speed N are taken into account.
[0023]
The main injection angle is again calculated anew at the main interrupt. The reason is that the required moment M and / or the number of revolutions may have changed between the pilot interrupt and the main interrupt. The efficiency is newly calculated from this, and the remaining fuel amount corresponding to the amount obtained by subtracting the pre-injection amount from the total fuel amount is divided into main injection and post-injection. To that end, the time and quantity for the main injection and the post injection are calculated.
[0024]
Corresponding means are shown in a flow chart in FIG. In inquiry step 300 it is checked whether a second interrupt called the main interrupt exists. If not, step 300 is newly performed. If it is detected in the inquiry step 300 that a corresponding interrupt has occurred, a signal ABHE representing the driving start angle of the main injection is calculated in step 310 in accordance with step 210. In the corresponding step 320, the efficiency FMTC depending on the start of injection is determined as in step 220. In the following step 330, the fuel amount QK to be injected is calculated. In the following step 340, the amount of fuel to be injected is divided into various partial injections. At this time, in step 340, a partial amount signal ADNE representing the amount of fuel metered during post-injection is determined. In the subsequent step 350, a main injection amount signal representing the amount of fuel injected during main injection is set. Subsequently, at step 360, a partial injection start signal ABNE representing the third partial injection start, that is, the post injection, is set. The calculations in blocks 340, 350, 360 are preferably performed depending on the speed and other quantities, for example rail pressure. In particular, the drive duration signal is calculated depending on the rail pressure. The calculations shown in blocks 340-360 may be performed in the sequence shown, or in any other sequence.
[0025]
By means of the present invention, the accuracy of calculation of injection data can be significantly improved. In particular, it is possible to accurately calculate main injection and post injection data, that is, injection start and injection duration data. This is because a change in the rotational speed and a change in the moment demand between the pilot interrupt and the main interrupt are taken into account.
[0026]
The partial injection data, in particular the main injection and post-injection data, is based on the current data on the desired moment and the number of rotations occurring.
[Brief description of the drawings]
FIG. 1 is a block diagram of a fuel metering control device.
FIG. 2 is a flow chart illustrating a first embodiment of the method of the present invention.
FIG. 3 is a flow chart illustrating a second embodiment of the method of the present invention.
[Explanation of symbols]
100 Controller 110 Actuator 120, 130, 140 Sensor 125 Pulse wheel

Claims (3)

燃料調量が少なくとも前噴射および主噴射を含む複数の部分噴射に分割されており、それぞれの噴射のための駆動信号を、上死点前方の所定のクランクシャフト角度でインタラプト信号が発生した際に計算する、
内燃機関への燃料調量を制御する方法において、
第1のインタラプト信号が発生した際に、
少なくともドライバの要求を表すモーメント量に基づいて主噴射の開始を表す主噴射開始信号を設定し、
該主噴射開始信号に基づいて燃焼効率を表す量を設定し、
該燃焼効率を表す量に基づいて噴射すべき全燃料量を設定し、
該設定された全燃料量を各部分噴射に分割し、前噴射の際に噴射される燃料量を表す前噴射量信号と前噴射の開始を表す前噴射開始信号とを計算し、
第2のインタラプト信号が発生した際に、
少なくともドライバの要求を表すモーメント量に基づいて主噴射の開始を表す主噴射開始信号をあらたに設定し、
該あらたに設定された主噴射開始信号に基づいて燃焼効率を表す量をあらたに設定し、
該あらたに設定された燃焼効率を表す量に基づいてあらためて噴射すべき全燃料量を計算し、
該あらためて計算された全燃料量を各部分噴射に分割し、主噴射の際に噴射される燃料量を表す主噴射量信号を計算する
ことを特徴とする内燃機関への燃料調量を制御する方法。
The fuel metering is divided into a plurality of partial injections including at least a pre-injection and a main injection. When an interrupt signal is generated at a predetermined crankshaft angle in front of top dead center, a drive signal for each injection is generated. calculate,
In a method for controlling fuel metering to an internal combustion engine,
When the first interrupt signal is generated,
A main injection start signal that indicates the start of main injection is set based on at least the amount of moment that represents the driver's request,
An amount representing combustion efficiency is set based on the main injection start signal,
Setting the total amount of fuel to be injected based on the amount representing the combustion efficiency;
The total amount of fuel which is the set divided into partial injections, calculates the injection start signal before indicating the start of the pre-injection amount signal and the preinjection representing the amount of fuel injected during the preinjection,
When the second interrupt signal is generated,
A main injection start signal indicating the start of the main injection is newly set based on at least the moment amount indicating the request of the driver,
Based on the newly set main injection start signal, an amount representing the combustion efficiency is newly set,
Calculate the total amount of fuel to be injected anew based on the newly set amount representing the combustion efficiency,
The total amount of fuel which the are again calculated by dividing each partial injection, controlling the fuel metering to the internal combustion engine and calculates the main injection amount signal representative of the amount of fuel injected during the main injection Method.
後噴射が行われる場合、第2のインタラプト信号が発生した際に、前記あらためて計算された全燃料量を各部分噴射に分割し、その際に後噴射の際に噴射される噴射量を表す後噴射量信号を求め、続いて主噴射の際に噴射される燃料量を表す主噴射量信号を設定し、続いて後噴射の開始を表す後噴射開始信号を設定する、請求項1記載の方法。When post-injection is performed, when the second interrupt signal is generated, the total amount of fuel calculated anew is divided into each partial injection, and the post-injection represents the injection amount injected at the time of post-injection The method according to claim 1, wherein an injection amount signal is obtained, a main injection amount signal representing the amount of fuel injected during main injection is subsequently set, and then a post-injection start signal representing the start of post-injection is set. . 燃料調量が少なくとも前噴射および主噴射を含む複数の部分噴射に分割されており、それぞれの噴射のための駆動信号が、上死点前方の所定のクランクシャフト角度でインタラプト信号が発生した際に計算される、
内燃機関への燃料調量を制御する装置において、
第1のインタラプト信号が発生した際に、少なくともドライバの要求を表すモーメント量に基づいて主噴射の開始を表す主噴射開始信号を設定し、該主噴射開始信号に基づいて燃焼効率を表す量を設定し、該燃焼効率を表す量に基づいて噴射すべき全燃料量を設定し、該設定された全燃料量を各部分噴射に分割し、前噴射の際に噴射される燃料量を表す前噴射量信号前噴射の開始を表す前噴射開始信号とを求め、
第2のインタラプト信号が発生した際に、少なくともドライバの要求を表すモーメント量に基づいて主噴射の開始を表す主噴射開始信号をあらたに設定し、該あらたに設定された主噴射開始信号に基づいて燃焼効率を表す量をあらたに設定し、該あらたに設定された燃焼効率を表す量に基づいてあらためて噴射すべき全燃料量を計算し、該あらためて計算された全燃料量を各部分噴射に分割し、主噴射の際に噴射される燃料量を表す主噴射量信号を計算する
手段が設けられている
ことを特徴とする内燃機関への燃料調量を制御する装置。
The fuel metering is divided into a plurality of partial injections including at least a pre-injection and a main injection, and when an interrupt signal is generated at a predetermined crankshaft angle in front of the top dead center Calculated,
In an apparatus for controlling fuel metering to an internal combustion engine,
When the first interrupt signal is generated, a main injection start signal indicating the start of main injection is set based on at least a moment amount indicating a request from the driver, and an amount indicating combustion efficiency is set based on the main injection start signal. Before setting the total fuel amount to be injected based on the amount representing the combustion efficiency, dividing the set total fuel amount into each partial injection, and representing the fuel amount to be injected during the pre-injection Obtain an injection amount signal and a pre-injection start signal indicating the start of pre-injection ,
When the second interrupt signal is generated, a main injection start signal indicating the start of the main injection is newly set based on at least a moment amount indicating the request of the driver, and based on the newly set main injection start signal. Then, the amount representing the combustion efficiency is newly set, the total amount of fuel to be injected is calculated again based on the newly set amount representing the combustion efficiency, and the newly calculated total fuel amount is assigned to each partial injection. divided, to control the fuel metering to the internal combustion engine, wherein the means for calculating the main injection amount signal representative of the amount of fuel injected is provided in the main injection apparatus.
JP2001251141A 2000-08-23 2001-08-22 Method and apparatus for controlling fuel metering to an internal combustion engine Expired - Fee Related JP4669171B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10041442.7 2000-08-23
DE10041442.7A DE10041442B4 (en) 2000-08-23 2000-08-23 Method and device for controlling fuel metering in an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002070614A JP2002070614A (en) 2002-03-08
JP4669171B2 true JP4669171B2 (en) 2011-04-13

Family

ID=7653550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251141A Expired - Fee Related JP4669171B2 (en) 2000-08-23 2001-08-22 Method and apparatus for controlling fuel metering to an internal combustion engine

Country Status (2)

Country Link
JP (1) JP4669171B2 (en)
DE (1) DE10041442B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244538A1 (en) * 2002-09-25 2004-04-08 Robert Bosch Gmbh Method for operating a fuel injection system for an internal combustion engine
DE102004020416A1 (en) * 2004-04-23 2005-11-10 Robert Bosch Gmbh Method for operating a fuel injection system for an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299762A (en) * 1988-10-05 1990-04-11 Ngk Spark Plug Co Ltd Start assisting device for diesel engine
JPH1162679A (en) * 1997-08-21 1999-03-05 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine of direct injection spark igniting type
JPH11182297A (en) * 1997-12-19 1999-07-06 Hitachi Ltd Combustion switching control device for internal combustion engine
JP2000073800A (en) * 1998-08-28 2000-03-07 Hitachi Ltd Controller for engine with electromagnet drive suction and exhaust valve
JP2000205014A (en) * 1999-01-13 2000-07-25 Mazda Motor Corp Control apparatus for direct injection type engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135647A (en) * 1983-12-22 1985-07-19 Toyota Motor Corp Fuel injection apparatus for diesel engine
JPH02286851A (en) * 1989-04-28 1990-11-27 Fuji Heavy Ind Ltd Fuel injection control device of engine
DE19860398B4 (en) * 1998-12-28 2004-05-27 Robert Bosch Gmbh Method and device for controlling the fuel metering in an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299762A (en) * 1988-10-05 1990-04-11 Ngk Spark Plug Co Ltd Start assisting device for diesel engine
JPH1162679A (en) * 1997-08-21 1999-03-05 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine of direct injection spark igniting type
JPH11182297A (en) * 1997-12-19 1999-07-06 Hitachi Ltd Combustion switching control device for internal combustion engine
JP2000073800A (en) * 1998-08-28 2000-03-07 Hitachi Ltd Controller for engine with electromagnet drive suction and exhaust valve
JP2000205014A (en) * 1999-01-13 2000-07-25 Mazda Motor Corp Control apparatus for direct injection type engine

Also Published As

Publication number Publication date
DE10041442A1 (en) 2002-03-07
DE10041442B4 (en) 2014-02-13
JP2002070614A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP2031220B1 (en) Fuel injection system with injection characteristic learning function
US7272486B2 (en) Method of controlling an internal combustion engine with a common rail fuel injection system
US6125823A (en) System and method for controlling fuel injections
JP2001090580A (en) Method and device for controlling fuel metering device
JP2937472B2 (en) Engine torque control device
JPH11294227A (en) Adjusting method and adjusting device for fuel injection
US6837214B2 (en) System for regulating an internal combustion engine
US6298830B1 (en) Method of jetting high-pressure fuel and apparatus therefor
JP4347997B2 (en) Internal combustion engine control method and apparatus
JP4669171B2 (en) Method and apparatus for controlling fuel metering to an internal combustion engine
JP4316755B2 (en) Fuel metering control method and control device for internal combustion engine
JP4268883B2 (en) Driving method, computer program, control device, and fuel metering system for automobile fuel metering system
JP2004506836A (en) Control method and control device for internal combustion engine
JP4066954B2 (en) Fuel injection device for internal combustion engine
JP5098683B2 (en) Fuel injection control device for internal combustion engine
EP1447546B1 (en) Engine control unit including phase advance compensator
JP3859856B2 (en) Engine fuel injection control device
JP3995112B2 (en) Control method and apparatus for internal combustion engine
JP3295150B2 (en) Basic fuel injection method
JPH11229904A (en) Engine control device
JP2852353B2 (en) Engine fuel injection device
JPH03185247A (en) Fuel control device for engine
CN115143003A (en) Method for monitoring drift of total fuel injection quantity of fuel injector, monitoring device and readable storage medium
JPS6035156A (en) Fuel injection device for internal-combustion engine
JPH0557421B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees